ENGR 507 (Spring 2025) S. Alghunaim

12. Algorithms for constrained optimization

e penalty method
e augmented Lagrangian method
e ADMM

o distributed optimization via ADMM

121

Penalized formulation
minimize f(x)
subjectto h;(x) =0, i=1,...,p

Penalized formulation

minimize f(x) + pP(h(x))

h(x) = (hi(x),..., hp(x))

e P :RP — R is the penalty function

p € R is the penalty parameter

pP(x) penalize constraints violation, i.e., has large values for infeasible points

penalty method 12.2

Penalty function

Penalty function: the penalty function P satisfies the following conditions:
1. P is continuous

2. P(h(x)) = Oforallx € R"
3. P(h(x)) = 0if and only if x is feasible (h(x) = 0)

Example: quadratic penalty function

P
P(h(x)) = A1 = Y (hi(x))”

i=1

penalty method 12.3

Quadratic penalty formulation

minimize £ (x) + p|lA(x)|?

e a solution of the above problem might not feasible

e for large p we expect to have small values (hi(x))2

i.e., an approximate solution to the original problem

e solving the above for an increasing sequence of p is called the penalty method

penalty method 12.4

Quadratic penalty method

given a starting pointx(o), Po, and a solution tolerance € > 0
repeatfor k =0,1,...

1. setx¥*1) {0 pe the (approximate) solution to

xD x argmin £ (x) + pllA(x) 12

using an unconstrained optimization method with initial point x 0
2. update pr+1 = 20k

e terminate if ||2(x)||? is small enough

e simple and easy to implement

e but has a major issue:
— pg rapidly increases with iterations

— solving penalty problem can be very slow or simply fail

penalty method

12.5

Connection to optimality condition

recall the Lagrange optimality conditions:

Vix®)+Dh(x*)TA* =0, h(x*) =0

x (1) satisfies optimality condition for the unconstrained peanlized problem:
V() + 20, DR(xF) Th(xF+ 1)) = 0

letting 1K1 = 2p, h(x*+1)) then

Vf(x(k+1)) + Dh(x(k+1))T/l(k+1) =0
o sox(®+1) ang A(k+1) satisfy first equation in the Lagrange optimality condition

feasibility /1(xk*1)) = 0 is approximately satisfied for py. large

— feasibility holds in the limit only px — oo

penalty method 12.6

Inequality constraints

minimize f(x)
subjectto g;(x) <0, i=1,...,m
hi(x)=0, j=1,...,p

can be handled using the penalized formulation
minimize f (x) + pllh(x)|I* + pllg* () II?

o g7 (x) = (g7(x),.... g, (x)) and

o _)0 if gi(x) <0
g; (x) =max{0, g;(x)} = {gi () ifgi(x) >0

e there are other choices of penalty functions

e we just consider the simple quadratic penalization function

penalty method 12.7

Outline

e penalty method
e augmented Lagrangian method
e ADMM

e distributed optimization via ADMM

Constrained problem

minimize f(x)
subjectto h(x) =0

e f:R" >Randh:RP - R
e Lagrangian: L(x,) = f(x) + ATh(x) where A € R?
e problem is equivalent to penalized formulation

minimize £ (x) + (p/2)|1h(x)||?
subjectto h(x) =0

where p is a penalty parameter

augmented Lagrangian method

12.8

Augmented Lagrangian

the augmented Lagrangian (AL) is
Ly(x,2) = L(x,2) + (p/2)||h(x)|1?
= f(x) + ATh(x) + (p/2) |h(0) ||

e augmented Lagrangian is the Lagrangian of the penalized problem

— this is the Lagrangian L(x, 1) augmented with a quadratic penalty

e if x* is a solution of original (or penalized) problem and a regular point, then
ViL,(x*,2%) =0 for some A*

e AL method minimizes L, (x, A) for a sequence of values of 4 and p

augmented Lagrangian method

12.9

AL and Lagrange multiplier update

e minimizer X of augmented Lagrangian L, (x, 1) satisfies
V£(&) +Dh(X)T(ph(x) + 1) =0
o if we define A = A + ph(X) this can be written as
Vf(&) +Dh(x)TA=0
e this is the first equation in the optimality conditions
Vf(x)+Dh(x)TA=0, h(x)=0
e shows that if #(X) = 0, then X satisfies optimality conditions
e if 1(X) is not small, suggests A is a good update for A

e we hope for large p, minimizer of Lp(x, A) is feasible

augmented Lagrangian method 12.10

Augmented Lagrangian algorithm

given x(9, 19 () "and a solution tolerance € > 0
repeatfor k =0,1,...

1. setx***1 {0 be an (approximate) solution to

x*) ~ argmin f£(x) + (A% Th(x) + (pi/2) I17(x) |12

using any unconstrained optimization method with initial point x (<)
2. update 1(K):
A 2 200 4 o (kD)

3. set pg as constant or

Pk if ||h(x(k+1))|| <0.25||h(x(k))||
2pk otherwise

® p isincreased only when needed, more slowly than in penalty method

e continues until 2(x¥)) and/or VL(x*¥), 1(K)) are sufficiently small

augmented Lagrangian method

12.11

Example

consider applying the augmented Lagrangian method to the problem:

minimize ~ e3¥1 + ¢~ 42
subjectto x? +x2 =1

with x(©) = (1, 1) and 21(?) = 0, we set a constant penalty parameter px = 100

the augmented Lagrangian function is
_ 2
L,(x,A) = ey ez 4 (xf +x3 = 1)+ (0/2) (x] +x35 - 1)
for the inner minimization problems, we employ Newton’s method:

£ £+ V2L, (%, A%) VL, (£,25)

augmented Lagrangian method 12.12

the gradient and Hessian are:

331 4+ 22x; + 2,0X1()C1 +)c2 -1
VLp(x /l) —4xo 21 9 1
de +21x2 + 2px2(x? +x2 — 1)
and
_ 9e3X1 + 20+ 2p(x2 +x2 - 1) + 4px2 4px1xg
(x A) = [4pxix2 2 TR +22+2p(x3 +x2 - 1) +4px3

iteration starts from & = x(¥) and continues until VL, (£, A®))|| < 10~*

the value x**1) is then set to £ and the Lagrange multiplier is subsequently updated:

/l(k+1) —/l(k) +p(((k+1))2 + (xék+1))2 _ 1)

augmented Lagrangian method 12.13

MATLAB code implementation

%% AL gradient and Hessian

g=0(x,lam,rho) [3*exp (3*x (1)) +2*lam*x (1) +2*rho*x (1)*(x(1) "2+x(2) "2-1);
—4xexp (-4*x(2))+2*lam*x (2) +2*rho*x (2) * (x (1) “2+x(2) "2-1)];
hess=0(x,lam,rho) [9%exp (3*x (1)) +2*lam+2*rhox (x (1) “2+x(2) “2-1) +4*rho*x (1) "2 4*rho*x(1)*x(2);
4xrho*x (1)*x(2) 16%exp(-4*x(2))+2*lam+2*rho*(x (1) "2+x(2) “2-1)+4*rho*x(2)~2];
h=e(x) x(1)"2+x(2)"2-1;

%% AL method

rho=100;

x=[1;1];

lam=0;

while (norm(g(x,lam,0)) >= 1e-10) || (norm(h(x))>= 1le-6)

xhat=x;

% Newton inner minimization

while (norm(g(xhat,lam,rho)) >= le-4)

v = -hess(xhat,lam,rho)\g(xhat,lam,rho);

xhat = xhat+v;

end

x=xhat;

% Lagrange update

lam=lam+rho*h(x);

end

running the algorithm, we get x* = (—0.7483,0.6633) and A* = 0.2123

augmented Lagrangian method 12.14

AL for nonlinear least squares objective

minimize |7 (x)||?
subjectto h(x) =0

r(x) = (ri(x),....rm(x)), h(x) = (hi(x), ..., hp(x))

Augmented Lagrangian

Ly(x,2) = [Ir(0)|1* + h(x) T2+ (p/2) |1 h(x0) 1P
_ 2 1912 _ i 2
= lr)I* + (p/2)||p(x) + 54| % ll4ll

2
) } T

Vp/2h(x) + 1/ (V2p) 2p

can be minimized over x (for fixed p, A) by Levenberg-Marquardt method:

r(x)
Vp/2h(x) + 1/ (\2p)]

2

e |

augmented Lagrangian method 12.15

AL for constrained nonlinear least squares

given: 19 =0, pg = 1, and x(©

repeatfork =0,1...

1. setx¥*1) 1o pe the (approximate) solution to:

2

x**D ~ argmin
X

r(x)
[Ver/2h(x) + A% [(V2px)]

using Levenberg-Marquardt algorithm starting from initial point x (%)

2. multiplier update:
A+ _ () +pkh(x(k+1))

3. penalty parameter update:

{pk it [7(x%*D)|| < 0.25]|h(x)|
Pk+1 = .
Pk+1 = 2pr otherwise

augmented Lagrangian method

12.16

Outline

e penalty method
e augmented Lagrangian method
e ADMM

e distributed optimization via ADMM

ADMM problem form

the alternating direction method of multiplier (ADMM) solves problem of form:

minimize f(x)+8(2)
subjectto Ax+Bz=c

e variables are x € R" and z € R™
o AcRPX" BecRPX™ andc € RP
e the augmented Lagrangian is

Ly(x,2,) = f(x) +g(2) + AT(Ax + Bz = ¢) + (p/2)|| Ax + Bz — c||

ADMM 1217

ADMM update

x D = argmin Lp(x,z(k),/l(k))
X

2D = argmin Lp(x(k+1),z,/l(k))
z

A0HD) 2 (0 Ay (KD g (kD) gy

o > 0 is the ADMM penalty parameter

e x and z are updated in an alternating or sequential fashion

this is different from AL method where x and z are minimized jointly

(xU+D) Dy = aromin L,(x,z, A5
X,Z

e separating the minimization over x and z allows to decompose large problems into
smaller ones when f or g are separable

ADMM 12.18

ADMM scaled form

define the residual r = Ax + Bz — c and u = (1/p)A4, then

A+ (/2N = (p/2)lIr + (1/p)AlI* = (1/2p) |11
= (p/2)lIr +ull® = (p/2)l|u]|?

ADMM scaled form
x4 = argmin (f(x) + (p/2)|Ax + Bz = c +u® %)
X
2% = argmin (g(2) + (p/2)Ax**V + Bz — ¢ + u®||?)
Z

u(k+1) — u(k) +Ax(k+1) +Bz(k+1) —c

ADMM 12.19

Example: quadratic programs

minimize (1/2)xT0x + rTx
subject to Cx=d
x>0

e () is positive semidefinite (reduces to an LP when Q = 0)
e we can express this problem in the ADMM form:

minimize £ (x) +g(2)
subjectto x—z=0

where
fx) =(1/2)xT0x +rTx, dom f ={x|Cx =d}

and g is the indicator function of the nonnegative orthant R}

ADMM 12.20

the scaled form of ADMM consists of the iterations
x D) = argmin (f(x)+ (p/2)lIx - AL ALY ||2)
X
Z(1<+1) _ (x(k+1) +u(k))+

u+D) = (B) 4 (ke1) _(Rt1)

the x-update is a constrained least squares problem with optimality conditions

0 +pl cT x(k+1) N r —p(Z(k) _ Ll(k)) 0o
C 0 v —-d a

ADMM 12.21

Norm-one regularized least squares

the lasso problem is the ¢; regularized least squares

minimize (1/2)||Ax — b||? + n||x]||1

e 1 > (s a scalar regularization parameter
e in ADMM form, the lasso problem can be written as

minimize f(x) + g(z)
subjectto x—z=0

where f(x) = (1/2)[|Ax - b||* and g(z) = nllzllx

ADMM

12.22

the ADMM iteration is

x D = (ATA + D)"Y (ATD + p (20 — u®))
L) Sn/p(x(kﬂ) ON
u(k+1) — u(k) +x(k+1) _ Z(k+1)

where S is the soft thresholding operator defined element-wise as

a—K a>KkK
Se(a)=140 lal <«
a+k a<-—«K

(@—K)s—(—a—K)

ADMM 12.28

Outline

e penalty method
e augmented Lagrangian method
e ADMM

o distributed optimization via ADMM

Consensus problem

minimize f(x) = %fi(x)
i=1

e variable x € R"

fi : R™ — R represents the ith component of the objective function

fi is available only on machine processor i

e goal is to solve this problem with f; handled by processor i only

distributed optimization via ADMM 12.24

Example

many classification or regression problems can be formulated as:

minimize Y €(x; &)
j=1

o {(x; &) represent the loss function for data &
o for large m, storing the data on a single machine may not be feasible

e the problem can be solved by distributing the data across multiple machines,

fito) =3 t(x;€))

JeJi

where 7; is the set of training data indices at machine i

distributed optimization via ADMM 12.25

Equivalent formulation

N
minimize Y f; (x;)
iz

subjectto x;—z=0, i=1,...,N

x; € R handled by processing unit i

e 7 is a global variable handled by central processing unit called central server

the constraints ensure that all local variables are equal
e objective is now separable in the variables x;

e the augmented Lagrangian is

N
Ly(x1, .o sxns2,4) = 30 (fitx) + () T(xi = 2) + 5 Il = 2)1?)

i=1

distributed optimization via ADMM 12.26

ADMM updates

k . k

xf *D = argmin (fi (xo) + /15 T — 20y + §||xl~ -z 112)

xi
sy _ L8 (k1) 1w

AN A

A§k+1) - /ll(k) (k+1) _ Z(k+1))

+p(x;

e the first and last steps are updated independently by each machine i

e central server updates 7 after it receives all x; and then send it back to machines

distributed optimization via ADMM 12.27

Equivalent simpler update

e using overline to denote the average of a vector, we can express the z-update as:

L) _ k) L
0

by taking the average of the A-update, we get:

Jk+D (k) + p (D) — (k)

substituting 1st equation into the subsequent one, we obtain AR+ = 0 for all k

hence z“‘) = ¥%) and ADMM can be rewritten as:

. k _ 1Y _
xl.(kﬂ) = argmin (f; (x;) + /15 T —x®)) + §||xl~ -5 112)
Xi

k+1 k k+1 =
A0 2) (k) _ o)

+p(x;

distributed optimization via ADMM 12.28

Regularized consensus problem

N
minimize Y f;(x;) + g(2)
i=1
i=1,...,N

subjectto x; —z =0,

e objective term g is a constraint or regularization (e.g., g(z) = ||z||1)

e for this case, the ADMM method is:
x;kﬂ) = argmin (f; (x;) + /lgk)T

Xi

falasope argmln (g(2) + 2(/l(k)
=

() _ o (k+1) _(k+1)
A =) +0))

+p(x;

distributed optimization via ADMM

(x,'—Z

©)+ Ll =2 01P)

k
+ Ll — 2%

12.29

collecting linear and quadratic terms, the z-update can be expressed as:

N, 1-
%D = argmin (g(z) + Tpllz - gD — _ 30 ||2)
z

when g is nonzero, we don't typically get that 1) = 0

hence A; terms cannot be eliminated as in the non-regularized case

using the above update form for z, ADMM is:

3 = avgmin () + 4{ 70 = 29 + Sl - 20)?)
Xi
. N, _ 1-
kD) = argmin (g(z) + 7p”2 — k1) _ ;/l(k)HQ)
Z

(k+1) _ (k) (k+1) _ _(k+1)
47 =4 p(x T =)

distributed optimization via ADMM 12.30

Examples

e for g(z) = nl|z||1, the z-update translates into a soft threshold operation:

Z(k+1)

1-
= Si]/Np(x(k+1) - _/l(k))
Je

e considering g as the indicator function of R, then

1-
L) (kD) ;/l(k))+

distributed optimization via ADMM 12.31

References and further readings

e |. Griva and S. G. Nash and A. Sofer. Linear and Nonlinear Optimization. SIAM, 2009.

e E.K.P. Chong, Wu-S. Lu, and S. H. Zak. An Introduction to Optimization: With Applications to Machine
Learning. John Wiley & Sons, 2023. (chapter 14)

e S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine
learning, 2011.

references 12.32

https://stanford.edu/~boyd/papers/admm_distr_stats.html
https://stanford.edu/~boyd/papers/admm_distr_stats.html

	penalty method
	augmented Lagrangian method
	ADMM
	distributed optimization via ADMM
	references

