11. Special classes of convex optimization

- quadratic optimization
- semidefinite programs
- geometric programming
- quasiconvex optimization

Quadratic optimization

Quadratic program (quadratic optimization problem)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b} \\
& G \boldsymbol{x}=\boldsymbol{h},
\end{array}
$$

where $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite, $\boldsymbol{r} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, G \in \mathbb{R}^{p \times n}$, $\boldsymbol{h} \in \mathbb{R}^{p}$, and $\boldsymbol{b} \in \mathbb{R}^{m}$

Quadratically constrained quadratic problem (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) \boldsymbol{x}^{T} Q_{0} \boldsymbol{x}+\boldsymbol{q}_{0} \boldsymbol{x}+\boldsymbol{r}_{0} \\
\text { subject to } & (1 / 2) \boldsymbol{x}^{T} Q_{i} \boldsymbol{x}+\boldsymbol{r}_{i}^{T} \boldsymbol{x} \leq 0, \quad i=1, \ldots, p \\
& A \boldsymbol{x}=\boldsymbol{b},
\end{array}
$$

where $Q_{i}(i=0,1 \ldots, m)$ are positive semidefinite

Examples

Least squares:

$$
\operatorname{minimize} \quad\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\boldsymbol{x}^{T} A^{T} A \boldsymbol{x}-2 \boldsymbol{b}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{b}
$$

Constrained least squares: when linear constraints are added, the problem is called constrained least-square for example,

$$
\begin{array}{ll}
\operatorname{minimize} & \|A \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
\text { subject to } & G \boldsymbol{x}=\boldsymbol{h} \\
& l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, n
\end{array}
$$

this problem has no simple analytical solution

Example: Power distribution (aggregator model)

- in electricity markets, an aggregator
- buys wholesale p units of power (Megawatt) from power distribution utilities
- and resells this power to a group of n business or industrial customers
- the i th customer, $i=1, \ldots, n$, would ideally wants p_{i} Megawatts
- the customer i does not want to receive more or less power than needed; the customer dissatisfaction can be modeled as

$$
f_{i}\left(x_{i}\right)=c_{i}\left(x_{i}-p_{i}\right)^{2}, \quad i=1, \ldots, n
$$

where x_{i} is the power given to customer i by the aggregator, and c_{i} is a given customer parameter

- the aggregator problem is finding the power allocations $x_{i}, i=1, \ldots, n$, such that
- the average customer dissatisfaction is minimized,
- the whole power p is sold,
- and that the dissatisfaction level is no greater than a contract level, say d
- the aggregator problem is

$$
\begin{aligned}
\text { minimize } & \frac{1}{n} \sum_{i=1}^{n} c_{i}\left(x_{i}-p_{i}\right)^{2} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=p, \\
& c_{i}\left(x_{i}-p_{i}\right)^{2} \leq d, \quad i=1, \ldots, n \\
& x_{i} \geq 0, \quad i=1, \ldots, n
\end{aligned}
$$

this is a QCQP

Example: portfolio optimization

an investor wants to select a set of assets (stocks) to achieve a good return on the investment while minimizing risks of losses

- we have n stocks and let $x_{i} \geq 0$ be the proportion of investment on stock i
- let r_{i} be the return for stock i; we assume that the expected returns are known,

$$
\mu_{j}=\mathbb{E}\left(r_{j}\right), \quad j=1,2, \ldots, n,
$$

and that the covariances of all the pairs of variables are also known,

$$
\sigma_{i, j}^{2}=\mathbb{E}\left(r_{i}-\mu_{i}\right)\left(r_{j}-\mu_{j}\right), \quad i, j=1,2, \ldots, n
$$

(typically, the mean and variance are estimated from historical data)

- a high variance indicates high risk; a low variance indicates low risk
- positive covariance $\sigma_{i j}^{2}>0$ means that the stocks i and j prices move in the same general direction while a negative one moves in opposite direction
- the overall return is the random variable $R=\sum_{j=1}^{n} x_{j} r_{j}$ whose expectation and variance are given by

$$
\mathbb{E}(R)=\boldsymbol{\mu}^{T} \boldsymbol{x}, \quad \operatorname{Var}(R)=\boldsymbol{x}^{T} \Sigma \boldsymbol{x},
$$

- $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$
- Σ is the covariance matrix whose elements are given by $\Sigma_{i, j}=\sigma_{i, j}$ for all $i, j=1, \ldots, n$
- the covariance matrix is always positive semidefinite

Portfolio problem QP formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}^{T} \Sigma \boldsymbol{x} \\
\text { subject to } & \boldsymbol{\mu}^{T} \boldsymbol{x} \geq \alpha \\
& \mathbf{1}^{T} \boldsymbol{x}=1 \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where α is the minimal return value

Portfolio problem QCQP formulation:

$$
\begin{array}{cl}
\operatorname{maximize} & \boldsymbol{\mu}^{T} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x}^{T} \Sigma \boldsymbol{x} \leq \beta \\
& \mathbf{1}^{T} \boldsymbol{x}=1 \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where β is the upper bound on the risk

Outline

- quadratic optimization
- semidefinite programs
- geometric programming
- quasiconvex optimization

Linear matrix inequalities

a linear matrix inequality (LMI) constrains a vector of variables $\boldsymbol{x} \in \mathbb{R}^{n}$ as

$$
\begin{equation*}
F(\boldsymbol{x})=F_{0}+\sum_{i=1}^{m} x_{i} F_{i} \leq 0 \tag{11.1}
\end{equation*}
$$

- symmetric coefficient matrices F_{0}, \ldots, F_{n} of size $m \times m$
- often, LMI constraints apply directly to matrix variables rather than vector variables

Semidefinite program

a semidefinite program (SDP) is a particular type of convex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & F(\boldsymbol{x}) \leq 0 \tag{11.2}
\end{array}
$$

with

$$
F(\boldsymbol{x})=F_{0}+\sum_{i=1}^{n} x_{i} F_{i}
$$

- $\boldsymbol{x} \in \mathbb{R}^{n}$ is the optimization variable and $\boldsymbol{c} \in \mathbb{R}^{n}$
- each F_{i} for $i=0, \ldots, n$ is a known $m \times m$ symmetric matrices
- if $F_{0}, F_{1}, \ldots, F_{m}$ are diagonal matrices, the LMI simplifies to n linear inequalities, and thus, the SDP (11.2) becomes a linear program

General form SDPs:

minimize $\quad \boldsymbol{c}^{T} \boldsymbol{x}$
subject to $\quad F^{(i)}(\boldsymbol{x})=x_{1} F_{1}^{(i)}+\cdots+x_{n} F_{n}^{(i)}+F_{0}^{(i)} \leq 0, \quad i=1, \ldots, K$

$$
G \boldsymbol{x} \leq \boldsymbol{h}
$$

$$
A x=b
$$

these problems can be equivalently represented as an SDP by constructing a block diagonal LMI using the given LMIs and linear inequalities:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & \operatorname{diag}\left(G \boldsymbol{x}-\boldsymbol{h}, F^{(1)}(\boldsymbol{x}), \ldots, F^{(K)}(\boldsymbol{x})\right) \leq 0 \\
& A \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

Examples

Maximum eigenvalue minimization

$$
\operatorname{minimize} \quad \lambda_{\max }(F(\boldsymbol{x}))
$$

generally, the function $\lambda_{\max }(\cdot)$ is nonconvex, but this problem can be equivalently reformulated as:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & F(\boldsymbol{x})-t I \leq 0
\end{array}
$$

where the variables are $\boldsymbol{x} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$
this formulation is a specific instance of a semidefinite program (SDP) in the augmented (vector) variable:

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
t \\
\boldsymbol{x}
\end{array}\right], \quad \hat{\boldsymbol{c}}=(1,0, \ldots, 0), \quad \hat{F}(\hat{\boldsymbol{x}})=F(\boldsymbol{x})-t I
$$

Spectral matrix norm minimization:

$$
\operatorname{minimize} \quad\|A(\boldsymbol{x})\|_{2}
$$

where $A(\boldsymbol{x}) \in \mathbb{R}^{p \times m}$ represented as:

$$
A(\boldsymbol{x})=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

this problem is equivalent to the following SDP:

$$
\left.\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to }
\end{array} \begin{array}{cc}
t I_{m} & A^{T}(\boldsymbol{x}) \\
A(\boldsymbol{x}) & t I_{p}
\end{array}\right] \geq 0
$$

with decision variables $\boldsymbol{x} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}(t \geq 0)$

- to show this, recall that the spectral norm is equal to the largest singular value of $A(\boldsymbol{x})$:

$$
\|A(\boldsymbol{x})\|_{2}=\sqrt{\lambda_{\max }\left(A^{T}(\boldsymbol{x}) A(\boldsymbol{x})\right)}
$$

- it follows that

$$
\|A(\boldsymbol{x})\|_{2} \leq t \Longrightarrow\|A(\boldsymbol{x})\|_{2}^{2} \leq t^{2} \Longrightarrow \lambda_{\max }\left(A^{T}(\boldsymbol{x}) A(\boldsymbol{x})\right) \leq t^{2}
$$

- this is satisfied if the eigenvalue condition holds for every i :

$$
\lambda_{i}\left(A^{T}(\boldsymbol{x}) A(\boldsymbol{x})\right) \leq t^{2}, \quad \forall i=1, \ldots, m
$$

- the above can be equivalently stated as:

$$
A^{T}(\boldsymbol{x}) A(\boldsymbol{x})-t^{2} I_{m} \leq 0
$$

- using the Schur complement rule, this matrix inequality can be transformed to the LMI form with variables t^{2} and x :

$$
\left[\begin{array}{cc}
t^{2} I_{m} & A^{T}(\boldsymbol{x}) \\
A(\boldsymbol{x}) & I_{p}
\end{array}\right] \geq 0
$$

since $t=0$ if and only if $A(\boldsymbol{x})=0$

- we can represent the above LMI as:

$$
\left[\begin{array}{cc}
t I_{m} & A^{T}(\boldsymbol{x}) \\
A(\boldsymbol{x}) & t I_{p}
\end{array}\right] \geq 0,
$$

obtained through congruence transformation with the diagonal matrix

$$
\operatorname{diag}\left(1 / \sqrt{t} I_{m}, \sqrt{t} I_{p}\right)
$$

for $t>0$

Frobenius norm minimization

$$
\operatorname{minimize} \quad\|A(\boldsymbol{x})\|_{F}^{2}
$$

the objective can be represented in the SDP format:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{trace}(Y) \\
\text { subject to }
\end{array}\left[\begin{array}{cc}
Y & A(\boldsymbol{x}) \\
A^{T}(\boldsymbol{x}) & I_{m}
\end{array}\right] \geq 0
$$

where the decision variables are $\boldsymbol{x} \in \mathbb{R}^{n}$ and $Y \in \mathbb{R}^{p \times p}$ is positive semidefinite

- the equivalence of this formulation can be established by noting the relationship:

$$
\|A(\boldsymbol{x})\|_{F}^{2}=\operatorname{trace}\left(A(\boldsymbol{x}) A^{T}(\boldsymbol{x})\right)
$$

- using the Schur complement, the matrix condition can be written as:

$$
\left[\begin{array}{cc}
Y & A(\boldsymbol{x}) \\
A^{T}(\boldsymbol{x}) & I_{m}
\end{array}\right] \geq 0 \Longleftrightarrow A(\boldsymbol{x}) A^{T}(\boldsymbol{x}) \leq Y
$$

this validation links the original objective with the SDP representation

Outline

- quadratic optimization
- semidefinite programs
- geometric programming
- quasiconvex optimization

Monomials and posynomials

Monomial

$$
f(\boldsymbol{x})=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with domain $\operatorname{dom} f=\mathbb{R}_{++}^{n}$
- $c>0$ and each $a_{i} \in \mathbb{R}$

Posynomial

$$
f(\boldsymbol{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}}
$$

each $c_{k}>0$

Example

wireless cellular network with n paired transmitters and receivers

- p_{1}, \ldots, p_{n} are the transmit powers for these pairs
- each transmitter i is intended to communicate with its corresponding receiver i
- the signal to interference plus noise ratio (SINR) for each receiver is:

$$
\gamma_{i}=\frac{S_{i}}{l_{i}+\sigma_{i}}, \quad i=1, \ldots, n
$$

- S_{i} represents the power of the desired signal received from transmitter i
- l_{i} is the combined interference from all other transmitters
- σ_{i} is the receiver's noise power
the Rayleigh fading model suggests that the received power S_{i} is a linear function of the transmitted powers p_{1}, \ldots, p_{n} :

$$
S_{i}=G_{i i} p_{i}, \quad i=1, \ldots, n,
$$

and

$$
l_{i}=\sum_{j \neq i} G_{i j} p_{j},
$$

where $G_{i j}$ are the known path gains from transmitter j to receiver i
therefore, the SINR expressions in terms of the powers p_{1}, \ldots, p_{n} are:

$$
\gamma_{i}(\boldsymbol{p})=\frac{G_{i i} p_{i}}{\sigma_{i}+\sum_{j \neq i} G_{i j} p_{j}}, \quad i=1, \ldots, n
$$

while the SINR functions aren't posynomials, their inverses are posynomial functions of the powers:

$$
\gamma_{i}^{-1}(\boldsymbol{p})=\frac{\sigma_{i}}{G_{i i}} p_{i}^{-1}+\sum_{j \neq i} \frac{G_{i j}}{G_{i i}} p_{j} p_{i}^{-1}, \quad i=1, \ldots, n
$$

Generalized posynomials

a generalized posynomial is obtained from posynomials through various operations like addition, multiplication, pointwise maximum, and raising to a specific power

Example: consider the function $f: \mathbb{R}_{++}^{3} \rightarrow \mathbb{R}$ defined as:

$$
f(\boldsymbol{x})=\max \left(2 x_{1}^{2.3} x_{2}^{7}, x_{1} x_{2} x_{3}^{3.14}, \sqrt{x_{1}+x_{2}^{3}}\right)
$$

this function qualifies as a generalized posynomial

Introducing variables

Max of posynomial: consider a posynomial f expressed as:

$$
f(\boldsymbol{x})=\max \left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x})\right),
$$

where both f_{1} and f_{2} are posynomials, then for some $t>0$, the inequality $f(\boldsymbol{x}) \leq t$ can be broken down into two posynomial inequalities in (\boldsymbol{x}, t) :

$$
f_{1}(\boldsymbol{x}) \leq t \quad \text { and } \quad f_{2}(\boldsymbol{x}) \leq t
$$

Power of posynomial: for a given $t>0$ and $a>0$, the power constraint

$$
(f(\boldsymbol{x}))^{a} \leq t
$$

with f being a regular posynomial and $\alpha>0$, is equivalent to:

$$
f(\boldsymbol{x}) \leq t^{1 / a}
$$

or

$$
g(\boldsymbol{x}, t)=t^{-1 / \alpha} f(\boldsymbol{x}) \leq 1
$$

Geometric program

an optimization problem is defined as a geometric program (GP) if it is structured as:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 1, \quad i=1, \ldots, m \\
& h_{i}(\boldsymbol{x})=1, \quad i=1, \ldots, p
\end{array}
$$

- $f, g_{1} \ldots, g_{m}$ being posynomials
- h_{1}, \ldots, h_{p} as monomials
- its domain is inherently set as $\mathcal{D}=\mathbb{R}_{++}^{n}$ (implicit constraint $\left.\boldsymbol{x}>0\right)$.

Example 11.1

consider the optimization problem:

$$
\begin{array}{cl}
\operatorname{maximize} & x / y \\
\text { subject to } & 2 \leq x \leq 3 \\
& x^{2}+3 y / z \leq \sqrt{y} \\
& x / z=z^{2}
\end{array}
$$

where $x, y, z \in \mathbb{R}$ and implicitly $x, y, z>0$
the problem can be recast into the standard GP form:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{-1} y \\
\text { subject to } & 2 x^{-1} \leq 1, \quad(1 / 3) x \leq 1 \\
& x^{2} y^{-1 / 2}+3 y^{1 / 2} z^{-1} \leq 1 \\
& x y^{-1} z^{-2}=1
\end{array}
$$

Geometric program in convex form

geometric programs are generally not convex optimization problems, but they can be recast into convex forms through suitable transformations

Change of variable: by defining $y_{i}=\log x_{i}$ such that $x_{i}=e^{y_{i}}$, monomial functions of x represented as

$$
f(\boldsymbol{x})=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

can be transformed to

$$
f(\boldsymbol{y})=e^{\boldsymbol{a}^{T} \boldsymbol{y}+\log c}
$$

where $\boldsymbol{a}^{T} \boldsymbol{y}$ is an affine function of \boldsymbol{y}
similarly, for posynomials defined as

$$
f(\boldsymbol{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}
$$

the transformation yields

$$
f(\boldsymbol{x})=\sum_{k=1}^{K} e^{\boldsymbol{a}_{k}^{T} y+\log c_{k}}
$$

with $\boldsymbol{a}_{k}=\left(a_{1 k}, \ldots, a_{n k}\right)$
now, consider the standard geometric program, which in terms of \boldsymbol{y} is expressed as:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=1}^{K_{0}} \boldsymbol{a}^{\boldsymbol{a}_{0 k}^{T} \boldsymbol{y}+b_{0 k}} \\
\text { subject to } & \sum_{k=1}^{K_{i}} \boldsymbol{a}^{\boldsymbol{a} T} \boldsymbol{y} \boldsymbol{y}+b_{i k} \leq 1, \quad i=1, \ldots, m \\
& e^{\boldsymbol{h}_{i}^{T} \boldsymbol{y}+d_{i}}=1, \quad i=1, \ldots, p
\end{array}
$$

Equivalent convex form

by applying the logarithm to the objective and constraint functions, the problem morphs into:

$$
\begin{array}{ll}
\text { minimize } & \bar{f}(\boldsymbol{y})=\log \left(\sum_{k=1}^{K_{0}} e^{a_{0 k}^{T} \boldsymbol{y}+b_{0 k}}\right) \\
\text { subject to } & \bar{g}_{i}(\boldsymbol{y})=\log \left(\sum_{k=1}^{K_{i}} e^{a_{i k}^{T} \boldsymbol{y}+b_{i k}}\right) \leq 0, \quad i=1, \ldots, m \\
& \bar{h}_{i}(\boldsymbol{y})=\boldsymbol{h}_{i}^{T} \boldsymbol{y}+d_{i}=0, \quad i=1, \ldots, p
\end{array}
$$

- given that \bar{f} and \bar{g}_{i} functions are convex, and \bar{h}_{i} functions are affine, this optimization problem is convex
- we label it as the geometric program in convex form; for clarity, the original form is termed the geometric program in posynomial form

Example 11.2

consider a cylindrical liquid storage tank characterized by its height, h, and diameter, d

- unlike the main body of the tank, its base is made from a distinct material
- we assume that the height of the base remains unchanged irrespective of the tank's height
- $V_{\text {tank }}$ is the volume of the tank
- $V_{\text {supp }}$ is the volume supplied within a designated time frame
- the total costs associated with manufacturing and operating the tank over a set duration (e.g., a year) is divided into filling cost and construction cost

Filling costs:

$$
C_{\text {fill }}(d, h)=\alpha_{1} \frac{V_{\text {supp }}}{V_{\text {tank }}}=c_{1} h^{-1} d^{-2},
$$

where α_{1} is a positive constant (in dollars), and $c_{1}=\frac{4 \alpha_{1} V_{\text {supp }}}{\pi}$

- this cost is tied to supplying a certain volume, $V_{\text {supp }}$, of a liquid (like water) within the designated time-frame
- $V_{\text {supp }} / V_{\text {tank }}$ determines the frequency of tank refilling; hence its cost
- therefore, as the volume of the tank diminishes relative to the supply volume, filling costs rise

Construction costs:

$$
C_{\text {constr }}(d, h)=c_{2} d^{2}+c_{3} d h,
$$

where $c_{2}=\alpha_{2} \frac{\pi}{4}$ and $c_{3}=\alpha_{3} \pi$ (α_{2} and α_{3} are positive dollar-per-square-meter constants)

- include the expenses of constructing the tank's and its base
- the base's cost is proportional to its area, $\frac{\pi d^{2}}{4}$, whereas the tank's cost correlates with its surface area, $\pi d h$

Total cost

$$
C_{\text {total }}(d, h)=C_{\text {fill }}(d, h)+C_{\text {constr }}(d, h)=c_{1} h^{-1} d^{-2}+c_{2} d^{2}+c_{3} d h
$$

this posynomial objective function is subject to constraints such as upper and lower limits on the diameter and height, represented as:

$$
0<d \leq d_{\max }, \quad 0<h \leq h_{\max }
$$

GP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} h^{-1} d^{-2}+c_{2} d^{2}+c_{3} d h \\
\text { subject to } & 0<d_{\max }^{-1} d \leq 1 \\
& 0<h_{\max }^{-1} h \leq 1
\end{array}
$$

with variables d, h

Outline

- quadratic optimization
- semidefinite programs
- geometric programming
- quasiconvex optimization

Quasiconvex function

function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as quasiconvex if, for every real number γ, its domain and all of its sublevel sets

$$
\mathcal{S}_{\gamma}=\{\boldsymbol{x} \mid f(\boldsymbol{x}) \leq \gamma\}
$$

are convex

- although every convex function naturally possesses convex level sets, the opposite isn't always true; indeed, there exist non-convex functions that have convex level sets
- a function is termed quasiconcave if its negative counterpart $(-f)$ is quasiconvex (for every superlevel set $\{\boldsymbol{x} \mid f(\boldsymbol{x}) \geq \alpha\}$, the set is convex)
- a function that's both quasiconvex and quasiconcave is called quasilinear, for these functions, both their domain and each level set $\{\boldsymbol{x} \mid f(\boldsymbol{x})=\alpha\}$ are convex

Graphical illustration

quasiconvex function that is non-convex

for a specific α, its α-sublevel set, denoted as S_{α}, is convex

Examples

- $f(x)=\sqrt{|x|}$ is nonconvex, but it is quasiconvex; when $\gamma<0$, we observe that $\mathcal{S}_{\gamma}=\emptyset$; for $\gamma \geq 0$, the sublevel set is given by:

$$
\mathcal{S}_{\gamma}=\{x \mid \sqrt{|x|} \leq \gamma\}=\left\{x| | x \mid \leq \gamma^{2}\right\}=\left[-\gamma^{2}, \gamma^{2}\right]
$$

- Logarithm: $\log x$ over \mathbb{R}_{++}is both quasiconvex and quasiconcave, making it quasilinear
- Ceiling function: $\operatorname{ceil}(x)=\inf \{z \in \mathbb{Z} \mid z \geq x\}$, is quasiconvex and quasiconcave
- Linear-over-linear: the function

$$
f(\boldsymbol{x})=\frac{\boldsymbol{a}^{T} \boldsymbol{x}+b}{\boldsymbol{c}^{T} \boldsymbol{x}+d},
$$

defined over the domain dom $f=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{c}^{T} \boldsymbol{x}+d>0\right\}$ and $\boldsymbol{c} \neq 0$ is quasiconvex since

$$
\mathcal{S}_{\gamma}=\{\boldsymbol{x} \mid f(\boldsymbol{x}) \leq \gamma\}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid(\boldsymbol{a}-\gamma \boldsymbol{c})^{T} \boldsymbol{x}+(b-\gamma d) \leq 0\right\}
$$

is a convex set

- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ has Hessian matrix

$$
\nabla^{2} f(\boldsymbol{x})=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

indicating its indefinite nature; yet, f is quasiconcave on \mathbb{R}_{+}^{2} due to its convex superlevel sets, but not on \mathbb{R}^{2}

- Distance ratio function: given points $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$, the function

$$
f(\boldsymbol{x})=\frac{\|\boldsymbol{x}-\boldsymbol{a}\|_{2}}{\|\boldsymbol{x}-\boldsymbol{b}\|_{2}}
$$

is quasiconvex since its sublevel set represents the halfspace where the distance to \boldsymbol{a} is less than or equal to the distance to \boldsymbol{b}

A characterization of quasiconvex function

f is quasiconvex if and only if its domain, $\operatorname{dom} f$, is convex and for any $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$ with $0 \leq \theta \leq 1$,

$$
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \max \{f(\boldsymbol{x}), f(\boldsymbol{y})\},
$$

signifying that on any line segment, the function's value will not exceed the maximum of its endpoints

Examples

- the cardinality of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$, represented as $\operatorname{card}(\boldsymbol{x})$, is the count of its non-zero components. It is intriguing to note that the function card is quasiconcave on \mathbb{R}_{+}^{n} but not on \mathbb{R}^{n}; this stems from the fact:

$$
\operatorname{card}(\boldsymbol{x}+\boldsymbol{y}) \geq \min \{\operatorname{card}(\boldsymbol{x}), \operatorname{card}(\boldsymbol{y})\},
$$

valid for non-negative vectors $\boldsymbol{x}, \boldsymbol{y}$

- the rank function, represented as rank X, demonstrates quasiconcavity on positive semidefinite matrices; this fact is attributed to the inequality:

$$
\operatorname{rank}(X+Y) \geq \min \{\operatorname{rank} X, \operatorname{rank} Y\},
$$

applicable to positive semidefinite matrices X, Y

Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq \mathbf{0}, \quad i=1, \ldots, m \tag{11.3}\\
& A \boldsymbol{x}=\boldsymbol{b} \quad i=1, \ldots, p
\end{array}
$$

- the objective f is quasiconvex
- g_{i} are convex

Quasiconvex optimization via convex feasibility problems

consider a set of convex functions, $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $t \in \mathbb{R}$, that adhere to:

$$
f_{0}(\boldsymbol{x}) \leq t \Longleftrightarrow \phi_{t}(\boldsymbol{x}) \leq 0,
$$

where for every \boldsymbol{x}, we have $\phi_{s}(\boldsymbol{x}) \leq \phi_{t}(\boldsymbol{x})$ for any $s \geq t$
given p^{\star} as the optimal solution of the quasiconvex optimization problem (11.3), if the feasibility problem

$$
\begin{array}{ll}
\text { find } & \boldsymbol{x} \\
\text { subject to } & \phi_{t}(\boldsymbol{x}) \leq 0 \\
& f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \tag{11.4}\\
& A \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

holds, then $p^{\star} \leq t$; however, if infeasible, it establishes $p^{\star} \geq t$; this problem is a convex feasibility problem; hence, the optimal value p^{\star} being greater or lesser than a value t can be identified by this problem

Bisection for quasiconvex problems

this insight can anchor a bisection-based algorithm listed in to resolve the quasiconvex optimization problem (11.4)
assuming feasibility, one would initiate with an interval $[l, u]$ containing p^{\star}; by evaluating the problem at the midpoint $t=\frac{l+u}{2}$, we deduce whether p^{\star} lies in the upper or lower interval half and adjust the interval

Algorithm BISECTION FOR QUASICONVEX PROBLEMS
given: $l \leq p^{\star}, u \geq p^{\star}$ and a tolerance $\epsilon>0$
repeat

1. $t:=\frac{l+u}{2}$.
2. evaluate the convex feasibility problem (11.4)
3. if (11.4) is feasible, update: if feasible, set $u:=t$; else, set $l:=t$
until $u-l \leq \epsilon$

References and further readings

- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, chapters 2.2.1, 2.2.4, 4.3.
- G. C. Calafiore and L. El Ghaoui. Optimization Models, Cambridge University Press, 2014, chapter 9 (9.3, 9.5).

