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11. Special classes of convex optimization

e quadratic optimization
e semidefinite programs
e geometric programming

e quasiconvex optimization
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Quadratic optimization

Quadratic program (quadratic optimization problem)
minimize  (1/2)z7Qx + rTx
subjectto Ax <b

Gx = h,

where () € R"*" is positive semidefinite, » € R™, A € R™*"™ G € RP*",
h € RP,and b € R™

Quadratically constrained quadratic problem (QCQP)
minimize  (1/2)x7Qox + gz + 7o
subjectto  (1/2)27Q,z +rlx <0, i=1,...,p
Ax =b,

where @; (: = 0,1...,m) are positive semidefinite

quadratic optimization
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Examples

Least squares:

minimize ||Az — b||? = 2TATAx — 267 Az + b"b

Constrained least squares: when linear constraints are added, the problem
is called constrained least-square for example,

minimize || Az — b||?
subjectto Gx =h
li <z <wg, 1=1

geeey

this problem has no simple analytical solution
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Example: Power distribution (aggregator model)

e in electricity markets, an aggregator
= buys wholesale p units of power (Megawatt) from power distribution utilities
= and resells this power to a group of n business or industrial customers

e the ¢th customer, i = 1, ..., n, would ideally wants p, Megawatts

e the customer ¢ does not want to receive more or less power than needed;
the customer dissatisfaction can be modeled as

filws)) =ci(zi —p;)?, i=1,...,n,

where x; is the power given to customer ¢ by the aggregator, and ¢; is a
given customer parameter
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e the aggregator problem is finding the power allocations z;,7 =1,...,

such that

» the average customer dissatisfaction is minimized,

= the whole power p is sold,
= and that the dissatisfaction level is no greater than a contract level, say d

e the aggregator problem is

this is a QCQP

quadratic optimization

minimize

subject to

7ZC’L Z; pz
sz I3

cl(acz pi)?<d, i=1,...

z; >0, i=1,...,n

,n
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Example: portfolio optimization

an investor wants to select a set of assets (stocks) to achieve a good return
on the investment while minimizing risks of losses

e we have n stocks and let z; > 0 be the proportion of investment on stock

e let r; be the return for stock 7; we assume that the expected returns are
known,

wi=E(r;), j=12,...,n,
and that the covariances of all the pairs of variables are also known,
2 .
o =E(ri —p)(rj —py), 4,5=12,...,n
(typically, the mean and variance are estimated from historical data)
= a high variance indicates high risk; a low variance indicates low risk
= positive covariance afj > 0 means that the stocks ¢ and j prices move in the

same general direction while a negative one moves in opposite direction
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o the overall return is the random variable R = 37, x;7; whose
expectation and variance are given by

E(R) = p’x, Var(R) = x>z,

o = (p1,p2,. -, fn)
2 is the covariance matrix whose elements are given by X, ; = o; ; for all
hwi=1,...,n

the covariance matrix is always positive semidefinite
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Portfolio problem QP formulation:

minimize xSz

subjectto plx > o
1Tz =1
x>0

where « is the minimal return value
Portfolio problem QCQP formulation:
maximize plx
subjectto z'Sx <
1Tz =1

x>0

where ( is the upper bound on the risk

quadratic optimization
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Outline

e quadratic optimization
e semidefinite programs
e geometric programming

e quasiconvex optimization



Linear matrix inequalities

a linear matrix inequality (LMI) constrains a vector of variables x € R" as

F(ac):F0+inFi§0 (11.1)
i=1
e symmetric coefficient matrices Fy, ..., F}, of size m x m

e often, LMI constraints apply directly to matrix variables rather than vector
variables
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Semidefinite program

a semidefinite program (SDP) is a particular type of convex optimization

problem:

minimize ¢’z

subjectto  F(x) <0 (112)
with

F(z)=Fy+ Y z;F
=1

e x € R™ is the optimization variable and ¢ € R"
e each F;fort =0,...,nis a known m x m symmetric matrices

o if Iy, I, ..., F,, are diagonal matrices, the LMI simplifies to n linear
inequalities, and thus, the SDP (11.2) becomes a linear program
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General form SDPs:

minimize cTx

subjectto  FO(z) =2, F) 4o 4 2, F) + FP <0, i=1,....K
Gx<h
Ax=b

these problems can be equivalently represented as an SDP by constructing a
block diagonal LMI using the given LMIs and linear inequalities:

minimize ¢’z
subjectto  diag(Ga — h, FW(x),..., FU)(x)) <0
Ax =0b
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Examples

Maximum eigenvalue minimization
minimize  Apax (F(x))

generally, the function A\p,ax(+) is nonconvex, but this problem can be
equivalently reformulated as:

minimize ¢
subjectto  F(x) —tI <0,

where the variables are € R" and t € R

this formulation is a specific instance of a semidefinite program (SDP) in the
augmented (vector) variable:

&= [ H e=(1,0,...,0), F(&)=F(zx)—tI

semidefinite programs 11.12



Spectral matrix norm minimization:
minimize || A(x)]|2
where A(x) € RP*™ represented as:
Alx) = Ao+ 11A1+ -+ 2, A,
this problem is equivalent to the following SDP:
minimize ¢

tl, Al(x)

subject to { Al) 4,

E

with decision variables * € R™ andt € R (¢ > 0)

semidefinite programs
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to show this, recall that the spectral norm is equal to the largest singular
value of A(x):

JA@)ll2 = \/Amax (AT(@) ()

it follows that

[A@)]2 <t = [A@)]3 < = Amax (AT(2)A(x)) <t

this is satisfied if the eigenvalue condition holds for every i:
Ni (AT(z)A(z)) <t?, Vi=1,...,m
e the above can be equivalently stated as:

AT(x)A(x) — t*1,, <0
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e using the Schur complement rule, this matrix inequality can be
transformed to the LMI form with variables ¢ and z:

i =

since t = 0 if and only if A(x) =0
e we can represent the above LMI as:

i ]

obtained through congruence transformation with the diagonal matrix
diag(1/v/tL,, VtI,)

fort >0

semidefinite programs
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Frobenius norm minimization
minimize || A(x)|/%
the objective can be represented in the SDP format:

minimize  trace(Y")
. Y A(x)
subject to {AT(:B) I, }20

where the decision variables are € R” and Y € RP*? is positive
semidefinite

e the equivalence of this formulation can be established by noting the
relationship:
|A()[|7 = trace(A(z) A (z))

e using the Schur complement, the matrix condition can be written as:

[ Y  Ax)
Al(x) I,

this validation links the original objective with the SDP representation

} >0 <= A(x)AT(z) <Y

semidefinite programs

11.16



Outline

e quadratic optimization
e semidefinite programs
e geometric programming

e quasiconvex optimization



Monomials and posynomials

Monomial
Qn

f(x) = caitag? .. .a¥

e f:R"™ — R with domain dom f = R}
e c>0andeacha; € R

Posynomial
K
f(z) = Z cpx gt L ghnk
k=1

eachci >0

geometric programming
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Example

wireless cellular network with n paired transmitters and receivers
® pi,...,p, are the transmit powers for these pairs

e each transmitter 4 is intended to communicate with its corresponding
receiver

e the signal to interference plus noise ratio (SINR) for each receiver is:

= S; represents the power of the desired signal received from transmitter 4
= [; is the combined interference from all other transmitters
= 0; is the receiver’s noise power
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the Rayleigh fading model suggests that the received power S; is a linear
function of the transmitted powers p1, ..., py:

Si:Giipi7 iZl,...,?’L,
=Y Gijpj,

J#i
where G;; are the known path gains from transmitter j to receiver ¢

and

therefore, the SINR expressions in terms of the powers p4, ..., p, are:
Giipi
i+ 352 Gisbs

while the SINR functions aren’t posynomials, their inverses are posynomial
functions of the powers:

Yi(p) = 1=1,...,n,

_ o _ G.. .
Vil(P):Gl__pil-i— E ?‘?pjpil, t=1,...,n
(X3

G

g#i
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Generalized posynomials

a generalized posynomial is obtained from posynomials through various
operations like addition, multiplication, pointwise maximum, and raising to a
specific power

Example: consider the function f : R?H — R defined as:

f(z) = max <2x%'3x;, x1x2m§~14, \Jx1+ l%)

this function qualifies as a generalized posynomial
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Introducing variables

Max of posynomial: consider a posynomial f expressed as:

f(@) = max (fi(x), fa(2))

where both f; and f, are posynomials, then for some ¢ > 0, the inequality
f(x) <t can be broken down into two posynomial inequalities in (x, t):

filx) <t and folx) <t

Power of posynomial: for a given ¢t > 0 and a > 0, the power constraint

(f(@)* <t
with f being a regular posynomial and o > 0, is equivalent to:
flx) <t/

or
glm,t) =t""f(x) <1

geometric programming 11.21



Geometric program

an optimization problem is defined as a geometric program (GP) if it is
structured as:
minimize  f(x)
subject to gL(a:) <

hi(x)

e f,g1...,9m being posynomials
e hi,...,h,as monomials
p

e its domain is inherently set as D = R’{ | (implicit constraint = > 0).

geometric programming
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Example 11.1

consider the optimization problem:

maximize x/y
subjectto 2<x <3
o +3y/2 <y

x/z =22,

where z,y, z € R and implicitly z,y,z > 0

the problem can be recast into the standard GP form:

minimize 2~y
subjectto 2x71 <1, (1/3)z <1
22y~ V2 43yl 2 < 1

ry 272 =1

geometric programming
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Geometric program in convex form

geometric programs are generally not convex optimization problems, but they
can be recast into convex forms through suitable transformations

Change of variable: by defining y; = log x; such that z; = e¥*, monomial
functions of x represented as

An

f($) = cx‘1“$32 R i

can be transformed to
Jy) = e vrione

where a”y is an affine function of y

geometric programming 11.04



similarly, for posynomials defined as

K
f(@) = 3 cuateaget ot
k=1

the transformation yields

K
fla) = Y eervoser
k=1
with ap — (alk, ey ank)

now, consider the standard geometric program, which in terms of y is
expressed as:

L K, T
minimize Y%, e®ox¥tbox
: K; T , .
subject to 2116;1 e@u¥tbin <1, i=1,...,m
ehivtdi =1 i=1,...,p
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Equivalent convex form

by applying the logarithm to the objective and constraint functions, the
problem morphs into:

minimize  f(y) = log<z 0 a0ky+bo;c)

(y) = log( emy“’) 1,...,m
(y) = hy+d—0 i=1,.

subjectto g;
h;

e given that f and g; functions are convex, and h; functions are affine, this
optimization problem is convex

e we label it as the geometric program in convex form; for clarity, the original
form is termed the geometric program in posynomial form
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Example 11.2

consider a cylindrical liquid storage tank characterized by its height, h, and
diameter, d

unlike the main body of the tank, its base is made from a distinct material

we assume that the height of the base remains unchanged irrespective of
the tank’s height

Viank is the volume of the tank
Vsupp i the volume supplied within a designated time frame

the total costs associated with manufacturing and operating the tank over
a set duration (e.g., a year) is divided into filling cost and construction cost

geometric programming 11.07



Filling costs:
V4
Chn(d, h) = 041% =ch 72,

tank
where «a; is a positive constant (in dollars), and ¢; = 4“%/5“""
e this cost is tied to supplying a certain volume, Vgpp, 0f a liquid (like water)
within the designated time-frame
o Viupp/Viank determines the frequency of tank refilling; hence its cost
e therefore, as the volume of the tank diminishes relative to the supply
volume, filling costs rise

Construction costs:

Cconstr(d7 h) = ng2 + c3dh,

where co = a2 % and c3 = as7 (a2 and a3 are positive
dollar-per-square-meter constants)
e include the expenses of constructing the tank’s and its base

e the base’s cost is proportional to its area, ”TdQ, whereas the tank’s cost
correlates with its surface area, wdh
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Total cost
Ctotal(d» h) = Cfi||(d7 h) + Cconstr(da h) = Clh_ld_2 + C2d2 + c3dh

this posynomial objective function is subject to constraints such as upper and
lower limits on the diameter and height, represented as:

0<d§dmax, 0<h§hmax

GP formulation

minimize  c1h~1d=2 4 cad? + c3dh
subjectto 0 <d-l d<1

max

0<hzl h<1

max

with variables d, h
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e quasiconvex optimization



Quasiconvex function

function f : R™ — R is defined as quasiconvex if, for every real number ~, its
domain and all of its sublevel sets

Sy =A{z| f(x) <~}

are convex

e although every convex function naturally possesses convex level sets, the
opposite isn’t always true; indeed, there exist non-convex functions that
have convex level sets

e a function is termed quasiconcave if its negative counterpart (— f) is
quasiconvex (for every superlevel set {x | f(x) > a}, the set is convex)

e a function that’s both quasiconvex and quasiconcave is called quasilinear;
for these functions, both their domain and each level set {z | f(x) = a}
are convex
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Graphical illustration

quasiconvex function that is non-convex

for a specific «, its a-sublevel set, denoted as S, is convex

quasiconvex optimization 11.31



Examples

f(z) = +/|x| is nonconvex, but it is quasiconvex; when < 0, we observe
that S, = 0; for v > 0, the sublevel set is given by:

Sy ={z | VIzl <7} = (x| le] <7*} = [+*77]
Logarithm: log x over R  is both quasiconvex and quasiconcave, making
it quasilinear

Ceiling function: ceil(z) = inf{z € Z | z > x}, is quasiconvex and
quasiconcave

Linear-over-linear: the function
aTz +b

f(x):m,

defined over the domain dom f = {x € R" | Tz +d >0} andc # O is
quasiconvex since

Sy={x| f(x) <7} ={z €R" | (a—~c) '@+ (b—~d) <0}
is a convex set

quasiconvex optimization 11.32



e f(x1,x9) = x129 has Hessian matrix
9 101

indicating its indefinite nature; yet, f is quasiconcave on Ri due to its
convex superlevel sets, but not on R?

e Distance ratio function: given points a, b € R", the function

e —als
1@ =128,

is quasiconvex since its sublevel set represents the halfspace where the
distance to a is less than or equal to the distance to b
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A characterization of quasiconvex function

f is quasiconvex if and only if its domain, dom f, is convex and for any
x,y € dom f with(0 <0 <1,

f(0x + (1 —0)y) < max{f(x), f(y)},

signifying that on any line segment, the function’s value will not exceed the
maximum of its endpoints

max{f(2), FW}.. Sy, 1)
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Examples

e the cardinality of a vector « € R", represented as card(x), is the count of
its non-zero components. It is intriguing to note that the function card is
quasiconcave on R’ but not on R"™; this stems from the fact:

card(x + y) > min{card(z), card(y)},
valid for non-negative vectors x, y

e the rank function, represented as rank X, demonstrates quasiconcavity
on positive semidefinite matrices; this fact is attributed to the inequality:

rank(X +Y') > min{rank X, rank Y},

applicable to positive semidefinite matrices X, Y
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Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

minimize  f(x)
subjectto  gi(x) <0, i=1,....m (11.3)
b s

e the objective f is quasiconvex
e g; are convex

quasiconvex optimization 11.36



Quasiconvex optimization via convex feasibility problems

consider a set of convex functions, ¢; : R® — R for ¢ € R, that adhere to:
fo(x) <t <= ¢i(x) <0,
where for every x, we have ¢ () < ¢;(x) forany s > t

given p* as the optimal solution of the quasiconvex optimization problem
(11.3), if the feasibility problem

find x
subjectto ¢ (x) <0 (11.4)
fi®) <0, i=1,....m '

Ax =b,
holds, then p* < t; however, if infeasible, it establishes p* > ¢; this problem is

a convex feasibility problem; hence, the optimal value p* being greater or
lesser than a value ¢ can be identified by this problem

quasiconvex optimization 11.37



Bisection for quasiconvex problems

this insight can anchor a bisection-based algorithm listed in to resolve the
quasiconvex optimization problem (11.4)

assuming feasibility, one would initiate with an interval [I, u] containing p*; by
evaluating the problem at the midpoint ¢t = ”“ , we deduce whether p* lies in
the upper or lower interval half and adjust the mterval

Algorithm BISECTION FOR QUASICONVEX PROBLEMS
given: [ < p*,u > p* and a tolerance € > 0

repeat
1. t:= H'T"

2. evaluate the convex feasibility problem (11.4)
3. if (11.4) is feasible, update: if feasible, set u := t; else, set ] :=¢

until u — [ < e

quasiconvex optimization 11.38
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