13. Dual based methods

- augmented Lagrangian method
- ADMM
- distributed optimization via ADMM

Original problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \tag{13.1}\\
\text { subject to } & h(\boldsymbol{x})=\mathbf{0}
\end{array}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{p} \rightarrow \mathbb{R}$
- Lagrangian: $L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} h(\boldsymbol{x})$ where $\boldsymbol{\lambda} \in \mathbb{R}^{p}$
- problem is equivalent to (for any $\boldsymbol{\lambda}$)

$$
\begin{array}{ll}
\operatorname{minimize} & L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} h(\boldsymbol{x}) \\
\text { subject to } & h(\boldsymbol{x})=\mathbf{0}
\end{array}
$$

- if \boldsymbol{x}^{\star} is a solution and a regular point, then

$$
\nabla_{x} L\left(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}\right)=\mathbf{0}
$$

for some $\boldsymbol{\lambda}^{\star}$

Augmented Lagrangian formulation

$$
\begin{equation*}
\operatorname{minimize} \quad L_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} h(\boldsymbol{x})+\frac{\rho}{2}\|h(\boldsymbol{x})\|^{2} \tag{13.2}
\end{equation*}
$$

- $L_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})$ is the augmented Lagrangian (AL) for problem (13.1)
- solution of the original problem is also a solution of the AL formulation
- AL problem can have other solutions that are not solutions of the original problem
- the idea of the augmented Lagrangian method is that for a large, but finite, ρ, the solution of AL method is also a solution of the original problem
- the augmented Lagrangian method minimizes $L_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})$ for a sequence of values of $\boldsymbol{\lambda}$ and ρ

Augmented Lagrangian algorithm

Algorithm Augmented Lagrangian method (equality constraint)
given $\boldsymbol{x}^{(0)}, \boldsymbol{\lambda}^{(0)}, \rho_{0}$, and a solution tolerance $\epsilon>0$
repeat for $k=1,2, \ldots$

1. set $\boldsymbol{x}^{(k+1)}$ to be the (approximate) minimizer of

$$
\text { minimize } \quad f(\boldsymbol{x})+\left(\boldsymbol{\lambda}^{(k)}\right)^{T} h(\boldsymbol{x})+\frac{\rho_{\boldsymbol{k}}}{2}\|h(\boldsymbol{x})\|^{2}
$$

using any unconstrained optimization method with initial point $\boldsymbol{x}^{(k)}$
2. update $\boldsymbol{\lambda}^{(k)}$:

$$
\boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\rho_{k} h\left(\boldsymbol{x}^{(k+1)}\right)
$$

3. update ρ_{k}
if $\left\|\nabla L\left(\boldsymbol{x}^{(k+1)}, \boldsymbol{\lambda}^{(k+1)}\right)\right\| \leq \epsilon$ stop and $\boldsymbol{x}^{(k+1)}$ is output

Updating penalty parameter

- constant $\rho_{k}=\rho$
- heuristic update:

$$
\rho_{k+1}=\left\{\begin{array}{lll}
\rho_{k} & \text { if } & \left\|h\left(\boldsymbol{x}^{(k+1)}\right)\right\|<0.25\left\|h\left(\boldsymbol{x}^{(k)}\right)\right\| \\
2 \rho_{k} & \text { if } & \left\|h\left(\boldsymbol{x}^{(k+1)}\right)\right\| \geq 0.25\left\|h\left(\boldsymbol{x}^{(k)}\right)\right\|
\end{array}\right.
$$

Multiplier update motivation

the solution $\boldsymbol{x}^{(k+1)}$ satisfies $\nabla_{x} L_{\rho}\left(\boldsymbol{x}^{(k+1)}, \boldsymbol{\lambda}^{(k)}\right)=\mathbf{0}$, i.e.

$$
\begin{aligned}
& \nabla f\left(\boldsymbol{x}^{(k+1)}\right)+\sum_{i=1}^{p} \nabla h_{i}\left(\boldsymbol{x}^{(k+1)}\right) \lambda_{i}^{(k)}+\rho_{k} \sum_{i=1}^{p} \nabla h_{i}\left(\boldsymbol{x}^{(k+1)}\right) h_{i}\left(\boldsymbol{x}^{(k+1)}\right) \\
& =\nabla f\left(\boldsymbol{x}^{(k+1)}\right)+\sum_{i=1}^{p} \nabla h_{i}\left(\boldsymbol{x}^{(k+1)}\right)\left(\lambda_{i}^{(k)}+\rho_{k} h_{i}\left(\boldsymbol{x}^{(k+1)}\right)\right)=\mathbf{0}
\end{aligned}
$$

if we let $\boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\rho_{k} h\left(\boldsymbol{x}^{(k+1)}\right)$, then

$$
\nabla f\left(\boldsymbol{x}^{(k+1)}\right)+\sum_{i=1}^{p} \nabla h_{i}\left(\boldsymbol{x}^{(k+1)}\right) \lambda_{i}^{(k+1)}=\mathbf{0}
$$

- this implies that $\nabla L\left(\boldsymbol{x}^{(k+1)}, \boldsymbol{\lambda}^{(k+1)}\right)=\mathbf{0}$ and if $\boldsymbol{x}^{(k+1)}$ is feasible, then we have a candidate solution
- note that ρ should be sufficiently large so that the augmented Lagrangian function has a local minimizer; if ρ is too small, then the unconstrained subproblem may not have a solution

Example

consider applying the augmented Lagrangian method to the problem:

$$
\begin{array}{ll}
\operatorname{minimize} & e^{3 x_{1}}+e^{-4 x_{2}} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

starting with the initial points $\boldsymbol{x}^{(0)}=(-1,1)$ and $\lambda^{(0)}=-1$, we set a constant penalty parameter $\rho_{k}=10$
the augmented Lagrangian function is expressed as:

$$
L_{\rho}(\boldsymbol{x}, \lambda)=e^{3 x_{1}}+e^{-4 x_{2}}+\lambda\left(x_{1}^{2}+x_{2}^{2}-1\right)+(\rho / 2)\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}
$$

for the inner minimization problems at each iteration, we employ Newton's method with a constant stepsize $\alpha=1$:

$$
\hat{\boldsymbol{x}} \leftarrow \hat{\boldsymbol{x}}+\alpha \nabla^{2} L_{\rho}\left(\hat{\boldsymbol{x}}, \lambda^{(k)}\right)^{-1} \nabla L_{\rho}\left(\hat{\boldsymbol{x}}, \lambda^{(k)}\right)
$$

the gradient and Hessian are:

$$
\nabla L_{\rho}(\boldsymbol{x}, \lambda)=\left[\begin{array}{c}
3 e^{3 x_{1}}+2 \lambda x_{1}+2 \rho x_{1}\left(x_{1}^{2}+x_{2}^{2}-1\right) \\
-4 e^{-4 x_{2}}+2 \lambda x_{2}+2 \rho x_{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{array}\right]
$$

and

$$
\nabla^{2} L_{\rho}(\boldsymbol{x}, \lambda)=\left[\begin{array}{cc}
9 e^{3 x_{1}}+2 \lambda+2 \rho\left(x_{1}^{2}+x_{2}^{2}-1\right)+4 \rho x_{1}^{2} \\
4 \rho x_{1} x_{2}
\end{array} \quad 16 e^{-4 x_{2}}+2 \lambda+2 \rho\left(x_{1}^{2}+x_{2}^{2}-1\right)+4 \rho x_{2}^{2}\right] ~\left[\begin{array}{c}
4 x_{1} x_{2} \\
\end{array}\right.
$$

this iteration starts from $\hat{\boldsymbol{x}}=\boldsymbol{x}^{(k)}$ and continues until a stopping criteria is $\operatorname{met}\left(e . g\right.$., $\left.\left\|\nabla L_{\rho}\left(\hat{\boldsymbol{x}}, \lambda^{(k)}\right)\right\|<10^{-4}\right)$
the value $\boldsymbol{x}^{(k+1)}$ is then set to $\hat{\boldsymbol{x}}$ and the Lagrange multiplier is subsequently updated:

$$
\lambda^{(k+1)}=\lambda^{(k)}+\rho\left(\left(x_{1}^{(k+1)}\right)^{2}+\left(x_{2}^{(k+1)}\right)^{2}-1\right)
$$

after executing the augmented Lagrangian method for 100 iterations, the results are approximately $\boldsymbol{x}^{\star}=(-0.7483,0.6633)$ and $\lambda^{\star}=0.2123$

MATLAB code implementation

```
rho=10;
x= [-1;1] ;
lam=-1;
%% AL gradient and Hessian
g=@(x,lam)[3*exp(3*x(1))+2*lam*x(1)+2*rho*x(1)*(x(1)^2+x(2)^2-1);
-4*exp (-4*x (2)) +2*lam*x (2) +2*rho*x(2)*(x(1)^2+x(2)^2-1)];
hess=@ (x,lam)[9*exp(3*x(1))+2*lam+2*rho*(x(1)^2+x(2) ^2-1)+4*rho*x(1)^2 4*rho*x(1)*x(2);
4*rho*x(1)*x(2) 16*exp(-4*x(2))+2*lam+2*rho*(x(1)^2+x(2)^2-1)+4*rho*x(2) ~2];
%% AL method
for i=1:100
% Newton inner minimization
while (norm(g(x,lam)) >= 1e-4)
d = -hess(x,lam)\g(x,lam);
x = x+d;
end
% Lagrange update
lam=lam+rho*(x(1)^2+x(2)^2-1);
end
```


Outline

- augmented Lagrangian method
- ADMM
- distributed optimization via ADMM

ADMM problem form

the alternating direction method of multiplier (ADMM) problem formulation:

$$
\begin{array}{ll}
\text { minimize } & f(\boldsymbol{x})+g(\boldsymbol{z}) \\
\text { subject to } & A \boldsymbol{x}+B \boldsymbol{z}=\boldsymbol{c}
\end{array}
$$

- variables $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{z} \in \mathbb{R}^{m}$
- $A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^{p}$
- ADMM is a modification of the AL method that is more suitable for large-scale seperable optimization problems (more on this later)

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})=f(\boldsymbol{x})+g(\boldsymbol{z})+\boldsymbol{\lambda}^{T}(A \boldsymbol{x}+B \boldsymbol{z}-\boldsymbol{c})+(\rho / 2)\|A \boldsymbol{x}+B \boldsymbol{z}-\boldsymbol{c}\|^{2}
$$

ADMM update

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{x}}{\operatorname{argmin}} L_{\rho}\left(\boldsymbol{x}, \boldsymbol{z}^{(k)}, \boldsymbol{\lambda}^{(k)}\right) \\
& \boldsymbol{z}^{(k+1)}=\underset{\boldsymbol{z}}{\operatorname{argmin}} L_{\rho}\left(\boldsymbol{x}^{(k+1)}, \boldsymbol{z}, \boldsymbol{\lambda}^{(k)}\right) \\
& \boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\rho\left(A \boldsymbol{x}^{(k+1)}+B \boldsymbol{z}^{(k+1)}-\boldsymbol{c}\right)
\end{aligned}
$$

- $\rho>0$ is the ADMM penalty parameter
- x and z are updated in an alternating or sequential fashion
- this is different from AL method where \boldsymbol{x} and \boldsymbol{z} are minimized jointly

$$
(\boldsymbol{x}, \boldsymbol{z})=\underset{\boldsymbol{x}, \boldsymbol{z}}{\operatorname{argmin}} \quad L_{\rho}\left(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}^{(k)}\right)
$$

- separating the minimization over x and z allows for decomposition large problems into smaller ones when f or g are separable

ADMM scaled form

ADMM can be written in a more convenient form, by defining the residual $\boldsymbol{r}=A \boldsymbol{x}+B \boldsymbol{z}-\boldsymbol{c}$ and $\boldsymbol{u}=(1 / \rho) \boldsymbol{\lambda}$, we have

$$
\begin{aligned}
\boldsymbol{\lambda}^{T} \boldsymbol{r}+(\rho / 2)\|\boldsymbol{r}\|^{2} & =(\rho / 2)\|\boldsymbol{r}+(1 / \rho) \boldsymbol{\lambda}\|^{2}-(1 / 2 \rho)\|\boldsymbol{\lambda}\|^{2} \\
& =(\rho / 2)\|\boldsymbol{r}+\boldsymbol{u}\|^{2}-(\rho / 2)\|\boldsymbol{u}\|^{2}
\end{aligned}
$$

ADMM scaled form

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(f(\boldsymbol{x})+(\rho / 2)\left\|A \boldsymbol{x}+B \boldsymbol{z}^{(k)}-\boldsymbol{c}+\boldsymbol{u}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{z}^{(k+1)}=\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(g(\boldsymbol{z})+(\rho / 2)\left\|A \boldsymbol{x}^{(k+1)}+B \boldsymbol{z}-\boldsymbol{c}+\boldsymbol{u}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+A \boldsymbol{x}^{(k+1)}+B \boldsymbol{z}^{(k+1)}-\boldsymbol{c}
\end{aligned}
$$

Example: quadratic programs

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- P is positive semidefinite (reduces to an LP when $P=0$)
- we can express this problem in the ADMM form:

$$
\begin{array}{ll}
\text { minimize } & f(\boldsymbol{x})+g(\boldsymbol{z}) \\
\text { subject to } & \boldsymbol{x}-\boldsymbol{z}=\mathbf{0},
\end{array}
$$

where

$$
f(\boldsymbol{x})=(1 / 2) \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}, \quad \operatorname{dom} f=\{\boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}\}
$$

is the original objective with restricted domain

- g is the indicator function of the nonnegative orthant \mathbb{R}_{+}^{n}
the scaled form of ADMM consists of the iterations

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left(f(\boldsymbol{x})+(\rho / 2)\left\|\boldsymbol{x}-\boldsymbol{z}^{(k)}+\boldsymbol{u}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{z}^{(k+1)}=\left(\boldsymbol{x}^{(k+1)}+\boldsymbol{u}^{(k)}\right)_{+} \\
& \boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+\boldsymbol{x}^{(k+1)}-\boldsymbol{z}^{(k+1)}
\end{aligned}
$$

the x-update is an equality-constrained least squares problem with optimality conditions

$$
\left[\begin{array}{cc}
Q+\rho I & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x}^{(k+1)} \\
\boldsymbol{\nu}
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{r}-\rho\left(\boldsymbol{z}^{(k)}-\boldsymbol{u}^{(k)}\right) \\
-\boldsymbol{b}
\end{array}\right]=\mathbf{0}
$$

Norm-one regularized least squares

the lasso problem is the ℓ_{1} regularized least squares

$$
\operatorname{minimize} \quad(1 / 2)\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}+\eta\|\boldsymbol{x}\|_{1}
$$

- $\eta>0$ is a scalar regularization parameter
- in ADMM form, the lasso problem can be written as

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x})+g(\boldsymbol{z}) \\
\text { subject to } & \boldsymbol{x}-\boldsymbol{z}=\mathbf{0}
\end{aligned}
$$

where $f(\boldsymbol{x})=(1 / 2)\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$ and $g(\boldsymbol{z})=\eta\|\boldsymbol{z}\|_{1}$
the ADMM iteration is

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\left(A^{T} A+\rho I\right)^{-1}\left(A^{T} \boldsymbol{b}+\rho\left(\boldsymbol{z}^{(k)}-\boldsymbol{u}^{(k)}\right)\right) \\
& \boldsymbol{z}^{(k+1)}=S_{\eta / \rho}\left(\boldsymbol{x}^{(k+1)}+\boldsymbol{u}^{(k)}\right) \\
& \boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+\boldsymbol{x}^{(k+1)}-\boldsymbol{z}^{(k+1)}
\end{aligned}
$$

where the soft thresholding operator S is defined element-wise as

$$
\begin{aligned}
S_{\kappa}(a) & = \begin{cases}a-\kappa & a>\kappa \\
0 & |a| \leq \kappa \\
a+\kappa & a<-\kappa\end{cases} \\
& =(a-\kappa)_{+}-(-a-\kappa)_{+}
\end{aligned}
$$

Outline

- augmented Lagrangian method
- ADMM
- distributed optimization via ADMM

Consensus problem

$$
\operatorname{minimize} \quad f(\boldsymbol{x})=\sum_{i=1}^{N} f_{i}(\boldsymbol{x})
$$

- variable $\boldsymbol{x} \in \mathbb{R}^{n}$
- each $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ represents the i th component of the objective function
- the goal is to solve this problem such that each function f_{i} can be independently addressed by a distinct processing unit

Example

many classification or regression problems can be formulated as:

$$
\operatorname{minimize} \quad \sum_{j=1}^{m} l\left(\boldsymbol{x} ; \xi_{j}\right),
$$

- $l\left(\boldsymbol{x} ; \xi_{j}\right)$ represent the loss function for data ξ_{j}
- for large m, storing the data on a single machine may not be feasible
- the problem can be solved by distributing the data across multiple workers,

$$
f_{i}(\boldsymbol{x})=\sum_{j \in \mathcal{J}_{i}} l\left(\boldsymbol{x} ; \xi_{j}\right)
$$

where \mathcal{J}_{i} is the set of training data indices at worker i

Equivalent formulation

to employ ADMM, we introduce local variables $\boldsymbol{x}_{i} \in \mathbb{R}^{n}$ handled by each processing unit along with a global variable \boldsymbol{z} (handled by some processing unit):

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} f_{i}\left(\boldsymbol{x}_{i}\right) \\
\text { subject to } & \boldsymbol{x}_{i}-\boldsymbol{z}=\mathbf{0}, \quad i=1, \ldots, N
\end{array}
$$

- the constraints ensure that all local variables are equal
- the consensus approach is an efficient strategy to transform additive objectives $\sum_{i=1}^{N} f_{i}(\boldsymbol{x})$, which are common but non-separable due to the shared variable, into separable objectives $\sum_{i=1}^{N} f_{i}\left(\boldsymbol{x}_{i}\right)$
- thus the consensus problem can address problems where objectives and constraints span multiple processors
- each processor solely manages its unique objective and constraint term

ADMM updates

the augmented Lagrangian, given by:

$$
L_{\rho}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}, \boldsymbol{z}, \boldsymbol{\lambda}\right)=\sum_{i=1}^{N}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\left(\boldsymbol{\lambda}_{i}\right)^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{z}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}\right\|^{2}\right)
$$

the resulting ADMM algorithm takes the form:

$$
\begin{aligned}
& \boldsymbol{x}_{i}^{(k+1)}=\underset{\boldsymbol{x}_{i}}{\operatorname{argmin}}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{\lambda}_{i}^{(k) T}\left(\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{z}^{(k+1)}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{(k+1)}+\frac{1}{\rho} \boldsymbol{\lambda}_{i}^{(k)}\right) \\
& \boldsymbol{\lambda}_{i}^{(k+1)}=\boldsymbol{\lambda}_{i}^{(k)}+\rho\left(\boldsymbol{x}_{i}^{(k+1)}-\boldsymbol{z}^{(k+1)}\right)
\end{aligned}
$$

- each i undergoes the first and last steps independently
- the processing unit responsible for the global variable z is commonly referred to as the fusion center or central server

Equivalent simpler update

using an overline to denote the average (across $i=1, \ldots, N$) of a vector, we can express the z-update as:

$$
\boldsymbol{z}^{(k+1)}=\overline{\boldsymbol{x}}^{(k+1)}+\frac{1}{\rho} \overline{\boldsymbol{\lambda}}^{(k)}
$$

by taking the average of the λ-update, we get:

$$
\overline{\boldsymbol{\lambda}}^{(k+1)}=\overline{\boldsymbol{\lambda}}^{(k)}+\rho\left(\overline{\boldsymbol{x}}^{(k+1)}-\boldsymbol{z}^{(k+1)}\right)
$$

upon substituting the first equation into the subsequent one, we obtain that $\overline{\boldsymbol{\lambda}}^{(k+1)}=\mathbf{0}$ for all k
hence $\boldsymbol{z}^{(k)}=\overline{\boldsymbol{x}}^{(k)}$ and ADMM can be reformulated as:

$$
\begin{aligned}
\boldsymbol{x}_{i}^{(k+1)} & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{\lambda}_{i}^{(k) T}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}^{(k)}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}^{(k)}\right\|^{2}\right) \\
\boldsymbol{\lambda}_{i}^{(k+1)} & =\boldsymbol{\lambda}_{i}^{(k)}+\rho\left(\boldsymbol{x}_{i}^{(k+1)}-\overline{\boldsymbol{x}}^{(k+1)}\right)
\end{aligned}
$$

Regularized consensus problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} f_{i}\left(\boldsymbol{x}_{i}\right)+g(\boldsymbol{z}) \\
\text { subject to } & \boldsymbol{x}_{i}-\boldsymbol{z}=\mathbf{0}, \quad i=1, \ldots, N
\end{array}
$$

where the objective term g, symbolizes a constraint or regularization (e.g., $\left.g(\boldsymbol{z})=\|\boldsymbol{z}\|_{1}\right)$, managed by the central server
for this case, the ADMM method is:

$$
\begin{aligned}
\boldsymbol{x}_{i}^{(k+1)} & =\underset{\boldsymbol{x}_{i}}{\operatorname{argmin}}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{\lambda}_{i}^{(k) T}\left(\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right\|^{2}\right) \\
\boldsymbol{z}^{(k+1)} & =\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(g(\boldsymbol{z})+\sum_{i=1}^{N}\left(-\boldsymbol{\lambda}_{i}^{(k) T} \boldsymbol{z}+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}^{(k+1)}-\boldsymbol{z}\right\|^{2}\right)\right) \\
\boldsymbol{\lambda}_{i}^{(k+1)} & =\boldsymbol{\lambda}_{i}^{(k)}+\rho\left(\boldsymbol{x}_{i}^{(k+1)}-\boldsymbol{z}^{(k+1)}\right)
\end{aligned}
$$

collecting linear and quadratic terms, the z-update can be expressed as:

$$
\boldsymbol{z}^{(k+1)}=\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(g(\boldsymbol{z})+\frac{N \rho}{2}\left\|\boldsymbol{z}-\overline{\boldsymbol{x}}^{(k+1)}-\frac{1}{\rho} \overline{\boldsymbol{\lambda}}^{(k)}\right\|^{2}\right)
$$

when g is nonzero, we don't typically get that $\overline{\boldsymbol{\lambda}}^{(k)}=\mathbf{0}$, hence $\boldsymbol{\lambda}_{i}$ terms cannot be eliminated as in the non-regularized case
using the above update form for \boldsymbol{z}, ADMM is:

$$
\begin{aligned}
& \boldsymbol{x}_{i}^{(k+1)}=\underset{\boldsymbol{x}_{i}}{\operatorname{argmin}}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{\lambda}_{i}^{(k) T}\left(\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{z}^{(k+1)}=\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(g(\boldsymbol{z})+\frac{N \rho}{2}\left\|\boldsymbol{z}-\overline{\boldsymbol{x}}^{(k+1)}-\frac{1}{\rho} \overline{\boldsymbol{\lambda}}^{(k)}\right\|^{2}\right) \\
& \boldsymbol{\lambda}_{i}^{(k+1)}=\boldsymbol{\lambda}_{i}^{(k)}+\rho\left(\boldsymbol{x}_{i}^{(k+1)}-\boldsymbol{z}^{(k+1)}\right)
\end{aligned}
$$

Examples

- for $g(\boldsymbol{z})=\eta\|\boldsymbol{z}\|_{1}$ with $\eta>0$, the \boldsymbol{z}-update translates into a soft threshold operation:

$$
\boldsymbol{z}^{(k+1)}=S_{\eta / N \rho}\left(\overline{\boldsymbol{x}}^{(k+1)}-\frac{1}{\rho} \overline{\boldsymbol{\lambda}}^{(k)}\right)
$$

- considering g as the indicator function of \mathbb{R}_{+}^{n}, then

$$
\boldsymbol{z}^{(k+1)}=\left(\overline{\boldsymbol{x}}^{(k+1)}-\frac{1}{\rho} \overline{\boldsymbol{\lambda}}^{(k)}\right)_{+}
$$

for this problem, the scaled variant of ADMM, exhibited below, is often more streamlined and manageable compared to its unscaled counterpart:

$$
\begin{aligned}
\boldsymbol{x}_{i}^{(k+1)} & =\underset{\boldsymbol{x}_{i}}{\operatorname{argmin}}\left(f_{i}\left(\boldsymbol{x}_{i}\right)+\frac{\rho}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}^{(k)}+\boldsymbol{u}_{i}^{(k)}\right\|^{2}\right) \\
\boldsymbol{z}^{(k+1)} & =\underset{\boldsymbol{z}}{\operatorname{argmin}}\left(g(\boldsymbol{z})+\frac{N \rho}{2}\left\|\boldsymbol{z}-\overline{\boldsymbol{x}}^{(k+1)}-\overline{\boldsymbol{u}}^{(k)}\right\|^{2}\right) \\
\boldsymbol{u}_{i}^{(k+1)} & =\boldsymbol{u}_{i}^{(k)}+\boldsymbol{x}_{i}^{(k+1)}-\boldsymbol{z}^{(k+1)}
\end{aligned}
$$

References and further readings

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine learning, 2011.
- I. Griva and S. G. Nash and A. Sofer. Linear and Nonlinear Optimization, SIAM, 2009.
- E. KP. Chong and S. H. Zak. An Introduction to Optimization, John Wiley \& Sons, 2013.

