
10. Linear programs

• linear programs

• piecewise-linear minimization

• geometry of LPs

• standard form LP

ENGR 507 (Fall 2023) S. Alghunaim

10.1



Definition

a linear program (LP) is an optimization problem where the objective function
is linear and the constraint functions are linear or affine

LP general form

minimize (or maximize)
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n∑
j=1

gijxj ≤ hi, i = 1, . . . , p

(10.1)

• n optimization variables x1, . . . , xn

• coefficients cj , aij , gij , hi, bi are given
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LP in compact form

minimize (or maximize) cTx

subject to Ax ≤ b

Gx ≤ h

(10.2)

• A is an m× n matrix with entries aij

• G is an p× n matrix with entries gij

• b = (b1, . . . , bm)

• h = (h1, . . . , hp)

• c = (c1, . . . , cn)
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Example: the diet problem

• we need to create a meal that contains at least 12 units of protein, 9 units
of iron, and 15 units of thiamine;

• we have two main foods A and B:
■ each gram of A contains 2 units of protein, 1 unit of iron, and 1 unit of

thiamine; each gram B contains 1 unit of protein, 1 unit of iron, and 3 units of
thiamine

■ each gram of A costs 30 cents, while each gram of B costs 40 cents
• how many grams of each of the food should be used to minimize the cost

of the meal?

let x1 and x2 be the number of grams of food A and B used in the meal; then,
the problem can formulated as

minimize 30x1 + 40x2

subject to 2x1 + x2 ≥ 12
x1 + x2 ≥ 9
x1 + 3x2 ≥ 15
x1, x2 ≥ 0
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Example: alloy mixture

we want to create a new alloy consisting of 40% iron, 35% nickel, and 25%
cobalt from a mixture of several available alloys that have the metal properties
listed in the below table

property alloy 1 alloy 2 alloy 3 alloy 4
% of iron 70 25 40 20

% of nickel 10 15 50 50
% of cobalt 20 60 10 30
cost ($/kg) 22 18 25 24

we want to determine the proportions of these alloys that should be blended
together so that we produce the new alloy at a minimum cost
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• let xi, i = 1, 2, 3, 4, be the proportion of alloy i that is used to produce the
new alloy

• the problem can be formulated as

minimize 22x1 + 18x2 + 25x3 + 24x4

subject to 0.7x1 + 0.25x2 + 0.4x3 + 0.2x4 = 0.4
0.1x1 + 0.15x2 + 0.5x3 + 0.5x4 = 0.35
0.2x1 + 0.6x2 + 0.1x3 + 0.3x4 = 0.25
x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0
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Example: wireless communication

Base station

User 1 User 2 User 3

• n “mobile” users; user i transmits a signal to the base station with power
pi and an attenuation factor of βi (i.e., signal power received at the base
station from user i is βipi)

• total power received from all other users is considered interference (i.e.,
the interference for user i is

∑
j ̸=i βjpj)

• for the communication with user i to be reliable, the signal-to-interference
ratio must exceed a threshold γi

• we are interested in minimizing the total power transmitted by all users
subject to having reliable communications for all users
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Problem formulation

minimize
∑n

i=1 pi
subject to βipi∑

j ̸=i βjpj
≥ γi, i = 1, . . . , n

pi ≥ 0, i = 1, . . . , n

LP formulation

minimize
∑n

i=1 pi
subject to βipi − γi

∑
j ̸=i βjpj ≥ 0, i = 1, . . . , n

pi ≥ 0, i = 1, . . . , n
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Example: manufacturing problem

we have n products and m raw materials, and

• cj is profit of product j;
• bi are the available units of material i;
• aij is the number of units of material i product j needs in order to be

produced

the manufacturing problem is to choose the amount of product j produced
such that the profit is maximized; we can formulate this problem as:

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

(10.3)

where the variable xj represents the amount of product j to be produced
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Example: assignment problem

• we want to match N people to N tasks

• each person is assigned to one task (each task assigned to one person)

• cost of assigning person i to task j is cij

• variable xij = 1 if person i is assigned to task j; xij = 0 otherwise

Combinatorial formulation

minimize
N∑
i=1

N∑
j=1

cijxij

subject to
N∑
i=1

xij = 1, j = 1, . . . , N

N∑
j=1

xij = 1, i = 1, . . . , N

xij ∈ {0, 1}, i, j = 1, . . . , N

N ! possible assignments (e.g., 10! = 3628800 )
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LP formulation

minimize
N∑
i=1

N∑
j=1

cijxij

subject to
N∑
i=1

xij = 1, j = 1, . . . , N

N∑
j=1

xij = 1, i = 1, . . . , N

0 ≤ xij ≤ 1, i, j = 1, . . . , N

• we have relaxed the constraints xij ∈ {0, 1}
• it can be shown that the solution x⋆

ij ∈ {0, 1}
• hence, we can solve this hard combinatorial problem efficiently by solving

the above LP
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Piecewise-linear minimization

Piecewise-linear function: a function f : Rn → R is piecewise-linear if it
can be expressed as

f(x) = max
i=1,...,m

(aTix+ bi)

f(x)

aTi x+ bi

x

Piecewise-linear minimization

minimize f(x) = max
i=1,...,m

(aTix+ bi)
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Equivalent LP formulation

minimize t
subject to aTix+ bi ≤ t, i = 1, . . . ,m

(for fixed x, the optimal t is t = f(x))

Matrix form

minimize c̃Tx̃

subject to Ãx̃ ≤ b̃

where

x̃ =

[
x
t

]
, c̃ =

[
0
1

]
, Ã =

aT1 −1
...

...
aTm −1

 , b̃ =

−b1
...

−bm
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ℓ1-Norm approximation

minimize ∥Ax− b∥1

• A ∈ Rm×n and b ∈ Rm

• for a vector y ∈ Rm, we have

∥y∥1 =

m∑
i=1

|yi| =
m∑
i=1

max{yi,−yi}

Equivalent LP formulation

minimize
∑m

i=1 ui

subject to −u ≤ Ax− b ≤ u

with variables x ∈ Rn and u ∈ Rm
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Robust curve fitting

problem of fitting the data points (zi, yi) to the straight line x1 + x2z ≈ y can
be formulated as

minimize ∥Ax− b∥1

where

A =

1 z1
... ...
1 zm

 , b =

 y1
...
ym

 , x =

[
x1

x2

]

• red circles represent the data

• blue dotted line from minimizing
∥Ax− b∥2

• black line from minimizing
∥Ax− b∥1

• ℓ1-norm more robust to outliers
z

f
(z
)
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Interview scheduling

• a company needs to schedule job interviews for n candidates numbered
1, 2, . . . , n

• candidate i is scheduled to be the ith interview

• the starting time of candidate i must be in the interval [αi, βi], where
αi < βi

• the goal is to to find n starting times of interviews so that the minimal
starting time difference between consecutive interviews is maximal
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let ti denote the starting time of interview i; the objective function is the
minimal difference between consecutive starting times of interviews:

f(t) = min {t2 − t1, t3 − t2, . . . , tn − tn−1} ,

where t = (t1, . . . , tn)

Problem formulation

maximize min {t2 − t1, t3 − t2, . . . , tn − tn−1}
subject to αi ≤ ti ≤ βi, i = 1, 2, . . . , n,

with variable t ∈ Rn

Equivalent LP

maximize s
subject to ti+1 − ti ≥ s, i = 1, 2, . . . , n− 1

αi ≤ ti ≤ βi, i = 1, 2, . . . , n,

with variables t ∈ Rn and s ∈ R
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Hyperplane

a hyperplane is the solution set {x ∈ Rn | aTx = b} with a ̸= 0

0

q = b
∥a∥2 a

{x | aTx = b}

a

x

x− q

• a is called normal vector

• x is in the hyperplane if and only if x− q is orthogonal to a:

aTx = b = aTq =⇒ aT(x− q) = 0
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Halfspaces

the hyperplane {x ∈ Rn | aTx = b} divides Rn in two halfspaces

{x ∈ Rn | aTx ≤ b} and {x ∈ Rn | aTx ≥ b}

{x | aTx ≤ b}{x | aTx ≥ b}

{x | aTx = b}a
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Polyhedron

a ployhedron is the intersection of finitely many halfspaces; it is any set of
points that satisfies a finite number of inequalities

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

in matrix notation, a polyhedron can be defined as

P = {x ∈ Rn | Ax ≤ b} (10.4)
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Extreme points

a point x ∈ P is an extreme point of P if it cannot be written as the convex
combination

x = θy + (1− θ)z, θ ∈ (0, 1)

for some y, z ∈ P

P

ỹ

x̃

z̃ȳ
x̄

z̄

ŷ

x̂

ẑ

• x̂ is an extreme point
• x̄ and x̃ are not extreme points
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Geometrical interpretation of LP

minimize (or maximize) cTx

subject to Ax ≤ b

−c

Ax ≤ b

c

maximizer

minimizer

dashed lines are level sets cTx = α for different α; the optimal solutions
occur at an extreme point

SA — ENGR507geometry of LPs 10.22



Example 10.1

minimize −3x1 − 4x2

subject to x1 + 2x2 ≤ 3
4x1 + x2 ≤ 5
x1 ≥ 0, x2 ≥ 0

optimal value is −7 achieved at unique x⋆ = (1, 1)
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No feasible solution

minimize −3x1 − 4x2

subject to x1 + 2x2 ≥ 3
4x1 + x2 ≥ 5
x1 + x2 ≤ −1
x1 ≥ 0, x2 ≥ 0

• we added the additional constraint x1 + x2 ≤ −1 to the previous problem

• there are no points that satisfy these constraints and we say that this is an
infeasible LP and define the optimal value to be +∞
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No optimal solution

minimize −3x1 − 4x2

subject to x1 + 2x2 ≥ 3
4x1 + x2 ≥ 5
x1 ≥ 0, x2 ≥ 0

• we can make the cost arbitrarily small by choosing x1 and x2 arbitrarily
large; thus, there are no finite solutions to this problem

• the feasible set is said to be unbounded and the problem is said to be
unbounded below and the optimal value is −∞
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Multiple optimal solutions

minimize −x1 − 2x2

subject to x1 + 2x2 ≤ 3
4x1 + x2 ≤ 5
x1 ≥ 0, x2 ≥ 0

• there are multiple points with minimum cost cTx = −3

• any point on the line between the points (0, 1.5) and (1, 1) is optimal
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Standard form LP

minimize cTx
subject to Ax = b

x ≥ 0
(10.5)

• any linear program can be transformed into the above standard form

• the constraints in a linear program may differ from one problem to another
Ax = b and other problems have inequalities Ax ≤ b and/or x ≥ 0

• to obtain systematic method for finding a solution, we need to transform
any LP into a common form such as the standard form
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Transformations: slack and surplus variables

• we can transform an inequality constraint into standard form as follows

n∑
j=1

aijxj ≤ bi ⇐⇒
n∑

j=1

aijxj + zi = bi, zi ≥ 0

where zi is an additional variable, called slack variable

• similarly,

n∑
j=1

aijxj ≥ bi ⇐⇒
n∑

j=1

aijxj − zi = bi, zi ≥ 0

where zi is called a surplus variable
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Example 10.2

transform the following LP problem into standard form

minimize c1x1 + c2x2 + c3x3

subject to a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 ≤ b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

with variables x1, x2, x3

we can introduce two variable x4 and x5, to transform the above problem into
the following standard form:

minimize c1x1 + c2x2 + c3x3 + 0x4 + 0x5

subject to a11x1 + a12x2 + a13x3 + x4 = b1
a21x1 + a22x2 + a23x3 + x5 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0
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Transformations: free variables I

consider the problem

minimize c1x1 + c2x2

subject to a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

where the constraint x ≥ 0 is not present

• we can rewrite that problem into standard from by replacing each entry xi

by xi = x+
i − x−

i for x+
i ≥ 0 and x−

i ≥ 0

• doing so, we get

minimize c1x
+
1 + c2x

+
2 − c1x

−
1 − c2x

−
2

subject to a11x
+
1 + a12x

+
2 − a11x

−
1 − a12x

−
2 = b1

a21x
+
1 + a22x

+
2 − a21x

−
1 − a22x

−
2 = b2

x+
1 ≥ 0, x+

2 ≥ 0, x−
1 ≥ 0, x−

2 ≥ 0

where we have four variables instead of two
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Transformations: free variables II

in some situations, we can transform the problem into the standard by
eliminating some variables; for example, consider

minimize x1 + x2 + x3

subject to x1 − x2 − x3 = 1
2x1 + x2 + x3 = 5
x2 ≥ 0, x3 ≥ 0

• from the first equality we have x1 = 1 + x2 + x3

• we can replace x1 by x1 = 1 + x2 + x3 in all other places to get

minimize 2x2 + 2x3 + 1
subject to x2 + x3 = 1

x2 ≥ 0, x3 ≥ 0

and the constant 1 in the objective can be removed since it does not affect
the solution
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Example 10.3

transform the following LP into standard form

maximize x1 − x2

subject to x1 + x2 ≤ 1
x1 + 2x2 ≥ 1
x2 ≥ 0

• we can represent this problem equivalently by

minimize −x+
1 + x−

1 + x2

subject to x+
1 − x−

1 + x2 + z1 = 1
x+
1 − x−

1 + 2x2 − z2 = 1
x+
1 , x

−
1 , x2, z1, z2 ≥ 0

• the objective is multiplied by a minus sign to transform the maximization
into minimization
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System of linear equations

consider the system of equations

Ax = b

where A is an m× n matrix

• we assume that

the matrix A has linearly independent rows

• hence, the matrix A also has m linearly independent columns

• we assume that the columns of the matrix A are reordered such that the
first m columns are linearly independent:

A = [B D]

where B is an m×m invertible matrix and D is an m× n−m matrix
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Basic solutions

Basic solution the particular solution x = (B−1b,0) is called a basic
solution to Ax = b with respect to the basis B

• the entries of xB are called basic variables and the columns of B as basic
columns

• if some of the variables of a basic solution are also zero, then the basic
solution is said to be a degenerate basic solution

Basic feasible solution (BFS): a basic solution that is feasible for problem
(10.5) (x ≥ 0) is called a basic feasible solution

• a degenerate basic feasible solution is a degenerate basic solution that is
feasible

• if an optimal solution to (10.5) is also basic, then it is said to be an optimal
basic feasible solution
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Example 10.4

A = [a1 a2 a3 a4] =

[
1 1 −1 4
1 −2 −1 1

]
, b =

[
8
2

]
the matrix A has linearly independent rows

• if we choose B = [a1 a2], then xB = B−1b = (6, 2); therefore,
x = (6, 2, 0, 0) is a basic feasible solution with respect to the basis
B = [a1 a2]

• if we choose B = [a3 a4], then xB = B−1b = (0, 2); thus, the point
x = (0, 0, 0, 2) is a degenerate basic feasible solution with respect to
B = [a3 a4]

• if we choose B = [a2 a3], then xB = B−1b = (2,−6); thus, the point
x = (0, 2,−6, 0) is a basic solution with respect to B = [a2 a3], but is not
feasible

• the point x = (3, 1, 0, 1) is a feasible solution that is not basic
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Fundamental Theorem of LP

for a standard form LP, the fundamental theorem of LP states that

1. if there exists a feasible solution, then there exists a basic feasible solution

2. if there exists an optimal feasible solution, then there exists an optimal
basic feasible solution

this means that to find an optimal solution, we only need to search the set of
basic feasible solutions instead of looking at all possible solutions

SA — ENGR507standard form LP 10.36



Graphical interpretation

• the feasible set Ω = {x | Ax = b, x ≥ 0} can be described as

Ω = {x | Ax = b, x ≥ 0} = {x | Āx ≤ b̄}

where

Ā =

 A
−A
−I

 , b̄ =

 b
−b
0


• hence, the set Ω is a polyhedron

BFS and extreme points: the point x̂ is an extreme point of Ω if and only if, it
is a basic feasible solution to Ax = b,x ≥ 0
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