9. Convex optimization problems

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Line segment

a *line* passing through non-equal points $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ has the form

$$\{ \boldsymbol{z} \mid \boldsymbol{z} = \theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}, \ \theta \in \mathbb{R} \}$$

Line segment between x and y:

$$\{\theta \boldsymbol{x} + (1-\theta)\boldsymbol{y} \mid \theta \in [0,1]\}$$

Convex sets

a set $\mathcal{C}\subseteq\mathbb{R}^n$ is *convex* if for any $oldsymbol{x},oldsymbol{y}\in\mathcal{C},$ we have

 $\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} \in \mathcal{C}$

for any $\theta \in [0,1]$, *i.e.*, the line segment between any two points in \mathcal{C} lies in \mathcal{C}

a point on the line segment between x and y is called a *convex combination* of the points x and y

• Affine sets: a set $\mathcal{C} \subseteq \mathbb{R}^n$ is affine if for any $x, y \in \mathcal{C}$ and θ , we have

$$\theta \boldsymbol{x} + (1-\theta)\boldsymbol{y} \in \mathcal{C}$$

since the above holds for any θ , it holds also for $\theta \in [0, 1]$; hence, affine sets are also convex (the converse is not true)

- the empty set, any single point (singleton), and \mathbb{R}^n are affine, hence convex
- *Lines:* a line in \mathbb{R}^n is a set of the form:

$$\mathcal{L} = \{ \boldsymbol{x}_0 + t\boldsymbol{d} \mid t \in \mathbb{R} \}$$

where $oldsymbol{x}_0,oldsymbol{d}\in\mathbb{R}^n$ and $oldsymbol{d}
eq oldsymbol{0}$

• *Rays:* a ray $\{x_0 + td \mid t \ge 0\}$, where $d \ne 0$, is convex

• Ellipsoids: an ellipsoid is a set of the form

$$\mathcal{E} = \{ \boldsymbol{x} \mid \boldsymbol{x}^{T} Q \boldsymbol{x} + \boldsymbol{r}^{T} \boldsymbol{x} + c \leq 0 \},\$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite, $r \in \mathbb{R}^n$, and $c \in \mathbb{R}$; an ellipsoid is a convex set

- Hyperplane and halfspaces: let a ∈ ℝⁿ and b ∈ ℝ, then, the hyperplane H = {x | a^Tx = b} and the halfspace H⁻ = {x | a^Tx ≤ b} are convex sets
- *Balls:* let $c \in \mathbb{R}^n$, r > 0, and $\|\cdot\|$ be an arbitrary norm; then, the open ball

$$\mathcal{B}(c, r) = \{ x \mid ||x - c|| < r \}$$

and closed ball

$$\mathcal{B}[\boldsymbol{c},r] = \{\boldsymbol{x} \mid \|\boldsymbol{x} - \boldsymbol{c}\| \le r\}$$

are convex

Linear matrix inequality

a linear matrix inequality (LMI) is represented by:

$$F(\boldsymbol{x}) = F_0 + \sum_{i=1}^n x_i F_i \le 0,$$
(9.1)

- $\boldsymbol{x} \in \mathbb{R}^n$, F_0, \ldots, F_n are $m \times m$ symmetric matrices
- the solution set of a linear matrix inequality, $\{x \mid F(x) \le 0\}$, is convex

Example any solution w(t) to the linear differential equation

$$\dot{\boldsymbol{w}}(t) = A\boldsymbol{w}(t), \quad A \in \mathbb{R}^{n \times n},$$

converges to the origin as t approaches infinity if and only if there exists a real symmetric matrix X satisfying the conditions:

$$AX + XA^T < 0, \quad X > 0 \tag{9.2}$$

let us express the variable vector $\boldsymbol{x} \in \mathbb{R}^m$ as:

$$X = x_1 X_1 + x_2 X_2 + \dots + x_m X_m,$$

where the matrices X_i (i = 1, 2, ..., m) serve as a basis for the linear space spanned by $n \times n$ symmetric matrices (with m = n(n+1)/2); for instance, when n = 2, we have m = 3 and:

$$X = \begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

given this representation, the inequality in (9.2) can be recast as:

$$F(\boldsymbol{x}) \triangleq \begin{bmatrix} -X & 0\\ 0 & AX + XA^T \end{bmatrix} < 0,$$

which can then be expressed in the form of (9.1), where $F_0 = 0$ and:

$$F_i = \begin{bmatrix} -X_i & 0\\ 0 & AX_i + X_i A^T \end{bmatrix}, \quad (i = 1, \dots, m)$$

Intersection of convex sets

the intersection of any collection of convex sets is convex

Properties

- if ${\mathcal C}$ is a convex set and β is a real number, then the set

$$\beta \mathcal{C} = \{\beta \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{C}\}$$

is also convex

- if \mathcal{C}_1 and \mathcal{C}_2 are convex sets, then the set

$$\mathcal{C}_1+\mathcal{C}_2=\{oldsymbol{x}_1+oldsymbol{x}_2\midoldsymbol{x}_1\in\mathcal{C}_1,oldsymbol{x}_2\in\mathcal{C}_2\}$$

is convex

• suppose that f(x) = Ax + b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$; if $C \subset \mathbb{R}^n$ is convex, then the image set

$$f(\mathcal{C}) = \{A\boldsymbol{x} + \boldsymbol{b} \mid \boldsymbol{x} \in \mathcal{C}\}$$

is convex

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Definition

 $f:\mathbb{R}^n\to\mathbb{R}$ is $\mathit{convex}\,\mathsf{if}\,\mathrm{dom}\,f$ is a convex set and

$$f(\theta \boldsymbol{x} + (1-\theta)\boldsymbol{y}) \le \theta f(\boldsymbol{x}) + (1-\theta)f(\boldsymbol{y}), \tag{9.3}$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$, and $0 \le \theta \le 1$

- *f* is *strictly convex* if strict inequality holds in (9.3)
- f is concave (strictly concave) if -f is convex (strictly convex)
- f is convex over convex set $\mathcal{X}\subseteq \mathbb{R}^n$ if (9.3) holds for all ${m x},{m y}\in\mathcal{X}$

• Affine functions: $f(x) = a^T x + b$ where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$, is both convex and concave:

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = \boldsymbol{a}^{T}((\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y})) + b$$
$$= \theta(\boldsymbol{a}^{T}\boldsymbol{x} + b) + (1 - \theta)(\boldsymbol{a}^{T}\boldsymbol{y} + b)$$
$$= \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y})$$

• Norm functions: f(x) = ||x|| for any norm $||\cdot||$ is convex:

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = \|\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}\|$$

$$\leq \|\theta \boldsymbol{x}\| + \|(1 - \theta)\boldsymbol{y}\| = \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y})$$

where the inequality follows from the triangle inequality

• the function $f(x_1, x_2) = x_1 x_2$ with dom $f = \{ \boldsymbol{x} \mid x_1, x_2 \ge 0 \}$; is nonconvex since for $\boldsymbol{x} = (1, 2), \boldsymbol{y} = (2, 1), \theta = 0.5$, we have

$$f(0.5x + 0.5y) = \frac{9}{4} \nleq 0.5f(x) + 0.5f(y) = 2,$$

which violates the definition of convexity

• the function f(x) = x over dom $f = \{x \mid x \neq 1\}$ is not convex even though it is linear; this is because its domain is nonconvex

First-order convexity condition

if $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable, then f is convex if and only if its domain is convex and for any $x, y \in \text{dom} f$

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{T} (\boldsymbol{y} - \boldsymbol{x})$$
(9.4)

- *f* is strictly convex if strict inequality holds
- if $\nabla f(x) = 0$, then the inequality (9.4) becomes $f(x) \le f(y)$ for all $y \in \text{dom } f$ implying thay x is a global minimizer of f

convex functions

Second-order convexity condition

suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, then f is convex if and only if its domain is convex and for all $x \in \text{dom } f$, we have

$$\nabla^2 f(\boldsymbol{x}) \ge 0 \tag{9.5}$$

- if $\nabla^2 f(\boldsymbol{x}) > 0$ for all \boldsymbol{x} , then f is strictly convex
- converse is not true since $f(\boldsymbol{x}) = \boldsymbol{x}^4$ is strictly convex but has zero second derivative at $\boldsymbol{x} = \boldsymbol{0}$

Convexity of domain:

- domain of $f \mbox{ must}$ be convex to use the first or second order convexity characterization
- for example, the function $f(x) = 1/x^2$ with dom $f = \{x \in \mathbb{R} \mid x \neq 0\}$ satisfies $f''(x) = 6/x^4 > 0$ for all $x \in \text{dom } f$, but is not a convex function

convexity or concavity of the following examples can be shown using the definition or the second order condition

- *Exponential:* $e^{\alpha x}$ is convex for any $\alpha \in \mathbb{R}$
- *Powers:* x^{α} is convex on $\mathbb{R}_{++} = \{x \mid x > 0\}$ when $\alpha \ge 1$ or $\alpha \le 0$, and concave for $0 \le \alpha \le 1$
- Powers of absolute value: $|x|^p$ is convex on \mathbb{R} for $p \ge 1$
- *Logarithm:* $\log x$ is concave on \mathbb{R}_{++}
- Negative entropy: $x \log x$ defined as 0 for x = 0 is convex on $\mathbb{R}_+ = \{x \mid x \ge 0\}$

Example 9.4 (Quadratic functions)

$$f(m{x}) = m{x}^T Q m{x} + m{r}^T m{x} + c$$
 where $Q = Q^T$ is convex if and only if $Q \ge 0$

• $f(x) = 4x_1^2 + 2x_2^2 + 3x_1x_2 + 4x_1 + 5x_2$ is convex since its Hessian $V^2 f(\boldsymbol{x}) = \begin{bmatrix} 8 & 3 \\ 3 & 4 \end{bmatrix}$ 7

$$abla^2 f(\boldsymbol{x}) = \begin{bmatrix} 8 & 3 \\ 3 & 4 \end{bmatrix}$$

is positive definite

• $f(x) = 4x_1^2 - 2x_2^2 + 3x_1x_2 + 4x_1 + 5x_2$ is nonconvex since its Hessian

$$abla^2 f(oldsymbol{x}) = egin{bmatrix} 8 & 3 \ 3 & -4 \end{bmatrix}$$

is indefinite

Quadratic over linear: the function

$$f(x,t) = x^2/t$$

with dom $f = \{(x, t) \mid t > 0\}$ is convex; this is because the Hessian

$$\nabla^2 f(\boldsymbol{x}) = 2 \begin{bmatrix} 1/t & -x/t^2 \\ -x/t^2 & x^2/t^3 \end{bmatrix} = \frac{2}{t^3} \begin{bmatrix} t \\ -x \end{bmatrix} \begin{bmatrix} t & -x \end{bmatrix} \ge 0,$$

is positive semidefinite over its domain

Log-sum-exp function: the function

$$f(\boldsymbol{x}) = \log(e^{x_1} + \dots + e^{x_n})$$

is convex over \mathbb{R}^n ; we now show this by showing that the Hessian is positive semidefinite

• the partial derivatives of *f* are:

$$\frac{\partial f}{\partial x_i} = \frac{e^{x_i}}{\sum_{k=1}^n e^{x_k}}$$

the second partial derivatives are

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{cases} \frac{e^{x_i}}{\sum_{k=1}^{n} e^{x_k}} - \frac{e^{x_i}e^{x_i}}{(\sum_{k=1}^{n} e^{x_k})^2}, & \text{ if } i = j\\ -\frac{e^{x_i}e^{x_j}}{(\sum_{k=1}^{n} e^{x_k})^2}, & \text{ if } i \neq j \end{cases}$$

• thus, we can express the Hessian as

$$abla^2 f(m{x}) = ext{diag}(m{w}) - m{w}m{w}$$
where $m{w} = \left(rac{e^{x_1}}{\sum_{k=1}^n e^{x_k}}, \dots, rac{e^{x_n}}{\sum_{k=1}^n e^{x_k}}
ight)$

convex functions

Т

• note that for any $oldsymbol{v} \in \mathbb{R}^n$, we have

$$\boldsymbol{v}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{v} = \sum_{i=1}^n w_i v_i^2 - (\boldsymbol{v}^T \boldsymbol{w})^2$$

• applying Cauchy-Schwarz on the vectors *a* and *b* with entries

$$a_i = \sqrt{w_i} v_i, \quad b_i = \sqrt{w_i}, \quad i = 1, \dots, n$$

we get

$$(\boldsymbol{v}^T \boldsymbol{w})^2 = (\boldsymbol{a}^T \boldsymbol{b})^2 \le \|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 = \left(\sum_{i=1}^n w_i v_i^2\right) \left(\sum_{i=1}^n w_i\right) = \sum_{i=1}^n w_i v_i^2$$

it follows that $oldsymbol{v}^T
abla^2 f(oldsymbol{x}) oldsymbol{v} \geq 0$ for any $oldsymbol{v} \in \mathbb{R}^n$

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Operations preserving convexity

Weighted nonnegative sum: the function

$$f = w_1 f_1 + \dots + w_k f_k$$

is convex if f_i are convex and $w_i \ge 0$

- a nonnegative weighted sum of concave functions is concave
- a nonnegative nonzero weighted sum of strictly convex (concave) functions is strictly convex (concave)

Composition with affine mapping: suppose that $g : \mathbb{R}^m \to \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$; let $f : \mathbb{R}^n \to \mathbb{R}$

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} + \boldsymbol{b}),$$

with dom $f = \{x \mid Ax + b \in \text{dom } g\}$; then, f is convex (concave) if g is convex (concave)

operations preserving convexity

- Negative entropy function: $f(x) = \sum_{i=1}^{n} x_i \log x_i$ is convex over dom $f = \mathbb{R}^n_{++} = \{x \mid x_i > 0\}$ since it is the sum of convex functions $x_i \log x_i$
- $f(x) = -\log(ax + b)$ is convex over ax + b > 0 since $g(t) = -\log(t)$ is convex over dom $f = \mathbb{R}_{++}$
- $f(x) = e^{a^T x + b}$ where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ is convex over \mathbb{R}^n ; we can write f as $f(x) = g(a^T x + b)$ where $g(t) = e^t$ is a convex function; hence, f is convex

• consider the function

$$f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1 - 3x_2 + e^{x_1}$$

• we can write
$$f$$
 as $f = f_1 + f_2$ with

$$f_1(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1 - 3x_2, \quad f_2(x_1, x_2) = e^{x_1}$$

• f_1 is convex since $\nabla^2 f(x_1, x_2) = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$ is positive semidefinite

• f_2 is also convex since $g(t) = e^t$ is convex and $f_2(x_1, x_2) = g(x_2)$ hence, f is convex since it is the sum of two convex functions

• the function

$$f(x_1, x_2, x_3) = e^{x_1 - x_2 + x_3} + e^{2x_2} + x_1$$

is convex over $\mathbb{R}^3;$ it is the sum of three convex functions: $e^{x_1-x_2+x_3},$ $e^{2x_2},$ and x_1

Generalized quadratic-over-linear: let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ ($c \neq 0$), and $d \in \mathbb{R}$, then the function

$$f(\boldsymbol{x}) = \frac{\|A\boldsymbol{x} + \boldsymbol{b}\|^2}{\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}}$$

is convex over dom $f = \{ \boldsymbol{x} \mid \boldsymbol{c}^T \boldsymbol{x} + d > 0 \}$

• we can write f as

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{c}^T\boldsymbol{x} + d), \qquad g(\boldsymbol{y}, t) = \frac{\|\boldsymbol{y}\|^2}{t}$$

with dom $f = \{(\boldsymbol{y}, t) \mid \boldsymbol{y} \in \mathbb{R}^m, t > 0\}$

- $g = \sum_{i=1}^{m} g_i$ where $g_i(\boldsymbol{y}, t) = \frac{y_i^2}{t}$ is convex over $\{(y_i, t) \mid y_i \in \mathbb{R}, t > 0\}$; thus, g is convex since it is the sum of convex function
- thus *f* is convex (composition of convex function with an affine mapping)

Pointwise maximum of convex functions

if $f_i:\mathbb{R}^n o \mathbb{R}, \, i=1,\ldots,k$ are convex, then

$$f(\boldsymbol{x}) = \max\{f_1(\boldsymbol{x}), \dots, f_k(\boldsymbol{x})\}$$

is convex

Examples

- Maximum function: $f(x) = \max\{x_1, x_2, \dots, x_n\}$ is convex because it is the maximum of n linear (hence convex) functions
- Sum of k largest values: let $x_{[i]}$ denote the $i {\rm th}$ largest component of ${\pmb x},$ then the function

$$f_k(\boldsymbol{x}) = x_{[1]} + \dots + x_{[k]}$$

is convex; to see this, note that we can rewrite f_k as

$$f_k(x) = \max\{x_{i_1} + \dots + x_{i_k} \mid i_1, \dots, i_k \in \{1, 2, \dots, n\} \text{ are different}\}$$

hence, f_k is a maximum of linear functions, hence convex

operations preserving convexity

Composition with a nondecreasing convex function

let $h : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ and define $f = g \circ h : \mathbb{R}^n \to \mathbb{R}$:

 $f(\boldsymbol{x}) = g(h(\boldsymbol{x})), \quad \text{dom} f = \{\boldsymbol{x} \in \text{dom} h \mid h(\boldsymbol{x}) \in \text{dom} g\}$

let \tilde{g} denotes the extended-value extension of the function g, which assigns the value ∞ $(-\infty)$ to points not in dom g for g convex (concave)

- f is convex if h is convex, and \tilde{g} is convex and nondecreasing (over the range of h)
- f is convex if h is concave, and \tilde{g} is convex and nonincreasing
- f is concave if h is concave, and \tilde{g} is concave and nondecreasing
- f is concave if h is convex, and \tilde{g} is concave and nonincreasing

Proof:

$$\begin{aligned} f(\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}) &= g \big(h(\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}) \big) \\ &\leq g \big(\theta h(\boldsymbol{x}) + (1 - \theta) h(\boldsymbol{y}) \big) \\ &\leq \theta g \big(h(\boldsymbol{x}) \big) + (1 - \theta) g \big(h(\boldsymbol{y}) \big) \\ &= \theta f(\boldsymbol{x}) + (1 - \theta) f(\boldsymbol{x}), \end{aligned}$$

where the first inequality arises from the convexity of h and the nondecreasing nature of g; the second inequality is a result of the convexity of \tilde{g}

- $f(\boldsymbol{x}) = e^{\|\boldsymbol{x}\|^2}$ is convex since $f(\boldsymbol{x}) = g(h(\boldsymbol{x}))$ where
 - $h(\boldsymbol{x}) = \|\boldsymbol{x}\|^2$ is a convex function
 - $g(t) = e^t$ is a nondecreasing convex function

more generally, $e^{h(\pmb{x})}$ is convex if h is convex

- $f(x) = (1 + ||x||^2)^2$ is a convex function since f(x) = g(h(x)) where
 - $h(\boldsymbol{x}) = 1 + \|\boldsymbol{x}\|^2$ is convex
 - $g(t) = t^2$, which is convex and nondecreasing over h (*i.e.*, the interval $[1,\infty)$)
- if h is convex and nonnegative, then $h({\boldsymbol x})^p$ is convex for $p\geq 1$
- if h is convex, then $-\log(-h(\boldsymbol{x}))$ is convex on $\{\boldsymbol{x} \mid h(\boldsymbol{x}) < 0\}$
- if h is concave and positive, then $1/h({\boldsymbol x})$ is convex
- if h is concave and positive, then $\log h({\boldsymbol x})$ is concave

Vector functions composition

the aforementioned principle can be extended to functions that take a vector as their argument:

$$f(\boldsymbol{x}) = g(h(\boldsymbol{x})) = g(h_1(\boldsymbol{x}), \dots, h_k(\boldsymbol{x}))$$

- $h_i: \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \dots, k$, are convex
- if the function $g : \mathbb{R}^k \to \mathbb{R}$ is convex and non-decreasing in every argument, given that dom $h_i = \mathbb{R}^n$ and dom $g = \mathbb{R}^k$, then the function f(x) is also convex

- $g(z) = \log(\sum_{i=1}^{k} e^{z_i})$ is convex and nondecreasing in each argument; hence, $g(h(x)) = \log(\sum_{i=1}^{k} e^{h_i(x)})$ is convex when h_i are convex
- suppose $p \ge 1$, and let h_1, \ldots, h_k be convex and nonnegative functions; then function given by $\left(\sum_{i=1}^k h_i(\boldsymbol{x})^p\right)^{\frac{1}{p}}$ is convex to demonstrate this, we introduce the function $g : \mathbb{R}^k \to \mathbb{R}$ defined as

$$g(\mathbf{z}) = (\sum_{i=1}^{k} \max\{z_i, 0\}^p)^{\frac{1}{p}},$$

with dom $g = \mathbb{R}^k$; since this function is both convex and nondecreasing in its arguments, g(h(x)) is also convex in x; for nonnegative values of z, g(z) simplifies to

$$\left(\sum_{i=1}^k z_i^p\right)^{\frac{1}{p}},$$

leading us to conclude that $(\sum_{i=1}^k h_i(\boldsymbol{x})^p)^{\frac{1}{p}}$ is convex

Minimizing over some variables

suppose that $f : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}$ is convex in (x, y) and C is a convex set; then, the function

$$g(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathcal{C}} f(\boldsymbol{x}, \boldsymbol{y})$$

is convex (provided that $g(x) > \infty$ for some x); the domain of g is

$$\operatorname{dom} g = \{ \boldsymbol{x} \mid (\boldsymbol{x}, \boldsymbol{y}) \in \operatorname{dom} f \text{ for some } \boldsymbol{y} \in \mathcal{C} \}$$

Example: for a convex set $C \subset \mathbb{R}^n$, the *distance function* defined as

$$d(\boldsymbol{x}, \mathcal{C}) = \min_{\boldsymbol{y}} \{ \|\boldsymbol{x} - \boldsymbol{y}\| \mid \boldsymbol{y} \in \mathcal{C} \}$$

is convex because $f({\bm x}, {\bm y}) = \| {\bm x} - {\bm y} \|$ is convex in both $({\bm x}, {\bm y})$

operations preserving convexity

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Line restriction and convexity

suppose that $f : \mathbb{R}^n \to \mathbb{R}$ and define

 $g(t) = f(\boldsymbol{x} + t\boldsymbol{v}), \quad \operatorname{dom} g = \{t \mid \boldsymbol{x} + t\boldsymbol{v} \in \operatorname{dom} f\}$

- f is convex if and only if, for every $x \in \text{dom } f$ and all $v \in \mathbb{R}^n$, the function g(t) is convex over its domain
- this means that function is convex if it remains convex when restricted to any line intersecting its domain

the *log-determinant* function $f(X) = -\log \det X$ is convex over the domain of symmetric, positive definite matrices

to verify this let $X_0 \in \mathbb{R}^{n \times n}$ be a positive definite matrix, $V \in \mathbb{R}^{n \times n}$ be symmetric, and consider the scalar-valued function

$$g(t) = -\log \det \left(X_0 + tV\right)$$

since $X_0 > 0$, it can be factored (matrix square-root factorization) as $X_0 = X_0^{1/2} X_0^{1/2}$, hence

$$\det (X_0 + tV) = \det \left(X_0^{1/2} X_0^{1/2} + tV \right)$$

= det X₀ det $\left(I + tX_0^{-1/2} VX_0^{-1/2} \right)$
= det X₀ $\prod_{i=1,\dots,n} (1 + t\lambda_i(Z))$

where $\lambda_i(Z)$, are the eigenvalues of the matrix $Z = X_0^{-1/2} V X_0^{-1/2}$

basic properties

taking the logarithm, we thus obtain

$$g(t) = -\log \det X_0 + \sum_{i=1}^n -\log(1 + t\lambda_i(Z))$$

- · the first term in the previous expression is a constant
- the second term is the sum of convex functions
- hence g(t) is convex for any positive definite matrix $X_0 \in \mathbb{R}^{n \times n}$, and symmetric $V \in \mathbb{R}^{n \times n}$
- it follows that $-\log \det X$ is convex over the domain of positive definite matrices

Sublevel sets and convexity

the sublevel set of $f:\mathbb{R}^n\to\mathbb{R}$ at level γ is defined as

$$S_{\gamma} = \{ \boldsymbol{x} \mid f(\boldsymbol{x}) \leq \gamma \}$$

- for a convex function f, the sublevel set \mathcal{S}_{γ} is also convex; to see this, observe that

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) \le \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}) \le \gamma$$

for all $oldsymbol{x},oldsymbol{y}\in\mathcal{S}_\gamma$

- a function can have all its sublevel sets convex, but not be a convex
 - for example, $f(x) = -e^x$ is not convex on **R** (indeed, it is strictly concave) but all its sublevel sets are convex
 - another example is the function $f(x) = \ln(x)$, which is concave; however, its sublevel sets, which are intervals of the form $(0, e^{\gamma}]$, are convex

the set:

$$\mathcal{C} = \left\{ \boldsymbol{x} \mid (\boldsymbol{x}^T P \boldsymbol{x} + 1)^2 + \ln\left(\sum_{i=1}^n e^{x_i}\right) \leq 3 \right\},$$

where $P \geq 0$ is an $n \times n$ matrix, is convex since it is the level set of a convex function

$$f(\boldsymbol{x}) = \left(\boldsymbol{x}^{T} P \boldsymbol{x} + 1\right)^{2} + \ln\left(\sum_{i=1}^{n} e^{x_{i}}\right)$$

- *f* is convex, being the sum of two convex functions
- the log-sum-exp function, previously established as convex
- the function $h(x) = (x^T P x + 1)^2$, which is convex since it can be represented as a composition of the nondecreasing convex function $g(t) = (t + 1)^2$ (defined on \mathbb{R}_+) with the convex quadratic function $x^T P x$

Epigraph

the graph of a function $f:\mathbb{R}^n \to \mathbb{R}$ is described as

 $\{(\boldsymbol{x}, f(\boldsymbol{x})) \mid \boldsymbol{x} \in \operatorname{dom} f\} \subset \mathbb{R}^{n+1}$

The *epigraph* of $f : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\operatorname{epi}(f) = \{(\boldsymbol{x}, s) \mid \boldsymbol{x} \in \operatorname{dom} f, \ f(\boldsymbol{x}) \le s\} \subset \mathbb{R}^{n+1}$$

• the epigraph encompasses the points situated on or above the graph of \boldsymbol{f}

• a function is convex if and only if its epigraph constitutes a convex set

basic properties

consider the function $f : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$, represented by

$$f(\boldsymbol{x}, Y) = \boldsymbol{x}^T Y^{-1} \boldsymbol{x}$$

where Y is positive definite

we can determine the convexity of f is by examining its epigraph:

$$\begin{split} \operatorname{epi} f &= \{ (\boldsymbol{x}, Y, t) \mid Y \geq 0, \boldsymbol{x}^T Y^{-1} \boldsymbol{x} \leq t \} \\ &= \{ (\boldsymbol{x}, Y, t) \mid \begin{bmatrix} Y & \boldsymbol{x} \\ \boldsymbol{x}^T & t \end{bmatrix} \geq 0, Y > 0 \}, \end{split}$$

utilizing the Schur complement criteria for a block matrix's positive semidefiniteness; the latter condition is linear matrix inequality (LMI) in the variables (x, Y, t), hence the epigraph of f is convex, and consequently f is convex

basic properties

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Definition

Convex optimization problems

- f and g_i are convex
- $h_j({m x})$ are affine, *i.e.*, $h_j({m x}) = {m a}_j^T {m x} b_j$ for some ${m a}_j \in {\mathbb R}^n$ and $b_j \in {\mathbb R}$
- · the feasible set is convex since it is the intersection of convex sets

Concave problems

- when the problem is a maximization with concave objective and convex constraints, then the problem is said to be *concave optimization problem*
- a concave problem is also referred to as a convex problem

• the problem

minimize	$-2x_1 + x_2$
subject to	$x_1^2 + x_2^2 \le 4$

is convex

• the problem

minimize $-2x_1 + x_2$ subject to $x_1^2 + x_2^2 = 4$

is nonconvex since the equality constraint function $h(\pmb{x}) = x_1^2 + x_2^2 - 4$ is not affine

- an investor wants to invest a total value of at most *d* into *n* possible investment opportunities
- if x_i is investment deposit for investment i; in economy it is frequently assumed that $f_i(x_i)$ have forms:

$$f_i(x_i) = \alpha_i (1 - e^{-\beta_i x_i}), \quad f_i(x_i) = \alpha_i \log(1 + \beta_i x_i), \quad f_i(x_i) = \frac{\alpha_i x_i}{x_i + \beta_i}$$

with $\alpha_i, \beta_i > 0$; the above functions are concave

• we want to determine the investment deposits that maximize expected profit; we can formulate the optimization problem:

maximize
$$\sum_{i=1}^{n} f_i(x_i)$$

subject to
$$\sum_{i=1}^{n} x_i \le d$$

$$x_i \ge 0, \quad i = 1, \dots, n$$

this is a convex problem (we can transform max into min)

Local minimizers are global minimizers

if the function $f : \mathbb{R}^n \to \mathbb{R}$ is convex (convex with convex domain), then, any local minimizer is a global minimizer

Proof:

- if \pmb{x}^o is a local minimizer of f, then $f(\pmb{x}^o) \leq f(\pmb{z})$ for all points \pmb{z} with $\|\pmb{z}-\pmb{x}^o\| \leq R$
- assume that there exists a feasible ${\bm y}$ such that $f({\bm y}) < f({\bm x}^o)$ so that ${\bm x}^o$ is not a global minimizer
- since $f(y) < f(x^o)$, we have $||y x^o|| > R$; let $z = \theta y + (1 \theta)x^o$, from convexity definition, we have

$$f(\boldsymbol{z}) = f(\theta \boldsymbol{y} + (1 - \theta)\boldsymbol{x}^{o}) \le \theta f(\boldsymbol{y}) + (1 - \theta)f(\boldsymbol{x}^{o}) < f(\boldsymbol{x}^{o})$$

- for $\theta = R/2 || \boldsymbol{y} \boldsymbol{x}^o ||$, we have $|| \boldsymbol{z} \boldsymbol{x}^o || = R/2 < R$; this implies that there is a point \boldsymbol{z} close to \boldsymbol{x}^o such that $f(\boldsymbol{z}) < f(\boldsymbol{x}^o)$; this contradicts that \boldsymbol{x}^o is a local minimizer
- hence, there is no feasible ${\pmb y}$ such that $f({\pmb y}) < f({\pmb x}^o),$ i.e., ${\pmb x}^o$ is a global minimizer

A first-order optimality condition

suppose that a convex function $f : \mathcal{X} \to \mathbb{R}$ is defined on a convex set $\mathcal{X} \subset \mathbb{R}^n$; the point x^* is optimal if and only if

$$\nabla f(\boldsymbol{x}^{\star})^{T}(\boldsymbol{y}-\boldsymbol{x}^{\star}) \geq 0, \quad \forall \ \boldsymbol{y} \in \mathcal{X}$$
 (9.7)

(the above condition is difficult to verify in practice)

Unconstrained case: for $\mathcal{X} = \mathbb{R}^n$, the above condition reduces to

$$\nabla f(\boldsymbol{x}^{\star}) = \boldsymbol{0}$$

to see this suppose that $x \in \text{dom } f$ is optimal and let $y = x - t\nabla f(x)$, which is in the domain of f for sufficiently small t (since domain is open by definition); note that

$$\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) = -t \|\nabla f(\boldsymbol{x})\|^{2} \ge 0$$

hence, $\nabla f(\boldsymbol{x}) = \boldsymbol{0}$

Sufficiency of KKT conditions

suppose that there exists points $x^* \in D$ (D is domain of (9.6)), $\mu^* \in \mathbb{R}^m$, and $\lambda^* \in \mathbb{R}^p$ satisfying the KKT conditions

$$\nabla f(\boldsymbol{x}^{\star}) + \sum_{i=1}^{m} \mu_{i}^{\star} \nabla g_{i}(\boldsymbol{x}^{\star}) + \sum_{j=1}^{p} \lambda_{j}^{\star} \nabla h_{j}(\boldsymbol{x}^{\star}) = \boldsymbol{0}$$

$$g_{i}(\boldsymbol{x}^{\star}) \leq 0, \quad i = 1, \dots, m$$

$$A\boldsymbol{x}^{\star} = \boldsymbol{b}$$

$$\mu_{i}^{\star} \geq 0, \quad i = 1, \dots, m$$

$$g_{i}(\boldsymbol{x}^{\star})\mu_{i}^{\star} = 0, \quad i = 1, \dots, m$$

then, x^{\star} is a global minimizer of problem (9.6)

Proof: let x be a feasible solution; note that the function

$$J(\boldsymbol{x}) = L(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x}) + \sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x})$$

is convex since it is the sum of convex functions; since $\nabla J(x^*) = 0$, x^* is a minimizer of J over \mathbb{R}^n ; thus,

$$\begin{split} f(\boldsymbol{x}^{\star}) &\stackrel{\text{kkt}}{=} f(\boldsymbol{x}^{\star}) + \sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x}^{\star}) + \sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x}^{\star}) \\ &= J(\boldsymbol{x}^{\star}) \\ &\leq J(\boldsymbol{x}) \\ &= f(\boldsymbol{x}) + \sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x}) + \sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x}) \\ &\leq f(\boldsymbol{x}) \end{split}$$

hence, x^{\star} is optimal

Slater's constraint qualification

Slater's condition is satisfied if there exists an $\hat{x} \in \mathbb{R}^n$ such that

$$g_i(\hat{\boldsymbol{x}}) < 0, \quad i = 1, \dots, m, \quad A\hat{\boldsymbol{x}} = \boldsymbol{b}$$

- if Slater condition holds, then the KKT conditions are necessary and sufficient for optimality
- we can weaken Slater condition if some g_i are affine by only requiring the non-affine functions to hold with strict inequality

minimize
$$\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

subject to $x_1 + x_2 + x_3 = 3$

the above problem is convex with an equality constraint, hence, the KKT conditions are necessary and sufficient for optimality; the Lagrangian is

$$L(\boldsymbol{x},\lambda) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) + \lambda(x_1 + x_2 + x_3 - 3)$$

the KKT conditions are

$$x_1 + \lambda = 0$$
$$x_2 + \lambda = 0$$
$$x_3 + \lambda = 0$$
$$x_1 + x_2 + x_3 = 0$$

the unique optimal solution is $oldsymbol{x}=(1,1,1)$ and $\lambda=-1$

$$\begin{array}{ll} \mbox{minimize} & x_1^2 - x_2 \\ \mbox{subject to} & x_2^2 \leq 0 \end{array}$$

it is easy to see that the solution is $x^* = (0,0)$; for this problem Slater condition is not satisfied since we cannot find an x such that $x_2^2 < 0$; the Lagrangian is

$$L(\boldsymbol{x},\mu) = \frac{1}{2}x_1^2 - x_2 + \mu x_2^2$$

the KKT conditions are

$$2x_1 = 0$$

-1+2\mu x_2 = 0
$$\mu x_2^2 = 0$$

$$x_2^2 \le 0$$

$$\mu \ge 0$$

the above nonlinear system of equations is infeasible

$$\begin{array}{ll} \mbox{minimize} & 4x_1^2 + x_2^2 - x_1 - 2x_2 \\ \mbox{subject to} & 2x_1 + x_2 \leq 1 \\ & x_1^2 \leq 1 \end{array}$$

Slater's condition is satisfied for $\hat{x} = (0,0)$, hence, the KKT conditions are necessary and sufficient for optimality; the Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\mu}) = 4x_1^2 + x_2^2 - x_1 - 2x_2 + \mu_1(2x_1 + x_2 - 1) + \mu_2(x_1^2 - 1)$$

and the KKT conditions are

$$\begin{aligned} 8x_1 - 1 + 2\mu_1 + 2\mu_2 x_1 &= 0\\ 2x_2 - 2 + \mu_2 &= 0\\ \mu_1(2x_1 + x_2 - 1) &= 0\\ \mu_2(x_1^2 - 1) &= 0\\ 2x_1 + x_2 &\leq 1\\ x_1^2 &\leq 1\\ \mu_1, \mu_2 &\geq 0 \end{aligned}$$

- for $\mu_1 = \mu_2 = 0$, the KKT system will be infeasible
- for $\mu_1, \mu_2 > 0$, the KKT system will be infeasible
- for $\mu_1 = 0, \mu_2 > 0$, the KKT system will be infeasible
- for $\mu_1 > 0, \mu_2 = 0$, we will get $(x_1, x_2, \mu_1) = (\frac{1}{16}, \frac{7}{8}, \frac{1}{4})$
- hence, from convexity $m{x}=(rac{1}{16},rac{7}{8})$ is the optimal unique solution

References and further readings

- Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014.
- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*, Cambridge University Press, 2004.
- Edwin KP Chong and Stanislaw H Zak. *An Introduction to Optimization,* John Wiley & Sons, 2013.