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Quadratic optimization

Quadratic program (quadratic optimization problem)

minimize (1/2)xTQx+ rTx
subject to Ax ≤ b

Gx = h,

where Q ∈ Rn×n is positive semidefinite, r ∈ Rn, A ∈ Rm×n, G ∈ Rp×n,
h ∈ Rp, and b ∈ Rm

Quadratically constrained quadratic problem (QCQP)

minimize (1/2)xTQ0x+ q0x+ r0
subject to (1/2)xTQix+ rTix ≤ 0, i = 1, . . . , p

Ax = b,

where Qi (i = 0, 1 . . . ,m) are positive semidefinite
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Examples

Least squares:

minimize ‖Ax− b‖2 = xTATAx− 2bTAx+ bTb

Constrained least squares: when linear constraints are added, the problem
is called constrained least-square for example,

minimize ‖Ax− b‖2
subject to Gx = h

li ≤ xi ≤ ui, i = 1, . . . , n

this problem has no simple analytical solution
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Example: Power distribution (aggregator model)

• in electricity markets, an aggregator
� buys wholesale p units of power (Megawatt) from power distribution utilities
� and resells this power to a group of n business or industrial customers

• the ith customer, i = 1, . . . , n, would ideally wants pi Megawatts

• the customer i does not want to receive more or less power than needed;
the customer dissatisfaction can be modeled as

fi(xi) = ci(xi − pi)2, i = 1, . . . , n,

where xi is the power given to customer i by the aggregator, and ci is a
given customer parameter
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• the aggregator problem is finding the power allocations xi, i = 1, . . . , n,
such that

� the average customer dissatisfaction is minimized,

� the whole power p is sold,

� and that the dissatisfaction level is no greater than a contract level, say d

• the aggregator problem is

minimize
1

n

n∑
i=1

ci(xi − pi)2

subject to
n∑
i=1

xi = p,

ci(xi − pi)2 ≤ d, i = 1, . . . , n
xi ≥ 0, i = 1, . . . , n

this is a QCQP
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Example: portfolio optimization

an investor wants to select a set of assets (stocks) to achieve a good return
on the investment while minimizing risks of losses

• we have n stocks and let xi ≥ 0 be the proportion of investment on stock i

• let ri be the return for stock i; we assume that the expected returns are
known,

µj = E (rj) , j = 1, 2, . . . , n,

and that the covariances of all the pairs of variables are also known,

σ2
i,j = E (ri − µi)(rj − µj), i, j = 1, 2, . . . , n

(typically, the mean and variance are estimated from historical data)

� a high variance indicates high risk; a low variance indicates low risk

� positive covariance σ2
ij > 0 means that the stocks i and j prices move in the

same general direction while a negative one moves in opposite direction
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• the overall return is the random variable R =
∑n
j=1 xjrj whose

expectation and variance are given by

E(R) = µTx, Var(R) = xTΣx,

• µ = (µ1, µ2, . . . , µn)

• Σ is the covariance matrix whose elements are given by Σi,j = σi,j for all
i, j = 1, . . . , n

• the covariance matrix is always positive semidefinite
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Portfolio problem QP formulation:

minimize xTΣx
subject to µTx ≥ α

1Tx = 1
x ≥ 0

where α is the minimal return value

Portfolio problem QCQP formulation:

maximize µTx
subject to xTΣx ≤ β

1Tx = 1
x ≥ 0

where β is the upper bound on the risk

SA — ENGR507quadratic optimization 11.8



Outline

• quadratic optimization

• semidefinite programs

• geometric programming

• quasiconvex optimization



Linear matrix inequalities

a linear matrix inequality (LMI) constrains a vector of variables x ∈ Rn as

F (x) = F0 +

m∑
i=1

xiFi ≤ 0 (11.1)

• symmetric coefficient matrices F0, . . . , Fn of size m×m

• often, LMI constraints apply directly to matrix variables rather than vector
variables
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Semidefinite program

a semidefinite program (SDP) is a particular type of convex optimization
problem:

minimize cTx
subject to F (x) ≤ 0

(11.2)

with

F (x) = F0 +

n∑
i=1

xiFi

• x ∈ Rn is the optimization variable and c ∈ Rn

• each Fi for i = 0, . . . , n is a known m×m symmetric matrices

• if F0, F1, . . . , Fm are diagonal matrices, the LMI simplifies to n linear
inequalities, and thus, the SDP (11.2) becomes a linear program
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General form SDPs:

minimize cTx

subject to F (i)(x) = x1F
(i)
1 + · · ·+ xnF

(i)
n + F

(i)
0 ≤ 0, i = 1, . . . ,K

Gx ≤ h
Ax = b

these problems can be equivalently represented as an SDP by constructing a
block diagonal LMI using the given LMIs and linear inequalities:

minimize cTx
subject to diag(Gx− h, F (1)(x), . . . , F (K)(x)) ≤ 0

Ax = b
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Examples

Maximum eigenvalue minimization

minimize λmax(F (x))

generally, the function λmax(·) is nonconvex, but this problem can be
equivalently reformulated as:

minimize t
subject to F (x)− tI ≤ 0,

where the variables are x ∈ Rn and t ∈ R

this formulation is a specific instance of a semidefinite program (SDP) in the
augmented (vector) variable:

x̂ =

[
t
x

]
, ĉ = (1, 0, . . . , 0) , F̂ (x̂) = F (x)− tI
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Spectral matrix norm minimization:

minimize ‖A(x)‖2

where A(x) ∈ Rp×m represented as:

A(x) = A0 + x1A1 + · · ·+ xnAn

this problem is equivalent to the following SDP:

minimize t

subject to
[

tIm AT(x)
A(x) tIp

]
≥ 0

with decision variables x ∈ Rn and t ∈ R (t ≥ 0)
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• to show this, recall that the spectral norm is equal to the largest singular
value of A(x):

‖A(x)‖2 =
√
λmax (AT(x)A(x))

• it follows that

‖A(x)‖2 ≤ t =⇒ ‖A(x)‖22 ≤ t2 =⇒ λmax

(
AT(x)A(x)

)
≤ t2

• this is satisfied if the eigenvalue condition holds for every i:

λi
(
AT(x)A(x)

)
≤ t2, ∀ i = 1, . . . ,m

• the above can be equivalently stated as:

AT(x)A(x)− t2Im ≤ 0
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• using the Schur complement rule, this matrix inequality can be
transformed to the LMI form with variables t2 and x:[

t2Im AT(x)
A(x) Ip

]
≥ 0

since t = 0 if and only if A(x) = 0

• we can represent the above LMI as:[
tIm AT(x)
A(x) tIp

]
≥ 0,

obtained through congruence transformation with the diagonal matrix

diag(1/
√
tIm,

√
tIp)

for t > 0
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Frobenius norm minimization

minimize ‖A(x)‖2F
the objective can be represented in the SDP format:

minimize trace(Y )

subject to
[

Y A(x)
AT(x) Im

]
≥ 0

where the decision variables are x ∈ Rn and Y ∈ Rp×p is positive
semidefinite

• the equivalence of this formulation can be established by noting the
relationship:

‖A(x)‖2F = trace(A(x)AT(x))

• using the Schur complement, the matrix condition can be written as:[
Y A(x)

AT(x) Im

]
≥ 0 ⇐⇒ A(x)AT(x) ≤ Y

this validation links the original objective with the SDP representation
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Monomials and posynomials

Monomial
f(x) = cxa11 x

a2
2 . . . xann

• f : Rn → R with domain dom f = Rn++

• c > 0 and each ai ∈ R

Posynomial

f(x) =

K∑
k=1

ckx
a1k
1 xa2k2 . . . xank

n

each ck > 0
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Example

wireless cellular network with n paired transmitters and receivers

• p1, . . . , pn are the transmit powers for these pairs

• each transmitter i is intended to communicate with its corresponding
receiver i

• the signal to interference plus noise ratio (SINR) for each receiver is:

γi =
Si

li + σi
, i = 1, . . . , n,

� Si represents the power of the desired signal received from transmitter i
� li is the combined interference from all other transmitters
� σi is the receiver’s noise power
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the Rayleigh fading model suggests that the received power Si is a linear
function of the transmitted powers p1, . . . , pn:

Si = Giipi, i = 1, . . . , n,

and
li =

∑
j 6=i

Gijpj ,

where Gij are the known path gains from transmitter j to receiver i

therefore, the SINR expressions in terms of the powers p1, . . . , pn are:

γi(p) =
Giipi

σi +
∑
j 6=iGijpj

, i = 1, . . . , n,

while the SINR functions aren’t posynomials, their inverses are posynomial
functions of the powers:

γ−1i (p) =
σi
Gii

p−1i +
∑
j 6=i

Gij
Gii

pjp
−1
i , i = 1, . . . , n
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Generalized posynomials

a generalized posynomial is obtained from posynomials through various
operations like addition, multiplication, pointwise maximum, and raising to a
specific power

Example: consider the function f : R3
++ → R defined as:

f(x) = max

(
2x2.31 x72, x1x2x

3.14
3 ,

√
x1 + x32

)
this function qualifies as a generalized posynomial
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Introducing variables

Max of posynomial: consider a posynomial f expressed as:

f(x) = max (f1(x), f2(x)) ,

where both f1 and f2 are posynomials, then for some t > 0, the inequality
f(x) ≤ t can be broken down into two posynomial inequalities in (x, t):

f1(x) ≤ t and f2(x) ≤ t

Power of posynomial: for a given t > 0 and a > 0, the power constraint

(f(x))a ≤ t

with f being a regular posynomial and α > 0, is equivalent to:

f(x) ≤ t1/a

or
g(x, t) = t−1/αf(x) ≤ 1
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Geometric program

an optimization problem is defined as a geometric program (GP) if it is
structured as:

minimize f(x)
subject to gi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

• f, g1 . . . , gm being posynomials

• h1, . . . , hp as monomials

• its domain is inherently set as D = Rn++ (implicit constraint x > 0).
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Example 11.1

consider the optimization problem:

maximize x/y
subject to 2 ≤ x ≤ 3

x2 + 3y/z ≤ √y
x/z = z2,

where x, y, z ∈ R and implicitly x, y, z > 0

the problem can be recast into the standard GP form:

minimize x−1y
subject to 2x−1 ≤ 1, (1/3)x ≤ 1

x2y−1/2 + 3y1/2z−1 ≤ 1
xy−1z−2 = 1
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Geometric program in convex form

geometric programs are generally not convex optimization problems, but they
can be recast into convex forms through suitable transformations

Change of variable: by defining yi = log xi such that xi = eyi , monomial
functions of x represented as

f(x) = cxa11 x
a2
2 · · ·xann

can be transformed to
f(y) = ea

Ty+log c

where aTy is an affine function of y
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similarly, for posynomials defined as

f(x) =

K∑
k=1

ckx
a1k
1 xa2k2 · · ·xank

n

the transformation yields

f(x) =

K∑
k=1

ea
T
ky+log ck

with ak = (a1k, . . . , ank)

now, consider the standard geometric program, which in terms of y is
expressed as:

minimize
∑K0

k=1 e
aT0ky+b0k

subject to
∑Ki

k=1 e
aTiky+bik ≤ 1, i = 1, . . . ,m

eh
T
i y+di = 1, i = 1, . . . , p
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Equivalent convex form

by applying the logarithm to the objective and constraint functions, the
problem morphs into:

minimize f̄(y) = log
(∑K0

k=1 e
aT0ky+b0k

)
subject to ḡi(y) = log

(∑Ki

k=1 e
aTiky+bik

)
≤ 0, i = 1, . . . ,m

h̄i(y) = hTi y + di = 0, i = 1, . . . , p

• given that f̄ and ḡi functions are convex, and h̄i functions are affine, this
optimization problem is convex

• we label it as the geometric program in convex form; for clarity, the original
form is termed the geometric program in posynomial form
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Example 11.2

consider a cylindrical liquid storage tank characterized by its height, h, and
diameter, d

• unlike the main body of the tank, its base is made from a distinct material

• we assume that the height of the base remains unchanged irrespective of
the tank’s height

• Vtank is the volume of the tank

• Vsupp is the volume supplied within a designated time frame

• the total costs associated with manufacturing and operating the tank over
a set duration (e.g., a year) is divided into filling cost and construction cost
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Filling costs:

Cfill(d, h) = α1
Vsupp

Vtank
= c1h

−1d−2,

where α1 is a positive constant (in dollars), and c1 =
4α1Vsupp

π

• this cost is tied to supplying a certain volume, Vsupp, of a liquid (like water)
within the designated time-frame

• Vsupp/Vtank determines the frequency of tank refilling; hence its cost
• therefore, as the volume of the tank diminishes relative to the supply

volume, filling costs rise

Construction costs:

Cconstr(d, h) = c2d
2 + c3dh,

where c2 = α2
π
4 and c3 = α3π (α2 and α3 are positive

dollar-per-square-meter constants)
• include the expenses of constructing the tank’s and its base

• the base’s cost is proportional to its area, πd
2

4 , whereas the tank’s cost
correlates with its surface area, πdh
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Total cost

Ctotal(d, h) = Cfill(d, h) + Cconstr(d, h) = c1h
−1d−2 + c2d

2 + c3dh

this posynomial objective function is subject to constraints such as upper and
lower limits on the diameter and height, represented as:

0 < d ≤ dmax, 0 < h ≤ hmax

GP formulation

minimize c1h
−1d−2 + c2d

2 + c3dh
subject to 0 < d−1maxd ≤ 1

0 < h−1maxh ≤ 1

with variables d, h
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Quasiconvex function

function f : Rn → R is defined as quasiconvex if, for every real number γ, its
domain and all of its sublevel sets

Sγ = {x | f(x) ≤ γ}

are convex

• although every convex function naturally possesses convex level sets, the
opposite isn’t always true; indeed, there exist non-convex functions that
have convex level sets

• a function is termed quasiconcave if its negative counterpart (−f ) is
quasiconvex (for every superlevel set {x | f(x) ≥ α}, the set is convex)

• a function that’s both quasiconvex and quasiconcave is called quasilinear;
for these functions, both their domain and each level set {x | f(x) = α}
are convex
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Graphical illustration

quasiconvex function that is non-convex

for a specific α, its α-sublevel set, denoted as Sα, is convex
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Examples

• f(x) =
√
|x| is nonconvex, but it is quasiconvex; when γ < 0, we observe

that Sγ = ∅; for γ ≥ 0, the sublevel set is given by:

Sγ = {x |
√
|x| ≤ γ} = {x | |x| ≤ γ2} = [−γ2, γ2]

• Logarithm: log x over R++ is both quasiconvex and quasiconcave, making
it quasilinear

• Ceiling function: ceil(x) = inf{z ∈ Z | z ≥ x}, is quasiconvex and
quasiconcave

• Linear-over-linear: the function

f(x) =
aTx+ b

cTx+ d
,

defined over the domain dom f = {x ∈ Rn | cTx+ d > 0} and c 6= 0 is
quasiconvex since

Sγ = {x | f(x) ≤ γ} = {x ∈ Rn | (a− γc)Tx+ (b− γd) ≤ 0}

is a convex set
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• f(x1, x2) = x1x2 has Hessian matrix

∇2f(x) =

[
0 1
1 0

]
,

indicating its indefinite nature; yet, f is quasiconcave on R2
+ due to its

convex superlevel sets, but not on R2

• Distance ratio function: given points a, b ∈ Rn, the function

f(x) =
‖x− a‖2
‖x− b‖2

is quasiconvex since its sublevel set represents the halfspace where the
distance to a is less than or equal to the distance to b
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A characterization of quasiconvex function

f is quasiconvex if and only if its domain, dom f , is convex and for any
x,y ∈ dom f with 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ max{f(x), f(y)},

signifying that on any line segment, the function’s value will not exceed the
maximum of its endpoints
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Examples

• the cardinality of a vector x ∈ Rn, represented as card(x), is the count of
its non-zero components. It is intriguing to note that the function card is
quasiconcave on Rn+ but not on Rn; this stems from the fact:

card(x+ y) ≥ min{card(x), card(y)},

valid for non-negative vectors x,y

• the rank function, represented as rankX , demonstrates quasiconcavity
on positive semidefinite matrices; this fact is attributed to the inequality:

rank(X + Y ) ≥ min{rankX, rankY },

applicable to positive semidefinite matrices X,Y
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Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b i = 1, . . . , p
(11.3)

• the objective f is quasiconvex

• gi are convex
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Quasiconvex optimization via convex feasibility problems

consider a set of convex functions, φt : Rn → R for t ∈ R, that adhere to:

f0(x) ≤ t⇐⇒ φt(x) ≤ 0,

where for every x, we have φs(x) ≤ φt(x) for any s ≥ t

given p? as the optimal solution of the quasiconvex optimization problem
(11.3), if the feasibility problem

find x
subject to φt(x) ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

(11.4)

holds, then p? ≤ t; however, if infeasible, it establishes p? ≥ t; this problem is
a convex feasibility problem; hence, the optimal value p? being greater or
lesser than a value t can be identified by this problem
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Bisection for quasiconvex problems

this insight can anchor a bisection-based algorithm listed in to resolve the
quasiconvex optimization problem (11.4)

assuming feasibility, one would initiate with an interval [l, u] containing p?; by
evaluating the problem at the midpoint t = l+u

2 , we deduce whether p? lies in
the upper or lower interval half and adjust the interval

Algorithm BISECTION FOR QUASICONVEX PROBLEMS

given: l ≤ p?, u ≥ p? and a tolerance ε > 0

repeat
1. t := l+u

2 .
2. evaluate the convex feasibility problem (11.4)
3. if (11.4) is feasible, update: if feasible, set u := t; else, set l := t

until u− l ≤ ε

SA — ENGR507quasiconvex optimization 11.38



References and further readings

• Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press,
2004, chapters 2.2.1, 2.2.4, 4.3.

• G. C. Calafiore and L. El Ghaoui. Optimization Models, Cambridge University Press, 2014,
chapter 9 (9.3, 9.5).

SA — ENGR507references 11.39


	quadratic optimization
	semidefinite programs
	geometric programming
	quasiconvex optimization
	references

