12. Duality

- Lagrange dual problem
- strong duality
- saddle-point interpretation
- optimality conditions
- example: total variation de-noising

Primal problem

we consider the standard form optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \tag{12.1}\\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

with variable $\boldsymbol{x} \in \mathbb{R}^{n}$ and nonempty domain

$$
\mathcal{D}=\operatorname{dom} f \cap \bigcap_{i=1}^{m} \operatorname{dom} g_{i} \cap \bigcap_{j=1}^{p} \operatorname{dom} h_{j}
$$

- problem (12.1) is referred to as the primal problem
- we let p^{\star} denote the the optimal value of the primal problem
- the primal problem is not assumed to be convex unless explicitly stated

Duality

- duality provides a technique for transforming the primal problem into another related optimization problem (the dual problem)
- the dual problem is always a convex optimization problem (even when the primal is not)
- dual optimal value provides a lower bound on the optimal objective value of the primal
- certain dual problems may have a particular structure that makes them either solvable analytically, or amenable to certain algorithms that exploit the special structure of the dual
- in some cases we can recover a primal optimal solution from a dual optimal solution

Lagrangian

the Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ associated with problem (12.1) is

$$
L(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \lambda_{j} h_{j}(\boldsymbol{x})
$$

- Lagrangian domain is dom $L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$
- μ_{i} is the Lagrange multiplier associated with the i th inequality constraint $g_{i}(\boldsymbol{x}) \leq 0$
- λ_{j} is the Lagrange multiplier associated with the j th equality constraint $h_{j}(\boldsymbol{x})=0$
- the vectors $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$ are called the Lagrange multiplier vectors or dual variables of problem (12.1)

Dual problem

Lagrange dual function: $\phi: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
\phi(\boldsymbol{\mu}, \boldsymbol{\lambda}) & =\min _{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \\
& =\min _{\boldsymbol{x} \in \mathcal{D}}\left(f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \lambda_{j} h_{j}(\boldsymbol{x})\right)
\end{aligned}
$$

- can take value $-\infty(\operatorname{dom} \phi=\{(\boldsymbol{\mu}, \boldsymbol{\lambda}) \mid \phi(\boldsymbol{\mu}, \boldsymbol{\lambda})>-\infty\})$
- concave function since it is the minimum of affine functions in $(\boldsymbol{\mu}, \boldsymbol{\lambda})$

Lower bound on the optimal value: for $\mu \geq 0, \lambda$, we have

$$
\begin{equation*}
\phi(\boldsymbol{\mu}, \boldsymbol{\lambda}) \leq p^{\star} \tag{12.2}
\end{equation*}
$$

Dual problem

$$
\begin{array}{ll}
\text { maximize } & \phi(\boldsymbol{\mu}, \boldsymbol{\lambda}) \\
\text { subject to } & \boldsymbol{\mu} \geq \mathbf{0}
\end{array}
$$

dual problem is convex and gives best lower bound for p^{\star}

Proof of lower bound: suppose that $\tilde{\boldsymbol{x}}$ is feasible, then for $\mu_{i} \geq 0$:

$$
L(\tilde{\boldsymbol{x}}, \boldsymbol{\mu}, \boldsymbol{\lambda})=f(\tilde{\boldsymbol{x}})+\sum_{i=1}^{m} \mu_{i} g_{i}(\tilde{\boldsymbol{x}})+\sum_{j=1}^{p} \lambda_{j} h_{j}(\tilde{\boldsymbol{x}}) \leq f(\tilde{\boldsymbol{x}})
$$

where the inequality holds since $\mu_{i} g_{i}(\tilde{\boldsymbol{x}}) \leq 0$ and $h_{j}(\tilde{\boldsymbol{x}})=0$; hence,

$$
\phi(\boldsymbol{\mu}, \boldsymbol{\lambda})=\min _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \leq L(\tilde{\boldsymbol{x}}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \leq f(\tilde{\boldsymbol{x}})
$$

since the above holds for any feasible $\tilde{\boldsymbol{x}}$, inequality (12.2) holds

Weak duality

dual problem finds $(\boldsymbol{\mu}, \boldsymbol{\lambda})$ that gives the best lower bound in (12.2):

$$
\begin{equation*}
d^{\star} \leq p^{\star} \tag{12.3}
\end{equation*}
$$

- the above property is called weak duality
- $p^{\star}-d^{\star}$ is called the optimal duality gap
- if the primal problem is unbounded below ($p^{\star}=-\infty$), then the dual problem is infeasible ($d^{\star}=-\infty$)
- if the dual problem is unbounded above ($d^{\star}=\infty$), then the primal problem is infeasible ($p^{\star}=\infty$)

Example 12.1

$$
\begin{array}{ll}
\operatorname{minimize} & x^{2} \\
\text { subject to } & x \geq 1
\end{array}
$$

the solution is $x^{\star}=1$ with optimal value $p^{\star}=1$; the Lagrangian is

$$
L(x, \mu)=x^{2}+\mu(1-x)
$$

minimizing with respect to $x: \nabla_{x} L(x, \mu)=2 x-\mu=0$ so $x=\frac{1}{2} \mu$ and the dual function is

$$
\phi(\mu)=\min _{x} L(x, \mu)=L\left(\frac{1}{2} \mu, \mu\right)=\left(\frac{1}{2} \mu\right)^{2}+\mu\left(1-\frac{1}{2} \mu\right)=-\frac{1}{4} \mu^{2}+\mu
$$

dual function gives the immediate bound $\phi(\mu) \leq p^{\star}$ (e.g., $\phi(0)=0 \leq p^{\star}$)
the dual problem is

$$
\underset{\mu \geq 0}{\operatorname{maximize}} \quad-\frac{1}{4} \mu^{2}+\mu
$$

dual solution is $\mu^{\star}=2$ with optimal value $d^{\star}=1=p^{\star}$

Example 12.2

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}-3 x_{2}^{2} \\
\text { subject to } & x_{1}=x_{2}^{3}
\end{array}
$$

the optimal solutions are $(1,1)$ and $(-1,-1)$ with $p^{\star}=-2$; the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=x_{1}^{2}-3 x_{2}^{2}+\lambda\left(x_{1}-x_{2}^{3}\right)
$$

we have

$$
\min _{\boldsymbol{x}} L(\boldsymbol{x}, \lambda)=-\infty
$$

hence, the dual optimal value is $d^{\star}=-\infty$, which gives a non useful bound on the primal optimal value

Form of dual problem

- the dual depends on the particular way in which the primal is represented
- it is often not possible to find a closed form expression for the dual problem

Example

$$
\begin{array}{ll}
\operatorname{minimize} & e^{x} \\
\text { subject to } & x^{2} \leq 1
\end{array}
$$

the dual function is

$$
\phi(\mu)=\min _{x} e^{x}+\mu\left(x^{2}-1\right)
$$

the minimizer is the solution of the nonlinear equation $e^{x}+2 \mu x=0$; in this case, the dual problem is

$$
\underset{\mu \geq 0}{\operatorname{maximize}} e^{x}+\mu\left(x^{2}-1\right)
$$

where x solves $e^{x}+2 \mu x=0$
consider the equivalent representation of the previous problem:

$$
\begin{array}{ll}
\operatorname{minimize} & e^{x} \\
\text { subject to } & -1 \leq x \leq 1
\end{array}
$$

the dual function is

$$
\phi(\boldsymbol{\mu})=\min _{x} e^{x}+\mu_{1}(x-1)-\mu_{2}(x+1)
$$

the minimizer satisfies $e^{x}+\mu_{1}-\mu_{2}=0$, i.e., $x=\log \left(\mu_{2}-\mu_{1}\right)$; therefore, the dual function is

$$
\begin{aligned}
\phi(\boldsymbol{\mu}) & =\mu_{2}-\mu_{1}+\mu_{1}\left(\log \left(\mu_{2}-\mu_{1}\right)-1\right)-\mu_{2}\left(\log \left(\mu_{2}-\mu_{1}\right)+1\right) \\
& =-\left(\mu_{2}-\mu_{1}\right) \log \left(\mu_{2}-\mu_{1}\right)-2 \mu_{1}
\end{aligned}
$$

with domain dom $\phi=\left\{\boldsymbol{\mu} \mid \mu_{2}>\mu_{1}\right\}$; hence, the dual problem is

$$
\underset{\mu \geq \mathbf{0}}{\operatorname{maximize}} \quad-\left(\mu_{2}-\mu_{1}\right) \log \left(\mu_{2}-\mu_{1}\right)-2 \mu_{1}
$$

Outline

- Lagrange dual problem
- strong duality
- saddle-point interpretation
- optimality conditions
- example: total variation de-noising

Strong duality

strong duality holds if

$$
\begin{equation*}
d^{\star}=p^{\star} \tag{12.4}
\end{equation*}
$$

- does not hold in general
- guaranteed to hold if the problem is convex (i.e., f, g_{i} are convex and $h(\boldsymbol{x})=A \boldsymbol{x}-\boldsymbol{b}$) under Slater's condition

Slater's constraint qualification: there exists an $\hat{\boldsymbol{x}} \in \mathcal{D}$ such that

$$
g_{i}(\hat{\boldsymbol{x}})<0, \quad i=1, \ldots, m, \quad A \hat{\boldsymbol{x}}=\boldsymbol{b}
$$

- implies that the dual optimal value is attained at some $\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ and $d^{\star}=p^{\star}$ (assuming $d^{\star}>-\infty$)
- can be weakened if some g_{i} are affine, by only requiring the non-affine functions to hold with strict inequality

Example 12.3

$$
\begin{array}{ll}
\text { minimize } & x_{1}^{2}+x_{2}^{2}+2 x_{1} \\
\text { subject to } & x_{1}+x_{2}=0
\end{array}
$$

solution is $\boldsymbol{x}^{\star}=(-1 / 2,1 / 2)$ and $p^{\star}=-1 / 2$; the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=x_{1}^{2}+x_{2}^{2}+2 x_{1}+\lambda\left(x_{1}+x_{2}\right)
$$

minimizing the Lagrangian with respect to x we get the solution

$$
\tilde{\boldsymbol{x}}=\left(-1-\frac{\lambda}{2},-\frac{\lambda}{2}\right)
$$

hence,

$$
\begin{aligned}
\phi(\lambda) & =L(\tilde{\boldsymbol{x}}, \lambda) \\
& =(-1-\lambda / 2)^{2}+(-\lambda / 2)^{2}+2(-1-\lambda / 2)+\lambda(-1-\lambda) \\
& =-\frac{\lambda^{2}}{2}-\lambda-1
\end{aligned}
$$

the dual problem is thus

$$
\operatorname{maximize} \quad-\frac{\lambda^{2}}{2}-\lambda-1
$$

- note that $\phi(\lambda) \leq p^{\star}$ for any λ. For example,

$$
\phi(0)=-1 \leq p^{\star}=-1 / 2
$$

- the dual problem is solved at $\lambda^{\star}=-1$ and at the optimal solution, we have

$$
\phi\left(\lambda^{\star}\right)=-1 / 2=p^{\star}
$$

hence, strong duality holds

- Slater's conditions is satisfied since the problem is feasible and we only have equality constraint(s)

Dual of inequality form LP

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=\boldsymbol{c}^{T} \boldsymbol{x}+\boldsymbol{\mu}^{T}(A \boldsymbol{x}-\boldsymbol{b})=-\boldsymbol{b}^{T} \boldsymbol{\mu}+\left(\boldsymbol{c}+A^{T} \boldsymbol{\mu}\right)^{T} \boldsymbol{x}
$$

the dual function is

$$
\phi(\boldsymbol{\mu})=-\boldsymbol{b}^{T} \boldsymbol{\mu}+\min _{\boldsymbol{x}}\left(\boldsymbol{c}+A^{T} \boldsymbol{\mu}\right)^{T} \boldsymbol{x}= \begin{cases}-\boldsymbol{b}^{T} \boldsymbol{\mu} & \text { if } A^{T} \boldsymbol{\mu}+\boldsymbol{c}=\mathbf{0} \\ -\infty & \text { otherwise }\end{cases}
$$

hence, the dual problem (with dom ϕ expressed as constraints) is

$$
\begin{array}{ll}
\underset{\boldsymbol{\mu} \geq \mathbf{0}}{\operatorname{maximize}} & -\boldsymbol{b}^{T} \boldsymbol{\mu} \\
\text { subject to } & A^{T} \boldsymbol{\mu}+\boldsymbol{c}=\mathbf{0}
\end{array}
$$

we have $p^{\star}=d^{\star}$ if $A \boldsymbol{x}<\boldsymbol{b}$ for some \boldsymbol{x}; in fact, strong duality always holds for LPs except when primal or dual are infeasible

Dual of least-norm problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|\boldsymbol{x}\|^{2} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=\|\boldsymbol{x}\|^{2}+\boldsymbol{\lambda}^{T}(A \boldsymbol{x}-\boldsymbol{b})
$$

the Lagrangian is a convex function in \boldsymbol{x}, hence all minimizers satisfy:

$$
\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda})=2 \boldsymbol{x}+A^{T} \boldsymbol{\lambda}=\mathbf{0}
$$

which gives $\boldsymbol{x}(\boldsymbol{\lambda})=-\frac{1}{2} A^{T} \boldsymbol{\lambda}$; hence, the dual problem is

$$
\operatorname{maximize} \quad \phi(\boldsymbol{\lambda})=L\left(-\frac{1}{2} A^{T} \boldsymbol{\lambda}, \boldsymbol{\lambda}\right)=-\frac{1}{4} \boldsymbol{\lambda}^{T} A A^{T} \boldsymbol{\lambda}-\boldsymbol{b}^{T} \boldsymbol{\lambda}
$$

since the primal problem has only linear equality constraints, Slater's condition is simply primal feasibility $(\boldsymbol{b} \in$ range A)

Dual of strictly convex quadratic program

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}^{T} Q \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

where $Q>0$; the Lagrangian

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=\boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{\mu}^{T}(A \boldsymbol{x}-\boldsymbol{b})
$$

is convex in \boldsymbol{x}; hence, it is minimized with respect to \boldsymbol{x} if and only if

$$
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\mu})=2 Q \boldsymbol{x}+A^{T} \boldsymbol{\mu}=\mathbf{0} \Longrightarrow \boldsymbol{x}=-\frac{1}{2} Q^{-1} A^{T} \boldsymbol{\mu}
$$

plug in L, we have

$$
\phi(\boldsymbol{\mu})=L\left(-\frac{1}{2} Q^{-1} A^{T} \boldsymbol{\mu}, \boldsymbol{\mu}\right)=-\frac{1}{4} \boldsymbol{\mu}^{T} A Q^{-1} A^{T} \boldsymbol{\mu}-\boldsymbol{b}^{T} \boldsymbol{\mu}
$$

hence, the dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{1}{4} \boldsymbol{\mu}^{T} A Q^{-1} A^{T} \boldsymbol{\mu}-\boldsymbol{b}^{T} \boldsymbol{\mu} \\
\text { subject to } & \boldsymbol{\mu} \geq \mathbf{0}
\end{array}
$$

we have $p^{\star}=d^{\star}$ if $A \boldsymbol{x}<\boldsymbol{b}$ for some \boldsymbol{x}; in fact, strong duality always holds for this problem

Outline

- Lagrange dual problem
- strong duality
- saddle-point interpretation
- optimality conditions
- example: total variation de-noising

Max-min characterization

assume that there are no equality constraints; then

$$
\max _{\boldsymbol{\mu} \geq \mathbf{0}} L(\boldsymbol{x}, \boldsymbol{\mu})=\max _{\boldsymbol{\mu} \geq \mathbf{0}}\left(f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})\right)= \begin{cases}f(\boldsymbol{x}) & \text { if } g_{i}(\boldsymbol{x}) \leq 0 \\ \infty & \text { otherwise }\end{cases}
$$

this means that we can write p^{\star} as

$$
p^{\star}=\min _{\boldsymbol{x}} \max _{\boldsymbol{\mu} \geq \mathbf{0}} L(\boldsymbol{x}, \boldsymbol{\mu})
$$

from the definition of the dual function, we have

$$
d^{\star}=\max _{\boldsymbol{\mu} \geq \mathbf{0}} \min _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\mu})
$$

hence, we can write weak duality as

$$
\begin{equation*}
\max _{\boldsymbol{\mu} \geq \mathbf{0}} \min _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\mu}) \leq \min _{\boldsymbol{x}} \max _{\boldsymbol{\mu} \geq \mathbf{0}} L(\boldsymbol{x}, \boldsymbol{\mu}) \tag{12.5}
\end{equation*}
$$

Max-min inequality and saddle-point

Max-min inequality: inequality (12.6) does not depend on the property of L; for any function $J: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$, we have

$$
\max _{\boldsymbol{z} \in \mathcal{Z}} \min _{\boldsymbol{w} \in \mathcal{W}} J(\boldsymbol{w}, \boldsymbol{z}) \leq \min _{\boldsymbol{w} \in \mathcal{W}} \max _{\boldsymbol{z} \in \mathcal{Z}} J(\boldsymbol{w}, \boldsymbol{z})
$$

where $\mathcal{W} \subseteq \mathbb{R}^{n}, \mathcal{Z} \subseteq \mathbb{R}^{m}$
Saddle-point: a point $(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{z}})$ is called a saddle-point for J over \mathcal{W}, \mathcal{Z} if

$$
J(\tilde{\boldsymbol{w}}, \boldsymbol{z}) \leq J(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{z}}) \leq J(\boldsymbol{w}, \tilde{\boldsymbol{z}})
$$

for all $\boldsymbol{w} \in \mathcal{W}, \boldsymbol{z} \in \mathcal{Z}$; this means that

$$
J(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{z}})=\min _{\boldsymbol{w} \in \mathcal{W}} J(\boldsymbol{w}, \tilde{\boldsymbol{z}})=\max _{\boldsymbol{z} \in \mathcal{Z}} J(\tilde{\boldsymbol{w}}, \boldsymbol{z})
$$

Lagrangian saddle-point

for any $\boldsymbol{x}, \boldsymbol{\mu}$, we have

$$
\begin{equation*}
d^{\star}=\max _{\boldsymbol{\mu} \geq \mathbf{0}} \min _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\mu}) \leq \min _{\boldsymbol{x}} \max _{\boldsymbol{\mu} \geq \mathbf{0}} L(\boldsymbol{x}, \boldsymbol{\mu})=p^{\star} \tag{12.6}
\end{equation*}
$$

- if strong duality holds at optimal primal and dual points \boldsymbol{x}^{\star} and $\boldsymbol{\mu}^{\star}$, then they form a saddle-point for the Lagrangian
- the converse is also true: If $\left(\boldsymbol{x}^{\star}, \boldsymbol{\mu}^{\star}\right)$ is a saddle-point of the Lagrangian, then \boldsymbol{x}^{\star} is primal optimal, $\boldsymbol{\mu}^{\star}$ is dual optimal, and the optimal duality gap is zero
- strong duality means that the order of the minimization over \boldsymbol{x} and the maximization over $\boldsymbol{\mu} \geq \mathbf{0}$ can be switched without affecting the result

Outline

- Lagrange dual problem
- strong duality
- saddle-point interpretation
- optimality conditions
- example: total variation de-noising

Strong duality implication

suppose that strong duality holds and \boldsymbol{x}^{\star} is a primal optimal and ($\left.\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ is a dual optimal point, then we have

$$
\begin{aligned}
f\left(\boldsymbol{x}^{\star}\right)=\phi\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right) & =\min _{\boldsymbol{x}}\left(f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x})\right) \\
& \leq f\left(\boldsymbol{x}^{\star}\right)+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)+\sum_{j=1}^{p} \lambda_{j}^{\star} h_{j}\left(\boldsymbol{x}^{\star}\right) \\
& \leq f\left(\boldsymbol{x}^{\star}\right)
\end{aligned}
$$

we conclude that the inequalities hold with equality; thus, $\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)=0$

Complementary slackness

- since each term in the sum $\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)=0$ is nonpositive; we conclude that

$$
\mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)=0, \quad i=1, \ldots, m
$$

- this condition is known as complementary slackness

Optimality conditions

suppose that strong duality holds and \boldsymbol{x}^{\star} and $\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ are optimal solutions of the primal and dual problems, then

$$
\begin{aligned}
& \boldsymbol{x}^{\star} \in \underset{\boldsymbol{x}}{\operatorname{argmin}} L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right) \\
& \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)=0, \quad i=1, \ldots, m
\end{aligned}
$$

- first condition implies that \boldsymbol{x}^{\star} is a minimizer $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$
- the Lagrangian $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ can have other minimizers; \boldsymbol{x}^{\star} is simply a minimizer
- functions are not necessarily differentiable
- for differentiable functions, we recover KKT conditions

KKT conditions

suppose that strong duality holds and \boldsymbol{x}^{\star} and $\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ are optimal solutions of the primal and dual problems, then

$$
\begin{aligned}
\nabla_{\boldsymbol{x}} L\left(\boldsymbol{x}^{\star}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right) & =\mathbf{0} \\
g_{i}\left(\boldsymbol{x}^{\star}\right) & \leq 0, \quad i=1, \ldots, m \\
h_{j}\left(\boldsymbol{x}^{\star}\right) & =0, \quad j=1, \ldots, p \\
\mu_{i}^{\star} & \geq 0, \quad i=1, \ldots, m \\
g_{i}\left(\boldsymbol{x}^{\star}\right) \mu_{i}^{\star} & =0, \quad i=1, \ldots, m
\end{aligned}
$$

this means that if strong-duality holds, then any pair of primal and dual optimal points must satisfy the KKT conditions

KKT conditions for convex problems

- for convex problems, the KKT conditions are sufficient for optimality
- if f, g_{i} are convex and h_{j} are affine, and $\boldsymbol{x}^{\star}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}$ are any points that satisfy the KKT conditions, then \boldsymbol{x}^{\star} and ($\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}$) are primal and dual optimal, with zero duality gap

Proof: since $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ is convex in \boldsymbol{x}; the first KKT condition implies that \boldsymbol{x}^{\star} minimizes $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ over \boldsymbol{x}; we conclude that

$$
\begin{aligned}
g\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right) & =L\left(\boldsymbol{x}^{\star}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right) \\
& =f\left(\boldsymbol{x}^{\star}\right)+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)+\sum_{j=1}^{p} \lambda_{j}^{\star} h_{j}\left(\boldsymbol{x}^{\star}\right)=f\left(\boldsymbol{x}^{\star}\right)
\end{aligned}
$$

hence, strong duality holds, and thus, \boldsymbol{x}^{\star} and ($\left.\boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ are primal and dual optimal

Necessary and sufficient conditions

- when a convex problem satisfies Slater's condition, then the KKT conditions provide necessary and sufficient conditions for optimality
- this is because Slater's condition implies that the optimal duality gap is zero and the dual optimum is attained
- hence, \boldsymbol{x} is optimal if and only if there are $(\boldsymbol{\mu}, \boldsymbol{\lambda})$ that, together with \boldsymbol{x}, that satisfy the KKT conditions

Recovering primal solution from dual

Unique minimizer: suppose that $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ has a unique minimizer \boldsymbol{x}^{\star} (e.g., $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ is strictly convex) then \boldsymbol{x}^{\star} solves

$$
\nabla L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)=\mathbf{0}
$$

- x^{\star} of L is either primal feasible; hence, it is the primal-optimal solution
- or it is not primal feasible and no primal-optimal solution exists

Multiple minimizers

- if $L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ has multiple global minimizers, then it is not guaranteed that any global minimizer of L is a primal-optimal solution
- what is guaranteed is that the primal-optimal solution \boldsymbol{x}^{\star} is among the global minimizers of L

Example 12.4

$$
\begin{array}{ll}
\text { minimize } & \left(x_{1}+3\right)^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}^{2} \leq x_{2}
\end{array}
$$

problem is convex with strictly convex objective; thus, it has a unique solution; the Lagrangian

$$
L(\boldsymbol{x}, \mu)=\left(x_{1}+3\right)^{2}+x_{2}^{2}+\mu\left(x_{1}^{2}-x_{2}\right)
$$

is convex over \boldsymbol{x} for any $\mu \geq 0$; a minimizer of L over \boldsymbol{x} must satisfy:

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}} & =2\left(x_{1}+3\right)+2 \mu x_{1}=0 \Longrightarrow x_{1}=-3 /(1+\mu) \\
\frac{\partial L}{\partial x_{2}} & =2 x_{2}-\mu=0 \Longrightarrow x_{2}=\mu / 2
\end{aligned}
$$

hence, the dual function is

$$
\begin{aligned}
\phi(\mu) & =(-3 /(1+\mu)+3)^{2}+(\mu / 2)^{2}+\mu\left((-3 /(1+\mu))^{2}-\mu / 2\right) \\
& =\frac{9 \mu}{1+\mu}-\frac{\mu^{2}}{4}
\end{aligned}
$$

and the dual problem is

$$
\underset{\mu \geq 0}{\operatorname{maximize}} \frac{9 \mu}{1+\mu}-\frac{\mu^{2}}{4}
$$

The derivative of ϕ is

$$
\phi^{\prime}(\mu)=\frac{9}{(1+\mu)^{2}}-\frac{\mu}{2}
$$

solving for $\phi^{\prime}(\mu)=0$, we get the unique optimal dual solution $\mu^{\star}=2$ and $d^{\star}=5$; using this dual solution, the primal solution is

$$
\boldsymbol{x}^{\star}=\left(-3 /\left(1+\mu^{\star}\right), \mu^{\star} / 2\right)=(-1,1)
$$

and the optimal value is $p^{\star}=5=d^{\star}$

Example 12.5

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-c_{i}\right)^{2} \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i}=b
\end{array}
$$

where $a_{i}, c_{i}, b \in \mathbb{R}$ are given
The Lagrangian is

$$
\begin{aligned}
L(\boldsymbol{x}, \lambda) & =\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-c_{i}\right)^{2}+\lambda\left(\sum_{i=1}^{n} a_{i} x_{i}-b\right) \\
& =-b \lambda+\sum_{i=1}^{n}\left(\frac{1}{2}\left(x_{i}-c_{i}\right)^{2}+\lambda a_{i} x_{i}\right)
\end{aligned}
$$

which is also separable in x_{i}
the dual function is

$$
\begin{aligned}
\phi(\lambda) & =-b \lambda+\sum_{i=1}^{n} \min _{x_{i}}\left(\frac{1}{2}\left(x_{i}-c_{i}\right)^{2}+\lambda a_{i} x_{i}\right) \\
& =-b \lambda-\sum_{i=1}^{n}\left(\frac{1}{2} a_{i}^{2} \lambda^{2}-a_{i} c_{i} \lambda\right)
\end{aligned}
$$

where the minimum is achieved at $x_{i}=c_{i}-a_{i} \lambda$
the dual problem is thus

$$
\underset{\lambda}{\operatorname{maximize}}-b \lambda-\sum_{i=1}^{n}\left(\frac{1}{2} a_{i}^{2} \lambda^{2}-a_{i} c_{i} \lambda\right)
$$

since the dual problem is unconstrained and concave, the optimal solution must satisfy

$$
\phi^{\prime}(\lambda)=-b-\lambda \sum_{i=1}^{n} a_{i}^{2}+\sum_{i=1}^{n} a_{i} c_{i}=0
$$

hence,

$$
\lambda^{\star}=-\frac{b-\sum_{i=1}^{n} a_{i} c_{i}}{\sum_{i=1}^{n} a_{i}^{2}}
$$

and we can recover the primal by the formula

$$
x_{i}^{\star}=c_{i}-a_{i} \lambda^{\star}=c_{i}+a_{i} \frac{b-\sum_{i=1}^{n} a_{i} c_{i}}{\sum_{i=1}^{n} a_{i}^{2}}, \quad i=1, \ldots, n
$$

Outline

- Lagrange dual problem
- strong duality
- saddle-point interpretation
- optimality conditions
- example: total variation de-noising

Signal de-noising

- a noisy version of signal \boldsymbol{x} is denoted by \boldsymbol{y}, given by

$$
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{v}
$$

where $\boldsymbol{v} \in \mathbb{R}^{n}$ is an unknown noise vector

- our objective is to retrieve \boldsymbol{x} by solving

$$
\operatorname{minimize}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+\rho r_{\mathrm{tv}}(\boldsymbol{x})
$$

where $\rho>0$ and the regularizer $r_{\text {tv }}$ refers to the total variation function defined as:

$$
r_{\mathrm{tv}}(\boldsymbol{x})=\sum_{i=1}^{n-1}\left|x_{i}-x_{i+1}\right|=\|R \boldsymbol{x}\|_{1}
$$

and R denotes the $(n-1) \times n$ smoothing matrix:

$$
R=\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{array}\right] \in \mathbb{R}^{(n-1) \times n}
$$

- we we have not yet explored how to manage general non-smooth terms in the objective function, by considering the dual problem, we can bypass the non-smooth term $r_{\text {tv }}$
- to derive the dual, we recast the problem as an equivalent constrained one:

$$
\begin{array}{ll}
\operatorname{minimize} & \|\boldsymbol{x}-\boldsymbol{y}\|^{2}+\rho\|\boldsymbol{z}\|_{1} \\
\text { subject to } & \boldsymbol{z}=R \boldsymbol{x}
\end{array}
$$

introducing the variable $\boldsymbol{z} \in \mathbb{R}^{(n-1)}$

- the associated Lagrangian is:

$$
\begin{aligned}
L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}) & =\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+\rho\|\boldsymbol{z}\|_{1}+\boldsymbol{\lambda}^{T}(R \boldsymbol{x}-\boldsymbol{z}) \\
& =\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+\boldsymbol{\lambda}^{T} R \boldsymbol{x}+\rho\|\boldsymbol{z}\|_{1}-\boldsymbol{\lambda}^{T} \boldsymbol{z}
\end{aligned}
$$

observing that the Lagrangian is separable in terms of x and z, the minimization concerning x yields:

$$
\begin{aligned}
\boldsymbol{x}^{\star} & =\underset{\boldsymbol{x}}{\operatorname{argmin}} L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}) \\
& =\underset{\boldsymbol{x}}{\operatorname{argmin}}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+\boldsymbol{\lambda}^{T} R \boldsymbol{x} \\
& =\boldsymbol{y}-\frac{1}{2} R^{T} \boldsymbol{\lambda}
\end{aligned}
$$

substituting this result, we get:

$$
\begin{aligned}
L\left(\boldsymbol{x}^{\star}, \boldsymbol{z}, \boldsymbol{\lambda}\right) & =\left\|\boldsymbol{y}-\frac{1}{2} R^{T} \boldsymbol{\lambda}-\boldsymbol{y}\right\|^{2}+\boldsymbol{\lambda}^{T} R\left(\boldsymbol{y}-\frac{1}{2} R^{T} \boldsymbol{\lambda}\right)+\rho\|\boldsymbol{z}\|_{1}-\boldsymbol{\lambda}^{T} \boldsymbol{z} \\
& =-\frac{1}{4} \boldsymbol{\lambda}^{T} R R^{T} \boldsymbol{\lambda}+\boldsymbol{\lambda}^{T} R \boldsymbol{y}+\rho\|\boldsymbol{z}\|_{1}-\boldsymbol{\lambda}^{T} \boldsymbol{z}
\end{aligned}
$$

to minimize with respect to \boldsymbol{z}, we must address:

$$
\min _{\boldsymbol{z}} \rho\|\boldsymbol{z}\|_{1}-\boldsymbol{\lambda}^{T} \boldsymbol{z}
$$

considering each component, we realize:

$$
\min _{z_{i}} \quad \rho\left|z_{i}\right|-\lambda_{i} z_{i}= \begin{cases}0, & \text { if }\left|\lambda_{i}\right| \leq \rho \\ -\infty, & \text { otherwise }\end{cases}
$$

consequently, the dual function becomes:

$$
\phi(\boldsymbol{\lambda})=\min _{\boldsymbol{x}, \boldsymbol{z}} L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda})= \begin{cases}-\frac{1}{4} \boldsymbol{\lambda}^{T} R R^{T} \boldsymbol{\lambda}+\boldsymbol{\lambda}^{T} R \boldsymbol{y}, & \text { if }\|\boldsymbol{\lambda}\|_{\infty} \leq \rho, \\ -\infty, & \text { otherwise }\end{cases}
$$

thus, our dual problem becomes:

$$
\begin{aligned}
& \text { maximize }-\frac{1}{4} \boldsymbol{\lambda}^{T} R R^{T} \boldsymbol{\lambda}+\boldsymbol{\lambda}^{T} R \boldsymbol{y} \\
& \text { subject to }\|\boldsymbol{\lambda}\|_{\infty} \leq \rho \text {, }
\end{aligned}
$$

where the constraints form a simple box constraint:

$$
\mathcal{C}=\left\{\boldsymbol{\lambda} \in \mathbb{R}^{(n-1)} \mid-\rho \leq \lambda_{i} \leq \rho, i=1,2, \ldots, n-1\right\}
$$

we can solve the problem using the projected gradient descent; the projection onto \mathcal{C}, denoted by $\Pi[\boldsymbol{\lambda}]$, has components:

$$
\Pi[\boldsymbol{\lambda}]_{i}=\frac{\rho \lambda_{i}}{\max \left\{\left|\lambda_{i}\right|, \rho\right\}}
$$

once we get $\boldsymbol{\lambda}^{\star}$, then $\boldsymbol{x}^{\star}=\boldsymbol{y}-\frac{1}{2} R^{T} \boldsymbol{\lambda}^{\star}$

Numerical example

the Total Variation (TV) denoising effectively captures jump discontinuities and noise spikes, an outcome not achieved by the least-squares reconstruction

References and further readings

- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, chapter 5.1, 5.2, 5.4, and 5.7.
- Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014, chapter 12.

