10. Linear programs

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Definition

a linear program (LP) is an optimization problem where the objective function is linear and the constraint functions are linear or affine

LP general form

$$
\begin{align*}
\text { minimize (or maximize) } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \tag{10.1}\\
& \sum_{j=1}^{n} g_{i j} x_{j} \leq h_{i}, \quad i=1, \ldots, p
\end{align*}
$$

- n optimization variables x_{1}, \ldots, x_{n}
- coefficients $c_{j}, a_{i j}, g_{i j}, h_{i}, b_{i}$ are given

LP in compact form

$$
\begin{align*}
\text { minimize (or maximize) } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b} \tag{10.2}\\
& G \boldsymbol{x} \leq \boldsymbol{h}
\end{align*}
$$

- A is an $m \times n$ matrix with entries $a_{i j}$
- G is an $p \times n$ matrix with entries $g_{i j}$
- $\boldsymbol{b}=\left(b_{1}, \ldots, b_{m}\right)$
- $\boldsymbol{h}=\left(h_{1}, \ldots, h_{p}\right)$
- $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$

Example: the diet problem

- we need to create a meal that contains at least 12 units of protein, 9 units of iron, and 15 units of thiamine;
- we have two main foods A and B:
- each gram of A contains 2 units of protein, 1 unit of iron, and 1 unit of thiamine; each gram B contains 1 unit of protein, 1 unit of iron, and 3 units of thiamine
- each gram of A costs 30 cents, while each gram of B costs 40 cents
- how many grams of each of the food should be used to minimize the cost of the meal?
let x_{1} and x_{2} be the number of grams of food A and B used in the meal; then, the problem can formulated as

$$
\begin{array}{ll}
\operatorname{minimize} & 30 x_{1}+40 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 9 \\
& x_{1}+3 x_{2} \geq 15 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Example: alloy mixture

we want to create a new alloy consisting of 40% iron, 35% nickel, and 25% cobalt from a mixture of several available alloys that have the metal properties listed in the below table

property	alloy 1	alloy 2	alloy 3	alloy 4
\% of iron	70	25	40	20
\% of nickel	10	15	50	50
\% of cobalt	20	60	10	30
cost $(\$ / \mathrm{kg})$	22	18	25	24

we want to determine the proportions of these alloys that should be blended together so that we produce the new alloy at a minimum cost

- let $x_{i}, i=1,2,3,4$, be the proportion of alloy i that is used to produce the new alloy
- the problem can be formulated as

$$
\begin{array}{ll}
\operatorname{minimize} & 22 x_{1}+18 x_{2}+25 x_{3}+24 x_{4} \\
\text { subject to } & 0.7 x_{1}+0.25 x_{2}+0.4 x_{3}+0.2 x_{4}=0.4 \\
& 0.1 x_{1}+0.15 x_{2}+0.5 x_{3}+0.5 x_{4}=0.35 \\
& 0.2 x_{1}+0.6 x_{2}+0.1 x_{3}+0.3 x_{4}=0.25 \\
& x_{1}+x_{2}+x_{3}+x_{4}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Example: wireless communication

- n "mobile" users; user i transmits a signal to the base station with power p_{i} and an attenuation factor of β_{i} (i.e., signal power received at the base station from user i is $\beta_{i} p_{i}$)
- total power received from all other users is considered interference (i.e., the interference for user i is $\sum_{j \neq i} \beta_{j} p_{j}$)
- for the communication with user i to be reliable, the signal-to-interference ratio must exceed a threshold γ_{i}
- we are interested in minimizing the total power transmitted by all users subject to having reliable communications for all users

Problem formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} p_{i} \\
\text { subject to } & \frac{\bar{\beta}_{i} p_{i}}{\sum_{j \neq i} \beta_{j} p_{j}} \geq \gamma_{i}, \quad i=1, \ldots, n \\
& p_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

LP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} p_{i} \\
\text { subject to } & \beta_{i} p_{i}-\gamma_{i} \sum_{j \neq i} \beta_{j} p_{j} \geq 0, \quad i=1, \ldots, n \\
& p_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

Example: manufacturing problem

we have n products and m raw materials, and

- c_{j} is profit of product j;
- b_{i} are the available units of material i;
- $a_{i j}$ is the number of units of material i product j needs in order to be produced
the manufacturing problem is to choose the amount of product j produced such that the profit is maximized; we can formulate this problem as:

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \tag{10.3}\\
& x_{j} \geq 0, \quad j=1, \ldots, n
\end{array}
$$

where the variable x_{j} represents the amount of product j to be produced

Example: assignment problem

- we want to match N people to N tasks
- each person is assigned to one task (each task assigned to one person)
- cost of assigning person i to task j is $c_{i j}$
- variable $x_{i j}=1$ if person i is assigned to task $j ; x_{i j}=0$ otherwise

Combinatorial formulation

$$
\begin{array}{ll}
\text { minimize } & \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& x_{i j} \in\{0,1\}, \quad i, j=1, \ldots, N
\end{array}
$$

N ! possible assignments (e.g., $10!=3628800$)

LP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& 0 \leq x_{i j} \leq 1, \quad i, j=1, \ldots, N
\end{array}
$$

- we have relaxed the constraints $x_{i j} \in\{0,1\}$
- it can be shown that the solution $x_{i j}^{\star} \in\{0,1\}$
- hence, we can solve this hard combinatorial problem efficiently by solving the above LP

Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Piecewise-linear minimization

Piecewise-linear function: a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is piecewise-linear if it can be expressed as

$$
f(\boldsymbol{x})=\max _{i=1, \ldots, m}\left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right)
$$

Piecewise-linear minimization

$$
\operatorname{minimize} \quad f(\boldsymbol{x})=\max _{i=1, \ldots, m}\left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right)
$$

Equivalent LP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

(for fixed \boldsymbol{x}, the optimal t is $t=f(\boldsymbol{x})$)

Matrix form

$$
\begin{aligned}
\operatorname{minimize} & \tilde{\boldsymbol{c}}^{T} \tilde{\boldsymbol{x}} \\
\text { subject to } & \tilde{A} \tilde{\boldsymbol{x}} \leq \tilde{\boldsymbol{b}}
\end{aligned}
$$

where

$$
\tilde{\boldsymbol{x}}=\left[\begin{array}{c}
\boldsymbol{x} \\
t
\end{array}\right], \quad \tilde{\boldsymbol{c}}=\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{cc}
\boldsymbol{a}_{1}^{T} & -1 \\
\vdots & \vdots \\
\boldsymbol{a}_{m}^{T} & -1
\end{array}\right], \quad \tilde{\boldsymbol{b}}=\left[\begin{array}{c}
-b_{1} \\
\vdots \\
-b_{m}
\end{array}\right]
$$

ℓ_{1}-Norm approximation

$$
\operatorname{minimize}\|A \boldsymbol{x}-\boldsymbol{b}\|_{1}
$$

- $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$
- for a vector $\boldsymbol{y} \in \mathbb{R}^{m}$, we have

$$
\|\boldsymbol{y}\|_{1}=\sum_{i=1}^{m}\left|y_{i}\right|=\sum_{i=1}^{m} \max \left\{y_{i},-y_{i}\right\}
$$

Equivalent LP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} u_{i} \\
\text { subject to } & -\boldsymbol{u} \leq A \boldsymbol{x}-\boldsymbol{b} \leq \boldsymbol{u}
\end{array}
$$

with variables $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{u} \in \mathbb{R}^{m}$

Robust curve fitting

problem of fitting the data points $\left(z_{i}, y_{i}\right)$ to the straight line $x_{1}+x_{2} z \approx y$ can be formulated as

$$
\operatorname{minimize} \quad\|A \boldsymbol{x}-\boldsymbol{b}\|_{1}
$$

where

$$
A=\left[\begin{array}{cc}
1 & z_{1} \\
\vdots & \vdots \\
1 & z_{m}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
$$

- red circles represent the data
- blue dotted line from minimizing $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$
- black line from minimizing $\|A \boldsymbol{x}-\boldsymbol{b}\|_{1}$
- ℓ_{1}-norm more robust to outliers

Interview scheduling

- a company needs to schedule job interviews for n candidates numbered $1,2, \ldots, n$
- candidate i is scheduled to be the i th interview
- the starting time of candidate i must be in the interval $\left[\alpha_{i}, \beta_{i}\right]$, where $\alpha_{i}<\beta_{i}$
- the goal is to to find n starting times of interviews so that the minimal starting time difference between consecutive interviews is maximal
let t_{i} denote the starting time of interview i; the objective function is the minimal difference between consecutive starting times of interviews:

$$
f(\boldsymbol{t})=\min \left\{t_{2}-t_{1}, t_{3}-t_{2}, \ldots, t_{n}-t_{n-1}\right\}
$$

where $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$

Problem formulation

$$
\begin{array}{ll}
\operatorname{maximize} & \min \left\{t_{2}-t_{1}, t_{3}-t_{2}, \ldots, t_{n}-t_{n-1}\right\} \\
\text { subject to } & \alpha_{i} \leq t_{i} \leq \beta_{i}, \quad i=1,2, \ldots, n,
\end{array}
$$

with variable $t \in \mathbb{R}^{n}$

Equivalent LP

$$
\begin{array}{ll}
\operatorname{maximize} & s \\
\text { subject to } & t_{i+1}-t_{i} \geq s, \quad i=1,2, \ldots, n-1 \\
& \alpha_{i} \leq t_{i} \leq \beta_{i}, \quad i=1,2, \ldots, n,
\end{array}
$$

with variables $t \in \mathbb{R}^{n}$ and $s \in \mathbb{R}$

Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Hyperplane

a hyperplane is the solution set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}$ with $\boldsymbol{a} \neq \mathbf{0}$

- \boldsymbol{a} is called normal vector
- \boldsymbol{x} is in the hyperplane if and only if $\boldsymbol{x}-\boldsymbol{q}$ is orthogonal to \boldsymbol{a} :

$$
\boldsymbol{a}^{T} \boldsymbol{x}=b=\boldsymbol{a}^{T} \boldsymbol{q} \Longrightarrow \boldsymbol{a}^{T}(\boldsymbol{x}-\boldsymbol{q})=0
$$

Halfspaces

the hyperplane $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}$ divides \mathbb{R}^{n} in two halfspaces

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\} \quad \text { and } \quad\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}^{T} \boldsymbol{x} \geq b\right\}
$$

$$
\left.\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} \geq b\right\}\right\}\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}
$$

Polyhedron

a ployhedron is the intersection of finitely many halfspaces; it is any set of points that satisfies a finite number of inequalities

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \leq b_{1} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \leq b_{m}
\end{aligned}
$$

in matrix notation, a polyhedron can be defined as

$$
\begin{equation*}
\mathcal{P}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid A \boldsymbol{x} \leq \boldsymbol{b}\right\} \tag{10.4}
\end{equation*}
$$

Extreme points

a point $\boldsymbol{x} \in \mathcal{P}$ is an extreme point of \mathcal{P} if it cannot be written as the convex combination

$$
\boldsymbol{x}=\theta \boldsymbol{y}+(1-\theta) \boldsymbol{z}, \quad \theta \in(0,1)
$$

for some $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}$

- $\hat{\boldsymbol{x}}$ is an extreme point
- $\overline{\boldsymbol{x}}$ and $\tilde{\boldsymbol{x}}$ are not extreme points

Geometrical interpretation of LP

dashed lines are level sets $\boldsymbol{c}^{T} \boldsymbol{x}=\alpha$ for different α; the optimal solutions occur at an extreme point

Example 10.1

$$
\begin{array}{ll}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 3 \\
& 4 x_{1}+x_{2} \leq 5 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

optimal value is -7 achieved at unique $\boldsymbol{x}^{\star}=(1,1)$

No feasible solution

$$
\begin{array}{ll}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 3 \\
& 4 x_{1}+x_{2} \geq 5 \\
& x_{1}+x_{2} \leq-1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

- we added the additional constraint $x_{1}+x_{2} \leq-1$ to the previous problem
- there are no points that satisfy these constraints and we say that this is an infeasible $L P$ and define the optimal value to be $+\infty$

No optimal solution

$$
\begin{array}{ll}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 3 \\
& 4 x_{1}+x_{2} \geq 5 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

- we can make the cost arbitrarily small by choosing x_{1} and x_{2} arbitrarily large; thus, there are no finite solutions to this problem
- the feasible set is said to be unbounded and the problem is said to be unbounded below and the optimal value is $-\infty$

Multiple optimal solutions

$\operatorname{minimize}$	$-x_{1}-2 x_{2}$
subject to	$x_{1}+2 x_{2} \leq 3$
	$4 x_{1}+x_{2} \leq 5$
	$x_{1} \geq 0, x_{2} \geq 0$

- there are multiple points with minimum cost $\boldsymbol{c}^{T} \boldsymbol{x}=-3$
- any point on the line between the points $(0,1.5)$ and $(1,1)$ is optimal

Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b} \tag{10.5}\\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- any linear program can be transformed into the above standard form
- the constraints in a linear program may differ from one problem to another $A \boldsymbol{x}=\boldsymbol{b}$ and other problems have inequalities $A \boldsymbol{x} \leq \boldsymbol{b}$ and/or $\boldsymbol{x} \geq \mathbf{0}$
- to obtain systematic method for finding a solution, we need to transform any LP into a common form such as the standard form

Transformations: slack and surplus variables

- we can transform an inequality constraint into standard form as follows

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Longleftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}+z_{i}=b_{i}, \quad z_{i} \geq 0
$$

where z_{i} is an additional variable, called slack variable

- similarly,

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \Longleftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}-z_{i}=b_{i}, \quad z_{i} \geq 0
$$

where z_{i} is called a surplus variable

Example 10.2

transform the following LP problem into standard form

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \leq b_{2} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

with variables x_{1}, x_{2}, x_{3}
we can introduce two variable x_{4} and x_{5}, to transform the above problem into the following standard form:

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+0 x_{4}+0 x_{5} \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+x_{4}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+x_{5}=b_{2} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0
\end{array}
$$

Transformations: free variables I

consider the problem

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2} \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array}
$$

where the constraint $\boldsymbol{x} \geq \mathbf{0}$ is not present

- we can rewrite that problem into standard from by replacing each entry x_{i} by $x_{i}=x_{i}^{+}-x_{i}^{-}$for $x_{i}^{+} \geq 0$ and $x_{i}^{-} \geq 0$
- doing so, we get

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}^{+}+c_{2} x_{2}^{+}-c_{1} x_{1}^{-}-c_{2} x_{2}^{-} \\
\text {subject to } & a_{11} x_{1}^{+}+a_{12} x_{2}^{+}-a_{11} x_{1}^{-}-a_{12} x_{2}^{-}=b_{1} \\
& a_{21} x_{1}^{+}+a_{22} x_{2}^{+}-a_{21} x_{1}^{-}-a_{22} x_{2}^{-}=b_{2} \\
& x_{1}^{+} \geq 0, x_{2}^{+} \geq 0, x_{1}^{-} \geq 0, x_{2}^{-} \geq 0
\end{array}
$$

where we have four variables instead of two

Transformations: free variables II

in some situations, we can transform the problem into the standard by eliminating some variables; for example, consider

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+x_{2}+x_{3} \\
\text { subject to } & x_{1}-x_{2}-x_{3}=1 \\
& 2 x_{1}+x_{2}+x_{3}=5 \\
& x_{2} \geq 0, \quad x_{3} \geq 0
\end{array}
$$

- from the first equality we have $x_{1}=1+x_{2}+x_{3}$
- we can replace x_{1} by $x_{1}=1+x_{2}+x_{3}$ in all other places to get

$$
\begin{array}{ll}
\operatorname{minimize} & 2 x_{2}+2 x_{3}+1 \\
\text { subject to } & x_{2}+x_{3}=1 \\
& x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

and the constant 1 in the objective can be removed since it does not affect the solution

Example 10.3

transform the following LP into standard form

$$
\begin{array}{cl}
\operatorname{maximize} & x_{1}-x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}+2 x_{2} \geq 1 \\
& x_{2} \geq 0
\end{array}
$$

- we can represent this problem equivalently by

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}^{+}+x_{1}^{-}+x_{2} \\
\text { subject to } & x_{1}^{+}-x_{1}^{-}+x_{2}+z_{1}=1 \\
& x_{1}^{+}-x_{1}^{-}+2 x_{2}-z_{2}=1 \\
& x_{1}^{+}, x_{1}^{-}, x_{2}, z_{1}, z_{2} \geq 0
\end{array}
$$

- the objective is multiplied by a minus sign to transform the maximization into minimization

System of linear equations

consider the system of equations

$$
A x=b
$$

where A is an $m \times n$ matrix

- we assume that
the matrix A has linearly independent rows
- hence, the matrix A also has m linearly independent columns
- we assume that the columns of the matrix A are reordered such that the first m columns are linearly independent:

$$
A=\left[\begin{array}{ll}
B & D
\end{array}\right]
$$

where B is an $m \times m$ invertible matrix and D is an $m \times n-m$ matrix

Basic solutions

Basic solution the particular solution $\boldsymbol{x}=\left(B^{-1} \boldsymbol{b}, \mathbf{0}\right)$ is called a basic solution to $A \boldsymbol{x}=\boldsymbol{b}$ with respect to the basis B

- the entries of \boldsymbol{x}_{B} are called basic variables and the columns of B as basic columns
- if some of the variables of a basic solution are also zero, then the basic solution is said to be a degenerate basic solution

Basic feasible solution (BFS): a basic solution that is feasible for problem (10.5) $(\boldsymbol{x} \geq \mathbf{0})$ is called a basic feasible solution

- a degenerate basic feasible solution is a degenerate basic solution that is feasible
- if an optimal solution to (10.5) is also basic, then it is said to be an optimal basic feasible solution

Example 10.4

$$
A=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & -1 & 4 \\
1 & -2 & -1 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
8 \\
2
\end{array}\right]
$$

the matrix A has linearly independent rows

- if we choose $B=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2}\end{array}\right]$, then $\boldsymbol{x}_{B}=B^{-1} \boldsymbol{b}=(6,2)$; therefore, $\boldsymbol{x}=(6,2,0,0)$ is a basic feasible solution with respect to the basis $B=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$
- if we choose $B=\left[\boldsymbol{a}_{3} \boldsymbol{a}_{4}\right]$, then $\boldsymbol{x}_{B}=B^{-1} \boldsymbol{b}=(0,2)$; thus, the point $\boldsymbol{x}=(0,0,0,2)$ is a degenerate basic feasible solution with respect to $B=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right]$
- if we choose $B=\left[\boldsymbol{a}_{2} \boldsymbol{a}_{3}\right]$, then $\boldsymbol{x}_{B}=B^{-1} \boldsymbol{b}=(2,-6)$; thus, the point $\boldsymbol{x}=(0,2,-6,0)$ is a basic solution with respect to $B=\left[\boldsymbol{a}_{2} \boldsymbol{a}_{3}\right]$, but is not feasible
- the point $\boldsymbol{x}=(3,1,0,1)$ is a feasible solution that is not basic

Fundamental Theorem of LP

for a standard form LP, the fundamental theorem of $L P$ states that

1. if there exists a feasible solution, then there exists a basic feasible solution
2. if there exists an optimal feasible solution, then there exists an optimal basic feasible solution
this means that to find an optimal solution, we only need to search the set of basic feasible solutions instead of looking at all possible solutions

Graphical interpretation

- the feasible set $\Omega=\{\boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ can be described as

$$
\Omega=\{\boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}=\{\boldsymbol{x} \mid \bar{A} \boldsymbol{x} \leq \overline{\boldsymbol{b}}\}
$$

where

$$
\bar{A}=\left[\begin{array}{r}
A \\
-A \\
-I
\end{array}\right], \quad \overline{\boldsymbol{b}}=\left[\begin{array}{r}
\boldsymbol{b} \\
-\boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

- hence, the set Ω is a polyhedron

BFS and extreme points: the point $\hat{\boldsymbol{x}}$ is an extreme point of Ω if and only if, it is a basic feasible solution to $A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$

References and further readings

- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, chapters 2.2.1, 2.2.4, 4.3.
- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013, chapter 15.

