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10. Special convex optimization problems

e linear programs

® piecewise-linear minimization
e quadratic optimization

e geometric programming

e semidefinite programs

® quasiconvex optimization
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Linear program

a linear program (LP) is an optimization problem of the form

minimize (or maximize) CjXj

1 2

subject to aijjxj <b;, i=1,...,m
J=1
n
Zg,jx] <h;, i=1,...,p
J=1
e 1 optimization variables x1, ..., x,

e coefficients ¢, a;j, 8ij, hi» b are given

e convex problem with linear objective and linear/affine constraints
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LP in compact form

minimize (or maximize) cTx

subjectto Ax <b
Gx<h

e Aisanm X n matrix with entries a; ;

e Gisan p X n matrix with entries g; ;

e b=(by,...,by)
o h=(hy,...,hp)
e c=(c1,...,Cn)

linear programs
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Example: diet problem

e create meal with at least 12 units of protein, 9 units of iron, 15 units of thiamine

food protein iron thiamine  cost (cents/g)
A 2unitlg 1unit/g 1 unit/g 30
B 1unitg 1unitg 3 unit/g 40

e how many grams of each food should be used to minimize the cost of the meal?

the problem can formulated as

minimize  30x7; + 40xo

subjectto  2x7 +x9 > 12
X1+x9>9
X1+ 3xg9 > 15
X1,x2 >0

where x1 and x» are the number of grams of food A and B used in the meal

linear programs



Example: alloy mixture

e we are given four alloys that have the metal properties listed in the below table

property | alloy1 | alloy2 | alloy 3 | alloy 4

% of iron 70 25 40 20
% of nickel 10 15 50 50
% of cobalt 20 60 10 30
cost ($/kg) 22 18 25 24

e goal is to create new alloy mixture with 40% iron, 35% nickel, 25% cobalt

e what proportions of the alloys should be blended together while minimizing cost?
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e let x; be the proportion of alloy i that is used to produce the new alloy

o the problem can be formulated as

linear programs

minimize
subject to

22)(1 + 18)(2 + 25X3 + 24X4

0.7x1 +0.25x2 + 0.4x3 + 0.2x4 = 0.4
0.1X1 + 0.15)62 + 05)63 + 0.5X4 =0.35
0.2x1 +0.6x2 + 0.1x3 + 0.3x4 = 0.25
X1+xo+x3+xg=1

X1,X2,Xx3,x4 =0
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Example: wireless communication

Base station

N m

User 1 User 2 User 3

e 1 “mobile” users

e user I transmits signal to base station with power p; and attenuation factor of g;

— signal power received at the base station from user i is 8; p;

total power received from all other users is considered interference
~ the interference for user i is 3 ..; B; P,

goal is to minimize total power transmitted by all users subject to having reliable
communications for all users

linear programs

for reliable communication with user i, signal-to-interference ratio must exceed y;
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Problem formulation

minimize Z?:l Di
subjectto Bl — > y;,
j;t,'ﬁjpj
pi=0, i=1,..

LP formulation

minimize

Z?:l Di

subjectto  B;p; — Vi Zj;ti Bjpj =0,

pi=>0, i=1,...,n

linear programs

i=1,...

N

i=1,...,n

10.8



Example: assignment problem

e we want to match N people to N tasks

e each person is assigned to one task (each task assigned to one person)

cost of assigning person i to task j is ¢;;

e variable x;; = 1 if person i is assigned to task j; x;; = 0 otherwise

Combinatorial formulation

minimize

subject to

)Cijzl, i:1,...,N

xije{0,1}, i,j=1,...,N

N! possible assignments (e.g., 10! = 3628800 )

linear programs
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LP formulation
N N
minimize Z Z CijXij
i=1 j=1

N
subjectto > x;;=1, j=1,...,N
=1

N
inJ':l, i=1,...,N
Jj=1

O<x;<1, i,j=1,...,N

o we have relaxed the constraints x;; € {0, 1}
e it can be shown that the solution x;} € {0,1}

e hence, we can solve this hard combinatorial problem efficiently by solving an LP
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Polyhedron

a ployhedron is the intersection of finitely many halfspaces
a{x < bl,...,a,j,;x < b,
in matrix notation, a polyhedron can be defined as

P = {x € R" | Ax < b}
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Extreme points

x € P is an extreme point of P if it cannot be written as convex combination
x=0y+(1-0)z, 6¢€(0,1)

for some y,z € P

<>

e X is an extreme point

e X and X are not extreme points

linear programs
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Geometrical interpretation of LP

minimize (or maximize) ¢ Ty

subjectto Ax < b

maximizer'

e dashed lines are level sets ¢Tx = a for different o
o feasible set is a polyhedron

o the optimal solutions occur at an extreme point

linear programs
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e linear programs

e piecewise-linear minimization
e quadratic optimization

e geometric programming

e semidefinite programs

e gquasiconvex optimization

Outline



Piecewise-linear minimization
Piecewise-linear function

f(x) = max (aiTx + b;)
i=1,....m

® a; E[R"andbi eR
e piecewise-linear function is a pointwise maximum of affine functions

fx)

Piecewise-linear minimization

minimize f(x) =  max (aiTx + b;)
i=1,..., m

piecewise-linear minimization 10.14



Equivalent LP formulation

minimize ¢

subjectto alx+b; <t, i=1,...

e with additional variable t € R

e for fixed x, the optimal ¢ is t = f(x)

Matrix form
minimize

subject to

where

piecewise-linear minimization

(%}

o
=
IA

S

,m

S

by
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{1-Norm approximation

minimize ||Ax — b||1

e Ac R™"agnd b € R™

o foravector y € R™, we have

m m
Iyl =" 1yil = 3 max{y;, -y}
i=1 i=1

Equivalent LP formulation

minimize > i U;
subjectto —u < Ax—-b <u

with variables x € R" and u € R™

piecewise-linear minimization
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Robust curve fitting
fit data points (z;, y;) to the straight line x1 + x2z =~ y using £1-norm:
minimize ||Ax — b||1

where

e red circles represent the data

blue dotted line from minimizing ||Ax — b||?

® S
: N <
e black line from minimizing ||Ax — b||1
e {1-norm more robust to outliers °
z

piecewise-linear minimization 10.17



Interview scheduling

a company needs to schedule job interviews for n candidates (1, 2, ..., n)

candidate i is scheduled to be the ith interview

the starting time of candidate ¢ must be in the interval [a;, 8;], where @; < 8;

goal is to find n starting times of interviews so that the minimal starting time
difference between consecutive interviews is maximal

piecewise-linear minimization 10.18



e let ¢; denote the starting time of interview i
o the objective function is the minimal difference between consecutive starting times

f(t) =min{ty —t1,t3 —t2,... .ty — ty—1},

Problem formulation

maximize min{to —t1,13 —fo, ..., by —th_1}
subjectto a@; <t; < B, i=1,2,...,n,

with variable £ € R"

Equivalent LP

maximize s

subjectto tj1—t; =5, i=1,2,...,n—-1
i <t <Bi, i=12,...,n,

with variables t € R and s € R

piecewise-linear minimization
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e linear programs

® piecewise-linear minimization
e quadratic optimization

e geometric programming

e semidefinite programs

e gquasiconvex optimization
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Quadratic optimization

Quadratic program (quadratic optimization problem)
minimize  (1/2)xT0x +rTx
subjectto Ax < b
Gx=h
e O €SI, so objective is convex quadratic
e rcR", Ac R"™" GecRP" heRP, andb € R™
e minimize a convex quadratic function over a polyhedron
Quadratically constrained quadratic problem (QCQP)

minimize  (1/2)xTQox + rgx + 50

subjectto  (1/2)xTQux+rix <0, i=1,...

Ax=b

e 0; €St (i=0,1...,m)are positive semidefinite
o feasible set is intersection of n ellipsoids and an affine set

quadratic optimization
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Examples

Least squares

minimize ||Ax — b||> = xTATAx - 26TAx + bTb

Constrained least squares

minimize  ||Ax — b||?
subjectto Gx =nh

i <xi<u; i=1,...

this problem has no simple analytical solution

quadratic optimization

,n
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Example: power distribution (aggregator model)

in electricity markets, an aggregator
— buys wholesale p units of power (Megawatt) from power distribution utilities

— and resells this power to a group of n business or industrial customers

the ith customer, i = 1, .. ., n, would ideally wants p; Megawatts
e the customer i does not want to receive more or less power than needed

the customer dissatisfaction can be modeled as

Si(xi) = ci(x; —Pi)2, i=1,...,n

X; is power given to customer i; ¢; is a given customer parameter

quadratic optimization 10.22



e the aggregator problem is finding the power allocations x;,i = 1, ..., n, such that
— the average customer dissatisfaction is minimized,
— the whole power p is sold,
— and that the dissatisfaction level is no greater than a contract level, say d

e the aggregator problem is
- L& 2
minimize = > ¢;(x; — p;)
n .

n
subjectto Y x; = p,
this is a QCQP

quadratic optimization 10.23



Example: portfolio optimization

we want to invest on n stocks to achieve a good return while minimizing risks of losses
e let x; > 0 be the proportion of investment on stock i

e let r; be the return for stock i; we assume that the expected returns are known,
uj=E(r;), j=12,...,n,
and that the covariances of all the pairs of variables are also known,
o =E[(ri—p)(rj — )], ij=12....n

(typically, the mean and variance are estimated from historical data)

— a high variance indicates high risk; a low variance indicates low risk

— positive covariance o-l.2j > (0 means stocks i and j prices move in the same direction

— anegative o-l.zj < 0 means they one change in opposite direction
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e the overall return is the random variable
n
R= Z X]'I"]'
Pt
whose expectation and variance are given by
- ,T _ T
E(R)=u'x, Var(R)=x"Xx

o 1= (M1, 12,5 e ey fhn)
e X is the covariance matrix whose elements are %; ; = 07y ;

e the covariance matrix is always positive semidefinite

quadratic optimization 10.25



Portfolio problem QP formulation:

minimize  xTZx

subject to uTx > a
1% =1
x>0

where « is the minimal return value

Portfolio problem QCQP formulation:

maximize pu'x

subjectto xTXx <
1% =1
x>0

where 3 is the upper bound on the risk

quadratic optimization 10.26



e linear programs

® piecewise-linear minimization
e quadratic optimization

e geometric programming

e semidefinite programs

e gquasiconvex optimization
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Monomials and posynomials

Monomial function
fx) =cex{x3? ... xpm,  dom f = RY,

¢ > 0 and each a; € R can be any number

Posynomial function: sum of monomials

f(x) = chxalk o2 xym, dom f =RY,

eachcy >0

geometric programming 10.27



Example

wireless cellular network with n paired transmitters and receivers
® pi1,..., Py are the transmit powers for these pairs

e each transmitter i is intended to communicate with its corresponding receiver i

o the signal to interference plus noise ratio (SINR) for each receiver is:
Si
= , 1=1,...,n,
L li + oy

— S; represents the power of the desired signal received from transmitter i
— [; is the combined interference from all other transmitters

— 0o is the receiver’s noise power

geometric programming 10.28



e the Rayleigh fading model suggests that the S; is a linear function of p1, . ..

Si=Gupi, i=1,...,n,

and
li=>Gijpj,

J#

where G;; are the known path gains from transmitter j to receiver

o therefore, the SINR expressions in terms of the powers p1, ..., p, are:

Giipi .
Yilp) = —————, i=1,....n
0i+ 4 Gijpj

o while the SINR functions aren’t posynomials, their inverses are:

yfl(p)=G +E Zpipit i=1,....n
il J#E ll

geometric programming
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Generalized posynomials

a generalized posynomial is obtained from posynomials by various operations like
e addition

e multiplication

e pointwise maximum

e raising to a specific power

Example

£ (x) = max(2x32x3, x1x0x5 M, ([x1 +x3)

this function qualifies as a generalized posynomial
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Geometric program (GP)

minimize  f(x)
subjectto g;(x) <1, i=1,....m
hix)=1, i=1,...,p
e f,g1...,8m are posynomials
® h1,...,h, are monomials

e its domain is inherently set as D = R, (implicit constraint x > 0)

geometric programming 10.31



Example

e consider the optimization problem:

maximize x/y
subjectto 2 <x <3

x2+3y/z <4y
x/z=22

where x, y, z € R and implicitly x, y,z > 0

e the problem can be recast into the standard GP form:

minimize  x"ly
subjectto 2x7' <1
(1/3)X <1
2yl <
xy’1 —e=1
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Change of variable

e geometric programs are generally not convex optimization problems

e but, they can be recast into convex forms through suitable transformations

Change of variable: y; = log x; (x; = ¢>); take logarithm of cost, constraints

e monomial f(x) = cx{"x5?---x;" can be transformed to
T .
f() =8¢ e log f(y) =a'y+b, (b=logc)

e posynomials f(x) = Zk L Ckxy X2 xmk can be transformed to

K K
FO) =Y eUWIHoE s log £(y) = log(>] e%*P),  (by =log cx)
k=1 k=1

with ax = (a1k, ..., ank)
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Geometric program in convex form

applying the logarithm to the objective/constraint functions results in

minimize ~ f(y) = log (Zfﬁl eaérky+b0k)

. 4T
subjectto  g;(y) = log (Zf;l eaiky+bik) <0, i=1,...

hi(y)=hly+d; =0, i=1,....p

f and g; functions are convex, and A; functions are affine

thus, this optimization problem is convex

we call it geometric program in convex form

the original form is called geometric program in posynomial form

geometric programming
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Example

e consider a cylindrical liquid storage tank with height, &, and diameter, d

o unlike the main body of the tank, its base is made from a distinct material

e assume the height of base remains unchanged irrespective of tank’s height

® Viank is the volume of the tank

e Vsupp is the volume supplied within a designated time frame

e total costs associated with manufacturing/operating the tank over a set duration
(e.g., a year) is divided into
— filling cost

— construction cost

e goal is to minimize cost subject to some constraints

geometric programming 10.35



Filling costs

V.
Ciin(d, h) = a; VSUpp =c h 'd?

tank

4ay Vsypp

e ( is a positive constant (in dollars), and ¢; = p

tied to supplying a certain volume, Vg, of a liquid within the time-frame

Veupp/ Viank determines the frequency of tank refilling; hence its cost

as the volume of the tank diminishes relative to the supply volume, filling costs rise

Construction costs:
Ceonstr(d, h) = CQd2 + cadh,

e Coy = agﬁ and c¢3 = a3 (a2, as are +ve dollar-per-square-meter constants)
e include the expenses of constructing the tank’s and its base
nd?

e the base’s cost is proportional to its area, =;—

e the tank’s cost correlates with its surface area, ndh
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Total cost

Ciotal(d, h) = Cri(d, h) + Ceonste(d, h)
=c1h ™ 'd™% + cyd® + c3dh

this posynomial objective function is subject to constraints such as upper and lower
limits on the diameter and height, represented as:

0<d<dmax, 0<h< hpax

GP formulation
minimize  c1h"'d ™2 + cod® + c3dh
subjectto 0 <d;l d<1

0<hzl h<1

max

with variables d, h
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Example: Frobenius norm diagonal scaling

we seek diagonal matrix D = diag(d), d > 0, with

minimize ||DMD™! ||12v

® express as

IDMD™E = 3 (DMD™ Z M} d; |d;
i,j=1

e a posynomial in d (with exponents 0, 2, and —2)
e in convex form, with y; = log d;,

log IDMD![3 = log ( 5 exp (20yi — y; +log [My])) )
>

i,j=1

geometric programming 10.38



e linear programs

® piecewise-linear minimization
e quadratic optimization

e geometric programming

o semidefinite programs

e gquasiconvex optimization
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Semidefinite program

a linear matrix inequality (LMI) constrains a vector of variables x € R" as
m
F(x)=Fo+)> x;F; <0 (10.1)
i=1
with symmetric coefficient matrices Fy, . .., F;,, of sizem X m

a semidefinite program (SDP) is a particular type of convex optimization problem:
minimize  ¢Tx

10.2
subjectto  F(x) = Fo+» o x;F; <0 (102)

e x € R" is the optimization variable and ¢ € R"

e each F; is a known m X m symmetric matrices

o if Fy, Fy, ..., F, are diagonal matrices the SDP becomes a linear program

semidefinite programs 10.39



General form SDP

minimize cTx

subjectto  F(x) = xlFl(i) + - +x,,F,£i) + Féi) <0, i=1,...

Gx<h
Ax=b
can be equivalently represented as an SDP
minimize  ¢Tx
subjectto  diag(Gx — h, FV (x),...,F®) (x)) <0
Ax=b

semidefinite programs
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Example: maximum eigenvalue minimization

minimize  Amax (F(x))

e the function Ayax (+) is nonconvex

e this problem can be equivalently reformulated as:

minimize ¢
subjectto F(x) —tI <0

where the variables are x € R andt € R

e this is a specific instance of an SDP in the augmented (vector) variable:

x:[;} ¢=(1,0,...,0), F(®)=F(x)—tl

semidefinite programs 10.41



Example: spectral matrix norm minimization

minimize  ||A(x)]|2

o A(x) =Ag+x1A1 + - +x,A, € RPX™
e this problem is equivalent to the following SDP:
minimize ¢

I, AT
subject to [ Em () ] >0

A(x) tlp

with decision variables x € R" andt € R (t > 0)

semidefinite programs 10.42



o to show this, recall that the spectral norm is

A2 = VAmax (AT(x) A(x))
o it follows that
A2 <t &= AT(x)A(x) <¢*I, 120
e using the Schur complement rule, this matrix inequality is same as

th, AT(x)

21, AT(x)
[ A 1, | TV

A(x) I,

ZO(:»[

right inequality obtained by congruence transformation with

diag(1/ Vil Vi)

fort >0
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Example: Frobenius norm minimization

minimize  [|A(x)]|%

e equivalent to SDP:

minimize  tr(Y)

Y A(x)
AT Iy } =0

subject to [
where the variables are x € R and Y € RP*P is positive semidefinite
e the equivalence of this formulation can be established by noting the relationship:
A7 = tr(A(x)AT(x))

e using the Schur complement, the matrix condition can be written as:

[ Y A(x)

AT I, >0 = AX)AT(x) <Y

this validation links the original objective with the SDP representation

semidefinite programs 10.44



e linear programs

® piecewise-linear minimization
e quadratic optimization

e geometric programming

e semidefinite programs

e quasiconvex optimization
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Quasiconvex function

f : R" — R is quasiconvex if its domain and all of its sublevel sets

S, ={xedomf| f(x) <y}

are convex for every real number y

e every convex function naturally possesses convex level sets
e there exist non-convex functions that have convex level sets
e a function is quasiconcave if its negative (— f) is quasiconvex

e a function that’s both quasiconvex and quasiconcave is called quasilinear
— both their domain and each level set {x | f(x) = a} are convex

quasiconvex optimization 10.45



Graphical illustration

quasiconvex function that is non-convex

e S, = [a,b] is convex

e So = (o0, ) is convex

quasiconvex optimization 10.46



Examples

e f(x) = +/|x| is nonconvex, but it is quasiconvex
— wheny <0,thenSy =0
— fory > 0, the sublevel set is given by:

Sy = {x [Vixl <y} ={x | Ikl <¥*} = [-¥*.¥]
e logx over R, is both quasiconvex and quasiconcave, making it quasilinear
e ceil(x) =inf{z € Z | z > x}, is quasiconvex and quasiconcave

e the nonconvex f(x1,x2) = x1X2 is quasiconcave on Rf but not on R2

quasiconvex optimization 10.47



e the function

domf={xeR" | c¢Tx+d>0},c#0
is quasiconvex since

Sy={x|f(x) <y} ={xeR"|(a-y)Tx+(b-yd) <0}
is a convex set

e given points a, b € R", the function

llx —all

Ik =bl

is quasiconvex since its sublevel set represents the halfspace where the distance
to a is less than or equal to the distance to b

fx) =

quasiconvex optimization 10.48



Properties of quasiconvex function

e fis quasiconvex iff dom f is convex and for any x,y € dom f with0 < 6 < 1,

f(bx +(1-0)y) < max{f(x), f(y)}

max{f(x), f(y)} v, f(y))

e a differentiable f with convex domain is quasiconvex if and only if

fO) <) =V )T (y-x) <0

e a sum of quasiconvex functions is not necessarily quasiconvex

quasiconvex optimization 10.49



Examples

e the cardinality x € R", denoted card(x), is the no. of its non-zero entries

card(x) is quasiconcave on R” but not on R"; this stems from the fact:
card(x + y) > min{card(x), card(y)},
valid for non-negative vectors x, y
e the rank is quasiconcave on positive semidefinite matrices since
rank(X +Y) > min{rank X, rank Y}

holds for positive semidefinite matrices X, Y

quasiconvex optimization
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Quasiconvex optimization

a quasiconvex optimization problem in standard form is represented as

minimize  f(x)
subjectto  g;(x) <0, i=1,...,m (10.3)
Ax=b

e the objective f is quasiconvex
e g; are convex

e can have locally optimal points that are not (globally) optimal

quasiconvex optimization 10.51



Convex representation of sublevel sets of f

if f is quasiconvex, there exists a family of functions ¢, (x) such that:
e ¢, (x) os convex in x for fixed ¢
e t-sublevel set of f is 0-sublevel set of ¢, (x):

f(x) <t = ¢/(x) <0

where for every x, we have ¢g(x) < ¢,(x) forany s > ¢

Example
_rW
q(x)
with p convex, g concave, and p(x) > 0, g(x) > 0 on dom f

J )

can take ¢; (x) = p(x) — tq(x):
e fort > 0, ¢, convex inx
e p(x)/q(x) <tifandonlyif ¢;(x) <0

quasiconvex optimization
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Quasiconvex optimization via convex feasibility problems

find X

subjectto  ¢;(x) <0
filx) <0, i=1,...,m
Ax=D>

e if feasible then p* < r; p* is optimal solution of original quasiconvex problem

e if infeasible, then p* > t;

Bisection for quasiconvex problems
given: [ < p*,u > p* and atolerance € > 0

repeat
. ltu
1. t = -5

2. solve the convex feasibility problem
3. if feasible, setu :=t; else, setl := ¢

untilu — [ < e

quasiconvex optimization 10.53
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