
13. Dual based methods

• augmented Lagrangian method

• ADMM

• distributed optimization via ADMM

ENGR 507 (Fall 2023) S. Alghunaim

13.1

Original problem

minimize f(x)
subject to h(x) = 0

(13.1)

• f : Rn → R and h : Rp → R

• Lagrangian: L(x,λ) = f(x) + λTh(x) where λ ∈ Rp

• problem is equivalent to (for any λ)

minimize L(x,λ) = f(x) + λTh(x)
subject to h(x) = 0

• if x⋆ is a solution and a regular point, then

∇xL(x
⋆,λ⋆) = 0

for some λ⋆

SA — ENGR507augmented Lagrangian method 13.2

Augmented Lagrangian formulation

minimize Lρ(x,λ) = f(x) + λTh(x) +
ρ

2
∥h(x)∥2 (13.2)

• Lρ(x,λ) is the augmented Lagrangian (AL) for problem (13.1)

• solution of the original problem is also a solution of the AL formulation

• AL problem can have other solutions that are not solutions of the original
problem

• the idea of the augmented Lagrangian method is that for a large, but finite,
ρ, the solution of AL method is also a solution of the original problem

• the augmented Lagrangian method minimizes Lρ(x,λ) for a sequence of
values of λ and ρ

SA — ENGR507augmented Lagrangian method 13.3

Augmented Lagrangian algorithm

Algorithm Augmented Lagrangian method (equality constraint)

given x(0), λ(0), ρ0, and a solution tolerance ϵ > 0

repeat for k = 1, 2, . . .

1. set x(k+1) to be the (approximate) minimizer of

minimize f(x) + (λ(k))Th(x) + ρk
2
∥h(x)∥2

using any unconstrained optimization method with initial point x(k)

2. update λ(k):
λ(k+1) = λ(k) + ρkh(x

(k+1))

3. update ρk

if ∥∇L(x(k+1),λ(k+1))∥ ≤ ϵ stop and x(k+1) is output

SA — ENGR507augmented Lagrangian method 13.4

Updating penalty parameter

• constant ρk = ρ

• heuristic update:

ρk+1 =

{
ρk if ∥h(x(k+1))∥ < 0.25∥h(x(k))∥
2ρk if ∥h(x(k+1))∥ ≥ 0.25∥h(x(k))∥

SA — ENGR507augmented Lagrangian method 13.5

Multiplier update motivation

the solution x(k+1) satisfies ∇xLρ(x
(k+1),λ(k)) = 0, i.e.

∇f(x(k+1)) +

p∑
i=1

∇hi(x
(k+1))λ

(k)
i + ρk

p∑
i=1

∇hi(x
(k+1))hi(x

(k+1))

= ∇f(x(k+1)) +

p∑
i=1

∇hi(x
(k+1))

(
λ
(k)
i + ρkhi(x

(k+1))
)
= 0

if we let λ(k+1) = λ(k) + ρkh(x
(k+1)), then

∇f(x(k+1)) +

p∑
i=1

∇hi(x
(k+1))λ

(k+1)
i = 0

• this implies that ∇L(x(k+1),λ(k+1)) = 0 and if x(k+1) is feasible, then
we have a candidate solution

• note that ρ should be sufficiently large so that the augmented Lagrangian
function has a local minimizer; if ρ is too small, then the unconstrained
subproblem may not have a solution

SA — ENGR507augmented Lagrangian method 13.6

Example

consider applying the augmented Lagrangian method to the problem:

minimize e3x1 + e−4x2

subject to x2
1 + x2

2 = 1

starting with the initial points x(0) = (−1, 1) and λ(0) = −1, we set a
constant penalty parameter ρk = 10

the augmented Lagrangian function is expressed as:

Lρ(x, λ) = e3x1 + e−4x2 + λ
(
x2
1 + x2

2 − 1
)
+ (ρ/2)

(
x2
1 + x2

2 − 1
)2

for the inner minimization problems at each iteration, we employ Newton’s
method with a constant stepsize α = 1:

x̂← x̂+ α∇2Lρ(x̂, λ
(k))−1∇Lρ(x̂, λ

(k))

SA — ENGR507augmented Lagrangian method 13.7

the gradient and Hessian are:

∇Lρ(x, λ) =

[
3e3x1 + 2λx1 + 2ρx1(x

2
1 + x2

2 − 1)
−4e−4x2 + 2λx2 + 2ρx2(x

2
1 + x2

2 − 1)

]
and

∇2
Lρ(x, λ) =

[
9e3x1 + 2λ + 2ρ(x2

1 + x2
2 − 1) + 4ρx2

1 4ρx1x2
4ρx1x2 16e−4x2 + 2λ + 2ρ(x2

1 + x2
2 − 1) + 4ρx2

2

]
this iteration starts from x̂ = x(k) and continues until a stopping criteria is
met (e.g., ∥∇Lρ(x̂, λ

(k))∥ < 10−4)

the value x(k+1) is then set to x̂ and the Lagrange multiplier is subsequently
updated:

λ(k+1) = λ(k) + ρ
(
(x

(k+1)
1)2 + (x

(k+1)
2)2 − 1

)
after executing the augmented Lagrangian method for 100 iterations, the
results are approximately x⋆ = (−0.7483, 0.6633) and λ⋆ = 0.2123

SA — ENGR507augmented Lagrangian method 13.8

MATLAB code implementation

rho=10;
x=[-1;1];
lam=-1;
%% AL gradient and Hessian
g=@(x,lam)[3*exp(3*x(1))+2*lam*x(1)+2*rho*x(1)*(x(1)^2+x(2)^2-1);
-4*exp(-4*x(2))+2*lam*x(2)+2*rho*x(2)*(x(1)^2+x(2)^2-1)];
hess=@(x,lam)[9*exp(3*x(1))+2*lam+2*rho*(x(1)^2+x(2)^2-1)+4*rho*x(1)^2 4*rho*x(1)*x(2);
4*rho*x(1)*x(2) 16*exp(-4*x(2))+2*lam+2*rho*(x(1)^2+x(2)^2-1)+4*rho*x(2)^2];
%% AL method
for i=1:100
% Newton inner minimization
while (norm(g(x,lam)) >= 1e-4)
d = -hess(x,lam)\g(x,lam);
x = x+d;
end
% Lagrange update
lam=lam+rho*(x(1)^2+x(2)^2-1);
end

SA — ENGR507augmented Lagrangian method 13.9

Outline

• augmented Lagrangian method

• ADMM

• distributed optimization via ADMM

ADMM problem form

the alternating direction method of multiplier (ADMM) problem formulation:

minimize f(x) + g(z)
subject to Ax+Bz = c

• variables x ∈ Rn and z ∈ Rm

• A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp

• ADMM is a modification of the AL method that is more suitable for
large-scale seperable optimization problems (more on this later)

Augmented Lagrangian

Lρ(x, z,λ) = f(x) + g(z) + λT(Ax+Bz − c) + (ρ/2)∥Ax+Bz − c∥2

SA — ENGR507ADMM 13.10

ADMM update

x(k+1) = argmin
x

Lρ

(
x, z(k),λ(k)

)
z(k+1) = argmin

z
Lρ

(
x(k+1), z,λ(k)

)
λ(k+1) = λ(k) + ρ

(
Ax(k+1) +Bz(k+1) − c

)
• ρ > 0 is the ADMM penalty parameter

• x and z are updated in an alternating or sequential fashion

• this is different from AL method where x and z are minimized jointly

(x, z) = argmin
x,z

Lρ(x, z,λ
(k))

• separating the minimization over x and z allows for decomposition large
problems into smaller ones when f or g are separable

SA — ENGR507ADMM 13.11

ADMM scaled form

ADMM can be written in a more convenient form, by defining the residual
r = Ax+Bz − c and u = (1/ρ)λ, we have

λTr + (ρ/2)∥r∥2 = (ρ/2)∥r + (1/ρ)λ∥2 − (1/2ρ)∥λ∥2

= (ρ/2)∥r + u∥2 − (ρ/2)∥u∥2

ADMM scaled form

x(k+1) = argmin
z

(
f(x) + (ρ/2)

∥∥∥Ax+Bz(k) − c+ u(k)
∥∥∥2)

z(k+1) = argmin
z

(
g(z) + (ρ/2)

∥∥∥Ax(k+1) +Bz − c+ u(k)
∥∥∥2)

u(k+1) = u(k) +Ax(k+1) +Bz(k+1) − c

SA — ENGR507ADMM 13.12

Example: quadratic programs

minimize (1/2)xTQx+ rTx
subject to Ax = b

x ≥ 0

• P is positive semidefinite (reduces to an LP when P = 0)

• we can express this problem in the ADMM form:

minimize f(x) + g(z)
subject to x− z = 0,

where

f(x) = (1/2)xTQx+ rTx, dom f = {x | Ax = b}

is the original objective with restricted domain

• g is the indicator function of the nonnegative orthant Rn
+

SA — ENGR507ADMM 13.13

the scaled form of ADMM consists of the iterations

x(k+1) = argmin
x

(
f(x) + (ρ/2)

∥∥∥x− z(k) + u(k)
∥∥∥2)

z(k+1) =
(
x(k+1) + u(k)

)
+

u(k+1) = u(k) + x(k+1) − z(k+1)

the x-update is an equality-constrained least squares problem with optimality
conditions[

Q+ ρI AT

A 0

] [
x(k+1)

ν

]
+

[
r − ρ

(
z(k) − u(k)

)
−b

]
= 0

SA — ENGR507ADMM 13.14

Norm-one regularized least squares

the lasso problem is the ℓ1 regularized least squares

minimize (1/2)∥Ax− b∥2 + η∥x∥1

• η > 0 is a scalar regularization parameter

• in ADMM form, the lasso problem can be written as

minimize f(x) + g(z)

subject to x− z = 0

where f(x) = (1/2)∥Ax− b∥2 and g(z) = η∥z∥1

SA — ENGR507ADMM 13.15

the ADMM iteration is

x(k+1) =
(
ATA+ ρI

)−1
(
ATb+ ρ

(
z(k) − u(k)

))
z(k+1) = Sη/ρ

(
x(k+1) + u(k)

)
u(k+1) = u(k) + x(k+1) − z(k+1)

where the soft thresholding operator S is defined element-wise as

Sκ(a) =

a− κ a > κ

0 |a| ≤ κ

a+ κ a < −κ
= (a− κ)+ − (−a− κ)+

SA — ENGR507ADMM 13.16

Outline

• augmented Lagrangian method

• ADMM

• distributed optimization via ADMM

Consensus problem

minimize f(x) =

N∑
i=1

fi(x),

• variable x ∈ Rn

• each fi : Rn → R represents the ith component of the objective function

• the goal is to solve this problem such that each function fi can be
independently addressed by a distinct processing unit

SA — ENGR507distributed optimization via ADMM 13.17

Example

many classification or regression problems can be formulated as:

minimize
m∑
j=1

l(x; ξj),

• l(x; ξj) represent the loss function for data ξj

• for large m, storing the data on a single machine may not be feasible

• the problem can be solved by distributing the data across multiple workers,

fi(x) =
∑
j∈Ji

l(x; ξj),

where Ji is the set of training data indices at worker i

SA — ENGR507distributed optimization via ADMM 13.18

Equivalent formulation

to employ ADMM, we introduce local variables xi ∈ Rn handled by each
processing unit along with a global variable z (handled by some processing
unit):

minimize
N∑
i=1

fi (xi)

subject to xi − z = 0, i = 1, . . . , N

• the constraints ensure that all local variables are equal

• the consensus approach is an efficient strategy to transform additive
objectives

∑N
i=1 fi(x), which are common but non-separable due to the

shared variable, into separable objectives
∑N

i=1 fi (xi)

• thus the consensus problem can address problems where objectives and
constraints span multiple processors

• each processor solely manages its unique objective and constraint term

SA — ENGR507distributed optimization via ADMM 13.19

ADMM updates

the augmented Lagrangian, given by:

Lρ(x1, . . . ,xN , z,λ) =

N∑
i=1

(
fi (xi) + (λi)

T (xi − z) +
ρ

2
∥xi − z∥2

)
the resulting ADMM algorithm takes the form:

x
(k+1)
i = argmin

xi

(
fi (xi) + λ

(k)T
i

(
xi − z(k)

)
+

ρ

2

∥∥∥xi − z(k)
∥∥∥2)

z(k+1) =
1

N

N∑
i=1

(
x
(k+1)
i +

1

ρ
λ
(k)
i

)
λ
(k+1)
i = λ

(k)
i + ρ

(
x
(k+1)
i − z(k+1)

)
• each i undergoes the first and last steps independently
• the processing unit responsible for the global variable z is commonly

referred to as the fusion center or central server

SA — ENGR507distributed optimization via ADMM 13.20

Equivalent simpler update

using an overline to denote the average (across i = 1, . . . , N) of a vector, we
can express the z-update as:

z(k+1) = x̄(k+1) +
1

ρ
λ̄
(k)

by taking the average of the λ-update, we get:

λ̄
(k+1)

= λ̄
(k)

+ ρ
(
x̄(k+1) − z(k+1)

)
upon substituting the first equation into the subsequent one, we obtain that
λ̄
(k+1)

= 0 for all k

hence z(k) = x̄(k) and ADMM can be reformulated as:

x
(k+1)
i = argmin

xi

(
fi (xi) + λ

(k)T
i

(
xi − x̄(k)

)
+

ρ

2

∥∥∥xi − x̄(k)
∥∥∥2)

λ
(k+1)
i = λ

(k)
i + ρ

(
x
(k+1)
i − x̄(k+1)

)
SA — ENGR507distributed optimization via ADMM 13.21

Regularized consensus problem

minimize
N∑
i=1

fi (xi) + g(z)

subject to xi − z = 0, i = 1, . . . , N,

where the objective term g, symbolizes a constraint or regularization (e.g.,
g(z) = ∥z∥1), managed by the central server

for this case, the ADMM method is:

x
(k+1)
i = argmin

xi

(
fi (xi) + λ

(k)T
i

(
xi − z(k)

)
+

ρ

2
∥xi − z(k)∥2

)
z(k+1) = argmin

z

(
g(z) +

N∑
i=1

(
−λ(k)T

i z +
ρ

2
∥x(k+1)

i − z∥2
))

λ
(k+1)
i = λ

(k)
i + ρ

(
x
(k+1)
i − z(k+1)

)
SA — ENGR507distributed optimization via ADMM 13.22

collecting linear and quadratic terms, the z-update can be expressed as:

z(k+1) = argmin
z

(
g(z) +

Nρ

2
∥z − x̄(k+1) − 1

ρ
λ̄
(k)∥2

)
when g is nonzero, we don’t typically get that λ̄

(k)
= 0, hence λi terms

cannot be eliminated as in the non-regularized case

using the above update form for z, ADMM is:

x
(k+1)
i = argmin

xi

(
fi (xi) + λ

(k)T
i

(
xi − z(k)

)
+

ρ

2
∥xi − z(k)∥2

)
z(k+1) = argmin

z

(
g(z) +

Nρ

2
∥z − x̄(k+1) − 1

ρ
λ̄
(k)∥2

)
λ
(k+1)
i = λ

(k)
i + ρ

(
x
(k+1)
i − z(k+1)

)

SA — ENGR507distributed optimization via ADMM 13.23

Examples

• for g(z) = η∥z∥1 with η > 0, the z-update translates into a soft threshold
operation:

z(k+1) = Sη/Nρ

(
x̄(k+1) − 1

ρ
λ̄
(k)
)

• considering g as the indicator function of Rn
+, then

z(k+1) =

(
x̄(k+1) − 1

ρ
λ̄
(k)
)

+

for this problem, the scaled variant of ADMM, exhibited below, is often
more streamlined and manageable compared to its unscaled counterpart:

x
(k+1)
i = argmin

xi

(
fi (xi) +

ρ

2
∥xi − z(k) + u

(k)
i ∥

2
)

z(k+1) = argmin
z

(
g(z) +

Nρ

2
∥z − x̄(k+1) − ū(k)∥2

)
u
(k+1)
i = u

(k)
i + x

(k+1)
i − z(k+1)

SA — ENGR507distributed optimization via ADMM 13.24

References and further readings

• S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations and Trends
in Machine learning, 2011.

• I. Griva and S. G. Nash and A. Sofer. Linear and Nonlinear Optimization, SIAM, 2009.

• E. KP. Chong and S. H. Zak. An Introduction to Optimization, John Wiley & Sons, 2013.

SA — ENGR507references 13.25

	augmented Lagrangian method
	ADMM
	distributed optimization via ADMM
	references

