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Line segment

a line passing through non-equal points x ∈ Rn and y ∈ Rn has the form

{z | z = θx+ (1− θ)y, θ ∈ R}

Line segment between x and y:

{θx+ (1− θ)y | θ ∈ [0, 1]}

x

y

z = θx+ (1− θ)y
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Convex sets

a set C ⊆ Rn is convex if for any x,y ∈ C, we have

θx+ (1− θ)y ∈ C

for any θ ∈ [0, 1], i.e., the line segment between any two points in C lies in C

convex sets

nonconvex sets

a point on the line segment between x and y is called a convex combination
of the points x and y
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Example 9.1

• Affine sets: a set C ⊆ Rn is affine if for any x,y ∈ C and θ, we have

θx+ (1− θ)y ∈ C

since the above holds for any θ, it holds also for θ ∈ [0, 1]; hence, affine
sets are also convex (the converse is not true)

• the empty set, any single point (singleton), and Rn are affine, hence
convex

• Lines: a line in Rn is a set of the form:

L = {x0 + td | t ∈ R}

where x0,d ∈ Rn and d ̸= 0

• Rays: a ray {x0 + td | t ≥ 0}, where d ̸= 0, is convex
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• Ellipsoids: an ellipsoid is a set of the form

E = {x | xTQx+ rTx+ c ≤ 0},

where Q ∈ Rn×n is positive definite, r ∈ Rn, and c ∈ R; an ellipsoid is a
convex set

• Hyperplane and halfspaces: let a ∈ Rn and b ∈ R, then, the hyperplane
H = {x | aTx = b} and the halfspace H− = {x | aTx ≤ b} are convex
sets

• Balls: let c ∈ Rn, r > 0, and ∥ · ∥ be an arbitrary norm; then, the open ball

B(c, r) = {x | ∥x− c∥ < r}

and closed ball
B[c, r] = {x | ∥x− c∥ ≤ r}

are convex
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Linear matrix inequality

a linear matrix inequality (LMI) is represented by:

F (x) = F0 +

n∑
i=1

xiFi ≤ 0, (9.1)

• x ∈ Rn, F0, . . . , Fn are m×m symmetric matrices

• the solution set of a linear matrix inequality, {x | F (x) ≤ 0}, is convex

Example any solution w(t) to the linear differential equation

ẇ(t) = Aw(t), A ∈ Rn×n,

converges to the origin as t approaches infinity if and only if there exists a real
symmetric matrix X satisfying the conditions:

AX +XAT < 0, X > 0 (9.2)
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let us express the variable vector x ∈ Rm as:

X = x1X1 + x2X2 + · · ·+ xmXm,

where the matrices Xi (i = 1, 2, . . . ,m) serve as a basis for the linear space
spanned by n× n symmetric matrices (with m = n(n+ 1)/2); for instance,
when n = 2, we have m = 3 and:

X =

[
x1 x2

x2 x3

]
= x1

[
1 0
0 0

]
+ x2

[
0 1
1 0

]
+ x3

[
0 0
0 1

]
given this representation, the inequality in (9.2) can be recast as:

F (x) ≜

[
−X 0
0 AX +XAT

]
< 0,

which can then be expressed in the form of (9.1), where F0 = 0 and:

Fi =

[
−Xi 0
0 AXi +XiA

T

]
, (i = 1, . . . ,m)
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Intersection of convex sets

the intersection of any collection of convex sets is convex
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Properties

• if C is a convex set and β is a real number, then the set

βC = {βy | y ∈ C}

is also convex

• if C1 and C2 are convex sets, then the set

C1 + C2 = {x1 + x2 | x1 ∈ C1,x2 ∈ C2}

is convex

• suppose that f(x) = Ax+ b where A ∈ Rm×n and b ∈ Rm; if C ⊂ Rn is
convex, then the image set

f(C) = {Ax+ b | x ∈ C}

is convex
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Definition

f : Rn → R is convex if dom f is a convex set and

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y), (9.3)

for all x,y ∈ dom f , and 0 ≤ θ ≤ 1

(y, f(y))

convex nonconvex

(x, f(x)) (y, f(y))

(x, f(x))

• f is strictly convex if strict inequality holds in (9.3)

• f is concave (strictly concave) if −f is convex (strictly convex)

• f is convex over convex set X ⊆ Rn if (9.3) holds for all x,y ∈ X
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Example 9.2

• Affine functions: f(x) = aTx+ b where a ∈ Rn and b ∈ R, is both
convex and concave:

f(θx+ (1− θ)y) = aT((θx+ (1− θ)y)) + b

= θ(aTx+ b) + (1− θ)(aTy + b)

= θf(x) + (1− θ)f(y)

• Norm functions: f(x) = ∥x∥ for any norm ∥ · ∥ is convex:

f(θx+ (1− θ)y) = ∥θx+ (1− θ)y∥
≤ ∥θx∥+ ∥(1− θ)y∥ = θf(x) + (1− θ)f(y)

where the inequality follows from the triangle inequality
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• the function f(x1, x2) = x1x2 with dom f = {x | x1, x2 ≥ 0}; is
nonconvex since for x = (1, 2), y = (2, 1), θ = 0.5, we have

f(0.5x+ 0.5y) =
9

4
≰ 0.5f(x) + 0.5f(y) = 2,

which violates the definition of convexity

• the function f(x) = x over dom f = {x | x ̸= 1} is not convex even
though it is linear; this is because its domain is nonconvex
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First-order convexity condition

if f : Rn → R is continuously differentiable, then f is convex if and only if its
domain is convex and for any x,y ∈ dom f

f(y) ≥ f(x) +∇f(x)T(y − x) (9.4)

f(y)

(x, f(x))

f(x) +∇f(x)T(y − x)

• f is strictly convex if strict inequality holds
• if ∇f(x) = 0, then the inequality (9.4) becomes f(x) ≤ f(y) for all

y ∈ dom f implying thay x is a global minimizer of f
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Second-order convexity condition

suppose that f : Rn → R is twice differentiable, then f is convex if and only if
its domain is convex and for all x ∈ dom f , we have

∇2f(x) ≥ 0 (9.5)

• if ∇2f(x) > 0 for all x, then f is strictly convex

• converse is not true since f(x) = x4 is strictly convex but has zero second
derivative at x = 0

Convexity of domain:

• domain of f must be convex to use the first or second order convexity
characterization

• for example, the function f(x) = 1/x2 with dom f = {x ∈ R | x ̸= 0}
satisfies f ′′(x) = 6/x4 > 0 for all x ∈ dom f , but is not a convex function

SA — ENGR507convex functions 9.14



Example 9.3

convexity or concavity of the following examples can be shown using the
definition or the second order condition

• Exponential: eαx is convex for any α ∈ R

• Powers: xα is convex on R++ = {x | x > 0} when α ≥ 1 or α ≤ 0, and
concave for 0 ≤ α ≤ 1

• Powers of absolute value: |x|p is convex on R for p ≥ 1

• Logarithm: log x is concave on R++

• Negative entropy: x log x defined as 0 for x = 0 is convex on
R+ = {x | x ≥ 0}
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Example 9.4 (Quadratic functions)

f(x) = xTQx+ rTx+ c where Q = QT is convex if and only if Q ≥ 0

• f(x) = 4x2
1 + 2x2

2 + 3x1x2 + 4x1 + 5x2 is convex since its Hessian

∇2f(x) =

[
8 3
3 4

]
is positive definite

• f(x) = 4x2
1 − 2x2

2 + 3x1x2 + 4x1 + 5x2 is nonconvex since its Hessian

∇2f(x) =

[
8 3
3 −4

]
is indefinite
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Example 9.5

Quadratic over linear: the function

f(x, t) = x2/t

with dom f = {(x, t) | t > 0} is convex; this is because the Hessian

∇2f(x) = 2

[
1/t −x/t2

−x/t2 x2/t3

]
=

2

t3

[
t

−x

] [
t −x

]
≥ 0,

is positive semidefinite over its domain
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Example 9.6

Log-sum-exp function: the function

f(x) = log(ex1 + · · ·+ exn)

is convex over Rn; we now show this by showing that the Hessian is positive
semidefinite
• the partial derivatives of f are:

∂f

∂xi
=

exi∑n
k=1 e

xk

the second partial derivatives are

∂2f

∂xi∂xj
=

{
exi∑n

k=1 exk
− exiexi

(
∑n

k=1 exk )2 , if i = j

− exiexj

(
∑n

k=1 exk )2 , if i ̸= j

• thus, we can express the Hessian as

∇2f(x) = diag(w)−wwT

where w =
(

ex1∑n
k=1 exk

, . . . , exn∑n
k=1 exk

)
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• note that for any v ∈ Rn, we have

vT∇2f(x)v =

n∑
i=1

wiv
2
i − (vTw)2

• applying Cauchy-Schwarz on the vectors a and b with entries

ai =
√
wivi, bi =

√
wi, i = 1, . . . , n

we get

(vTw)2 = (aTb)2 ≤ ∥a∥2∥b∥2 =

(
n∑

i=1

wiv
2
i

)(
n∑

i=1

wi

)
=

n∑
i=1

wiv
2
i

it follows that vT∇2f(x)v ≥ 0 for any v ∈ Rn

SA — ENGR507convex functions 9.19



Outline

• convex sets

• convex functions

• operations preserving convexity

• basic properties

• convex problems



Operations preserving convexity

Weighted nonnegative sum: the function

f = w1f1 + · · ·+ wkfk

is convex if fi are convex and wi ≥ 0

• a nonnegative weighted sum of concave functions is concave

• a nonnegative nonzero weighted sum of strictly convex (concave)
functions is strictly convex (concave)

Composition with affine mapping: suppose that g : Rm → R, A ∈ Rm×n,
b ∈ Rm; let f : Rn → R

f(x) = g(Ax+ b),

with dom f = {x | Ax+ b ∈ dom g}; then, f is convex (concave) if g is
convex (concave)
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Example 9.7

• Negative entropy function: f(x) =
∑n

i=1 xi log xi is convex over
dom f = Rn

++ = {x | xi > 0} since it is the sum of convex functions
xi log xi

• f(x) = − log(ax+ b) is convex over ax+ b > 0 since g(t) = − log(t) is
convex over dom f = R++

• f(x) = ea
Tx+b where a ∈ Rn and b ∈ R is convex over Rn; we can write

f as f(x) = g(aTx+ b) where g(t) = et is a convex function; hence, f is
convex
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• consider the function

f(x1, x2) = x2
1 + 2x1x2 + 3x2

2 + 2x1 − 3x2 + ex1

■ we can write f as f = f1 + f2 with

f1(x1, x2) = x2
1 + 2x1x2 + 3x2

2 + 2x1 − 3x2, f2(x1, x2) = ex1

■ f1 is convex since ∇2f(x1, x2) =
[
1 1
1 3

]
is positive semidefinite

■ f2 is also convex since g(t) = et is convex and f2(x1, x2) = g(x2)

hence, f is convex since it is the sum of two convex functions

• the function
f(x1, x2, x3) = ex1−x2+x3 + e2x2 + x1

is convex over R3; it is the sum of three convex functions: ex1−x2+x3 ,
e2x2 , and x1
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Example 9.8

Generalized quadratic-over-linear: let A ∈ Rm×n, b ∈ Rm, c ∈ Rn (c ̸= 0),
and d ∈ R, then the function

f(x) =
∥Ax+ b∥2

cTx+ d

is convex over dom f = {x | cTx+ d > 0}
• we can write f as

f(x) = g(Ax+ b, cTx+ d), g(y, t) =
∥y∥2

t

with dom f = {(y, t) | y ∈ Rm, t > 0}

• g =
∑m

i=1 gi where gi(y, t) =
y2
i

t is convex over {(yi, t) | yi ∈ R, t > 0};
thus, g is convex since it is the sum of convex function

• thus f is convex (composition of convex function with an affine mapping)
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Pointwise maximum of convex functions

if fi : Rn → R, i = 1, . . . , k are convex, then

f(x) = max{f1(x), . . . , fk(x)}

is convex

Examples

• Maximum function: f(x) = max{x1, x2, . . . , xn} is convex because it is
the maximum of n linear (hence convex) functions

• Sum of k largest values: let x[i] denote the ith largest component of x,
then the function

fk(x) = x[1] + · · ·+ x[k]

is convex; to see this, note that we can rewrite fk as

fk(x) = max{xi1 + · · ·+ xik | i1, . . . , ik ∈ {1, 2, . . . , n} are different}

hence, fk is a maximum of linear functions, hence convex
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Composition with a nondecreasing convex function

let h : Rn → R and g : R → R and define f = g ◦ h : Rn → R:

f(x) = g(h(x)), dom f = {x ∈ domh | h(x) ∈ dom g}

let g̃ denotes the extended-value extension of the function g, which assigns
the value ∞ (−∞) to points not in dom g for g convex (concave)

• f is convex if h is convex, and g̃ is convex and nondecreasing (over the
range of h)

• f is convex if h is concave, and g̃ is convex and nonincreasing

• f is concave if h is concave, and g̃ is concave and nondecreasing

• f is concave if h is convex, and g̃ is concave and nonincreasing
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Proof:

f(θx+ (1− θ)y) = g
(
h(θx+ (1− θ)y)

)
≤ g
(
θh(x) + (1− θ)h(y)

)
≤ θg

(
h(x)

)
+ (1− θ)g

(
h(y)

)
= θf(x) + (1− θ)f(x),

where the first inequality arises from the convexity of h and the nondecreasing
nature of g; the second inequality is a result of the convexity of g̃
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Example 9.9

• f(x) = e∥x∥
2

is convex since f(x) = g(h(x)) where
■ h(x) = ∥x∥2 is a convex function
■ g(t) = et is a nondecreasing convex function

more generally, eh(x) is convex if h is convex

• f(x) = (1 + ∥x∥2)2 is a convex function since f(x) = g(h(x)) where
■ h(x) = 1 + ∥x∥2 is convex
■ g(t) = t2, which is convex and nondecreasing over h (i.e., the interval
[1,∞))

• if h is convex and nonnegative, then h(x)p is convex for p ≥ 1

• if h is convex, then − log(−h(x)) is convex on {x | h(x) < 0}

• if h is concave and positive, then 1/h(x) is convex

• if h is concave and positive, then log h(x) is concave
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Vector functions composition

the aforementioned principle can be extended to functions that take a vector
as their argument:

f(x) = g(h(x)) = g(h1(x), . . . , hk(x))

• hi : Rn → R for i = 1, . . . , k, are convex

• if the function g : Rk → R is convex and non-decreasing in every
argument, given that domhi = Rn and dom g = Rk, then the function
f(x) is also convex
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Example 9.10

• g(z) = log(
∑k

i=1 e
zi) is convex and nondecreasing in each argument;

hence, g(h(x)) = log(
∑k

i=1 e
hi(x)) is convex when hi are convex

• suppose p ≥ 1, and let h1, . . . , hk be convex and nonnegative functions;

then function given by
(∑k

i=1 hi(x)
p
) 1

p

is convex

to demonstrate this, we introduce the function g : Rk → R defined as

g(z) = (
∑k

i=1 max{zi, 0}p)
1
p ,

with dom g = Rk; since this function is both convex and nondecreasing in
its arguments, g(h(x)) is also convex in x; for nonnegative values of z,
g(z) simplifies to

(
∑k

i=1 z
p
i )

1
p ,

leading us to conclude that (
∑k

i=1 hi(x)
p)

1
p is convex
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Minimizing over some variables

suppose that f : Rn1×n2 → R is convex in (x,y) and C is a convex set; then,
the function

g(x) = min
y∈C

f(x,y)

is convex (provided that g(x) > ∞ for some x); the domain of g is

dom g = {x | (x,y) ∈ dom f for some y ∈ C}

Example: for a convex set C ⊂ Rn, the distance function defined as

d(x, C) = min
y

{∥x− y∥ | y ∈ C}

is convex because f(x,y) = ∥x− y∥ is convex in both (x,y)
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Line restriction and convexity

suppose that f : Rn → R and define

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

• f is convex if and only if, for every x ∈ dom f and all v ∈ Rn, the function
g(t) is convex over its domain

• this means that function is convex if it remains convex when restricted to
any line intersecting its domain
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Example 9.11

the log-determinant function f(X) = − log detX is convex over the domain
of symmetric, positive definite matrices

to verify this let X0 ∈ Rn×n be a positive definite matrix, V ∈ Rn×n be
symmetric, and consider the scalar-valued function

g(t) = − log det (X0 + tV )

since X0 > 0, it can be factored (matrix square-root factorization) as
X0 = X

1/2
0 X

1/2
0 , hence

det (X0 + tV ) = det
(
X

1/2
0 X

1/2
0 + tV

)
= detX0 det

(
I + tX

−1/2
0 V X

−1/2
0

)
= detX0

∏
i=1,...,n

(1 + tλi(Z))

where λi(Z), are the eigenvalues of the matrix Z = X
−1/2
0 V X

−1/2
0

SA — ENGR507basic properties 9.32



taking the logarithm, we thus obtain

g(t) = − log detX0 +

n∑
i=1

− log (1 + tλi(Z))

• the first term in the previous expression is a constant

• the second term is the sum of convex functions

• hence g(t) is convex for any positive definite matrix X0 ∈ Rn×n, and
symmetric V ∈ Rn×n

• it follows that − log detX is convex over the domain of positive definite
matrices
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Sublevel sets and convexity

the sublevel set of f : Rn → R at level γ is defined as

Sγ = {x | f(x) ≤ γ}

• for a convex function f , the sublevel set Sγ is also convex; to see this,
observe that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ≤ γ

for all x,y ∈ Sγ

• a function can have all its sublevel sets convex, but not be a convex
■ for example, f(x) = −ex is not convex on R (indeed, it is strictly concave)

but all its sublevel sets are convex
■ another example is the function f(x) = ln(x), which is concave; however, its

sublevel sets, which are intervals of the form (0, eγ ], are convex
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Example 9.12

the set:

C =

{
x | (xTPx+ 1)2 + ln

(
n∑

i=1

exi

)
≤ 3

}
,

where P ≥ 0 is an n× n matrix, is convex since it is the level set of a convex
function

f(x) =
(
xTPx+ 1

)2
+ ln

(
n∑

i=1

exi

)

• f is convex, being the sum of two convex functions

• the log-sum-exp function, previously established as convex

• the function h(x) =
(
xTPx+ 1

)2
, which is convex since it can be

represented as a composition of the nondecreasing convex function
g(t) = (t+ 1)2 (defined on R+) with the convex quadratic function xTPx
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Epigraph

the graph of a function f : Rn → R is described as

{(x, f(x)) | x ∈ dom f} ⊂ Rn+1

The epigraph of f : Rn → R is defined by

epi(f) = {(x, s) | x ∈ dom f, f(x) ≤ s} ⊂ Rn+1

• the epigraph encompasses the points situated on or above the graph of f

epi f

graph of f

f

• a function is convex if and only if its epigraph constitutes a convex set
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Example 9.13

consider the function f : Rn × Rn×n → R, represented by

f(x, Y ) = xTY −1x

where Y is positive definite

we can determine the convexity of f is by examining its epigraph:

epi f = {(x, Y, t) | Y ≥ 0,xTY −1x ≤ t}

= {(x, Y, t) |
[
Y x
xT t

]
≥ 0, Y > 0},

utilizing the Schur complement criteria for a block matrix’s positive
semidefiniteness; the latter condition is linear matrix inequality (LMI) in the
variables (x, Y, t), hence the epigraph of f is convex, and consequently f is
convex
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Definition

Convex optimization problems

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(9.6)

• f and gi are convex
• hj(x) are affine, i.e., hj(x) = aTjx− bj for some aj ∈ Rn and bj ∈ R
• the feasible set is convex since it is the intersection of convex sets

Concave problems

• when the problem is a maximization with concave objective and convex
constraints, then the problem is said to be concave optimization problem

• a concave problem is also referred to as a convex problem
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Example 9.14

• the problem
minimize −2x1 + x2

subject to x2
1 + x2

2 ≤ 4

is convex

• the problem
minimize −2x1 + x2

subject to x2
1 + x2

2 = 4

is nonconvex since the equality constraint function h(x) = x2
1 + x2

2 − 4 is
not affine
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Example 9.15

• an investor wants to invest a total value of at most d into n possible
investment opportunities

• if xi is investment deposit for investment i; in economy it is frequently
assumed that fi(xi) have forms:

fi(xi) = αi(1− e−βixi), fi(xi) = αi log(1 + βixi), fi(xi) =
αixi

xi + βi

with αi, βi > 0; the above functions are concave

• we want to determine the investment deposits that maximize expected
profit; we can formulate the optimization problem:

maximize
n∑

i=1

fi(xi)

subject to
n∑

i=1

xi ≤ d

xi ≥ 0, i = 1, . . . , n

this is a convex problem (we can transform max into min)
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Local minimizers are global minimizers

if the function f : Rn → R is convex (convex with convex domain), then, any
local minimizer is a global minimizer

Proof:
• if xo is a local minimizer of f , then f(xo) ≤ f(z) for all points z with
∥z − xo∥ ≤ R

• assume that there exists a feasible y such that f(y) < f(xo) so that xo is
not a global minimizer

• since f(y) < f(xo), we have ∥y − xo∥ > R; let z = θy + (1− θ)xo,
from convexity definition, we have

f(z) = f
(
θy + (1− θ)xo

)
≤ θf(y) + (1− θ)f(xo) < f(xo)

• for θ = R/2∥y − xo∥, we have ∥z − xo∥ = R/2 < R; this implies that
there is a point z close to xo such that f(z) < f(xo); this contradicts that
xo is a local minimizer

• hence, there is no feasible y such that f(y) < f(xo), i.e., xo is a global
minimizer
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A first-order optimality condition

suppose that a convex function f : X → R is defined on a convex set
X ⊂ Rn; the point x⋆ is optimal if and only if

∇f(x⋆)T(y − x⋆) ≥ 0, ∀ y ∈ X (9.7)

(the above condition is difficult to verify in practice)

Unconstrained case: for X = Rn, the above condition reduces to

∇f(x⋆) = 0

to see this suppose that x ∈ dom f is optimal and let y = x− t∇f(x),
which is in the domain of f for sufficiently small t (since domain is open by
definition); note that

∇f(x)T(y − x) = −t∥∇f(x)∥2 ≥ 0

hence, ∇f(x) = 0
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Sufficiency of KKT conditions

suppose that there exists points x⋆ ∈ D (D is domain of (9.6)), µ⋆ ∈ Rm, and
λ⋆ ∈ Rp satisfying the KKT conditions

∇f(x⋆) +

m∑
i=1

µ⋆
i∇gi(x

⋆) +

p∑
j=1

λ⋆
j∇hj(x

⋆) = 0

gi(x
⋆) ≤ 0, i = 1, . . . ,m

Ax⋆ = b

µ⋆
i ≥ 0, i = 1, . . . ,m

gi(x
⋆)µ⋆

i = 0, i = 1, . . . ,m

then, x⋆ is a global minimizer of problem (9.6)
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Proof: let x be a feasible solution; note that the function

J(x) = L(x,µ⋆,λ⋆) = f(x) +

m∑
i=1

µ⋆
i gi(x) +

p∑
i=1

λ⋆
jhj(x)

is convex since it is the sum of convex functions; since ∇J(x⋆) = 0, x⋆ is a
minimizer of J over Rn; thus,

f(x⋆)
kkt
= f(x⋆) +

m∑
i=1

µ⋆
i gi(x

⋆) +

p∑
i=1

λ⋆
jhj(x

⋆)

= J(x⋆)

≤ J(x)

= f(x) +

m∑
i=1

µ⋆
i gi(x) +

p∑
i=1

λ⋆
jhj(x)

≤ f(x)

hence, x⋆ is optimal
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Slater’s constraint qualification

Slater’s condition is satisfied if there exists an x̂ ∈ Rn such that

gi(x̂) < 0, i = 1, . . . ,m, Ax̂ = b

• if Slater condition holds, then the KKT conditions are necessary and
sufficient for optimality

• we can weaken Slater condition if some gi are affine by only requiring the
non-affine functions to hold with strict inequality
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Example 9.16

minimize 1
2 (x

2
1 + x2

2 + x2
3)

subject to x1 + x2 + x3 = 3

the above problem is convex with an equality constraint, hence, the KKT
conditions are necessary and sufficient for optimality; the Lagrangian is

L(x, λ) = 1
2 (x

2
1 + x2

2 + x2
3) + λ(x1 + x2 + x3 − 3)

the KKT conditions are

x1 + λ = 0

x2 + λ = 0

x3 + λ = 0

x1 + x2 + x3 = 0

the unique optimal solution is x = (1, 1, 1) and λ = −1
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Example 9.17

minimize x2
1 − x2

subject to x2
2 ≤ 0

it is easy to see that the solution is x⋆ = (0, 0); for this problem Slater
condition is not satisfied since we cannot find an x such that x2

2 < 0; the
Lagrangian is

L(x, µ) = 1
2x

2
1 − x2 + µx2

2

the KKT conditions are

2x1 = 0

−1 + 2µx2 = 0

µx2
2 = 0

x2
2 ≤ 0

µ ≥ 0

the above nonlinear system of equations is infeasible
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Example 9.18

minimize 4x2
1 + x2

2 − x1 − 2x2

subject to 2x1 + x2 ≤ 1
x2
1 ≤ 1

Slater’s condition is satisfied for x̂ = (0, 0), hence, the KKT conditions are
necessary and sufficient for optimality; the Lagrangian is

L(x,µ) = 4x2
1 + x2

2 − x1 − 2x2 + µ1(2x1 + x2 − 1) + µ2(x
2
1 − 1)

and the KKT conditions are

8x1 − 1 + 2µ1 + 2µ2x1 = 0

2x2 − 2 + µ2 = 0

µ1(2x1 + x2 − 1) = 0

µ2(x
2
1 − 1) = 0

2x1 + x2 ≤ 1

x2
1 ≤ 1

µ1, µ2 ≥ 0
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• for µ1 = µ2 = 0, the KKT system will be infeasible

• for µ1, µ2 > 0, the KKT system will be infeasible

• for µ1 = 0, µ2 > 0, the KKT system will be infeasible

• for µ1 > 0, µ2 = 0, we will get (x1, x2, µ1) = ( 1
16 ,

7
8 ,

1
4 )

• hence, from convexity x = ( 1
16 ,

7
8 ) is the optimal unique solution
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