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Mathematical optimization

(mathematical) Optimization problem

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚 (inequality constraints)

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝 (equality constraints)

• 𝑥 = (𝑥1, . . . , 𝑥𝑛) is the optimization variable

• 𝑓 (·) is the objective function or cost function to be minimized

• 𝑔𝑖 (·) are inequality constraints functions

• ℎ 𝑗 (·) are equality constraints functions

• maximization problems are the same as minimizing the negative of the function

Optimal point or solution: a point 𝑥★ is an optimal point or solution if it attains the
smallest (largest) objective value among all points that satisfy the constraints
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Applications

Applications

• allocate portfolio investments to maximize returns and minimize risk

• design efficient electrical networks

• create lightweight, structurally sound aircraft and aerospace structures

• optimize fuel-efficient trajectories for space vehicles

• design cost-effective structures like frames and dams, ensuring safety

• improve personalized recommendations by factoring user-item interactions

• develop machine learning models for:
– object classification (e.g., identifying animals in images)

– prediction (e.g., estimating house prices based on features like location and size)

Modeling: the process of identifying the objective, constraints, variables of a problem
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Optimal decision making

• the variable, 𝑥, represent some action such as:
– trades in a portfolio

– adjustments to airplane control surfaces

– task scheduling or assignment

– resource allocation decisions

– transmitted signal...

• constraint functions limit the action or impose conditions on outcome:
– physical or technical limits

– resource budgets

– design requirements that need be satisfied...

• objective represents some criteria, we want to minimize:
– total cost

– deviation from desired outcome (error)

– consumption of fuel

– risk...
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Linear and nonlinear optimization

an optimization problem is called linear program if it has the form

minimize
𝑛∑
𝑖=1

𝑐𝑖𝑥𝑖

subject to
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚

𝑛∑
𝑗=1

𝑔𝑖 𝑗𝑥 𝑗 = ℎ𝑖 , 𝑖 = 1, . . . , 𝑝

• {𝑐𝑖 , 𝑎𝑖 𝑗 , 𝑔𝑖 𝑗 , ℎ𝑖 , 𝑏𝑖} are given coefficients

• the objective and constraint functions are “linear”

Nonlinear program: an optimization problem that is not a linear program
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Other optimization classes

• unconstrained optimization: no constraints, i.e., ℎ 𝑗 (𝑥) = 𝑔𝑖 (𝑥) = 0

• discrete optimization: variables take only discrete or integer values

• integer linear program: a discrete optimization with linear objective and constraints

• mixed integer optimization: variables can be both integer and continuous

Note: this course focuses solely on optimization with continuous variables
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Examples

• an instance of an unconstrained nonlinear optimization

minimize (𝑥1 + 𝑥2 − 1)2 + (𝑥1 − 𝑥2 + 1)2 + (2𝑥1 + 5𝑥2 − 10)2

• an instance of a constrained nonlinear optimization is given by

minimize 𝑥31 + 𝑥2𝑥1 + 𝑒𝑥1

subject to 𝑥21 + 𝑥22 = 1
𝑥1 ≥ 0

• an example of a linear program is:

minimize 𝑥1 − 2𝑥2 + 𝑥3
subject to 𝑥1 + 𝑥2 ≤ 5

𝑥1 + 𝑥2 ≥ −1
𝑥1 + 𝑥2 + 𝑥3 = 1

SA — ENGR507course introduction 7



Solving optimization problems

• various methods exist to solve optimization problems

• chosen method depend on several factors (e.g., problem class and structure)

• solutions guide decision-makers, who oversee, validate, and adjust the approach
or problem as required

Can you solve it exactly?

• very difficult to solve with guarantees of global optimality

• but you can try to solve it approximately, and it often doesn’t matter

• the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others

– we can solve these problems reliably and efficiently

– come up in many applications across many fields
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Course topics

General course topics

• unconstrained and constrained optimization: optimality conditions

• convex optimization and duality

• solution methods: unconstrained and constrained

• modeling and applications in optimization

Prerequisites

• good knowledge of linear algebra and calculus (we will review the essential topics)

• MATLAB programming: prior experience not mandatory, but self-study is expected

SA — ENGR507course introduction 9



Course objectives

• understand the mathematical theory of nonlinear and convex optimization and
their practical applications

• learn and implement fundamental and some advanced optimization methods

• develop skills to identify optimization problems and select suitable solution method

• gain optimization knowledge for research and real-world applications
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Course information

Course materials: all course material will be posted on Moodle

Grading

• (bi)weekly homework (20%)

• midterm exam (30%)

• final exam and/or project (50%)

(these weights are approximate; we reserve the right to change them later)

refer to the syllabus on the Moodle course website for more information, such as
course references, office hours, class policy, exam dates, etc.
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AI tools policy

• unauthorized use of AI tools, like ChatGPT, is treated as plagiarism

• AI is an aid, not a substitute for genuine understanding; reliance solely on AI
without understanding can result in penalties

• suspected misuse of AI may lead to oral exams or alternative assessments
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Maximum power transfer

−
+

𝑉

𝑅
a

𝑖

𝑅𝐿

b

• voltage source: 𝑉 (in volts)

• line resistor: 𝑅 (given value)

• objective: determine 𝑅𝐿 to maximize power to it

power delivered to 𝑅𝐿 is 𝑝(𝑅𝐿) = 𝑖2𝑅𝐿 and 𝑖 = 𝑉/(𝑅 + 𝑅𝐿); hence, we can
formulate the problem as

maximize
𝑉2 𝑥

(𝑅 + 𝑥)2

with variable 𝑥 = 𝑅𝐿 ; this is an unconstrained nonlinear program
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Battery charging

electric circuit is designed to use a 30 V source to charge 10 V, 6 V, 20 V batteries

𝑖1 𝑖3 𝑖5

𝑅1 𝑅3 𝑅5

𝑖2 𝑖4
𝑅2 𝑅4

10 V 6 V 20 V

30 V

• currents 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5 limited to a maximum of 4 A, 3 A, 3 A, 2 A, 2 A

• batteries must not be discharged; i.e., currents 𝑖𝑘 must be nonnegative

• goal: find 𝑖1, 𝑖2, . . . , 𝑖5 that maximizes total power transferred to the batteries
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using circuit analysis, the problem can be modeled as the linear program:

maximize 10𝑖2 + 6𝑖4 + 20𝑖5
subject to 𝑖1 = 𝑖2 + 𝑖3

𝑖3 = 𝑖4 + 𝑖5
𝑖1 ≤ 4
𝑖2 ≤ 3
𝑖3 ≤ 3
𝑖4 ≤ 2
𝑖5 ≤ 2
𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5 ≥ 0

once the currents are found, we can find the resistors 𝑅1, . . . , 𝑅5 that draw such
currents using Ohm’s and Kirchhoff’s laws
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Concrete mixture

property concrete type 1 concrete type 2

cost $5/kg $1/kg

cement 30% 10%

gravel 40% 20%

sand 30% 70%

find mixture with at least: 5 kg cement, 3 kg gravel, 4 kg sand, while minimizing cost

Problem formulation:

minimize 5𝑥1 + 𝑥2
subject to 0.3𝑥1 + 0.1𝑥2 ≥ 5

0.4𝑥1 + 0.2𝑥2 ≥ 3
0.3𝑥1 + 0.7𝑥2 ≥ 4
𝑥1 ≥ 0, 𝑥2 ≥ 0

variables 𝑥𝑖 represent the weight of concrete 𝑖 that we want to buy
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Knapsack problem

Description

• 𝑛 items, each with a weight and value

• select items to maximize total value while keeping total weight within a set limit

Investment example

• goal: invest among 𝑛 opportunities

• budget: at most 𝑑 dollars

• 𝑖th investment:
– cost: 𝑐𝑖 dollars
– expected profit: 𝑝𝑖
– available units: 𝑏𝑖

how many items of each type should be bought to maximize the expected profit?
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problem can be formulated as

maximize
𝑛∑
𝑖=1

𝑝𝑖𝑥𝑖

subject to
𝑛∑
𝑖=1

𝑐𝑖𝑥𝑖 ≤ 𝑑, (total cost ≤ budget),

𝑥𝑖 ∈ {0, 1, 2, . . . , 𝑏𝑖}, 𝑖 = 1, . . . , 𝑛

an integer linear program since the objective and constraints are “linear” and the
variables are integer
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Facility placement

given locations of some facilities (𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚) in 2D space

• 𝑥 = (𝑥1, 𝑥2) is location of distribution center that we want to find

• goal: find 𝑥 to minimize total daily distance between facilities and center

• distance to facility (𝑎𝑖 , 𝑏𝑖):

𝑑𝑖 =
√︁
(𝑥1 − 𝑎𝑖)2 + (𝑥2 − 𝑏𝑖)2

the problem can be formulated as

minimize
𝑚∑
𝑖=1

𝑤𝑖

√︁
(𝑥1 − 𝑎𝑖)2 + (𝑥2 − 𝑏𝑖)2

• 𝑤𝑖 is weight for distance 𝑑𝑖 (e.g.,, higher for high-traffic areas)

• this problem is known as the Fermat-Weber problem
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Electrical wires connections

four buildings are to be connected by electrical wires

(𝑥1 , 𝑦1 )

(𝑥2 , 𝑦2 )

(𝑥0 , 𝑦0 )

(𝑥4 , 𝑦4 )

(𝑥3 , 𝑦3 )

𝑑1

𝑑2

𝑑4𝑑3

• central joining point is (𝑥0, 𝑦0)

• each building 𝑖 connects at position (𝑥𝑖 , 𝑦𝑖) with wire length 𝑑𝑖

• goal: find the positions (𝑥𝑖 , 𝑦𝑖) that minimize the total length of wires used
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• building 1 (circular): center (1, 4), radius 2

• building 2 (circular): center (9, 5), radius 1

• building 3 (square): center (3,−2), side length 2

• building 4 (rectangle): center (7, 0), height 4, width 2

Problem formulation:

minimize
4∑
𝑖=1

√︁
(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2

subject to (𝑥1 − 1)2 + (𝑦1 − 4)2 ≤ 4
(𝑥2 − 9)2 + (𝑦2 − 5)2 ≤ 1
2 ≤ 𝑥3 ≤ 4
−3 ≤ 𝑦3 ≤ −1
6 ≤ 𝑥4 ≤ 8
−2 ≤ 𝑦4 ≤ 2

with variables (𝑥𝑖 , 𝑦𝑖) (𝑖 = 0, 1, . . . , 4)
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