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Primal problem

we consider the standard form optimization problem:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(12.1)

with variable x ∈ Rn and nonempty domain

D = dom f ∩
m⋂
i=1

dom gi ∩
p⋂
j=1

domhj

• problem (12.1) is referred to as the primal problem

• we let p? denote the the optimal value of the primal problem

• the primal problem is not assumed to be convex unless explicitly stated
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Duality

• duality provides a technique for transforming the primal problem into
another related optimization problem (the dual problem)

• the dual problem is always a convex optimization problem (even when the
primal is not)

• dual optimal value provides a lower bound on the optimal objective value
of the primal

• certain dual problems may have a particular structure that makes them
either solvable analytically, or amenable to certain algorithms that exploit
the special structure of the dual

• in some cases we can recover a primal optimal solution from a dual
optimal solution
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Lagrangian

the Lagrangian L : Rn × Rp × Rm → R associated with problem (12.1) is

L(x,µ,λ) = f(x) +

m∑
i=1

µigi(x) +

p∑
j=1

λjhj(x)

• Lagrangian domain is domL = D × Rm × Rp

• µi is the Lagrange multiplier associated with the ith inequality constraint
gi(x) ≤ 0

• λj is the Lagrange multiplier associated with the jth equality constraint
hj(x) = 0

• the vectors µ and λ are called the Lagrange multiplier vectors or dual
variables of problem (12.1)
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Dual problem

Lagrange dual function: φ : Rm × Rp → R:

φ(µ,λ) = min
x∈D

L(x,µ,λ)

= min
x∈D

f(x) +

m∑
i=1

µigi(x) +

p∑
j=1

λjhj(x)


• can take value −∞ (domφ = {(µ,λ) | φ(µ,λ) > −∞})
• concave function since it is the minimum of affine functions in (µ,λ)

Lower bound on the optimal value: for µ ≥ 0, λ, we have

φ(µ,λ) ≤ p? (12.2)

Dual problem
maximize φ(µ,λ)
subject to µ ≥ 0

dual problem is convex and gives best lower bound for p?
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Proof of lower bound: suppose that x̃ is feasible, then for µi ≥ 0:

L(x̃,µ,λ) = f(x̃) +

m∑
i=1

µigi(x̃) +

p∑
j=1

λjhj(x̃) ≤ f(x̃)

where the inequality holds since µigi(x̃) ≤ 0 and hj(x̃) = 0; hence,

φ(µ,λ) = min
x

L(x,µ,λ) ≤ L(x̃,µ,λ) ≤ f(x̃)

since the above holds for any feasible x̃, inequality (12.2) holds
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Weak duality

dual problem finds (µ,λ) that gives the best lower bound in (12.2):

d? ≤ p? (12.3)

• the above property is called weak duality

• p? − d? is called the optimal duality gap

• if the primal problem is unbounded below (p? = −∞), then the dual
problem is infeasible (d? = −∞)

• if the dual problem is unbounded above (d? =∞), then the primal
problem is infeasible (p? =∞)
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Example 12.1

minimize x2

subject to x ≥ 1

the solution is x? = 1 with optimal value p? = 1; the Lagrangian is

L(x, µ) = x2 + µ(1− x)

minimizing with respect to x: ∇xL(x, µ) = 2x− µ = 0 so x = 1
2µ and the

dual function is

φ(µ) = min
x
L(x, µ) = L

(
1
2µ, µ

)
= ( 1

2µ)2 + µ(1− 1
2µ) = − 1

4µ
2 + µ

dual function gives the immediate bound φ(µ) ≤ p? (e.g., φ(0) = 0 ≤ p?)

the dual problem is

maximize
µ≥0

− 1
4µ

2 + µ

dual solution is µ? = 2 with optimal value d? = 1 = p?
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Example 12.2

minimize x21 − 3x22
subject to x1 = x32

the optimal solutions are (1, 1) and (−1,−1) with p? = −2; the Lagrangian is

L(x, λ) = x21 − 3x22 + λ(x1 − x32)

we have
min
x
L(x, λ) = −∞

hence, the dual optimal value is d? = −∞, which gives a non useful bound
on the primal optimal value
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Form of dual problem

• the dual depends on the particular way in which the primal is represented

• it is often not possible to find a closed form expression for the dual problem

Example
minimize ex

subject to x2 ≤ 1

the dual function is

φ(µ) = min
x
ex + µ(x2 − 1)

the minimizer is the solution of the nonlinear equation ex + 2µx = 0; in this
case, the dual problem is

maximize
µ≥0

ex + µ(x2 − 1),

where x solves ex + 2µx = 0
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consider the equivalent representation of the previous problem:

minimize ex

subject to −1 ≤ x ≤ 1

the dual function is

φ(µ) = min
x
ex + µ1(x− 1)− µ2(x+ 1)

the minimizer satisfies ex + µ1 − µ2 = 0, i.e., x = log(µ2 − µ1); therefore,
the dual function is

φ(µ) = µ2 − µ1 + µ1(log(µ2 − µ1)− 1)− µ2(log(µ2 − µ1) + 1)

= −(µ2 − µ1) log(µ2 − µ1)− 2µ1

with domain domφ = {µ | µ2 > µ1}; hence, the dual problem is

maximize
µ≥0

−(µ2 − µ1) log(µ2 − µ1)− 2µ1
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Strong duality

strong duality holds if

d? = p? (12.4)

• does not hold in general

• guaranteed to hold if the problem is convex (i.e., f, gi are convex and
h(x) = Ax− b) under Slater’s condition

Slater’s constraint qualification: there exists an x̂ ∈ D such that

gi(x̂) < 0, i = 1, . . . ,m, Ax̂ = b

• implies that the dual optimal value is attained at some (µ?,λ?) and
d? = p? (assuming d? > −∞)

• can be weakened if some gi are affine, by only requiring the non-affine
functions to hold with strict inequality
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Example 12.3

minimize x21 + x22 + 2x1
subject to x1 + x2 = 0

solution is x? = (−1/2, 1/2) and p? = −1/2; the Lagrangian is

L(x, λ) = x21 + x22 + 2x1 + λ(x1 + x2)

minimizing the Lagrangian with respect to x we get the solution

x̃ =
(
− 1− λ

2 ,−
λ
2

)
hence,

φ(λ) = L(x̃, λ)

= (−1− λ/2)2 + (−λ/2)2 + 2(−1− λ/2) + λ(−1− λ)

= −λ
2

2 − λ− 1
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the dual problem is thus

maximize − λ2

2
− λ− 1

• note that φ(λ) ≤ p? for any λ. For example,

φ(0) = −1 ≤ p? = −1/2

• the dual problem is solved at λ? = −1 and at the optimal solution, we have

φ(λ?) = −1/2 = p?

hence, strong duality holds

• Slater’s conditions is satisfied since the problem is feasible and we only
have equality constraint(s)
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Dual of inequality form LP

minimize cTx
subject to Ax ≤ b

the Lagrangian is

L(x,µ) = cTx+ µT(Ax− b) = −bTµ+ (c+ATµ)Tx

the dual function is

φ(µ) = −bTµ+ min
x

(c+ATµ)Tx =

{
−bTµ if ATµ+ c = 0

−∞ otherwise

hence, the dual problem (with domφ expressed as constraints) is

maximize
µ≥0

−bTµ

subject to ATµ+ c = 0

we have p? = d? if Ax < b for some x; in fact, strong duality always holds for
LPs except when primal or dual are infeasible
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Dual of least-norm problem

minimize ‖x‖2
subject to Ax = b

the Lagrangian is
L(x,λ) = ‖x‖2 + λT(Ax− b)

the Lagrangian is a convex function in x, hence all minimizers satisfy:

∇xL(x,λ) = 2x+ATλ = 0,

which gives x(λ) = − 1
2A

Tλ; hence, the dual problem is

maximize φ(λ) = L(− 1
2A

Tλ,λ) = − 1
4λ

TAATλ− bTλ

since the primal problem has only linear equality constraints, Slater’s
condition is simply primal feasibility (b ∈ rangeA)
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Dual of strictly convex quadratic program

minimize xTQx
subject to Ax ≤ b

where Q > 0; the Lagrangian

L(x,µ) = xTQx+ µT(Ax− b)

is convex in x; hence, it is minimized with respect to x if and only if

∇xL(x,µ) = 2Qx+ATµ = 0 =⇒ x = − 1
2Q
−1ATµ

plug in L, we have

φ(µ) = L(− 1
2Q
−1ATµ,µ) = − 1

4µ
TAQ−1ATµ− bTµ

hence, the dual problem is

maximize − 1
4µ

TAQ−1ATµ− bTµ
subject to µ ≥ 0

we have p? = d? if Ax < b for some x; in fact, strong duality always holds for
this problem
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Max-min characterization

assume that there are no equality constraints; then

max
µ≥0

L(x,µ) = max
µ≥0

(
f(x) +

m∑
i=1

µigi(x)

)
=

{
f(x) if gi(x) ≤ 0,

∞ otherwise

this means that we can write p? as

p? = min
x

max
µ≥0

L(x,µ)

from the definition of the dual function, we have

d? = max
µ≥0

min
x
L(x,µ)

hence, we can write weak duality as

max
µ≥0

min
x
L(x,µ) ≤ min

x
max
µ≥0

L(x,µ) (12.5)
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Max-min inequality and saddle-point

Max-min inequality: inequality (12.6) does not depend on the property of L;
for any function J : Rn × Rm → R, we have

max
z∈Z

min
w∈W

J(w, z) ≤ min
w∈W

max
z∈Z

J(w, z)

whereW ⊆ Rn,Z ⊆ Rm

Saddle-point: a point (w̃, z̃) is called a saddle-point for J overW,Z if

J(w̃, z) ≤ J(w̃, z̃) ≤ J(w, z̃)

for all w ∈ W, z ∈ Z ; this means that

J(w̃, z̃) = min
w∈W

J(w, z̃) = max
z∈Z

J(w̃, z)
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Lagrangian saddle-point

for any x,µ, we have

d? = max
µ≥0

min
x
L(x,µ) ≤ min

x
max
µ≥0

L(x,µ) = p? (12.6)

• if strong duality holds at optimal primal and dual points x? and µ?, then
they form a saddle-point for the Lagrangian

• the converse is also true: If (x?,µ?) is a saddle-point of the Lagrangian,
then x? is primal optimal, µ? is dual optimal, and the optimal duality gap is
zero

• strong duality means that the order of the minimization over x and the
maximization over µ ≥ 0 can be switched without affecting the result
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Strong duality implication

suppose that strong duality holds and x? is a primal optimal and (µ?,λ?) is a
dual optimal point, then we have

f(x?) = φ(µ?,λ?) = min
x

(
f(x) +

m∑
i=1

µ?i gi(x) +
p∑
j=1

λ?jhj(x)
)

≤ f(x?) +
m∑
i=1

µ?i gi(x
?) +

p∑
j=1

λ?jhj(x
?)

≤ f(x?)

we conclude that the inequalities hold with equality; thus,
∑m
i=1 µ

?
i gi(x

?) = 0

Complementary slackness

• since each term in the sum
∑m
i=1 µ

?
i gi(x

?) = 0 is nonpositive; we
conclude that

µ?i gi(x
?) = 0, i = 1, . . . ,m

• this condition is known as complementary slackness
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Optimality conditions

suppose that strong duality holds and x? and (µ?,λ?) are optimal solutions
of the primal and dual problems, then

x? ∈ argmin
x

L(x,µ?,λ?)

µ?i gi(x
?) = 0, i = 1, . . . ,m

• first condition implies that x? is a minimizer L(x,µ?,λ?)

• the Lagrangian L(x,µ?,λ?) can have other minimizers; x? is simply a
minimizer

• functions are not necessarily differentiable

• for differentiable functions, we recover KKT conditions
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KKT conditions

suppose that strong duality holds and x? and (µ?,λ?) are optimal solutions
of the primal and dual problems, then

∇xL(x?,µ?,λ?) = 0

gi(x
?) ≤ 0, i = 1, . . . ,m

hj(x
?) = 0, j = 1, . . . , p

µ?i ≥ 0, i = 1, . . . ,m

gi(x
?)µ?i = 0, i = 1, . . . ,m

this means that if strong-duality holds, then any pair of primal and dual
optimal points must satisfy the KKT conditions

KKT conditions for convex problems
• for convex problems, the KKT conditions are sufficient for optimality
• if f, gi are convex and hj are affine, and x?,µ?,λ? are any points that

satisfy the KKT conditions, then x? and (µ?,λ?) are primal and dual
optimal, with zero duality gap
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Proof: since L(x,µ?,λ?) is convex in x; the first KKT condition implies that
x? minimizes L(x,µ?,λ?) over x; we conclude that

g(µ?,λ?) = L(x?,µ?,λ?)

= f(x?) +

m∑
i=1

µ?i gi(x
?) +

p∑
j=1

λ?jhj(x
?) = f(x?)

hence, strong duality holds, and thus, x? and (µ?,λ?) are primal and dual
optimal

Necessary and sufficient conditions

• when a convex problem satisfies Slater’s condition, then the KKT
conditions provide necessary and sufficient conditions for optimality

• this is because Slater’s condition implies that the optimal duality gap is
zero and the dual optimum is attained

• hence, x is optimal if and only if there are (µ,λ) that, together with x, that
satisfy the KKT conditions
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Recovering primal solution from dual

Unique minimizer: suppose that L(x,µ?,λ?) has a unique minimizer x?

(e.g., L(x,µ?,λ?) is strictly convex) then x? solves

∇L(x,µ?,λ?) = 0

• x? of L is either primal feasible; hence, it is the primal-optimal solution

• or it is not primal feasible and no primal-optimal solution exists

Multiple minimizers

• if L(x,µ?,λ?) has multiple global minimizers, then it is not guaranteed
that any global minimizer of L is a primal-optimal solution

• what is guaranteed is that the primal-optimal solution x? is among the
global minimizers of L
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Example 12.4

minimize (x1 + 3)2 + x22
subject to x21 ≤ x2

problem is convex with strictly convex objective; thus, it has a unique solution;
the Lagrangian

L(x, µ) = (x1 + 3)2 + x22 + µ(x21 − x2)

is convex over x for any µ ≥ 0; a minimizer of L over x must satisfy:

∂L

∂x1
= 2(x1 + 3) + 2µx1 = 0 =⇒ x1 = −3/(1 + µ)

∂L

∂x2
= 2x2 − µ = 0 =⇒ x2 = µ/2
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hence, the dual function is

φ(µ) = (−3/(1 + µ) + 3)2 + (µ/2)2 + µ((−3/(1 + µ))2 − µ/2)

=
9µ

1 + µ
− µ2

4

and the dual problem is

maximize
µ≥0

9µ

1 + µ
− µ2

4

The derivative of φ is

φ′(µ) =
9

(1 + µ)2
− µ

2

solving for φ′(µ) = 0, we get the unique optimal dual solution µ? = 2 and
d? = 5; using this dual solution, the primal solution is

x? = (−3/(1 + µ?), µ?/2) = (−1, 1)

and the optimal value is p? = 5 = d?
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Example 12.5

minimize 1
2

n∑
i=1

(xi − ci)2

subject to
n∑
i=1

aixi = b

where ai, ci, b ∈ R are given

The Lagrangian is

L(x, λ) = 1
2

n∑
i=1

(xi − ci)2 + λ(

n∑
i=1

aixi − b)

= −bλ+

n∑
i=1

(
1
2 (xi − ci)2 + λaixi

)
,

which is also separable in xi
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the dual function is

φ(λ) = −bλ+

n∑
i=1

min
xi

(
1
2 (xi − ci)2 + λaixi

)
= −bλ−

n∑
i=1

(
1
2a

2
iλ

2 − aiciλ
)

where the minimum is achieved at xi = ci − aiλ

the dual problem is thus

maximize
λ

−bλ−
n∑
i=1

(
1
2a

2
iλ

2 − aiciλ
)
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since the dual problem is unconstrained and concave, the optimal solution
must satisfy

φ′(λ) = −b− λ
n∑
i=1

a2i +

n∑
i=1

aici = 0

hence,

λ? = −
b−

∑n
i=1 aici∑n
i=1 a

2
i

and we can recover the primal by the formula

x?i = ci − aiλ? = ci + ai
b−

∑n
i=1 aici∑n
i=1 a

2
i

, i = 1, . . . , n
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Signal de-noising

• a noisy version of signal x is denoted by y, given by

y = x+ v

where v ∈ Rn is an unknown noise vector
• our objective is to retrieve x by solving

minimize ‖x− y‖2 + ρrtv(x)

where ρ > 0 and the regularizer rtv refers to the total variation function
defined as:

rtv(x) =

n−1∑
i=1

|xi − xi+1| = ‖Rx‖1

and R denotes the (n− 1)× n smoothing matrix:

R =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 ∈ R(n−1)×n
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• we we have not yet explored how to manage general non-smooth terms in
the objective function, by considering the dual problem, we can bypass the
non-smooth term rtv

• to derive the dual, we recast the problem as an equivalent constrained
one:

minimize ‖x− y‖2 + ρ‖z‖1
subject to z = Rx

introducing the variable z ∈ R(n−1)

• the associated Lagrangian is:

L(x, z,λ) = ‖x− y‖2 + ρ‖z‖1 + λT(Rx− z)

= ‖x− y‖2 + λTRx+ ρ‖z‖1 − λTz
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observing that the Lagrangian is separable in terms of x and z, the
minimization concerning x yields:

x? = argmin
x

L(x, z,λ)

= argmin
x
‖x− y‖2 + λTRx

= y − 1
2R

Tλ

substituting this result, we get:

L(x?, z,λ) = ‖y − 1
2R

Tλ− y‖2 + λTR(y − 1
2R

Tλ) + ρ‖z‖1 − λTz
= − 1

4λ
TRRTλ+ λTRy + ρ‖z‖1 − λTz

to minimize with respect to z, we must address:

min
z

ρ‖z‖1 − λTz
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considering each component, we realize:

min
zi

ρ|zi| − λizi =

{
0, if |λi| ≤ ρ,
−∞, otherwise

consequently, the dual function becomes:

φ(λ) = min
x,z

L(x, z,λ) =

{
− 1

4λ
TRRTλ+ λTRy, if ||λ||∞ ≤ ρ,

−∞, otherwise

thus, our dual problem becomes:

maximize − 1
4λ

TRRTλ+ λTRy
subject to ||λ||∞ ≤ ρ,

where the constraints form a simple box constraint:

C = {λ ∈ R(n−1) | −ρ ≤ λi ≤ ρ, i = 1, 2, . . . , n− 1}
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we can solve the problem using the projected gradient descent; the projection
onto C, denoted by Π[λ], has components:

Π[λ]i =
ρλi

max{|λi|, ρ}

once we get λ?, then x? = y − 1
2R

Tλ?
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Numerical example
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the Total Variation (TV) denoising effectively captures jump discontinuities and
noise spikes, an outcome not achieved by the least-squares reconstruction
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