10. Linear programs

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Definition

a *linear program* (LP) is an optimization problem where the objective function is linear and the constraint functions are linear or affine

LP general form

minimize (or maximize) $\sum_{j=1}^{n} c_j x_j$

subject to

ct to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, ..., m$$
 (10.1)
 $\sum_{j=1}^{n} g_{ij} x_j \le h_i, \quad i = 1, ..., p$

- *n* optimization variables *x*₁,...,*x*_n
- coefficients $c_j, a_{ij}, g_{ij}, h_i, b_i$ are given

linear programs

LP in compact form

minimize (or maximize)
$$c^T x$$

subject to $Ax \leq b$ (10.2)
 $Gx \leq h$

- A is an $m \times n$ matrix with entries a_{ij}
- G is an $p \times n$ matrix with entries g_{ij}
- $\boldsymbol{b} = (b_1, \ldots, b_m)$
- $\boldsymbol{h} = (h_1, \ldots, h_p)$
- $\boldsymbol{c} = (c_1, \ldots, c_n)$

Example: the diet problem

- we need to create a meal that contains at least 12 units of protein, 9 units of iron, and 15 units of thiamine;
- we have two main foods \boldsymbol{A} and $\boldsymbol{B}\text{:}$
 - $\bullet\,$ each gram of A contains 2 units of protein, 1 unit of iron, and 1 unit of thiamine; each gram B contains 1 unit of protein, 1 unit of iron, and 3 units of thiamine
 - each gram of $A\ \text{costs}\ 30\ \text{cents},$ while each gram of $B\ \text{costs}\ 40\ \text{cents}$
- how many grams of each of the food should be used to minimize the cost of the meal?

let x_1 and x_2 be the number of grams of food A and B used in the meal; then, the problem can formulated as

$$\begin{array}{ll} \mbox{minimize} & 30x_1 + 40x_2 \\ \mbox{subject to} & 2x_1 + x_2 \geq 12 \\ & x_1 + x_2 \geq 9 \\ & x_1 + 3x_2 \geq 15 \\ & x_1, x_2 \geq 0 \end{array}$$

Example: alloy mixture

we want to create a new alloy consisting of 40% iron, 35% nickel, and 25% cobalt from a mixture of several available alloys that have the metal properties listed in the below table

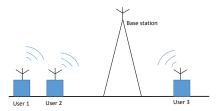
property	alloy 1	alloy 2	alloy 3	alloy 4
% of iron	70	25	40	20
% of nickel	10	15	50	50
% of cobalt	20	60	10	30
cost (\$/kg)	22	18	25	24

we want to determine the proportions of these alloys that should be blended together so that we produce the new alloy at a minimum cost

- let x_i , i = 1, 2, 3, 4, be the proportion of alloy i that is used to produce the new alloy
- the problem can be formulated as

 $\begin{array}{ll} \mbox{minimize} & 22x_1 + 18x_2 + 25x_3 + 24x_4 \\ \mbox{subject to} & 0.7x_1 + 0.25x_2 + 0.4x_3 + 0.2x_4 = 0.4 \\ & 0.1x_1 + 0.15x_2 + 0.5x_3 + 0.5x_4 = 0.35 \\ & 0.2x_1 + 0.6x_2 + 0.1x_3 + 0.3x_4 = 0.25 \\ & x_1 + x_2 + x_3 + x_4 = 1 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$

Example: wireless communication



- n "mobile" users; user i transmits a signal to the base station with power *p_i* and an attenuation factor of β_i (*i.e.*, signal power received at the base station from user i is β_ip_i)
- total power received from all other users is considered interference (*i.e.*, the interference for user *i* is $\sum_{j \neq i} \beta_j p_j$)
- for the communication with user i to be reliable, the signal-to-interference ratio must exceed a threshold γ_i
- we are interested in minimizing the total power transmitted by all users subject to having reliable communications for all users

linear programs

Problem formulation

 $\begin{array}{ll} \mbox{minimize} & \sum_{i=1}^{n} p_i \\ \mbox{subject to} & \frac{\beta_i p_i}{\sum_{j \neq i} \beta_j p_j} \geq \gamma_i, \quad i=1,\ldots,n \\ & p_i \geq 0, \quad i=1,\ldots,n \end{array}$

LP formulation

$$\begin{array}{ll} \mbox{minimize} & \sum_{i=1}^{n} p_i \\ \mbox{subject to} & \beta_i p_i - \gamma_i \sum_{j \neq i} \beta_j p_j \geq 0, \quad i = 1, \dots, n \\ & p_i \geq 0, \quad i = 1, \dots, n \end{array}$$

Example: manufacturing problem

we have n products and m raw materials, and

- c_j is profit of product j;
- b_i are the available units of material *i*;
- a_{ij} is the number of units of material *i* product *j* needs in order to be produced

the manufacturing problem is to choose the amount of product j produced such that the profit is maximized; we can formulate this problem as:

maximize
$$\sum_{\substack{j=1\\n}}^{n} c_j x_j$$

subject to
$$\sum_{\substack{j=1\\x_j \ge 0, \quad j=1,\ldots,n}}^{n} a_{ij} x_j \le b_i, \quad i = 1,\ldots,m$$
 (10.3)

where the variable x_j represents the amount of product j to be produced

linear programs

Example: assignment problem

- we want to match N people to N tasks
- each person is assigned to one task (each task assigned to one person)
- cost of assigning person i to task j is c_{ij}
- variable $x_{ij} = 1$ if person *i* is assigned to task *j*; $x_{ij} = 0$ otherwise

Combinatorial formulation

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} x_{ij} \\ \text{subject to} & \sum_{i=1}^{N} x_{ij} = 1, \quad j = 1, \dots, N \\ & \sum_{j=1}^{N} x_{ij} = 1, \quad i = 1, \dots, N \\ & x_{ij} \in \{0, 1\}, \quad i, j = 1, \dots, N \end{array}$$

N! possible assignments (e.g., 10! = 3628800)

linear programs

LP formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N} c_{ij} x_{ij} \\ \text{subject to} & \sum\limits_{i=1}^{N} x_{ij} = 1, \quad j = 1, \dots, N \\ & \sum\limits_{j=1}^{N} x_{ij} = 1, \quad i = 1, \dots, N \\ & 0 \leq x_{ij} \leq 1, \quad i, j = 1, \dots, N \end{array}$$

- we have *relaxed* the constraints $x_{ij} \in \{0, 1\}$
- it can be shown that the solution $x_{ij}^{\star} \in \{0, 1\}$
- hence, we can solve this hard combinatorial problem efficiently by solving the above LP

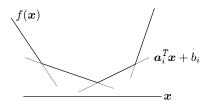
Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Piecewise-linear minimization

Piecewise-linear function: a function $f : \mathbb{R}^n \to \mathbb{R}$ is *piecewise-linear* if it can be expressed as

$$f(\boldsymbol{x}) = \max_{i=1,\dots,m} (\boldsymbol{a}_i^T \boldsymbol{x} + b_i)$$



Piecewise-linear minimization

minimize
$$f(\boldsymbol{x}) = \max_{i=1,\dots,m} (\boldsymbol{a}_i^T \boldsymbol{x} + b_i)$$

piecewise-linear minimization

Equivalent LP formulation

minimize
$$t$$

subject to $\boldsymbol{a}_i^T \boldsymbol{x} + b_i \leq t, \quad i = 1, \dots, m$

(for fixed \boldsymbol{x} , the optimal t is $t = f(\boldsymbol{x})$)

Matrix form

 $\begin{array}{ll} \text{minimize} & \tilde{\boldsymbol{c}}^T \tilde{\boldsymbol{x}} \\ \text{subject to} & \tilde{A} \tilde{\boldsymbol{x}} \leq \tilde{\boldsymbol{b}} \end{array}$

where

$$\tilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{x} \\ t \end{bmatrix}, \quad \tilde{\boldsymbol{c}} = \begin{bmatrix} \boldsymbol{0} \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} \boldsymbol{a}_1^T & -1 \\ \vdots & \vdots \\ \boldsymbol{a}_m^T & -1 \end{bmatrix}, \quad \tilde{\boldsymbol{b}} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

ℓ_1 -Norm approximation

minimize $||Ax - b||_1$

- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$
- for a vector $oldsymbol{y} \in \mathbb{R}^m$, we have

$$\|\boldsymbol{y}\|_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m \max\{y_i, -y_i\}$$

Equivalent LP formulation

minimize
$$\sum_{i=1}^{m} u_i$$

subject to $-\boldsymbol{u} \leq A\boldsymbol{x} - \boldsymbol{b} \leq \boldsymbol{u}$

with variables $oldsymbol{x} \in \mathbb{R}^n$ and $oldsymbol{u} \in \mathbb{R}^m$

Robust curve fitting

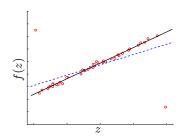
problem of fitting the data points (z_i, y_i) to the straight line $x_1 + x_2 z \approx y$ can be formulated as

minimize $||A\boldsymbol{x} - \boldsymbol{b}||_1$

where

$$A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- red circles represent the data
- blue dotted line from minimizing $\|A \boldsymbol{x} \boldsymbol{b}\|^2$
- black line from minimizing $\|A \boldsymbol{x} \boldsymbol{b}\|_1$
- ℓ_1 -norm more robust to outliers



Interview scheduling

- a company needs to schedule job interviews for n candidates numbered $1,2,\ldots,n$
- candidate *i* is scheduled to be the *i*th interview
- the starting time of candidate i must be in the interval $[\alpha_i,\beta_i],$ where $\alpha_i<\beta_i$
- the goal is to to find *n* starting times of interviews so that the minimal starting time difference between consecutive interviews is maximal

let t_i denote the starting time of interview *i*; the objective function is the minimal difference between consecutive starting times of interviews:

$$f(t) = \min \{t_2 - t_1, t_3 - t_2, \dots, t_n - t_{n-1}\},\$$

where $\boldsymbol{t} = (t_1, \ldots, t_n)$

Problem formulation

maximize	$\min\{t_2 - t_1, t_3 - t_2, \dots, t_n - t_{n-1}\}\$
subject to	$\alpha_i \le t_i \le \beta_i, i = 1, 2, \dots, n,$

with variable $oldsymbol{t} \in \mathbb{R}^n$

Equivalent LP

$$\begin{array}{ll} \mbox{maximize} & s \\ \mbox{subject to} & t_{i+1} - t_i \geq s, \quad i = 1, 2, \dots, n-1 \\ & \alpha_i \leq t_i \leq \beta_i, \quad i = 1, 2, \dots, n, \end{array}$$

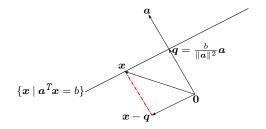
with variables $oldsymbol{t} \in \mathbb{R}^n$ and $s \in \mathbb{R}$

Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Hyperplane

a hyperplane is the solution set $\{x \in \mathbb{R}^n \mid a^T x = b\}$ with $a \neq 0$



- *a* is called *normal vector*
- x is in the hyperplane if and only if x q is orthogonal to a:

$$\boldsymbol{a}^T \boldsymbol{x} = \boldsymbol{b} = \boldsymbol{a}^T \boldsymbol{q} \Longrightarrow \boldsymbol{a}^T (\boldsymbol{x} - \boldsymbol{q}) = 0$$

Halfspaces

the hyperplane $\{x \in \mathbb{R}^n \mid a^T x = b\}$ divides \mathbb{R}^n in two *halfspaces* $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \leq b \}$ and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \geq b \}$ $\{\boldsymbol{x} \mid \boldsymbol{a}^T \boldsymbol{x} = b\}$ a $\{\boldsymbol{x} \mid \boldsymbol{a}^T \boldsymbol{x} \geq b\}$ $\{\boldsymbol{x} \mid \boldsymbol{a}^T \boldsymbol{x} \leq b\}$

Polyhedron

a *ployhedron* is the intersection of finitely many halfspaces; it is any set of points that satisfies a finite number of inequalities

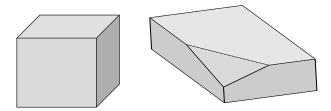
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

in matrix notation, a polyhedron can be defined as

$$\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} \le \boldsymbol{b} \}$$
(10.4)

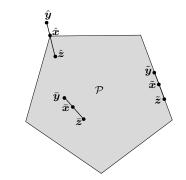


Extreme points

a point $x \in \mathcal{P}$ is an *extreme point* of \mathcal{P} if it *cannot* be written as the convex combination

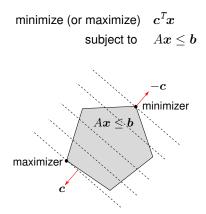
$$\boldsymbol{x} = \theta \boldsymbol{y} + (1 - \theta) \boldsymbol{z}, \quad \theta \in (0, 1)$$

for some $oldsymbol{y}, oldsymbol{z} \in \mathcal{P}$



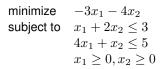
- \hat{x} is an extreme point
- $ar{x}$ and $ar{x}$ are not extreme points

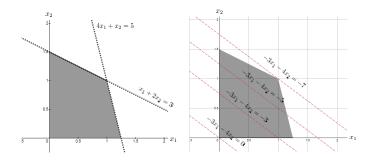
Geometrical interpretation of LP



dashed lines are level sets $c^T x = \alpha$ for different α ; the optimal solutions occur at an extreme point

Example 10.1





optimal value is -7 achieved at unique $\boldsymbol{x}^{\star} = (1,1)$

geometry of LPs

No feasible solution

$$\begin{array}{ll} \text{minimize} & -3x_1 - 4x_2 \\ \text{subject to} & x_1 + 2x_2 \geq 3 \\ & 4x_1 + x_2 \geq 5 \\ & x_1 + x_2 \leq -1 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$$

- we added the additional constraint $x_1 + x_2 \leq -1$ to the previous problem
- there are no points that satisfy these constraints and we say that this is an *infeasible LP* and define the optimal value to be $+\infty$

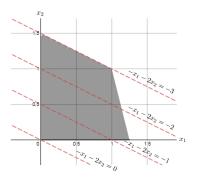
No optimal solution

 $\begin{array}{ll} \mbox{minimize} & -3x_1 - 4x_2 \\ \mbox{subject to} & x_1 + 2x_2 \geq 3 \\ & 4x_1 + x_2 \geq 5 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$

- we can make the cost arbitrarily small by choosing x_1 and x_2 arbitrarily large; thus, there are no finite solutions to this problem
- the feasible set is said to be *unbounded* and the problem is said to be *unbounded below* and the optimal value is $-\infty$

Multiple optimal solutions

 $\begin{array}{ll} \mbox{minimize} & -x_1-2x_2\\ \mbox{subject to} & x_1+2x_2\leq 3\\ & 4x_1+x_2\leq 5\\ & x_1\geq 0, x_2\geq 0 \end{array}$



- there are multiple points with minimum cost $c^T x = -3$
- any point on the line between the points (0, 1.5) and (1, 1) is optimal

Outline

- linear programs
- piecewise-linear minimization
- geometry of LPs
- standard form LP

Standard form LP

$$\begin{array}{ll} \mbox{minimize} & {\boldsymbol{c}}^T {\boldsymbol{x}} \\ \mbox{subject to} & A {\boldsymbol{x}} = {\boldsymbol{b}} \\ & {\boldsymbol{x}} \geq {\boldsymbol{0}} \end{array} \tag{10.5}$$

- any linear program can be transformed into the above standard form
- the constraints in a linear program may differ from one problem to another Ax = b and other problems have inequalities $Ax \le b$ and/or $x \ge 0$
- to obtain systematic method for finding a solution, we need to transform any LP into a common form such as the standard form

Transformations: slack and surplus variables

we can transform an inequality constraint into standard form as follows

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \iff \sum_{j=1}^{n} a_{ij} x_j + z_i = b_i, \quad z_i \ge 0$$

where z_i is an additional variable, called *slack variable*

• similarly,

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \iff \sum_{j=1}^{n} a_{ij} x_j - z_i = b_i, \quad z_i \ge 0$$

where z_i is called a *surplus variable*

Example 10.2

transform the following LP problem into standard form

$$\begin{array}{ll} \mbox{minimize} & c_1 x_1 + c_2 x_2 + c_3 x_3 \\ \mbox{subject to} & a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + a_{23} x_3 \leq b_2 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{array}$$

with variables x_1, x_2, x_3

we can introduce two variable x_4 and x_5 , to transform the above problem into the following standard form:

$$\begin{array}{ll} \mbox{minimize} & c_1 x_1 + c_2 x_2 + c_3 x_3 + 0 x_4 + 0 x_5 \\ \mbox{subject to} & a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + x_4 = b_1 \\ & a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + x_5 = b_2 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0, x_5 \geq 0 \end{array}$$

Transformations: free variables I

consider the problem

minimize
$$c_1 x_1 + c_2 x_2$$

subject to $a_{11} x_1 + a_{12} x_2 = b_1$
 $a_{21} x_1 + a_{22} x_2 = b_2$

where the constraint $oldsymbol{x} \geq oldsymbol{0}$ is not present

- we can rewrite that problem into standard from by replacing each entry x_i by $x_i = x_i^+ x_i^-$ for $x_i^+ \ge 0$ and $x_i^- \ge 0$
- doing so, we get

$$\begin{array}{ll} \text{minimize} & c_1 x_1^+ + c_2 x_2^+ - c_1 x_1^- - c_2 x_2^- \\ \text{subject to} & a_{11} x_1^+ + a_{12} x_2^+ - a_{11} x_1^- - a_{12} x_2^- = b_1 \\ & a_{21} x_1^+ + a_{22} x_2^+ - a_{21} x_1^- - a_{22} x_2^- = b_2 \\ & x_1^+ \ge 0, x_2^+ \ge 0, x_1^- \ge 0, x_2^- \ge 0 \end{array}$$

where we have four variables instead of two

standard form LP

Transformations: free variables II

in some situations, we can transform the problem into the standard by eliminating some variables; for example, consider

$$\begin{array}{ll} \mbox{minimize} & x_1 + x_2 + x_3 \\ \mbox{subject to} & x_1 - x_2 - x_3 = 1 \\ & 2x_1 + x_2 + x_3 = 5 \\ & x_2 \geq 0, \quad x_3 \geq 0 \end{array}$$

- from the first equality we have $x_1 = 1 + x_2 + x_3$
- we can replace x_1 by $x_1 = 1 + x_2 + x_3$ in all other places to get

 $\begin{array}{ll} \mbox{minimize} & 2x_2+2x_3+1\\ \mbox{subject to} & x_2+x_3=1\\ & x_2\geq 0, \ x_3\geq 0 \end{array}$

and the constant $1 \mbox{ in the objective can be removed since it does not affect the solution$

Example 10.3

transform the following LP into standard form

 $\begin{array}{ll} \mbox{maximize} & x_1-x_2 \\ \mbox{subject to} & x_1+x_2 \leq 1 \\ & x_1+2x_2 \geq 1 \\ & x_2 \geq 0 \end{array}$

• we can represent this problem equivalently by

$$\begin{array}{ll} \text{minimize} & -x_1^+ + x_1^- + x_2 \\ \text{subject to} & x_1^+ - x_1^- + x_2 + z_1 = 1 \\ & x_1^+ - x_1^- + 2x_2 - z_2 = 1 \\ & x_1^+ , x_1^- , x_2, z_1, z_2 \ge 0 \end{array}$$

• the objective is multiplied by a minus sign to transform the maximization into minimization

System of linear equations

consider the system of equations

Ax = b

where A is an $m \times n$ matrix

• we assume that

the matrix A has linearly independent rows

- hence, the matrix A also has m linearly independent columns
- we assume that the columns of the matrix A are reordered such that the first m columns are linearly independent:

$$A = [B D]$$

where B is an $m \times m$ invertible matrix and D is an $m \times n - m$ matrix

standard form LP

Basic solutions

Basic solution the particular solution $x = (B^{-1}b, 0)$ is called a *basic solution* to Ax = b with respect to the basis B

- the entries of x_B are called *basic variables* and the columns of B as *basic columns*
- if some of the variables of a basic solution are also zero, then the basic solution is said to be a *degenerate basic solution*

Basic feasible solution (BFS): a basic solution that is feasible for problem (10.5) ($x \ge 0$) is called a *basic feasible solution*

- a *degenerate basic feasible solution* is a degenerate basic solution that is feasible
- if an optimal solution to (10.5) is also basic, then it is said to be an *optimal* basic feasible solution

Example 10.4

$$A = [a_1 \ a_2 \ a_3 \ a_4] = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 1 & -2 & -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

the matrix A has linearly independent rows

- if we choose $B = [a_1 \ a_2]$, then $x_B = B^{-1}b = (6, 2)$; therefore, x = (6, 2, 0, 0) is a basic feasible solution with respect to the basis $B = [a_1 \ a_2]$
- if we choose $B = [a_3 \ a_4]$, then $x_B = B^{-1}b = (0, 2)$; thus, the point x = (0, 0, 0, 2) is a degenerate basic feasible solution with respect to $B = [a_3 \ a_4]$
- if we choose $B = [a_2 \ a_3]$, then $x_B = B^{-1}b = (2, -6)$; thus, the point x = (0, 2, -6, 0) is a basic solution with respect to $B = [a_2 \ a_3]$, but is not feasible
- the point ${m x}=(3,1,0,1)$ is a feasible solution that is not basic

Fundamental Theorem of LP

for a standard form LP, the fundamental theorem of LP states that

- 1. if there exists a feasible solution, then there exists a basic feasible solution
- 2. *if there exists an optimal feasible solution, then there exists an optimal basic feasible solution*

this means that to find an optimal solution, we only need to search the set of basic feasible solutions instead of looking at all possible solutions

Graphical interpretation

• the feasible set $\Omega = \{ {\boldsymbol x} \mid A {\boldsymbol x} = {\boldsymbol b}, \; {\boldsymbol x} \geq {\boldsymbol 0} \}$ can be described as

$$\Omega = \{ \boldsymbol{x} \mid A\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \ge \boldsymbol{0} \} = \{ \boldsymbol{x} \mid \bar{A}\boldsymbol{x} \le \bar{\boldsymbol{b}} \}$$

where

$$\bar{A} = \begin{bmatrix} A \\ -A \\ -I \end{bmatrix}, \quad \bar{b} = \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$$

• hence, the set Ω is a polyhedron

BFS and extreme points: the point \hat{x} is an extreme point of Ω if and only if, it is a basic feasible solution to $Ax = b, x \ge 0$

References and further readings

- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization,* Cambridge University Press, 2004, chapters 2.2.1, 2.2.4, 4.3.
- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley & Sons, 2013, chapter 15.