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11. Duality

e Lagrange dual problem
e strong duality
e optimality conditions

e example: total variation de-noising

1.1



Primal problem

we consider the standard form optimization problem:

minimize  f(x)
subjectto g;(x) <0, i=1,...,m
hi(x)=0, j=1,...,p

with variable x € R" and nonempty domain

m p
D=domf [ |domg; N ()domh
i=1 Jj=1

e problem (11.1) is referred to as the primal problem
e we let p* denote the the optimal value of the primal problem

o the primal problem is not assumed to be convex unless explicitly stated

Lagrange dual problem

(11.1)
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Duality

e duality provides a technique for transforming the primal problem into another
related optimization problem, called the dual problem

e dual problem is always a convex problem (even when the primal is not)
e dual optimal value provides a lower bound on the primal optimal value
e dual problems may have a particular structure that makes ‘easier’ to solve

e in some cases we can recover a primal solution from a dual solution

Lagrange dual problem
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Lagrangian

the Lagrangian L : R" X RP? x R"™ — R associated with problem (11.1) is

m P
L(x, 1, ) = f(x) + X; pigi(x) + 21 Ajhj(x)
i= J=

Lagrangian domain is dom L = D x R™ x RP

Wi is Lagrange multiplier associated with the ith inequality constraint g; (x) < 0

A; is Lagrange multiplier associated with the jth equality constraint /2 (x)=0

u and A are called the Lagrange multiplier vectors or dual variables

Lagrange dual problem
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Dual problem

Lagrange dual function: ¢ : R™ X RP? — R (using min instead of inf):

¢(u, A) =min L(x, u, )
xeD

m p
= min (f(x) + Y pigi(x) + ) Ajh; (x))
xe i=1 J=1

e can take value —oo (dom ¢ = {(u, 2) | ¢p(u, ) > —oco})
e concave function since it is the infimum of affine functions in (u, 1)

Lower bound on the optimal value: for u > 0, A, we have ¢(u, 1) < p*

Proof: for feasible X and y; > 0:
¢(p, ) =min L(x,pu,A) < L(X, u, ) < f(X)
X

since the above holds for any feasible X, we have ¢(u, 1) < p*
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Dual problem

maximize ¢ (u, )
subjectto u >0

gives best lower bound on p*

e a convex optimization problem; optimal value denoted by d*

often simplified by making implicit constraint (u, 1) € dom ¢ explicit

u, A are dual feasible if 4 > 0 and (u, 1) € dom ¢

e d* = —oo if problem is infeasible; d* = +oo if unbounded above

Lagrange dual problem
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Weak duality

d* < p*
o the above property is called weak duality
e can be used to find nontrivial lower bounds for difficult problems
e p* — d* is called the optimal duality gap

e if primal is unbounded below (p* = —o0), then the dual is infeasible (d* = —o0)

e if dual is unbounded above (d* = o), then the primal is infeasible (p* = o)

Lagrange dual problem
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Example

minimize  x?2

subjectto x> 1
e the solution is x* = 1 with optimal value p* =1
e minimizing the Lagrangian
L(x, 1) =x%+u(1-x)
with respectto x: V,L(x,u) =2x —u=0sox = %u
e the dual function is
() =min L(x, u) = L(zp. p) = (50 + p(1 = 3p) = =3 +
dual function gives the immediate bound ¢(u) < p* (e.g., $(0) =0 < p*)
e the dual problem is
ma;izrgize —%,uQ +u
dual solution is u* = 2 with optimal value d* = 1 = p*
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Example

minimize x% - 3x§

subjectto  xq = x3

the optimal solutions are (1, 1) and (-1, —1) with p* = =2

the Lagrangian is
L(x,A) = x? — 3x3 + A(x1 — x3)
e minimizing we see the dual take value

min L(x, 1) = —o0
X

so the dual optimal value is d* = —co, which gives a non useful bound

Lagrange dual problem
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Example

minimize  x1xo
subjectto  (1/2)xTx <1
x>0

e solution is x* = 0, with the primal optimal value p* = f(x*) =0
e with it = (i1, fI), 41 € R and @ € R2, the Lagrangian is:

xTx/2-1

Lix, ) = (1/2)xT[(1) é]wa .

1 _
= (1/2)xT [#11 ,111] X —py —fglx

Hessian is positive semidefinite only if u; > 1
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e if 11 < 1or i # 0, L unbounded below, so we exclude such u from the dual

o for y with 1 > 1 and & = 0, the dual function is:
o = min (1/2x7 (M e =
xeR? 1
any u with 4 > 1 and i = 0 is feasible (i.e., u > 0)
e the dual problem is:
maximize —pup
subjectto pu; >1
a=0
solution is u* = (1, 0,0), with d* = ¢(u*) = -1

e since p* =0 > —1 = d*, the duality gap is f(x*) — ¢(u*) =1
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Example: two-way partitioning

minimize  xTWx
subjectto x?=1, i=1,...,n

a nonconvex problem; feasible set contains 2" discrete points

interpretation: partition {1, ...,n} in two sets encoded as x; = 1 and x; = —1

e W;; is cost of assigning i, j to same set; —W;; is cost of assigning to different sets

dual function is
¢(1) = min (xTWx + 2 (7 — 1)) = minxT(W + diag(1))x — 172
X 7 x

_|-1Ta W+ diag(a) = 0
- otherwise

e lower bound property: p* > d* > —172 it W + diag(1) = 0
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Form of dual problem

e the dual depends on the particular way in which the primal is represented

o reformulating the primal problem can be useful when the dual is difficult to derive,
or uninteresting

e it is often not possible to find a closed form expression for the dual problem

Common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice versa

e transform objective or constraint functions
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Example

minimize e~

subjectto x? <1
e the dual function is
¢(u) = mine* + pu(x* - 1)
X

e the minimizer is the solution of the nonlinear equation ¢* + 2ux = 0

e in this case, the dual problem is

maximize e* + pu(x? —1)
u=0

where x solves e* + 2ux =0
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consider the equivalent representation of the previous problem:
minimize er
subject to -1<x<1

the dual function is

¢(u) = mine” +p (x = 1) = po(x +1)

the minimizer satisfies e* + 1 — o =0, i.e., x = log(ua — p1);

therefore, the dual function is

¢(p) = po — py + p1(log(pg — p1) = 1) — pa(log(p — 1) +1)
= —(p2 — p1) log(pz — p1) = 21

with domain dom ¢ = {u | o > u1}

hence, the dual problem is

maximize —(u2 — p1) log(ue — p1) — 211
pu=0
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Strong duality

*

strong duality holds if d* = p
e does not hold in general
e guaranteed to hold if the problem is convex under Slater’s condition

Slater’s constraint qualification: there exists an X € int D such that

gi(x)<0, i=1,....,m, Ax=0b

e guarantees d* = p*
e implies the dual optimal value is attained at some (u*, 1*)

e can be weakened by only requiring the non-affine g; to hold with strict inequality

there exist many other types of constraint qualifications

strong duality 11.16



Example

minimize  x? +x2 + 2x;
subjectto  x1 +x9 =0
e solutionis x* = (—1/2,1/2) and p* = —-1/2
e minimizing the Lagrangian
L(x,Q) = x% +x§ +2x1 + A(x1 + x2)
with respect to x we get the solution
= (-1-44)

e so the dual function is

¢(1) = L(x,4)
=(-1-2/2)2+(-2/2)2+2(-1-2/2) + A(-1 - Q)
Y L |
2
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the dual problem is thus

2
maximize — 5 A-1

¢(2) < p* for any A; for example,

$(0)=-1<p*=-1/2

the dual problem is solved at A* = —1 and at the optimal solution, we have

o) = -1/2= p*

hence, strong duality holds

Slater’s conditions is satisfied since the problem is feasible
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Dual of inequality form LP

minimize  ¢Tx

subjectto Ax < b
the Lagrangian is
Lx, ) =cx+uT(Ax—b) ==bTu+ (c+ ATp) ™x
the dual function is
~bTu it ATu+c=0
(1) = ~bTu+min(c + ATu)x = { pAH
x —00 otherwise
hence, the dual problem (with dom ¢ expressed as constraints) is

maximize —bTu
subjectto ATu+c=0
u=0

strong duality always holds for LPs except when primal or dual are infeasible
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Dual of least-norm problem

minimize  ||x||?
subjectto Ax=05b

the Lagrangian is
L(x,2) = |lx||* + A7(Ax - b)

the Lagrangian is a convex function in x, hence all minimizers satisfy:
ViL(x,d) =2x+ATA=0=x(1) =-14"a
hence, the dual problem is
maximize ¢(d) = L(-3ATA, ) = -12TAATA - b2

since there is no inequalities, Slater condition is just primal feasibility (b € range A)
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Dual of strictly convex quadratic program

for Q > 0, consider
minimize  x7Qx
subjectto Ax < b

the Lagrangian is
L(x, ) =xT0x + uT(Ax - b)
since L is convex in x, it is minimized with respect to x if and only if
VoL(x, 1) =20x +ATu=0=x = —%Q‘lATy
plug in L, we have
¢(u) = L(-307 AT, p) = =3 u"AQ " AT — b7y
the dual problem is

maximize —+uTAQ ATy - by
subjectto u >0

strong duality always holds for this problem

strong duality
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Optimality conditions

if strong duality holds, x* is primal optimal, and (u*, 1*) is dual optimal, then:

1. gi(x*) <0fori=1,...,mand h;(x) =0fori=1,...,p

2. ¥ >0

3. f(x*) =g(u*,v*)

conversely, these three conditions imply optimality of x*, (u*, 1*), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness

if strong duality holds and x™* is primal optimal and (u*, 1*) is dual optimal, then
m p
FO*) = ¢p(u*, %) = Xmeig (FOx) + 3 pfgix) + 3 AThj(x))
i=1 j=1

m p
< flx*)+ Zy;‘gi(x*) +y A;fhj(x*)
i=1 j=1
< f(x%)
holds if and only if the two inequalities hold with equality:
e first inequality: x* minimizes L(x, u, 1) over x € D
e second inequality: each term in the sum Z:Zl urgi(x*) = 0is nonpositive, so
urgi(x*)=0, i=1,....m
ie, i >0=gi(x)=0and g;(x) <0= u; =0
this condition is known as complementary slackness
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Optimality conditions

if strong duality holds, x* is primal optimal, and (u*, 1*) is dual optimal, then

gi(x*)<0 i=1,....,m
hj(x*)=0 j=1,....,p
wrgi(x*) =0, i=1,....m
x* € argmin L(x, u*, %)

X

conversely, these four conditions imply optimality of x*, (u*, A*) and strong duality

e functions are not necessarily differentiable

o recover KKT conditions for differentiable functions by replacing 4th condition with

m P
VAL W AT) = V) 4 0 Vi) + 30 47V () = 0
i= Jj=
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Optimality conditions for convex problems

Sufficient conditions
e for convex problems, the optimality conditions are sufficient

o je,ifx*, (u*, %) satisfy opt. cond., then they’re optimal with zero duality gap

Necessary and sufficient conditions

if problem is convex and Slater’s constraint qualification holds:

e x* is optimal iff there exist u*, 1*, a such that optimality conditions are satisfied

e Slater’'s condition implies optimal duality gap is zero and dual optimum is attained
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Proof of sufficiency

e L is convex in x, so the 1st KKT condition means x* minimizes L over x

e we conclude that
g(u*, %) = L(x*, y*, %)

m p
= PO+ ) + AT () = ()
i= Jj=

e 50 strong duality holds, and thus, x* and (u*, 1*) are primal and dual optimal
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Recovering primal solution from dual

Unique minimizer: suppose L(x, u*, A*) has a unique minimizer x*:
VL(x*, u*,1*) =0

e x* of L is either primal feasible; hence, it is the primal-optimal solution

e or it is not primal feasible and no primal-optimal solution exists

Multiple minimizers: suppose L(x, u*, 1*) has multiple minimizers

e it is not guaranteed that each of them is primal-optimal

e what is guaranteed is that the primal-optimal x* is among minimizers of L
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Example

minimize  (x1 + 3)% + x3

subjectto  x? < xo
e problem is convex with strictly convex objective; thus, it has a unique solution
e the Lagrangian

_ 2, .2 2
L(x,p) = (x14+3)" +x5 + u(xy —x2)
is convex over x forany u > 0

e a minimizer of L over x must satisfy:

oL
— =2(x1+3)+2ux1 =0=x1 =-3/(1 + p)

axl
oL
— =2 —u=0=x9=pu/2
6x2
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e the dual function is

¢(w) = (=3/(1+ ) +3)" + (1/2)” + p((=3/ (1 + )* ~ u/2)

P
T l4pu 4

and the dual problem is

9 2
maximize i
u>0 1+ 4
o the derivative of ¢ is
9 7
4 = —

e solving for ¢’ (u) = 0, we get the unique optimal dual solution u* =2 and d* =5

e using this dual solution, the primal solution is

X = (=3/(1+p*), 1*/2) = (-1,1)
and the optimal value is p* = 5 = d*
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Example

n
minimize % > (xi —ci)?
subjectto Y a;x; = b
e a;,c;,b € R are given
e the Lagrangian is
n 9 n
L(x,) =35> (xi —c)*+ A0 aixi — b)
i=1 i=1
n
=—-bl+ Z (%(Xi - Cl‘)2 + /lal-x,-),
i=1
which is also separable in x;
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e the dual function is
n n
¢(1) = —-bA+ Y min (5 (x; - ci)? +Aaix;)) = -bA-> (%a?zﬁ - a;c;d)
i=1 M i=1
where the minimum is achieved at x; = ¢; — a; 4
o the dual problem is thus
n
maximize  —bA — > (3a72® - aieid)
i=1

e dual is unconstrained and concave, so optimal solution must satisfy

b— Z a;ci

n n n
¢ D) ==b-2>a?+ > aic;=0= 1> =—— =1

. / 2
i=1 i=1 Zi:l a;

e we can recover the primal by the formula

b - Z:l:l a;ci

* * .
xr=c¢ci—ail” =ci+tai——m———, i=1,...,n

l Z?:l a?
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Signal de-noising

y=x+v
e x € R" is original signal
e yis measured signal
e v € R™" is an unknown noise vector
Total variation de-noising: recover x by solving
minimize  ||x — y||? + 6 (x)

e ¢ > (is regularization parameter
e r, is the total variation function (R € R("‘l)X"):

-1 1 0 - 0 0 0

1 0 -1 1 0 0 0
rtv(x)zz |xi = xis1] = |Rx|l1, R = :

=1 0 0 0 -1 1 0

0 0 0 0 -1 1

example: total variation de-noising 11.32



Dual derivation

e we we have not yet explored how to manage general non-smooth terms
e by considering the dual problem, we can bypass the non-smooth term r,

e to derive the dual, we recast the problem as an equivalent constrained one:

minimize [lx — y||* + 61lzlx
subjectto  z = Rx

where we introduced the variable z € R(*~1)
e the associated Lagrangian is:
L(x,2,4) = llx = ylI> + 6llzll1 + AT (Rx = 2)
= ke =yl + ATRx + 6llzfl - A"z
e |agrangian is separable in x and z, the minimization concerning x yields:

x* = argmin L(x, z, A) = argmin ||x — y||? + ATRx = y — %RT/l
X X

example: total variation de-noising 11.33



substituting this result, we get:

L(x*,z,2) =y - 2RTA=y|I? + A”TR(y = 4RTD) +5|lz[1 - 27z
= —2ATRRTA+ A"Ry + 6||zlls — A"z

e to minimize with respect to z, we must address:
min  §||z|l; - 17z
z
e considering each component, we realize:

if |4 <6

. 0,
min  6|z;| — Aizi = .
Zi —oo, otherwise
e consequently, the dual function becomes:

—3ATRRTA+ ATRy, if[|A|lw <6

—00, otherwise

o) = IgclinL(x, z,4) = {

example: total variation de-noising 11.34



Dual problem

thus, our dual problem becomes:

maximize —3ATRRTA+ATRy
subjectto ||| < O

o the constraints form a simple box constraint:
C={1eR" D |5<;,<6,i=12,....,n-1}

e we can solve the problem using the projected gradient descent

the projection onto C, denoted by IT(1), has components:

0A;

M) = max{| ], 6}

e once we get 1*, then x* = y — 1RTA*

example: total variation de-noising
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Example

noisy signal

example: total variation de-noising
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the total variation (TV) denoising effectively captures jump discontinuities and noise
spikes, an outcome not achieved by the least-squares reconstruction

example: total variation de-noising 11.37
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