
13. Neural networks

• introduction

• training a neural network

• the backpropagation algorithm

ENGR 507 (Spring 2025) S. Alghunaim

13.1



Neural network success

neural networks achieved tremendous success in many real life applications such as

• speech recognition

• natural language processing

• image classifications

• recommendations systems

• cancer cell detection

• ...etc

SA — ENGR507introduction 13.2



Neuron

an artificial neural network (NN) is composed of simple subsystems called neurons

Neuron symbol

∑
𝑔

Single-neuron output

𝑤1

𝑤𝑖

𝑤𝑛

𝑥1

𝑥𝑛

𝑥𝑖
𝑦 = 𝑔 (𝑤1𝑥1 + · · · + 𝑤𝑛𝑥𝑛 )

• the output of a single-neuron is a function of a linear combination of inputs

• 𝑔 : R → R is the activation function

• 𝑥𝑖 is the 𝑖th input; 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 the vector of inputs

• 𝑤𝑖 is the weight multiplied by 𝑥𝑖 ; 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑛 is the weight vector

SA — ENGR507introduction 13.3



Activation functions

• linear (no activation): 𝑔(𝑣) = 𝑣

• softplus:
𝑔(𝑣) = log(1 + 𝑒𝑣)

• sigmoid or logistic, soft step:

𝑔(𝑣) = 1

1 + 𝑒−𝑣

• binary step:

𝑔(𝑣) =
{
0 𝑣 ≤ 0

1 𝑣 > 0

• rectified linear unit (ReLU):

𝑔(𝑣) = max(𝑣, 0) =
{
0 𝑣 ≤ 0

𝑣 𝑣 > 0

SA — ENGR507introduction 13.4



Feedforward neural network

in feedforward NN, neurons are interconnected in layers; data flow in one direction

𝑥1

𝑥𝑛

𝑥2

𝑦1

𝑦𝑚

𝑦2

Input Layer Hidden Layers Output Layer

• the first layer is the input layer

• the last layer is the output layer

• middle layers are hidden layers

• NN is a mapping 𝑔 : R𝑛 → R𝑚 that is a composition of functions

– for three layer network 𝑦 = 𝑔(𝑥) = 𝑔3 (𝑔2 (𝑔1 (𝑥))) where each 𝑔𝑖 is called a layer

SA — ENGR507introduction 13.5



Neural network predictor

Data fitting

• we have a mapping 𝐹 : R𝑛 → R𝑚 we aim to approximate using a neural network

• we do not know 𝐹 but we have observation data

(𝑥𝑑,1, 𝑦𝑑,1), . . . , (𝑥𝑑,𝑝 , 𝑦𝑑,𝑝) ∈ R𝑛 ×R𝑚

• each 𝑦𝑑,𝑖 corresponds to the output of the map 𝐹 for the input 𝑥𝑑,𝑖 , i.e.,

𝑦𝑑,𝑖 = 𝐹 (𝑥𝑑,𝑖), 𝑖 = 1, . . . , 𝑝

NN predictor

• consider a neural network as a specific mapping 𝑔(𝑥;𝑤) : R𝑛 → R𝑚

• 𝑤 represent the weights of the neural network interconnections

• our objective becomes fine-tuning the network’s interconnection weights such that

𝑦 = 𝑔(𝑥;𝑤) ≈ 𝐹 (𝑥)
over our data

• 𝑔(𝑥;𝑤) is called a neural network predictor
SA — ENGR507introduction 13.6



Outline

• introduction

• training a neural network

• the backpropagation algorithm



NN training

finding the weights of the NN can be cast as the following optimization problem

minimize
∑𝑝

𝑖=1 ∥𝑦𝑑,𝑖 − 𝑔(𝑤; 𝑥𝑑,𝑖)∥2

• variable 𝑤 is typically very large in practice

• this process is called the training or learning phase of the neural network

• after the training phase, NN is used to predict output for unseen input

• can be solved using any algorithm such gradient descent or Levenberg-Marquardt
depending on activation functions

SA — ENGR507training a neural network 13.7



Single neuron training

𝑤1

𝑤𝑖

𝑤𝑛

𝑥1

𝑥𝑛

𝑥𝑖
𝑦 = 𝑔(𝑤1𝑥1 + · · · + 𝑤𝑛𝑥𝑛)

minimize (1/2)
𝑝∑
𝑖=1

(𝑦𝑑,𝑖 − 𝑔(𝑥T𝑑,𝑖𝑤))
2

• variable 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑛

• the choice of the method typically depends on the activation function 𝑔

Example: when 𝑔 is the identity function, problem reduces to least squares problem:

minimize (1/2)∥𝑦𝑑 − 𝑋T
𝑑𝑤∥

2

where 𝑥𝑑 = [𝑥𝑑,1 · ·· 𝑥𝑑,𝑝] ∈ R𝑛×𝑝 and 𝑦𝑑 = (𝑦𝑑,1, . . . , 𝑦𝑑,𝑝) ∈ R𝑝

SA — ENGR507training a neural network 13.8



Outline

• introduction

• training a neural network

• the backpropagation algorithm



Three-layered neural network

𝑥1

𝑥𝑛

𝑥𝑖

𝑦1

𝑦𝑚

𝑦𝑘

Input Layer Hidden Layer Output Layer

𝑗
𝑤ℎ

𝑗𝑖
𝑤𝑜
𝑘 𝑗

• 𝑛 inputs 𝑥𝑖 , 𝑖 = 1, . . . , 𝑛, and 𝑚 outputs 𝑦𝑠 , 𝑠 = 1, . . . , 𝑚

• 𝑙 neurons in hidden layer; outputs of neurons in hidden layer are 𝑧 𝑗 , 𝑗 = 1, . . . , 𝑙

• inputs 𝑥1, . . . , 𝑥𝑛 are distributed to the neurons in the hidden layer

• 𝑔ℎ
𝑗
: R → R are activation functions of the neurons in hidden layer 𝑗 = 1, . . . , 𝑙,

• 𝑔𝑜𝑠 activation functions of the neurons in the output layer by, where 𝑠 = 1, . . . , 𝑚

SA — ENGR507the backpropagation algorithm 13.9



Input-output representation

• denote the input to the 𝑗 th neuron in the hidden layer by 𝑣 𝑗

• the output of the 𝑗 th neuron in the hidden layer by 𝑧 𝑗

• then, we have

𝑣 𝑗 =
𝑛∑
𝑖=1

𝑤ℎ
𝑗𝑖𝑥𝑖

𝑧 𝑗 = 𝑔ℎ𝑗

(∑𝑛

𝑖=1 𝑤
ℎ
𝑗𝑖
𝑥𝑖

)
• the output from the 𝑠th neuron of the output layer is

𝑦𝑠 = 𝑔𝑜𝑠

(∑𝑙

𝑗=1 𝑤
𝑜
𝑠 𝑗
𝑧 𝑗

)

SA — ENGR507the backpropagation algorithm 13.10



Input-output representation

inputs 𝑥𝑖 , 𝑖 = 1, . . . , 𝑛 and the 𝑠th output 𝑦𝑠 is related by

𝑦𝑠 = 𝑔𝑜𝑠

(∑𝑙

𝑗=1 𝑤
𝑜
𝑠 𝑗
𝑔ℎ
𝑗
(𝑣 𝑗 )

)
= 𝑔𝑜𝑠

(∑𝑙

𝑗=1 𝑤
𝑜
𝑠 𝑗
𝑔ℎ
𝑗

(∑𝑛

𝑖=1 𝑤
ℎ
𝑗𝑖
𝑥𝑖

))
= 𝑔𝑠 (𝑥1, . . . , 𝑥𝑛)

the overall mapping that the neural network implements is therefore given by
𝑦1
...

𝑦𝑚

 =

𝑔1 (𝑥1, . . . , 𝑥𝑛)

...

𝑔𝑚 (𝑥1, . . . , 𝑥𝑛)



SA — ENGR507the backpropagation algorithm 13.11



The training problem

given single training set (𝑥𝑑 , 𝑦𝑑), 𝑥𝑑 ∈ R𝑛 and 𝑦𝑑 ∈ R𝑚, problem reduces to

minimize (1/2)
𝑚∑
𝑠=1

(𝑦𝑑𝑠 − 𝑦𝑠)2

• 𝑦𝑠 , 𝑠 = 1, . . . , 𝑚, are outputs of the NN from the inputs 𝑥𝑑1, . . . , 𝑥𝑑𝑛

• this minimization is taken over

𝑤 = {𝑤ℎ
𝑗𝑖 , 𝑤

𝑜
𝑠 𝑗 : 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑙, 𝑠 = 1, . . . , 𝑚}

• the neural network requires minimizing the objective function

𝐸 (𝑤) = (1/2)
𝑚∑
𝑠=1

(𝑦𝑑𝑠 − 𝑦𝑠)2

= (1/2)
𝑚∑
𝑠=1

(
𝑦𝑑𝑠 − 𝑔𝑜𝑠

(∑𝑙

𝑗=1 𝑤
𝑜
𝑠 𝑗
𝑔ℎ
𝑗

(∑𝑛

𝑖=1 𝑤
ℎ
𝑗𝑖
𝑥𝑑𝑖

)))2
– we can solve using the gradient method with stepsize 𝛼

– doing so leads to the backpropagation algorithm

SA — ENGR507the backpropagation algorithm 13.12



Partial derivatives

• compute the partial derivative of 𝐸 with respect to 𝑤𝑜
𝑠 𝑗

:

𝐸 (𝑤) = (1/2)
𝑚∑
𝑝=1

(
𝑦𝑑𝑝 − 𝑔𝑜𝑝

(∑𝑙

𝑞=1 𝑤
𝑜
𝑝𝑞𝑧𝑞

))2
where 𝑧𝑞 = 𝑔ℎ𝑞

(∑𝑛

𝑖=1 𝑤
ℎ
𝑞𝑖
𝑥𝑑𝑖

)
, 𝑞 = 1, . . . , 𝑙

• applying the chain rule, we derive:

𝜕𝐸

𝜕𝑤𝑜
𝑠 𝑗

(𝑤) = −(𝑦𝑑𝑠 − 𝑦𝑠)𝑔𝑜
′

𝑠

(∑𝑙

𝑞=1 𝑤
𝑜
𝑠𝑞𝑧𝑞

)
𝑧 𝑗 = −𝛿𝑠𝑧 𝑗

where 𝛿𝑠 = (𝑦𝑑𝑠 − 𝑦𝑠) 𝑔𝑜
′

𝑠

(∑𝑙

𝑞=1 𝑤
𝑜
𝑠𝑞𝑧𝑞

)
• the partial derivative of 𝐸 concerning 𝑤ℎ

𝑗𝑖
is relation:

𝜕𝐸

𝜕𝑤ℎ
𝑗𝑖

(𝑤) = −𝑥𝑑𝑖𝛿 𝑗 , 𝛿 𝑗 = 𝑔ℎ
′
𝑗

(∑𝑛

𝑖=1 𝑤
ℎ
𝑗𝑖
𝑥𝑑𝑖

) 𝑚∑
𝑠=1

𝛿𝑠𝑤
𝑜
𝑠 𝑗

SA — ENGR507the backpropagation algorithm 13.13



The back-propagation algorithm

𝑤
𝑜 (𝑘+1)
𝑠 𝑗

= 𝑤
𝑜 (𝑘 )
𝑠 𝑗

+ 𝛼𝛿
(𝑘 )
𝑠 𝑧

(𝑘 )
𝑗

𝑤
ℎ (𝑘+1)
𝑗𝑖

= 𝑤
ℎ (𝑘 )
𝑗𝑖

+ 𝛼

(∑𝑚

𝑝=1 𝛿
(𝑘 )
𝑝 𝑤

𝑜 (𝑘 )
𝑝 𝑗

)
𝑔ℎ

′
𝑗 (𝑣

(𝑘 )
𝑗

)𝑥𝑑𝑖

where 𝛼 is the (fixed) step size and

𝑣
(𝑘 )
𝑗

=
𝑛∑
𝑖=1

𝑤
ℎ (𝑘 )
𝑗𝑖

𝑥𝑑𝑖 , 𝑧
(𝑘 )
𝑗

= 𝑔ℎ𝑗 (𝑣
(𝑘 )
𝑗

)

𝑦
(𝑘 )
𝑠 = 𝑔𝑜𝑠

(∑𝑙

𝑞=1 𝑤
𝑜 (𝑘 )
𝑠𝑞 𝑧

(𝑘 )
𝑞

)
, 𝛿

(𝑘 )
𝑠 = (𝑦𝑑𝑠 − 𝑦

(𝑘 )
𝑠 )𝑔𝑜′

𝑠

(∑𝑙

𝑞=1 𝑤
𝑜 (𝑘 )
𝑠𝑞 𝑧

(𝑘 )
𝑞

)
• 𝛿

(𝑘 )
1 , . . . , 𝛿

(𝑘 )
𝑚 are propagated back from the output layer to the hidden layer

• forward pass of the algorithm: using the inputs 𝑥𝑑𝑖 and the current set of
weights, we first compute the quantities 𝑣 (𝑘 )

𝑗
, 𝑧 (𝑘 )

𝑗
, 𝑦 (𝑘 )𝑠 , and 𝛿

(𝑘 )
𝑠 , in turn

• reverse pass of the algorithm: compute the updated weights using the
quantities computed in the forward pass

SA — ENGR507the backpropagation algorithm 13.14



Generalized sigmoid function

𝑔(𝑣) = 𝛽

1 + 𝑒−(𝑣−𝜃 )

∑
𝑔

𝑣1

𝑤1

𝑤𝑛

𝛽

1+𝑒−(𝑣1−𝜃 )

∑
𝑔 𝛽

𝑣2

𝑤1

𝑤𝑛

𝛽

1+𝑒−(𝑣1−𝜃 )

𝜃
−1

𝑣2 = 𝑣1 − 𝜃

SA — ENGR507the backpropagation algorithm 13.15



References and further readings

• E. K.P. Chong, Wu-S. Lu, and S. H. Zak. An Introduction to Optimization: With Applications to Machine
Learning. John Wiley & Sons, 2023. (ch 13)

SA — ENGR507references 13.16


	introduction
	training a neural network
	the backpropagation algorithm
	references

