
10. Special convex optimization problems

• linear programs

• piecewise-linear minimization

• quadratic optimization

• geometric programming

• semidefinite programs

• quasiconvex optimization
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Linear program

a linear program (LP) is an optimization problem of the form

minimize (or maximize)
𝑛∑
𝑗=1

𝑐 𝑗𝑥 𝑗

subject to
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚

𝑛∑
𝑗=1

𝑔𝑖 𝑗𝑥 𝑗 ≤ ℎ𝑖 , 𝑖 = 1, . . . , 𝑝

• 𝑛 optimization variables 𝑥1, . . . , 𝑥𝑛

• coefficients 𝑐 𝑗 , 𝑎𝑖 𝑗 , 𝑔𝑖 𝑗 , ℎ𝑖 , 𝑏𝑖 are given

• convex problem with linear objective and linear/affine constraints
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LP in compact form

minimize (or maximize) 𝑐T𝑥

subject to 𝐴𝑥 ≤ 𝑏

𝐺𝑥 ≤ ℎ

• 𝐴 is an 𝑚 × 𝑛 matrix with entries 𝑎𝑖 𝑗

• 𝐺 is an 𝑝 × 𝑛 matrix with entries 𝑔𝑖 𝑗

• 𝑏 = (𝑏1, . . . , 𝑏𝑚)

• ℎ = (ℎ1, . . . , ℎ𝑝)

• 𝑐 = (𝑐1, . . . , 𝑐𝑛)
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Example: diet problem

• create meal with at least 12 units of protein, 9 units of iron, 15 units of thiamine

food protein iron thiamine cost (cents/g)
A 2 unit/g 1 unit/g 1 unit/g 30
B 1 unit/g 1 unit/g 3 unit/g 40

• how many grams of each food should be used to minimize the cost of the meal?

the problem can formulated as

minimize 30𝑥1 + 40𝑥2
subject to 2𝑥1 + 𝑥2 ≥ 12

𝑥1 + 𝑥2 ≥ 9
𝑥1 + 3𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0

where 𝑥1 and 𝑥2 are the number of grams of food A and B used in the meal
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Example: alloy mixture

• we are given four alloys that have the metal properties listed in the below table

property alloy 1 alloy 2 alloy 3 alloy 4
% of iron 70 25 40 20

% of nickel 10 15 50 50
% of cobalt 20 60 10 30
cost ($/kg) 22 18 25 24

• goal is to create new alloy mixture with 40% iron, 35% nickel, 25% cobalt

• what proportions of the alloys should be blended together while minimizing cost?
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• let 𝑥𝑖 be the proportion of alloy 𝑖 that is used to produce the new alloy

• the problem can be formulated as

minimize 22𝑥1 + 18𝑥2 + 25𝑥3 + 24𝑥4
subject to 0.7𝑥1 + 0.25𝑥2 + 0.4𝑥3 + 0.2𝑥4 = 0.4

0.1𝑥1 + 0.15𝑥2 + 0.5𝑥3 + 0.5𝑥4 = 0.35
0.2𝑥1 + 0.6𝑥2 + 0.1𝑥3 + 0.3𝑥4 = 0.25
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0
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Example: wireless communication

Base station

User 1 User 2 User 3

• 𝑛 “mobile” users

• user 𝑖 transmits signal to base station with power 𝑝𝑖 and attenuation factor of 𝛽𝑖
– signal power received at the base station from user 𝑖 is 𝛽𝑖 𝑝𝑖

• total power received from all other users is considered interference
– the interference for user 𝑖 is

∑
𝑗≠𝑖 𝛽 𝑗 𝑝 𝑗

• for reliable communication with user 𝑖, signal-to-interference ratio must exceed 𝛾𝑖

• goal is to minimize total power transmitted by all users subject to having reliable
communications for all users
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Problem formulation

minimize
∑𝑛

𝑖=1 𝑝𝑖

subject to 𝛽𝑖 𝑝𝑖∑
𝑗≠𝑖
𝛽 𝑗 𝑝 𝑗

≥ 𝛾𝑖 , 𝑖 = 1, . . . , 𝑛

𝑝𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛

LP formulation

minimize
∑𝑛

𝑖=1 𝑝𝑖
subject to 𝛽𝑖 𝑝𝑖 − 𝛾𝑖

∑
𝑗≠𝑖 𝛽 𝑗 𝑝 𝑗 ≥ 0, 𝑖 = 1, . . . , 𝑛

𝑝𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛
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Example: assignment problem

• we want to match 𝑁 people to 𝑁 tasks

• each person is assigned to one task (each task assigned to one person)

• cost of assigning person 𝑖 to task 𝑗 is 𝑐𝑖 𝑗

• variable 𝑥𝑖 𝑗 = 1 if person 𝑖 is assigned to task 𝑗 ; 𝑥𝑖 𝑗 = 0 otherwise

Combinatorial formulation

minimize
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗

subject to
𝑁∑
𝑖=1

𝑥𝑖 𝑗 = 1, 𝑗 = 1, . . . , 𝑁

𝑁∑
𝑗=1

𝑥𝑖 𝑗 = 1, 𝑖 = 1, . . . , 𝑁

𝑥𝑖 𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, . . . , 𝑁

𝑁! possible assignments (e.g., 10! = 3628800 )
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LP formulation

minimize
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗

subject to
𝑁∑
𝑖=1

𝑥𝑖 𝑗 = 1, 𝑗 = 1, . . . , 𝑁

𝑁∑
𝑗=1

𝑥𝑖 𝑗 = 1, 𝑖 = 1, . . . , 𝑁

0 ≤ 𝑥𝑖 𝑗 ≤ 1, 𝑖, 𝑗 = 1, . . . , 𝑁

• we have relaxed the constraints 𝑥𝑖 𝑗 ∈ {0, 1}

• it can be shown that the solution 𝑥★
𝑖 𝑗
∈ {0, 1}

• hence, we can solve this hard combinatorial problem efficiently by solving an LP
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Polyhedron

a ployhedron is the intersection of finitely many halfspaces

𝑎T1𝑥 ≤ 𝑏1, . . . , 𝑎
T
𝑚𝑥 ≤ 𝑏𝑚

in matrix notation, a polyhedron can be defined as

P = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏}
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Extreme points

𝑥 ∈ P is an extreme point of P if it cannot be written as convex combination

𝑥 = 𝜃𝑦 + (1 − 𝜃)𝑧, 𝜃 ∈ (0, 1)
for some 𝑦, 𝑧 ∈ P

P

𝑦

𝑥

𝑧̃
𝑦

𝑥

𝑧̄

𝑦

𝑥

𝑧̂

• 𝑥 is an extreme point

• 𝑥 and 𝑥 are not extreme points
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Geometrical interpretation of LP

minimize (or maximize) 𝑐T𝑥

subject to 𝐴𝑥 ≤ 𝑏

−𝑐

𝐴𝑥 ≤ 𝑏

𝑐

maximizer

minimizer

• dashed lines are level sets 𝑐T𝑥 = 𝛼 for different 𝛼

• feasible set is a polyhedron

• the optimal solutions occur at an extreme point
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Outline

• linear programs

• piecewise-linear minimization

• quadratic optimization

• geometric programming

• semidefinite programs

• quasiconvex optimization



Piecewise-linear minimization

Piecewise-linear function

𝑓 (𝑥) = max
𝑖=1,...,𝑚

(𝑎T𝑖 𝑥 + 𝑏𝑖)

• 𝑎𝑖 ∈ R𝑛 and 𝑏𝑖 ∈ R

• piecewise-linear function is a pointwise maximum of affine functions

𝑓 (𝑥)

𝑎T
𝑖
𝑥 + 𝑏𝑖

𝑥

Piecewise-linear minimization

minimize 𝑓 (𝑥) = max
𝑖=1,...,𝑚

(𝑎T𝑖 𝑥 + 𝑏𝑖)
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Equivalent LP formulation

minimize 𝑡

subject to 𝑎T
𝑖
𝑥 + 𝑏𝑖 ≤ 𝑡, 𝑖 = 1, . . . , 𝑚

• with additional variable 𝑡 ∈ R

• for fixed 𝑥, the optimal 𝑡 is 𝑡 = 𝑓 (𝑥)

Matrix form

minimize 𝑐T𝑥

subject to 𝐴𝑥 ≤ 𝑏

where

𝑥 =

[
𝑥

𝑡

]
, 𝑐 =

[
0
1

]
, 𝐴 =


𝑎T1 −1
... ...

𝑎T𝑚 −1

 , 𝑏 =


−𝑏1
...

−𝑏𝑚


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ℓ1-Norm approximation

minimize ∥𝐴𝑥 − 𝑏∥1

• 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚

• for a vector 𝑦 ∈ R𝑚, we have

∥𝑦∥1 =
𝑚∑
𝑖=1

|𝑦𝑖 | =
𝑚∑
𝑖=1

max{𝑦𝑖 ,−𝑦𝑖}

Equivalent LP formulation

minimize
∑𝑚

𝑖=1 𝑢𝑖
subject to −𝑢 ≤ 𝐴𝑥 − 𝑏 ≤ 𝑢

with variables 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚
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Robust curve fitting

fit data points (𝑧𝑖 , 𝑦𝑖) to the straight line 𝑥1 + 𝑥2𝑧 ≈ 𝑦 using ℓ1-norm:

minimize ∥𝐴𝑥 − 𝑏∥1

where

𝐴 =


1 𝑧1
... ...

1 𝑧𝑚

 , 𝑏 =


𝑦1
...

𝑦𝑚

 , 𝑥 =

[
𝑥1
𝑥2

]

• red circles represent the data

• blue dotted line from minimizing ∥𝐴𝑥 − 𝑏∥2

• black line from minimizing ∥𝐴𝑥 − 𝑏∥1
• ℓ1-norm more robust to outliers

𝑧

𝑓
(𝑧
)
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Interview scheduling

• a company needs to schedule job interviews for 𝑛 candidates (1, 2, . . . , 𝑛)

• candidate 𝑖 is scheduled to be the 𝑖th interview

• the starting time of candidate 𝑖 must be in the interval [𝛼𝑖 , 𝛽𝑖], where 𝛼𝑖 < 𝛽𝑖

• goal is to find 𝑛 starting times of interviews so that the minimal starting time
difference between consecutive interviews is maximal
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• let 𝑡𝑖 denote the starting time of interview 𝑖

• the objective function is the minimal difference between consecutive starting times:

𝑓 (𝑡) = min{𝑡2 − 𝑡1, 𝑡3 − 𝑡2, . . . , 𝑡𝑛 − 𝑡𝑛−1},

Problem formulation

maximize min{𝑡2 − 𝑡1, 𝑡3 − 𝑡2, . . . , 𝑡𝑛 − 𝑡𝑛−1}
subject to 𝛼𝑖 ≤ 𝑡𝑖 ≤ 𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝑛,

with variable 𝒕 ∈ R𝑛

Equivalent LP

maximize 𝑠

subject to 𝑡𝑖+1 − 𝑡𝑖 ≥ 𝑠, 𝑖 = 1, 2, . . . , 𝑛 − 1
𝛼𝑖 ≤ 𝑡𝑖 ≤ 𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝑛,

with variables 𝒕 ∈ R𝑛 and 𝑠 ∈ R
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Outline

• linear programs

• piecewise-linear minimization

• quadratic optimization

• geometric programming

• semidefinite programs

• quasiconvex optimization



Quadratic optimization

Quadratic program (quadratic optimization problem)

minimize (1/2)𝑥T𝑄𝑥 + 𝑟T𝑥
subject to 𝐴𝑥 ≤ 𝑏

𝐺𝑥 = ℎ

• 𝑄 ∈ S𝑛++, so objective is convex quadratic

• 𝑟 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝐺 ∈ R𝑝×𝑛, ℎ ∈ R𝑝 , and 𝑏 ∈ R𝑚

• minimize a convex quadratic function over a polyhedron

Quadratically constrained quadratic problem (QCQP)

minimize (1/2)𝑥T𝑄0𝑥 + 𝑟T0𝑥 + 𝑠0
subject to (1/2)𝑥T𝑄𝑖𝑥 + 𝑟T𝑖 𝑥 ≤ 0, 𝑖 = 1, . . . , 𝑝

𝐴𝑥 = 𝑏

• 𝑄𝑖 ∈ S𝑛++ (𝑖 = 0, 1 . . . , 𝑚) are positive semidefinite

• feasible set is intersection of 𝑛 ellipsoids and an affine set
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Examples

Least squares

minimize ∥𝐴𝑥 − 𝑏∥2 = 𝑥T𝐴T𝐴𝑥 − 2𝑏T𝐴𝑥 + 𝑏T𝑏

Constrained least squares

minimize ∥𝐴𝑥 − 𝑏∥2
subject to 𝐺𝑥 = ℎ

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛

this problem has no simple analytical solution
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Example: power distribution (aggregator model)

• in electricity markets, an aggregator
– buys wholesale 𝑝 units of power (Megawatt) from power distribution utilities

– and resells this power to a group of 𝑛 business or industrial customers

• the 𝑖th customer, 𝑖 = 1, . . . , 𝑛, would ideally wants 𝑝𝑖 Megawatts

• the customer 𝑖 does not want to receive more or less power than needed

• the customer dissatisfaction can be modeled as

𝑓𝑖 (𝑥𝑖) = 𝑐𝑖 (𝑥𝑖 − 𝑝𝑖)2, 𝑖 = 1, . . . , 𝑛

𝑥𝑖 is power given to customer 𝑖; 𝑐𝑖 is a given customer parameter
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• the aggregator problem is finding the power allocations 𝑥𝑖 , 𝑖 = 1, . . . , 𝑛, such that
– the average customer dissatisfaction is minimized,

– the whole power 𝑝 is sold,

– and that the dissatisfaction level is no greater than a contract level, say 𝑑

• the aggregator problem is

minimize
1

𝑛

𝑛∑
𝑖=1

𝑐𝑖 (𝑥𝑖 − 𝑝𝑖)2

subject to
𝑛∑
𝑖=1

𝑥𝑖 = 𝑝,

𝑐𝑖 (𝑥𝑖 − 𝑝𝑖)2 ≤ 𝑑, 𝑖 = 1, . . . , 𝑛
𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛

this is a QCQP
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Example: portfolio optimization

we want to invest on 𝑛 stocks to achieve a good return while minimizing risks of losses

• let 𝑥𝑖 ≥ 0 be the proportion of investment on stock 𝑖

• let 𝑟𝑖 be the return for stock 𝑖; we assume that the expected returns are known,

𝜇 𝑗 = E(𝑟 𝑗 ), 𝑗 = 1, 2, . . . , 𝑛,

and that the covariances of all the pairs of variables are also known,

𝜎2
𝑖, 𝑗 = E [(𝑟𝑖 − 𝜇𝑖) (𝑟 𝑗 − 𝜇 𝑗 )], 𝑖, 𝑗 = 1, 2, . . . , 𝑛

(typically, the mean and variance are estimated from historical data)

– a high variance indicates high risk; a low variance indicates low risk

– positive covariance 𝜎2
𝑖 𝑗
> 0 means stocks 𝑖 and 𝑗 prices move in the same direction

– a negative 𝜎2
𝑖 𝑗
< 0 means they one change in opposite direction
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• the overall return is the random variable

𝑅 =
𝑛∑
𝑗=1

𝑥 𝑗𝑟 𝑗

whose expectation and variance are given by

E(𝑅) = 𝜇T𝑥, Var(𝑅) = 𝑥TΣ𝑥

• 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑛)

• Σ is the covariance matrix whose elements are Σ𝑖, 𝑗 = 𝜎𝑖, 𝑗

• the covariance matrix is always positive semidefinite
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Portfolio problem QP formulation:

minimize 𝑥TΣ𝑥

subject to 𝜇T𝑥 ≥ 𝛼
1T𝑥 = 1
𝑥 ≥ 0

where 𝛼 is the minimal return value

Portfolio problem QCQP formulation:

maximize 𝜇T𝑥

subject to 𝑥TΣ𝑥 ≤ 𝛽

1T𝑥 = 1
𝑥 ≥ 0

where 𝛽 is the upper bound on the risk
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Outline

• linear programs

• piecewise-linear minimization

• quadratic optimization

• geometric programming

• semidefinite programs

• quasiconvex optimization



Monomials and posynomials

Monomial function

𝑓 (𝑥) = 𝑐𝑥𝑎11 𝑥
𝑎2
2 . . . 𝑥𝑎𝑛𝑛 , dom 𝑓 = R𝑛++

𝑐 > 0 and each 𝑎𝑖 ∈ R can be any number

Posynomial function: sum of monomials

𝑓 (𝑥) =
𝐾∑
𝑘=1

𝑐𝑘𝑥
𝑎1𝑘
1 𝑥

𝑎2𝑘
2 . . . 𝑥𝑎𝑛𝑘𝑛 , dom 𝑓 = R𝑛++

each 𝑐𝑘 > 0
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Example

• wireless cellular network with 𝑛 paired transmitters and receivers

• 𝑝1, . . . , 𝑝𝑛 are the transmit powers for these pairs

• each transmitter 𝑖 is intended to communicate with its corresponding receiver 𝑖

• the signal to interference plus noise ratio (SINR) for each receiver is:

𝛾𝑖 =
𝑆𝑖

𝑙𝑖 + 𝜎𝑖
, 𝑖 = 1, . . . , 𝑛,

– 𝑆𝑖 represents the power of the desired signal received from transmitter 𝑖

– 𝑙𝑖 is the combined interference from all other transmitters

– 𝜎𝑖 is the receiver’s noise power
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• the Rayleigh fading model suggests that the 𝑆𝑖 is a linear function of 𝑝1, . . . , 𝑝𝑛:

𝑆𝑖 = 𝐺𝑖𝑖 𝑝𝑖 , 𝑖 = 1, . . . , 𝑛,

and
𝑙𝑖 =

∑
𝑗≠𝑖

𝐺𝑖 𝑗 𝑝 𝑗 ,

where 𝐺𝑖 𝑗 are the known path gains from transmitter 𝑗 to receiver 𝑖

• therefore, the SINR expressions in terms of the powers 𝑝1, . . . , 𝑝𝑛 are:

𝛾𝑖 (𝑝) =
𝐺𝑖𝑖 𝑝𝑖

𝜎𝑖 +
∑

𝑗≠𝑖 𝐺𝑖 𝑗 𝑝 𝑗
, 𝑖 = 1, . . . , 𝑛,

• while the SINR functions aren’t posynomials, their inverses are:

𝛾−1𝑖 (𝑝) = 𝜎𝑖

𝐺𝑖𝑖
𝑝−1𝑖 +

∑
𝑗≠𝑖

𝐺𝑖 𝑗

𝐺𝑖𝑖
𝑝 𝑗 𝑝

−1
𝑖 , 𝑖 = 1, . . . , 𝑛
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Generalized posynomials

a generalized posynomial is obtained from posynomials by various operations like

• addition

• multiplication

• pointwise maximum

• raising to a specific power

Example

𝑓 (𝑥) = max(2𝑥2.31 𝑥72, 𝑥1𝑥2𝑥
3.14
3 ,

√︃
𝑥1 + 𝑥32)

this function qualifies as a generalized posynomial
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Geometric program (GP)

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 1, 𝑖 = 1, . . . , 𝑚

ℎ𝑖 (𝑥) = 1, 𝑖 = 1, . . . , 𝑝

• 𝑓 , 𝑔1 . . . , 𝑔𝑚 are posynomials

• ℎ1, . . . , ℎ𝑝 are monomials

• its domain is inherently set as D = R𝑛++ (implicit constraint 𝑥 > 0)
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Example

• consider the optimization problem:

maximize 𝑥/𝑦
subject to 2 ≤ 𝑥 ≤ 3

𝑥2 + 3𝑦/𝑧 ≤ √
𝑦

𝑥/𝑧 = 𝑧2

where 𝑥, 𝑦, 𝑧 ∈ R and implicitly 𝑥, 𝑦, 𝑧 > 0

• the problem can be recast into the standard GP form:

minimize 𝑥−1𝑦
subject to 2𝑥−1 ≤ 1

(1/3)𝑥 ≤ 1
𝑥2𝑦−1/2 + 3𝑦1/2𝑧−1 ≤ 1
𝑥𝑦−1𝑧−2 = 1
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Change of variable

• geometric programs are generally not convex optimization problems

• but, they can be recast into convex forms through suitable transformations

Change of variable: 𝑦𝑖 = log 𝑥𝑖 (𝑥𝑖 = 𝑒𝑦𝑖 ); take logarithm of cost, constraints

• monomial 𝑓 (𝑥) = 𝑐𝑥𝑎11 𝑥
𝑎2
2 · ··𝑥𝑎𝑛𝑛 can be transformed to

𝑓 (𝑦) = 𝑒𝑎T𝑦+log 𝑐 ⇐⇒ log 𝑓 (𝑦) = 𝑎T𝑦 + 𝑏, (𝑏 = log 𝑐)

• posynomials 𝑓 (𝑥) =
∑𝐾

𝑘=1 𝑐𝑘𝑥
𝑎1𝑘
1 𝑥

𝑎2𝑘
2 · ··𝑥𝑎𝑛𝑘𝑛 can be transformed to

𝑓 (𝑦) =
𝐾∑
𝑘=1

𝑒𝑎
T
𝑘
𝑦+log 𝑐𝑘 ⇐⇒ log 𝑓 (𝑦) = log(

𝐾∑
𝑘=1

𝑒𝑎
T
𝑘
𝑦+𝑏), (𝑏𝑘 = log 𝑐𝑘)

with 𝑎𝑘 = (𝑎1𝑘 , . . . , 𝑎𝑛𝑘)
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Geometric program in convex form

applying the logarithm to the objective/constraint functions results in

minimize 𝑓 (𝑦) = log
(∑𝐾0

𝑘=1 𝑒
𝑎T
0𝑘
𝑦+𝑏0𝑘

)
subject to 𝑔𝑖 (𝑦) = log

(∑𝐾𝑖

𝑘=1 𝑒
𝑎T
𝑖𝑘
𝑦+𝑏𝑖𝑘

)
≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ̄𝑖 (𝑦) = ℎT𝑖 𝑦 + 𝑑𝑖 = 0, 𝑖 = 1, . . . , 𝑝

• 𝑓 and 𝑔𝑖 functions are convex, and ℎ̄𝑖 functions are affine

• thus, this optimization problem is convex

• we call it geometric program in convex form

• the original form is called geometric program in posynomial form
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Example

• consider a cylindrical liquid storage tank with height, ℎ, and diameter, 𝑑

• unlike the main body of the tank, its base is made from a distinct material

• assume the height of base remains unchanged irrespective of tank’s height

• 𝑉tank is the volume of the tank

• 𝑉supp is the volume supplied within a designated time frame

• total costs associated with manufacturing/operating the tank over a set duration
(e.g., a year) is divided into
– filling cost
– construction cost

• goal is to minimize cost subject to some constraints
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Filling costs

𝐶fill (𝑑, ℎ) = 𝛼1
𝑉supp

𝑉tank
= 𝑐1ℎ

−1𝑑−2

• 𝛼1 is a positive constant (in dollars), and 𝑐1 =
4𝛼1𝑉supp

𝜋

• tied to supplying a certain volume, 𝑉supp, of a liquid within the time-frame

• 𝑉supp/𝑉tank determines the frequency of tank refilling; hence its cost

• as the volume of the tank diminishes relative to the supply volume, filling costs rise

Construction costs:
𝐶constr (𝑑, ℎ) = 𝑐2𝑑2 + 𝑐3𝑑ℎ,

• 𝑐2 = 𝛼2
𝜋
4 and 𝑐3 = 𝛼3𝜋 (𝛼2, 𝛼3 are +ve dollar-per-square-meter constants)

• include the expenses of constructing the tank’s and its base

• the base’s cost is proportional to its area, 𝜋𝑑
2

4

• the tank’s cost correlates with its surface area, 𝜋𝑑ℎ
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Total cost

𝐶total(𝑑, ℎ) = 𝐶fill (𝑑, ℎ) + 𝐶constr (𝑑, ℎ)
= 𝑐1ℎ

−1𝑑−2 + 𝑐2𝑑2 + 𝑐3𝑑ℎ

this posynomial objective function is subject to constraints such as upper and lower
limits on the diameter and height, represented as:

0 < 𝑑 ≤ 𝑑max, 0 < ℎ ≤ ℎmax

GP formulation
minimize 𝑐1ℎ

−1𝑑−2 + 𝑐2𝑑2 + 𝑐3𝑑ℎ
subject to 0 < 𝑑−1max𝑑 ≤ 1

0 < ℎ−1maxℎ ≤ 1

with variables 𝑑, ℎ
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Example: Frobenius norm diagonal scaling

we seek diagonal matrix 𝐷 = diag(𝑑), 𝑑 > 0, with

minimize ∥𝐷𝑀𝐷−1∥2𝐹

• express as

∥𝐷𝑀𝐷−1∥2𝐹 =
𝑛∑

𝑖, 𝑗=1

(𝐷𝑀𝐷−1)2𝑖 𝑗 =
𝑛∑

𝑖, 𝑗=1

𝑀2
𝑖 𝑗𝑑

2
𝑖 /𝑑2𝑗

• a posynomial in 𝑑 (with exponents 0, 2 , and −2)

• in convex form, with 𝑦𝑖 = log 𝑑𝑖 ,

log ∥𝐷𝑀𝐷−1∥2𝐹 = log
( 𝑛∑
𝑖, 𝑗=1

exp
(
2(𝑦𝑖 − 𝑦 𝑗 + log

��𝑀𝑖 𝑗 ��)) )
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Outline

• linear programs

• piecewise-linear minimization

• quadratic optimization

• geometric programming

• semidefinite programs

• quasiconvex optimization



Semidefinite program

a linear matrix inequality (LMI) constrains a vector of variables 𝑥 ∈ R𝑛 as

𝐹 (𝑥) = 𝐹0 +
𝑚∑
𝑖=1

𝑥𝑖𝐹𝑖 ⪯ 0 (10.1)

with symmetric coefficient matrices 𝐹0, . . . , 𝐹𝑛 of size 𝑚 × 𝑚

a semidefinite program (SDP) is a particular type of convex optimization problem:

minimize 𝑐T𝑥

subject to 𝐹 (𝑥) = 𝐹0 +
∑𝑛

𝑖=1 𝑥𝑖𝐹𝑖 ⪯ 0
(10.2)

• 𝑥 ∈ R𝑛 is the optimization variable and 𝑐 ∈ R𝑛

• each 𝐹𝑖 is a known 𝑚 × 𝑚 symmetric matrices

• if 𝐹0, 𝐹1, . . . , 𝐹𝑚 are diagonal matrices the SDP becomes a linear program
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General form SDP

minimize 𝑐T𝑥

subject to 𝐹 (𝑖) (𝑥) = 𝑥1𝐹 (𝑖)
1 + ··· + 𝑥𝑛𝐹 (𝑖)

𝑛 + 𝐹 (𝑖)
0 ⪯ 0, 𝑖 = 1, . . . , 𝐾

𝐺𝑥 ≤ ℎ

𝐴𝑥 = 𝑏

can be equivalently represented as an SDP

minimize 𝑐T𝑥

subject to diag(𝐺𝑥 − ℎ, 𝐹 (1) (𝑥), . . . , 𝐹 (𝐾 ) (𝑥)) ⪯ 0
𝐴𝑥 = 𝑏
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Example: maximum eigenvalue minimization

minimize 𝜆max (𝐹 (𝑥))

• the function 𝜆max (·) is nonconvex

• this problem can be equivalently reformulated as:

minimize 𝑡

subject to 𝐹 (𝑥) − 𝑡 𝐼 ⪯ 0

where the variables are 𝑥 ∈ R𝑛 and 𝑡 ∈ R

• this is a specific instance of an SDP in the augmented (vector) variable:

𝑥 =

[
𝑡

𝑥

]
, 𝑐 = (1, 0, . . . , 0) , 𝐹 (𝑥) = 𝐹 (𝑥) − 𝑡 𝐼
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Example: spectral matrix norm minimization

minimize ∥𝐴(𝑥)∥2

• 𝐴(𝑥) = 𝐴0 + 𝑥1𝐴1 + ··· + 𝑥𝑛𝐴𝑛 ∈ R𝑝×𝑚

• this problem is equivalent to the following SDP:

minimize 𝑡

subject to

[
𝑡 𝐼𝑚 𝐴T (𝑥)
𝐴(𝑥) 𝑡 𝐼𝑝

]
⪰ 0

with decision variables 𝑥 ∈ R𝑛 and 𝑡 ∈ R (𝑡 ≥ 0)
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• to show this, recall that the spectral norm is

∥𝐴(𝑥)∥2 =
√︁
𝜆max (𝐴T (𝑥)𝐴(𝑥))

• it follows that

∥𝐴(𝑥)∥2 ≤ 𝑡 ⇐⇒ 𝐴T (𝑥)𝐴(𝑥) ⪯ 𝑡2𝐼, 𝑡 ≥ 0

• using the Schur complement rule, this matrix inequality is same as[
𝑡2𝐼𝑚 𝐴T (𝑥)
𝐴(𝑥) 𝐼𝑝

]
⪰ 0 ⇐⇒

[
𝑡 𝐼𝑚 𝐴T (𝑥)
𝐴(𝑥) 𝑡 𝐼𝑝

]
⪰ 0

right inequality obtained by congruence transformation with

diag(1/
√
𝑡 𝐼𝑚,

√
𝑡 𝐼𝑝)

for 𝑡 > 0
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Example: Frobenius norm minimization

minimize ∥𝐴(𝑥)∥2𝐹

• equivalent to SDP:

minimize tr(𝑌 )

subject to

[
𝑌 𝐴(𝑥)

𝐴T (𝑥) 𝐼𝑚

]
⪰ 0

where the variables are 𝑥 ∈ R𝑛 and 𝑌 ∈ R𝑝×𝑝 is positive semidefinite

• the equivalence of this formulation can be established by noting the relationship:

∥𝐴(𝑥)∥2𝐹 = tr(𝐴(𝑥)𝐴T (𝑥))

• using the Schur complement, the matrix condition can be written as:[
𝑌 𝐴(𝑥)

𝐴T (𝑥) 𝐼𝑚

]
⪰ 0 ⇐⇒ 𝐴(𝑥)𝐴T (𝑥) ⪯ 𝑌

this validation links the original objective with the SDP representation
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Quasiconvex function

𝑓 : R𝑛 → R is quasiconvex if its domain and all of its sublevel sets

S𝛾 = {𝑥 ∈ dom 𝑓 | 𝑓 (𝑥) ≤ 𝛾}

are convex for every real number 𝛾

• every convex function naturally possesses convex level sets

• there exist non-convex functions that have convex level sets

• a function is quasiconcave if its negative (− 𝑓 ) is quasiconvex

• a function that’s both quasiconvex and quasiconcave is called quasilinear
– both their domain and each level set {𝑥 | 𝑓 (𝑥) = 𝛼} are convex
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Graphical illustration

quasiconvex function that is non-convex

𝛼

𝛽

𝑎 𝑏 𝑐

• 𝑆𝛼 = [𝑎, 𝑏] is convex

• 𝑆𝛼 = (∞, 𝑐) is convex
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Examples

• 𝑓 (𝑥) =
√︁
|𝑥 | is nonconvex, but it is quasiconvex

– when 𝛾 < 0, then S𝛾 = ∅
– for 𝛾 ≥ 0, the sublevel set is given by:

S𝛾 = {𝑥 |
√︁
|𝑥 | ≤ 𝛾} = {𝑥 | |𝑥 | ≤ 𝛾2} = [−𝛾2, 𝛾2]

• log 𝑥 over R++ is both quasiconvex and quasiconcave, making it quasilinear

• ceil(𝑥) = inf{𝑧 ∈ Z | 𝑧 ≥ 𝑥}, is quasiconvex and quasiconcave

• the nonconvex 𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2 is quasiconcave on R2
+ but not on R2
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• the function

𝑓 (𝑥) = 𝑎T𝑥 + 𝑏
𝑐T𝑥 + 𝑑

, dom 𝑓 = {𝑥 ∈ R𝑛 | 𝑐T𝑥 + 𝑑 > 0}, 𝑐 ≠ 0

is quasiconvex since

S𝛾 = {𝑥 | 𝑓 (𝑥) ≤ 𝛾} = {𝑥 ∈ R𝑛 | (𝑎 − 𝛾𝑐)T𝑥 + (𝑏 − 𝛾𝑑) ≤ 0}

is a convex set

• given points 𝑎, 𝑏 ∈ R𝑛, the function

𝑓 (𝑥) = ∥𝑥 − 𝑎∥
∥𝑥 − 𝑏∥

is quasiconvex since its sublevel set represents the halfspace where the distance
to 𝑎 is less than or equal to the distance to 𝑏
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Properties of quasiconvex function

• 𝑓 is quasiconvex iff dom 𝑓 is convex and for any 𝑥, 𝑦 ∈ dom 𝑓 with 0 ≤ 𝜃 ≤ 1,

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ max{ 𝑓 (𝑥), 𝑓 (𝑦)}

(𝑦, 𝑓 (𝑦) )max{ 𝑓 (𝑥 ) , 𝑓 (𝑦) }

(𝑥, 𝑓 (𝑥 ) )

• a differentiable 𝑓 with convex domain is quasiconvex if and only if

𝑓 (𝑦) ≤ 𝑓 (𝑥) =⇒ ∇ 𝑓 (𝑥)T (𝑦 − 𝑥) ≤ 0

• a sum of quasiconvex functions is not necessarily quasiconvex
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Examples

• the cardinality 𝑥 ∈ R𝑛, denoted card(𝑥), is the no. of its non-zero entries

card(𝑥) is quasiconcave on R𝑛+ but not on R𝑛; this stems from the fact:

card(𝑥 + 𝑦) ≥ min{card(𝑥), card(𝑦)},

valid for non-negative vectors 𝑥, 𝑦

• the rank is quasiconcave on positive semidefinite matrices since

rank(𝑋 + 𝑌 ) ≥ min{rank 𝑋, rank𝑌 }

holds for positive semidefinite matrices 𝑋,𝑌
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Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

𝐴𝑥 = 𝑏

(10.3)

• the objective 𝑓 is quasiconvex

• 𝑔𝑖 are convex

• can have locally optimal points that are not (globally) optimal
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Convex representation of sublevel sets of 𝑓

if 𝑓 is quasiconvex, there exists a family of functions 𝜙𝑡 (𝑥) such that:

• 𝜙𝑡 (𝑥) os convex in 𝑥 for fixed 𝑡

• 𝑡-sublevel set of 𝑓 is 0-sublevel set of 𝜙𝑡 (𝑥):

𝑓 (𝑥) ≤ 𝑡 ⇐⇒ 𝜙𝑡 (𝑥) ≤ 0

where for every 𝑥, we have 𝜙𝑠 (𝑥) ≤ 𝜙𝑡 (𝑥) for any 𝑠 ≥ 𝑡

Example

𝑓 (𝑥) = 𝑝(𝑥)
𝑞(𝑥)

with 𝑝 convex, 𝑞 concave, and 𝑝(𝑥) ≥ 0, 𝑞(𝑥) > 0 on dom 𝑓

can take 𝜙𝑡 (𝑥) = 𝑝(𝑥) − 𝑡𝑞(𝑥):

• for 𝑡 ≥ 0, 𝜙𝑡 convex in 𝑥

• 𝑝(𝑥)/𝑞(𝑥) ≤ 𝑡 if and only if 𝜙𝑡 (𝑥) ≤ 0
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Quasiconvex optimization via convex feasibility problems

find 𝑥

subject to 𝜙𝑡 (𝑥) ≤ 0
𝑓𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚
𝐴𝑥 = 𝑏

• if feasible then 𝑝★ ≤ 𝑡; 𝑝★ is optimal solution of original quasiconvex problem

• if infeasible, then 𝑝★ ≥ 𝑡;

Bisection for quasiconvex problems
given: 𝑙 ≤ 𝑝★, 𝑢 ≥ 𝑝★ and a tolerance 𝜖 > 0

repeat
1. 𝑡 := 𝑙+𝑢

2
2. solve the convex feasibility problem
3. if feasible, set 𝑢 := 𝑡; else, set 𝑙 := 𝑡

until 𝑢 − 𝑙 ≤ 𝜖
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