14. Neural networks

- introduction
- single-neuron training
- the backpropagation algorithm

Neural network success

neural networks have found tremendous success in many real life applications such as

- speech recognition
- image classifications
- recommendations systems
- cancer cell detection
- ...etc

Neuron

an *artificial neural network* is a system composed of interconnected simple subsystems called *neurons*

• neuron symbol:

- the output of the neuron is a function of the sum of the inputs
- the function f at the output is called the *activation function*

introduction

Single-neuron output

the output of a single-neuron can be represented by the map from $\mathbb{R}^n \to \mathbb{R}$:

$$y = f\left(\sum_{i=1}^{n} w_i x_i\right) = f(\boldsymbol{x}^T \boldsymbol{w})$$
(14.1)

- *f* is the activation function
- w_i is the weight multiplied by input x_i
- $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ the vector of inputs
- $\boldsymbol{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$ is the vector of weights

introduction

Activation functions

- *Linear* (no activation): f(v) = v
- Softplus:

$$f(v) = \log(1 + e^v)$$

• Sigmoid or logistic, soft step:

$$f(v) = \frac{1}{1 + e^{-v}}$$

• Binary step:

$$f(v) = \begin{cases} 0 & v \le 0\\ 1 & v > 0 \end{cases}$$

• Rectified linear unit (ReLU):

$$f(v) = \begin{cases} 0 & v \le 0\\ v & v > 0 \end{cases}$$

Feedforward neural network

in a *feedforward neural network*, the neurons are interconnected in layers and the data flow in only one direction

- the first layer in the network is called the input layer
- the last layer is called the *output layer*
- the layers in between the input and output layers are called hidden layers

Training a neural network

- a neural network is a mapping from \mathbb{R}^n to \mathbb{R}^m , where *n* is the number of inputs x_1, \ldots, x_n and *m* is the number of outputs y_1, \ldots, y_m
- suppose that we are given a map $F : \mathbb{R}^n \to \mathbb{R}^m$ that we wish to approximate by a given neural network
- then, a neural network woth apprpiate weights our task boils down to selecting the interconnection weights in the network appropriately; this task is referred to as *training* of the neural network or *learning* by the neural network
- input-output data of the given map are used to train the neural network
- we train the neural network by adjusting the weights such that the map that is implemented by the network is close to the desired map F

Outline

- introduction
- single-neuron training
- the backpropagation algorithm

Single neuron training

- we wish to find the value of the weights w_1, \ldots, w_n such that the neuron approximates a given map $F : \mathbb{R}^n \to \mathbb{R}$ map F as closely as possible
- we are given a training set consisting of p pairs $\{(x_{d,1}, y_{d,1}), \ldots, (x_{d,p}, y_{d,p})\}$, where $x_{d,i} \in \mathbb{R}^n$ and $y_{d,i} \in \mathbb{R}, i = 1, \ldots, p$
- for each i, $y_{d,i} = F(x_{d,i})$ is the "desired" output corresponding to the given input $x_{d,i}$

Optimization formulation

minimize
$$(1/2)\sum_{i=1}^{p} \left(y_{d,i} - f(\boldsymbol{x}_{d,i}^{T}\boldsymbol{w})\right)^{2}$$

- variable $oldsymbol{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$
- the choice of the method typically depends on the activation function f

Example: when f is the identity function, then the problem becomes

minimize
$$(1/2)\sum_{i=1}^{p} \left(y_{d,i} - \boldsymbol{x}_{d,i}^{T} \boldsymbol{w}\right)^{2},$$

which is just a least squares problem:

minimize
$$(1/2) \| \boldsymbol{y}_d - \boldsymbol{X}_d^T \boldsymbol{w} \|^2$$

where

$$oldsymbol{X}_d = [oldsymbol{x}_{d,1}\cdotsoldsymbol{x}_{d,p}] \in \mathbb{R}^{n imes p}$$
 and $oldsymbol{y}_d = (y_{d,1},\ldots,y_{d,p}) \in \mathbb{R}^p$

single-neuron training

Outline

- introduction
- single-neuron training
- the backpropagation algorithm

Three-layered neural network

- *n* inputs x_i , i = 1, ..., n, and *m* outputs y_s , s = 1, ..., m
- l neurons in the hidden layer; the outputs of the neurons in the hidden layer are z_j , where j = 1, ..., l
- the inputs x_1, \ldots, x_n are distributed to the neurons in the hidden layer
- we let $f_j^h : \mathbb{R} \to \mathbb{R}$ denote the activation functions of the neurons in the hidden layer where $j = 1, \ldots, l$, and f_s^o the activation functions of the neurons in the output layer by, where $s = 1, \ldots, m$

Mapping representation

given the hidden layers weights w_{ji}^h and the output layer weights w_{sj}^o , let us denote the input to the *j*th neuron in the hidden layer by v_j and the output of the *j*th neuron in the hidden layer by z_j ; then, we have

$$v_j = \sum_{i=1}^n w_{ji}^h x_i,$$
$$z_j = f_j^h \left(\sum_{i=1}^n w_{ji}^h x_i\right)$$

the output from the sth neuron of the output layer is

$$y_s = f_s^o\left(\sum_{j=1}^l w_{sj}^o z_j\right)$$

therefore, the relationship between the inputs $x_i, i = 1, ..., n$, and the *s*th output y_s is given by

$$y_{s} = f_{s}^{o} \left(\sum_{j=1}^{l} w_{sj}^{o} f_{j}^{h} (v_{j}) \right)$$
$$= f_{s}^{o} \left(\sum_{j=1}^{l} w_{sj}^{o} f_{j}^{h} \left(\sum_{i=1}^{n} w_{ji}^{h} x_{i} \right) \right)$$
$$= F_{s} (x_{1}, \dots, x_{n})$$

the overall mapping that the neural network implements is therefore given by

$$\begin{bmatrix} y_1\\ \vdots\\ y_m \end{bmatrix} = \begin{bmatrix} F_1(x_1,\dots,x_n)\\ \vdots\\ F_m(x_1,\dots,x_n) \end{bmatrix}$$

Training the neural network

- we are given the training set $({m x}_d, {m y}_d)$, where ${m x}_d \in \mathbb{R}^n$ and ${m y}_d \in \mathbb{R}^m$
- the training of the neural network involves adjusting the weights of the network such that the output generated by the network for the given input *x*_d = (x_{d1},..., x_{dn}) is as close to *y*_d as possible

The training problem

minimize
$$(1/2) \sum_{s=1}^{m} (y_{ds} - y_s)^2$$

- $y_s, s = 1, \ldots, m$, are the outputs of the neural network from the inputs x_{d1}, \ldots, x_{dn}
- this minimization is taken over

$$\boldsymbol{w} = \left\{ w_{ji}^{h}, w_{sj}^{o} : i = 1, \dots, n, j = 1, \dots, l, s = 1, \dots, m \right\}$$

the neural network requires minimizing the objective function

$$E(\boldsymbol{w}) = (1/2) \sum_{s=1}^{m} (y_{ds} - y_s)^2$$

= (1/2) $\sum_{s=1}^{m} \left(y_{ds} - f_s^o \left(\sum_{j=1}^{l} w_{sj}^o f_j^h \left(\sum_{i=1}^{n} w_{ji}^h x_{di} \right) \right) \right)^2$.

- we can solve using the gradient method with stepsize η
- · doing so leads to the backpropagation algorithm

The back-propagation algorithm

$$w_{sj}^{o(k+1)} = w_{sj}^{o(k)} + \eta \delta_s^{(k)} z_j^{(k)}$$
$$w_{ji}^{h(k+1)} = w_{ji}^{h(k)} + \eta \left(\sum_{p=1}^m \delta_p^{(k)} w_{pj}^{o(k)}\right) f_j^{h'} \left(v_j^{(k)}\right) x_{di}$$

where η is the (fixed) step size and

$$v_{j}^{(k)} = \sum_{i=1}^{n} w_{ji}^{h(k)} x_{di}$$

$$z_{j}^{(k)} = f_{j}^{h} \left(v_{j}^{(k)} \right)$$

$$y_{s}^{(k)} = f_{s}^{o} \left(\sum_{q=1}^{l} w_{sq}^{o(k)} z_{q}^{(k)} \right)$$

$$\delta_{s}^{(k)} = \left(y_{ds} - y_{s}^{(k)} \right) f_{s}^{o'} \left(\sum_{q=1}^{l} w_{sq}^{o(k)} z_{q}^{(k)} \right)$$

- the reason for the name backpropagation is that the output errors $\delta_1^{(k)},\ldots,\delta_m^{(k)}$ are propagated back from the output layer to the hidden layer
- and are used in the update equation for the hidden layer weights
- forward pass of the algorithm: using the inputs x_{di} and the current set of weights, we first compute the quantities $v_i^{(k)}, z_i^{(k)}, y_s^{(k)}$, and $\delta_s^{(k)}$, in turn
- reverse pass of the algorithm: compute the updated weights using the quantities computed in the forward pass

References and further readings

• Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley & Sons, 2013, chapter 13.