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Primal problem

we consider the standard form optimization problem:

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝
(11.1)

with variable 𝑥 ∈ R𝑛 and nonempty domain

D = dom 𝑓 ∩
𝑚⋂
𝑖=1

dom 𝑔𝑖 ∩
𝑝⋂
𝑗=1

dom ℎ 𝑗

• problem (11.1) is referred to as the primal problem

• we let 𝑝★ denote the the optimal value of the primal problem

• the primal problem is not assumed to be convex unless explicitly stated
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Duality

• duality provides a technique for transforming the primal problem into another
related optimization problem, called the dual problem

• dual problem is always a convex problem (even when the primal is not)

• dual optimal value provides a lower bound on the primal optimal value

• dual problems may have a particular structure that makes ‘easier’ to solve

• in some cases we can recover a primal solution from a dual solution
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Lagrangian

the Lagrangian 𝐿 : R𝑛 ×R𝑝 ×R𝑚 → R associated with problem (11.1) is

𝐿 (𝑥, 𝜇, 𝜆) = 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜇𝑖𝑔𝑖 (𝑥) +
𝑝∑
𝑗=1

𝜆 𝑗ℎ 𝑗 (𝑥)

• Lagrangian domain is dom 𝐿 = D ×R𝑚 ×R𝑝

• 𝜇𝑖 is Lagrange multiplier associated with the 𝑖th inequality constraint 𝑔𝑖 (𝑥) ≤ 0

• 𝜆 𝑗 is Lagrange multiplier associated with the 𝑗 th equality constraint ℎ 𝑗 (𝑥) = 0

• 𝜇 and 𝜆 are called the Lagrange multiplier vectors or dual variables
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Dual problem

Lagrange dual function: 𝜙 : R𝑚 ×R𝑝 → R (using min instead of inf):

𝜙(𝜇, 𝜆) = min
𝑥∈D

𝐿 (𝑥, 𝜇, 𝜆)

= min
𝑥∈D

(
𝑓 (𝑥) +

𝑚∑
𝑖=1

𝜇𝑖𝑔𝑖 (𝑥) +
𝑝∑
𝑗=1

𝜆 𝑗ℎ 𝑗 (𝑥)
)

• can take value −∞ (dom 𝜙 = {(𝜇, 𝜆) | 𝜙(𝜇, 𝜆) > −∞})

• concave function since it is the infimum of affine functions in (𝜇, 𝜆)

Lower bound on the optimal value: for 𝜇 ≥ 0, 𝜆, we have 𝜙(𝜇, 𝜆) ≤ 𝑝★

Proof: for feasible 𝑥 and 𝜇𝑖 ≥ 0:

𝜙(𝜇, 𝜆) = min
𝑥

𝐿 (𝑥, 𝜇, 𝜆) ≤ 𝐿 (𝑥, 𝜇, 𝜆) ≤ 𝑓 (𝑥)

since the above holds for any feasible 𝑥, we have 𝜙(𝜇, 𝜆) ≤ 𝑝★

SA — ENGR507Lagrange dual problem 11.5



Dual problem

maximize 𝜙(𝜇, 𝜆)
subject to 𝜇 ≥ 0

• gives best lower bound on 𝑝★

• a convex optimization problem; optimal value denoted by 𝑑★

• often simplified by making implicit constraint (𝜇, 𝜆) ∈ dom 𝜙 explicit

• 𝜇, 𝜆 are dual feasible if 𝜇 ≥ 0 and (𝜇, 𝜆) ∈ dom 𝜙

• 𝑑★ = −∞ if problem is infeasible; 𝑑★ = +∞ if unbounded above
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Weak duality

𝑑★ ≤ 𝑝★

• the above property is called weak duality

• can be used to find nontrivial lower bounds for difficult problems

• 𝑝★ − 𝑑★ is called the optimal duality gap

• if primal is unbounded below (𝑝★ = −∞), then the dual is infeasible (𝑑★ = −∞)

• if dual is unbounded above (𝑑★ = ∞), then the primal is infeasible (𝑝★ = ∞)
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Example

minimize 𝑥2

subject to 𝑥 ≥ 1

• the solution is 𝑥★ = 1 with optimal value 𝑝★ = 1

• minimizing the Lagrangian

𝐿 (𝑥, 𝜇) = 𝑥2 + 𝜇(1 − 𝑥)
with respect to 𝑥: ∇𝑥𝐿 (𝑥, 𝜇) = 2𝑥 − 𝜇 = 0 so 𝑥 = 1

2 𝜇

• the dual function is

𝜙(𝜇) = min
𝑥

𝐿 (𝑥, 𝜇) = 𝐿
(
1
2 𝜇, 𝜇

)
= ( 12 𝜇)

2 + 𝜇(1 − 1
2 𝜇) = − 1

4 𝜇
2 + 𝜇

dual function gives the immediate bound 𝜙(𝜇) ≤ 𝑝★ (e.g., 𝜙(0) = 0 ≤ 𝑝★)

• the dual problem is

maximize
𝜇≥0

− 1
4 𝜇

2 + 𝜇

dual solution is 𝜇★ = 2 with optimal value 𝑑★ = 1 = 𝑝★
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Example

minimize 𝑥21 − 3𝑥22
subject to 𝑥1 = 𝑥32

• the optimal solutions are (1, 1) and (−1,−1) with 𝑝★ = −2

• the Lagrangian is

𝐿 (𝑥, 𝜆) = 𝑥21 − 3𝑥22 + 𝜆(𝑥1 − 𝑥32)

• minimizing we see the dual take value

min
𝑥

𝐿 (𝑥, 𝜆) = −∞

• so the dual optimal value is 𝑑★ = −∞, which gives a non useful bound
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Example

minimize 𝑥1𝑥2
subject to (1/2)𝑥T𝑥 ≤ 1

𝑥 ≥ 0

• solution is 𝑥★ = 0, with the primal optimal value 𝑝★ = 𝑓 (𝑥★) = 0

• with 𝜇 = (𝜇1, 𝜇), 𝜇1 ∈ R and 𝜇 ∈ R2, the Lagrangian is:

𝐿 (𝑥, 𝜇) = (1/2)𝑥T
[
0 1
1 0

]
𝑥 + 𝜇T

[
𝑥T𝑥/2 − 1

−𝑥

]
= (1/2)𝑥T

[
𝜇1 1
1 𝜇1

]
𝑥 − 𝜇1 − 𝜇T𝑥

Hessian is positive semidefinite only if 𝜇1 ≥ 1
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• if 𝜇1 < 1 or 𝜇 ≠ 0, 𝐿 unbounded below, so we exclude such 𝜇 from the dual

• for 𝜇 with 𝜇1 ≥ 1 and 𝜇 = 0, the dual function is:

𝜙(𝜇) = min
𝑥∈R2

(1/2)𝑥T
[
𝜇1 1
1 𝜇1

]
𝑥 − 𝜇1 = −𝜇1

any 𝜇 with 𝜇1 ≥ 1 and 𝜇 = 0 is feasible (i.e., 𝜇 ≥ 0)

• the dual problem is:
maximize −𝜇1
subject to 𝜇1 ≥ 1

𝜇 = 0

solution is 𝜇★ = (1, 0, 0), with 𝑑★ = 𝜙(𝜇★) = −1

• since 𝑝★ = 0 > −1 = 𝑑★, the duality gap is 𝑓 (𝑥★) − 𝜙(𝜇★) = 1
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Example: two-way partitioning

minimize 𝑥T𝑊𝑥

subject to 𝑥2
𝑖
= 1, 𝑖 = 1, . . . , 𝑛

• a nonconvex problem; feasible set contains 2𝑛 discrete points

• interpretation: partition {1, . . . , 𝑛} in two sets encoded as 𝑥𝑖 = 1 and 𝑥𝑖 = −1

• 𝑊𝑖 𝑗 is cost of assigning 𝑖, 𝑗 to same set; −𝑊𝑖 𝑗 is cost of assigning to different sets

• dual function is

𝜙(𝜆) = min
𝑥

(
𝑥T𝑊𝑥 +∑

𝑖

𝜆𝑖 (𝑥2𝑖 − 1)
)
= min

𝑥
𝑥T (𝑊 + diag(𝜆))𝑥 − 1T𝜆

=

{
−1T𝜆 𝑊 + diag(𝜆) ⪰ 0

−∞ otherwise

• lower bound property: 𝑝★ ≥ 𝑑★ ≥ −1T𝜆 if 𝑊 + diag(𝜆) ⪰ 0
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Form of dual problem

• the dual depends on the particular way in which the primal is represented

• reformulating the primal problem can be useful when the dual is difficult to derive,
or uninteresting

• it is often not possible to find a closed form expression for the dual problem

Common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice versa

• transform objective or constraint functions
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Example

minimize 𝑒𝑥

subject to 𝑥2 ≤ 1

• the dual function is

𝜙(𝜇) = min
𝑥

𝑒𝑥 + 𝜇(𝑥2 − 1)

• the minimizer is the solution of the nonlinear equation 𝑒𝑥 + 2𝜇𝑥 = 0

• in this case, the dual problem is

maximize
𝜇≥0

𝑒𝑥 + 𝜇(𝑥2 − 1)

where 𝑥 solves 𝑒𝑥 + 2𝜇𝑥 = 0
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consider the equivalent representation of the previous problem:

minimize 𝑒𝑥

subject to −1 ≤ 𝑥 ≤ 1

• the dual function is

𝜙(𝜇) = min
𝑥

𝑒𝑥 + 𝜇1 (𝑥 − 1) − 𝜇2 (𝑥 + 1)

• the minimizer satisfies 𝑒𝑥 + 𝜇1 − 𝜇2 = 0, i.e., 𝑥 = log(𝜇2 − 𝜇1);

• therefore, the dual function is

𝜙(𝜇) = 𝜇2 − 𝜇1 + 𝜇1 (log(𝜇2 − 𝜇1) − 1) − 𝜇2 (log(𝜇2 − 𝜇1) + 1)
= −(𝜇2 − 𝜇1) log(𝜇2 − 𝜇1) − 2𝜇1

with domain dom 𝜙 = {𝜇 | 𝜇2 > 𝜇1}

• hence, the dual problem is

maximize
𝜇≥0

−(𝜇2 − 𝜇1) log(𝜇2 − 𝜇1) − 2𝜇1
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Strong duality

strong duality holds if 𝑑★ = 𝑝★

• does not hold in general

• guaranteed to hold if the problem is convex under Slater’s condition

Slater’s constraint qualification: there exists an 𝑥 ∈ intD such that

𝑔𝑖 (𝑥) < 0, 𝑖 = 1, . . . , 𝑚, 𝐴𝑥 = 𝑏

• guarantees 𝑑★ = 𝑝★

• implies the dual optimal value is attained at some (𝜇★, 𝜆★)

• can be weakened by only requiring the non-affine 𝑔𝑖 to hold with strict inequality

• there exist many other types of constraint qualifications
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Example

minimize 𝑥21 + 𝑥22 + 2𝑥1
subject to 𝑥1 + 𝑥2 = 0

• solution is 𝑥★ = (−1/2, 1/2) and 𝑝★ = −1/2

• minimizing the Lagrangian

𝐿 (𝑥, 𝜆) = 𝑥21 + 𝑥22 + 2𝑥1 + 𝜆(𝑥1 + 𝑥2)

with respect to 𝑥 we get the solution

𝑥 =
(
− 1 − 𝜆

2 ,−
𝜆
2

)
• so the dual function is

𝜙(𝜆) = 𝐿 (𝑥, 𝜆)
= (−1 − 𝜆/2)2 + (−𝜆/2)2 + 2(−1 − 𝜆/2) + 𝜆(−1 − 𝜆)
= −𝜆2

2 − 𝜆 − 1
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• the dual problem is thus

maximize − 𝜆2

2
− 𝜆 − 1

• 𝜙(𝜆) ≤ 𝑝★ for any 𝜆; for example,

𝜙(0) = −1 ≤ 𝑝★ = −1/2

• the dual problem is solved at 𝜆★ = −1 and at the optimal solution, we have

𝜙(𝜆★) = −1/2 = 𝑝★

hence, strong duality holds

• Slater’s conditions is satisfied since the problem is feasible
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Dual of inequality form LP

minimize 𝑐T𝑥

subject to 𝐴𝑥 ≤ 𝑏

the Lagrangian is

𝐿 (𝑥, 𝜇) = 𝑐T𝑥 + 𝜇T (𝐴𝑥 − 𝑏) = −𝑏T𝜇 + (𝑐 + 𝐴T𝜇)T𝑥

the dual function is

𝜙(𝜇) = −𝑏T𝜇 +min
𝑥

(𝑐 + 𝐴T𝜇)T𝑥 =

{
−𝑏T𝜇 if 𝐴T𝜇 + 𝑐 = 0

−∞ otherwise

hence, the dual problem (with dom 𝜙 expressed as constraints) is

maximize −𝑏T𝜇
subject to 𝐴T𝜇 + 𝑐 = 0

𝜇 ≥ 0

strong duality always holds for LPs except when primal or dual are infeasible
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Dual of least-norm problem

minimize ∥𝑥∥2
subject to 𝐴𝑥 = 𝑏

the Lagrangian is
𝐿 (𝑥, 𝜆) = ∥𝑥∥2 + 𝜆T (𝐴𝑥 − 𝑏)

the Lagrangian is a convex function in 𝑥, hence all minimizers satisfy:

∇𝑥𝐿 (𝑥, 𝜆) = 2𝑥 + 𝐴T𝜆 = 0 =⇒ 𝑥(𝜆) = − 1
2 𝐴

T𝜆

hence, the dual problem is

maximize 𝜙(𝜆) = 𝐿 (− 1
2 𝐴

T𝜆, 𝜆) = − 1
4𝜆

T𝐴𝐴T𝜆 − 𝑏T𝜆

since there is no inequalities, Slater condition is just primal feasibility (𝑏 ∈ range 𝐴)

SA — ENGR507strong duality 11.20



Dual of strictly convex quadratic program

for 𝑄 ≻ 0, consider
minimize 𝑥T𝑄𝑥

subject to 𝐴𝑥 ≤ 𝑏

the Lagrangian is

𝐿 (𝑥, 𝜇) = 𝑥T𝑄𝑥 + 𝜇T (𝐴𝑥 − 𝑏)

since 𝐿 is convex in 𝑥, it is minimized with respect to 𝑥 if and only if

∇𝑥𝐿 (𝑥, 𝜇) = 2𝑄𝑥 + 𝐴T𝜇 = 0 =⇒ 𝑥 = − 1
2𝑄

−1𝐴T𝜇

plug in 𝐿, we have

𝜙(𝜇) = 𝐿 (− 1
2𝑄

−1𝐴T𝜇, 𝜇) = − 1
4 𝜇

T𝐴𝑄−1𝐴T𝜇 − 𝑏T𝜇

the dual problem is

maximize − 1
4 𝜇

T𝐴𝑄−1𝐴T𝜇 − 𝑏T𝜇

subject to 𝜇 ≥ 0

strong duality always holds for this problem
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Optimality conditions

if strong duality holds, 𝑥★ is primal optimal, and (𝜇★, 𝜆★) is dual optimal, then:

1. 𝑔𝑖 (𝑥★) ≤ 0 for 𝑖 = 1, . . . , 𝑚 and ℎ𝑖 (𝑥) = 0 for 𝑖 = 1, . . . , 𝑝

2. 𝜇★ ≥ 0

3. 𝑓 (𝑥★) = 𝑔(𝜇★, 𝑣★)

conversely, these three conditions imply optimality of 𝑥★, (𝜇★, 𝜆★), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness

if strong duality holds and 𝑥★ is primal optimal and (𝜇★, 𝜆★) is dual optimal, then

𝑓 (𝑥★) = 𝜙(𝜇★, 𝜆★) = min
𝑥∈D

(
𝑓 (𝑥) +

𝑚∑
𝑖=1

𝜇★
𝑖
𝑔𝑖 (𝑥) +

𝑝∑
𝑗=1

𝜆★
𝑗
ℎ 𝑗 (𝑥)

)
≤ 𝑓 (𝑥★) +

𝑚∑
𝑖=1

𝜇★
𝑖
𝑔𝑖 (𝑥★) +

𝑝∑
𝑗=1

𝜆★
𝑗
ℎ 𝑗 (𝑥★)

≤ 𝑓 (𝑥★)

holds if and only if the two inequalities hold with equality:

• first inequality: 𝑥★ minimizes 𝐿 (𝑥, 𝜇, 𝜆) over 𝑥 ∈ D

• second inequality: each term in the sum
∑𝑚

𝑖=1 𝜇
★
𝑖
𝑔𝑖 (𝑥★) = 0 is nonpositive, so

𝜇★𝑖 𝑔𝑖 (𝑥★) = 0, 𝑖 = 1, . . . , 𝑚

i.e., 𝜇𝑖 > 0 ⇒ 𝑔𝑖 (𝑥) = 0 and 𝑔𝑖 (𝑥) < 0 ⇒ 𝜇𝑖 = 0

this condition is known as complementary slackness
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Optimality conditions

if strong duality holds, 𝑥★ is primal optimal, and (𝜇★, 𝜆★) is dual optimal, then

𝑔𝑖 (𝑥★) ≤ 0 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥★) = 0 𝑗 = 1, . . . , 𝑝

𝜇★𝑖 𝑔𝑖 (𝑥★) = 0, 𝑖 = 1, . . . , 𝑚

𝑥★ ∈ argmin
𝑥

𝐿 (𝑥, 𝜇★, 𝜆★)

conversely, these four conditions imply optimality of 𝑥★, (𝜇★, 𝜆★) and strong duality

• functions are not necessarily differentiable

• recover KKT conditions for differentiable functions by replacing 4th condition with

∇𝑥𝐿 (𝑥★, 𝜇★, 𝜆★) = ∇ 𝑓 (𝑥★) +
𝑚∑
𝑖=1

𝜇★𝑖 ∇𝑔𝑖 (𝑥★) +
𝑝∑
𝑗=1

𝜆★𝑗∇ℎ 𝑗 (𝑥★) = 0
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Optimality conditions for convex problems

Sufficient conditions

• for convex problems, the optimality conditions are sufficient

• i.e., if 𝑥★, (𝜇★, 𝜆★) satisfy opt. cond., then they’re optimal with zero duality gap

Necessary and sufficient conditions

if problem is convex and Slater’s constraint qualification holds:

• 𝑥★ is optimal iff there exist 𝜇★, 𝜆★, a such that optimality conditions are satisfied

• Slater’s condition implies optimal duality gap is zero and dual optimum is attained
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Proof of sufficiency

• 𝐿 is convex in 𝑥, so the 1st KKT condition means 𝑥★ minimizes 𝐿 over 𝑥

• we conclude that

𝑔(𝜇★, 𝜆★) = 𝐿 (𝑥★, 𝜇★, 𝜆★)

= 𝑓 (𝑥★) +
𝑚∑
𝑖=1

𝜇★𝑖 𝑔𝑖 (𝑥★) +
𝑝∑
𝑗=1

𝜆★𝑗 ℎ 𝑗 (𝑥★) = 𝑓 (𝑥★)

• so strong duality holds, and thus, 𝑥★ and (𝜇★, 𝜆★) are primal and dual optimal
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Recovering primal solution from dual

Unique minimizer: suppose 𝐿 (𝑥, 𝜇★, 𝜆★) has a unique minimizer 𝑥★:

∇𝐿 (𝑥★, 𝜇★, 𝜆★) = 0

• 𝑥★ of 𝐿 is either primal feasible; hence, it is the primal-optimal solution

• or it is not primal feasible and no primal-optimal solution exists

Multiple minimizers: suppose 𝐿 (𝑥, 𝜇★, 𝜆★) has multiple minimizers

• it is not guaranteed that each of them is primal-optimal

• what is guaranteed is that the primal-optimal 𝑥★ is among minimizers of 𝐿
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Example

minimize (𝑥1 + 3)2 + 𝑥22
subject to 𝑥21 ≤ 𝑥2

• problem is convex with strictly convex objective; thus, it has a unique solution

• the Lagrangian

𝐿 (𝑥, 𝜇) = (𝑥1 + 3)2 + 𝑥22 + 𝜇(𝑥21 − 𝑥2)

is convex over 𝑥 for any 𝜇 ≥ 0

• a minimizer of 𝐿 over 𝑥 must satisfy:

𝜕𝐿

𝜕𝑥1
= 2(𝑥1 + 3) + 2𝜇𝑥1 = 0 =⇒ 𝑥1 = −3/(1 + 𝜇)

𝜕𝐿

𝜕𝑥2
= 2𝑥2 − 𝜇 = 0 =⇒ 𝑥2 = 𝜇/2
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• the dual function is

𝜙(𝜇) = (−3/(1 + 𝜇) + 3)2 + (𝜇/2)2 + 𝜇((−3/(1 + 𝜇))2 − 𝜇/2)

=
9𝜇

1 + 𝜇
− 𝜇2

4

and the dual problem is

maximize
𝜇≥0

9𝜇

1 + 𝜇
− 𝜇2

4

• the derivative of 𝜙 is

𝜙′ (𝜇) = 9

(1 + 𝜇)2 − 𝜇

2

• solving for 𝜙′ (𝜇) = 0, we get the unique optimal dual solution 𝜇★ = 2 and 𝑑★ = 5

• using this dual solution, the primal solution is

𝑥★ = (−3/(1 + 𝜇★), 𝜇★/2) = (−1, 1)

and the optimal value is 𝑝★ = 5 = 𝑑★

SA — ENGR507optimality conditions 11.29



Example

minimize 1
2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑐𝑖)2

subject to
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 = 𝑏

• 𝑎𝑖 , 𝑐𝑖 , 𝑏 ∈ R are given

• the Lagrangian is

𝐿 (𝑥, 𝜆) = 1
2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑐𝑖)2 + 𝜆(
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 − 𝑏)

= −𝑏𝜆 +
𝑛∑
𝑖=1

(
1
2 (𝑥𝑖 − 𝑐𝑖)2 + 𝜆𝑎𝑖𝑥𝑖

)
,

which is also separable in 𝑥𝑖
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• the dual function is

𝜙(𝜆) = −𝑏𝜆 +
𝑛∑
𝑖=1

min
𝑥𝑖

(
1
2 (𝑥𝑖 − 𝑐𝑖)2 + 𝜆𝑎𝑖𝑥𝑖

)
= −𝑏𝜆 −

𝑛∑
𝑖=1

(
1
2𝑎

2
𝑖 𝜆

2 − 𝑎𝑖𝑐𝑖𝜆
)

where the minimum is achieved at 𝑥𝑖 = 𝑐𝑖 − 𝑎𝑖𝜆

• the dual problem is thus

maximize
𝜆

−𝑏𝜆 −
𝑛∑
𝑖=1

(
1
2𝑎

2
𝑖 𝜆

2 − 𝑎𝑖𝑐𝑖𝜆
)

• dual is unconstrained and concave, so optimal solution must satisfy

𝜙′ (𝜆) = −𝑏 − 𝜆
𝑛∑
𝑖=1

𝑎2𝑖 +
𝑛∑
𝑖=1

𝑎𝑖𝑐𝑖 = 0 =⇒ 𝜆★ = −
𝑏 −

∑𝑛

𝑖=1 𝑎𝑖𝑐𝑖∑𝑛

𝑖=1 𝑎
2
𝑖

• we can recover the primal by the formula

𝑥★𝑖 = 𝑐𝑖 − 𝑎𝑖𝜆
★ = 𝑐𝑖 + 𝑎𝑖

𝑏 −
∑𝑛

𝑖=1 𝑎𝑖𝑐𝑖∑𝑛

𝑖=1 𝑎
2
𝑖

, 𝑖 = 1, . . . , 𝑛
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Outline

• Lagrange dual problem

• strong duality

• optimality conditions

• example: total variation de-noising



Signal de-noising

𝑦 = 𝑥 + 𝑣

• 𝑥 ∈ R𝑛 is original signal

• 𝑦 is measured signal

• 𝑣 ∈ R𝑛 is an unknown noise vector

Total variation de-noising: recover 𝑥 by solving

minimize ∥𝑥 − 𝑦∥2 + 𝛿𝑟tv (𝑥)

• 𝛿 > 0 is regularization parameter
• 𝑟tv is the total variation function (𝑅 ∈ R (𝑛−1)×𝑛):

𝑟tv (𝑥) =
𝑛−1∑
𝑖=1

|𝑥𝑖 − 𝑥𝑖+1 | = ∥𝑅𝑥∥1, 𝑅 =


−1 1 0 · ·· 0 0 0
0 −1 1 · ·· 0 0 0
...

...
...

...
...

...

0 0 0 · ·· −1 1 0
0 0 0 · ·· 0 −1 1
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Dual derivation

• we we have not yet explored how to manage general non-smooth terms

• by considering the dual problem, we can bypass the non-smooth term 𝑟tv

• to derive the dual, we recast the problem as an equivalent constrained one:

minimize ∥𝑥 − 𝑦∥2 + 𝛿∥𝑧∥1
subject to 𝑧 = 𝑅𝑥

where we introduced the variable 𝑧 ∈ R (𝑛−1)

• the associated Lagrangian is:

𝐿 (𝑥, 𝑧, 𝜆) = ∥𝑥 − 𝑦∥2 + 𝛿∥𝑧∥1 + 𝜆T (𝑅𝑥 − 𝑧)
= ∥𝑥 − 𝑦∥2 + 𝜆T𝑅𝑥 + 𝛿∥𝑧∥1 − 𝜆T𝑧

• Lagrangian is separable in 𝑥 and 𝑧, the minimization concerning 𝑥 yields:

𝑥★ = argmin
𝑥

𝐿 (𝑥, 𝑧, 𝜆) = argmin
𝑥

∥𝑥 − 𝑦∥2 + 𝜆T𝑅𝑥 = 𝑦 − 1
2𝑅

T𝜆
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• substituting this result, we get:

𝐿 (𝑥★, 𝑧, 𝜆) = ∥𝑦 − 1
2𝑅

T𝜆 − 𝑦∥2 + 𝜆T𝑅(𝑦 − 1
2𝑅

T𝜆) + 𝛿∥𝑧∥1 − 𝜆T𝑧

= − 1
4𝜆

T𝑅𝑅T𝜆 + 𝜆T𝑅𝑦 + 𝛿∥𝑧∥1 − 𝜆T𝑧

• to minimize with respect to 𝑧, we must address:

min
𝑧

𝛿∥𝑧∥1 − 𝜆T𝑧

• considering each component, we realize:

min
𝑧𝑖

𝛿 |𝑧𝑖 | − 𝜆𝑖𝑧𝑖 =

{
0, if |𝜆𝑖 | ≤ 𝛿

−∞, otherwise

• consequently, the dual function becomes:

𝜙(𝜆) = min
𝑥,𝑧

𝐿 (𝑥, 𝑧, 𝜆) =
{
− 1

4𝜆
T𝑅𝑅T𝜆 + 𝜆T𝑅𝑦, if | |𝜆 | |∞ ≤ 𝛿

−∞, otherwise
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Dual problem

thus, our dual problem becomes:

maximize − 1
4𝜆

T𝑅𝑅T𝜆 + 𝜆T𝑅𝑦

subject to | |𝜆 | |∞ ≤ 𝛿

• the constraints form a simple box constraint:

C = {𝜆 ∈ R (𝑛−1) | −𝛿 ≤ 𝜆𝑖 ≤ 𝛿, 𝑖 = 1, 2, . . . , 𝑛 − 1}

• we can solve the problem using the projected gradient descent

• the projection onto C, denoted by Π(𝜆), has components:

Π(𝜆)𝑖 =
𝛿𝜆𝑖

max{|𝜆𝑖 |, 𝛿}

• once we get 𝜆★, then 𝑥★ = 𝑦 − 1
2𝑅

T𝜆★
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Example
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𝑦 (𝑡 )
𝑥 (𝑡 )

𝛿 = 2 𝑦 (𝑡 )𝛿 = 10
𝑥ls (𝑡 )

the total variation (TV) denoising effectively captures jump discontinuities and noise
spikes, an outcome not achieved by the least-squares reconstruction
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