9. Convex optimization problems

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Line segment

a line passing through non-equal points $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{y} \in \mathbb{R}^{n}$ has the form

$$
\{\boldsymbol{z} \mid \boldsymbol{z}=\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}, \theta \in \mathbb{R}\}
$$

Line segment between \boldsymbol{x} and \boldsymbol{y} :

$$
\{\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \mid \theta \in[0,1]\}
$$

Convex sets

a set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$, we have

$$
\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \in \mathcal{C}
$$

for any $\theta \in[0,1]$, i.e., the line segment between any two points in \mathcal{C} lies in \mathcal{C}

convex sets

nonconvex sets
a point on the line segment between \boldsymbol{x} and \boldsymbol{y} is called a convex combination of the points x and y

Example 9.1

- Affine sets: a set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is affine if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$ and θ, we have

$$
\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \in \mathcal{C}
$$

since the above holds for any θ, it holds also for $\theta \in[0,1]$; hence, affine sets are also convex (the converse is not true)

- the empty set, any single point (singleton), and \mathbb{R}^{n} are affine, hence convex
- Lines: a line in \mathbb{R}^{n} is a set of the form:

$$
\mathcal{L}=\left\{\boldsymbol{x}_{0}+t \boldsymbol{d} \mid t \in \mathbb{R}\right\}
$$

where $\boldsymbol{x}_{0}, \boldsymbol{d} \in \mathbb{R}^{n}$ and $\boldsymbol{d} \neq \mathbf{0}$

- Rays: a ray $\left\{\boldsymbol{x}_{0}+t \boldsymbol{d} \mid t \geq 0\right\}$, where $\boldsymbol{d} \neq \mathbf{0}$, is convex
- Ellipsoids: an ellipsoid is a set of the form

$$
\mathcal{E}=\left\{\boldsymbol{x} \mid \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}+c \leq 0\right\},
$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite, $\boldsymbol{r} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$; an ellipsoid is a convex set

- Hyperplane and halfspaces: let $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, then, the hyperplane $\mathcal{H}=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}$ and the halfspace $\mathcal{H}^{-}=\left\{\boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\}$ are convex sets
- Balls: let $\boldsymbol{c} \in \mathbb{R}^{n}, r>0$, and $\|\cdot\|$ be an arbitrary norm; then, the open ball

$$
\mathcal{B}(\boldsymbol{c}, r)=\{\boldsymbol{x} \mid\|\boldsymbol{x}-\boldsymbol{c}\|<r\}
$$

and closed ball

$$
\mathcal{B}[\boldsymbol{c}, r]=\{\boldsymbol{x} \mid\|\boldsymbol{x}-\boldsymbol{c}\| \leq r\}
$$

are convex

Linear matrix inequality

a linear matrix inequality (LMI) is represented by:

$$
\begin{equation*}
F(\boldsymbol{x})=F_{0}+\sum_{i=1}^{n} x_{i} F_{i} \leq 0, \tag{9.1}
\end{equation*}
$$

- $\boldsymbol{x} \in \mathbb{R}^{n}, F_{0}, \ldots, F_{n}$ are $m \times m$ symmetric matrices
- the solution set of a linear matrix inequality, $\{\boldsymbol{x} \mid F(\boldsymbol{x}) \leq 0\}$, is convex

Example any solution $\boldsymbol{w}(t)$ to the linear differential equation

$$
\dot{\boldsymbol{w}}(t)=A \boldsymbol{w}(t), \quad A \in \mathbb{R}^{n \times n},
$$

converges to the origin as t approaches infinity if and only if there exists a real symmetric matrix X satisfying the conditions:

$$
\begin{equation*}
A X+X A^{T}<0, \quad X>0 \tag{9.2}
\end{equation*}
$$

let us express the variable vector $\boldsymbol{x} \in \mathbb{R}^{m}$ as:

$$
X=x_{1} X_{1}+x_{2} X_{2}+\cdots+x_{m} X_{m},
$$

where the matrices $X_{i}(i=1,2, \ldots, m)$ serve as a basis for the linear space spanned by $n \times n$ symmetric matrices (with $m=n(n+1) / 2$); for instance, when $n=2$, we have $m=3$ and:

$$
X=\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+x_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+x_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

given this representation, the inequality in (9.2) can be recast as:

$$
F(\boldsymbol{x}) \triangleq\left[\begin{array}{cc}
-X & 0 \\
0 & A X+X A^{T}
\end{array}\right]<0
$$

which can then be expressed in the form of (9.1), where $F_{0}=0$ and:

$$
F_{i}=\left[\begin{array}{cc}
-X_{i} & 0 \\
0 & A X_{i}+X_{i} A^{T}
\end{array}\right], \quad(i=1, \ldots, m)
$$

Intersection of convex sets

the intersection of any collection of convex sets is convex

Properties

- if \mathcal{C} is a convex set and β is a real number, then the set

$$
\beta \mathcal{C}=\{\beta \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{C}\}
$$

is also convex

- if \mathcal{C}_{1} and \mathcal{C}_{2} are convex sets, then the set

$$
\mathcal{C}_{1}+\mathcal{C}_{2}=\left\{\boldsymbol{x}_{1}+\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \in \mathcal{C}_{1}, \boldsymbol{x}_{2} \in \mathcal{C}_{2}\right\}
$$

is convex

- suppose that $f(\boldsymbol{x})=A \boldsymbol{x}+\boldsymbol{b}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$; if $\mathcal{C} \subset \mathbb{R}^{n}$ is convex, then the image set

$$
f(\mathcal{C})=\{A \boldsymbol{x}+\boldsymbol{b} \mid \boldsymbol{x} \in \mathcal{C}\}
$$

is convex

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
\begin{equation*}
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y}), \tag{9.3}
\end{equation*}
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$, and $0 \leq \theta \leq 1$

- f is strictly convex if strict inequality holds in (9.3)
- f is concave (strictly concave) if $-f$ is convex (strictly convex)
- f is convex over convex set $\mathcal{X} \subseteq \mathbb{R}^{n}$ if (9.3) holds for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}$

Example 9.2

- Affine functions: $f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$ where $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, is both convex and concave:

$$
\begin{aligned}
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) & =\boldsymbol{a}^{T}((\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}))+b \\
& =\theta\left(\boldsymbol{a}^{T} \boldsymbol{x}+b\right)+(1-\theta)\left(\boldsymbol{a}^{T} \boldsymbol{y}+b\right) \\
& =\theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y})
\end{aligned}
$$

- Norm functions: $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ for any norm $\|\cdot\|$ is convex:

$$
\begin{aligned}
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) & =\|\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}\| \\
& \leq\|\theta \boldsymbol{x}\|+\|(1-\theta) \boldsymbol{y}\|=\theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y})
\end{aligned}
$$

where the inequality follows from the triangle inequality

- the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ with $\operatorname{dom} f=\left\{\boldsymbol{x} \mid x_{1}, x_{2} \geq 0\right\}$; is nonconvex since for $\boldsymbol{x}=(1,2), \boldsymbol{y}=(2,1), \theta=0.5$, we have

$$
f(0.5 \boldsymbol{x}+0.5 \boldsymbol{y})=\frac{9}{4} \not \leq 0.5 f(\boldsymbol{x})+0.5 f(\boldsymbol{y})=2,
$$

which violates the definition of convexity

- the function $f(x)=x$ over $\operatorname{dom} f=\{x \mid x \neq 1\}$ is not convex even though it is linear; this is because its domain is nonconvex

First-order convexity condition

if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable, then f is convex if and only if its domain is convex and for any $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$

$$
\begin{equation*}
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \tag{9.4}
\end{equation*}
$$

- f is strictly convex if strict inequality holds
- if $\nabla f(\boldsymbol{x})=\mathbf{0}$, then the inequality (9.4) becomes $f(\boldsymbol{x}) \leq f(\boldsymbol{y})$ for all $\boldsymbol{y} \in \operatorname{dom} f$ implying thay \boldsymbol{x} is a global minimizer of f

Second-order convexity condition

suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable, then f is convex if and only if its domain is convex and for all $\boldsymbol{x} \in \operatorname{dom} f$, we have

$$
\begin{equation*}
\nabla^{2} f(\boldsymbol{x}) \geq 0 \tag{9.5}
\end{equation*}
$$

- if $\nabla^{2} f(\boldsymbol{x})>0$ for all \boldsymbol{x}, then f is strictly convex
- converse is not true since $f(x)=x^{4}$ is strictly convex but has zero second derivative at $x=0$

Convexity of domain:

- domain of f must be convex to use the first or second order convexity characterization
- for example, the function $f(x)=1 / x^{2}$ with $\operatorname{dom} f=\{x \in \mathbb{R} \mid x \neq 0\}$ satisfies $f^{\prime \prime}(x)=6 / x^{4}>0$ for all $x \in \operatorname{dom} f$, but is not a convex function

Example 9.3

convexity or concavity of the following examples can be shown using the definition or the second order condition

- Exponential: $e^{\alpha x}$ is convex for any $\alpha \in \mathbb{R}$
- Powers: x^{α} is convex on $\mathbb{R}_{++}=\{x \mid x>0\}$ when $\alpha \geq 1$ or $\alpha \leq 0$, and concave for $0 \leq \alpha \leq 1$
- Powers of absolute value: $|x|^{p}$ is convex on \mathbb{R} for $p \geq 1$
- Logarithm: $\log x$ is concave on \mathbb{R}_{++}
- Negative entropy: $x \log x$ defined as 0 for $x=0$ is convex on $\mathbb{R}_{+}=\{x \mid x \geq 0\}$

Example 9.4 (Quadratic functions)

$f(\boldsymbol{x})=\boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}+c$ where $Q=Q^{T}$ is convex if and only if $Q \geq 0$

- $f(\boldsymbol{x})=4 x_{1}^{2}+2 x_{2}^{2}+3 x_{1} x_{2}+4 x_{1}+5 x_{2}$ is convex since its Hessian

$$
\nabla^{2} f(\boldsymbol{x})=\left[\begin{array}{ll}
8 & 3 \\
3 & 4
\end{array}\right]
$$

is positive definite

- $f(\boldsymbol{x})=4 x_{1}^{2}-2 x_{2}^{2}+3 x_{1} x_{2}+4 x_{1}+5 x_{2}$ is nonconvex since its Hessian

$$
\nabla^{2} f(\boldsymbol{x})=\left[\begin{array}{rr}
8 & 3 \\
3 & -4
\end{array}\right]
$$

is indefinite

Example 9.5

Quadratic over linear: the function

$$
f(x, t)=x^{2} / t
$$

with dom $f=\{(x, t) \mid t>0\}$ is convex; this is because the Hessian

$$
\nabla^{2} f(\boldsymbol{x})=2\left[\begin{array}{cc}
1 / t & -x / t^{2} \\
-x / t^{2} & x^{2} / t^{3}
\end{array}\right]=\frac{2}{t^{3}}\left[\begin{array}{c}
t \\
-x
\end{array}\right]\left[\begin{array}{cc}
t & -x
\end{array}\right] \geq 0,
$$

is positive semidefinite over its domain

Example 9.6

Log-sum-exp function: the function

$$
f(\boldsymbol{x})=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)
$$

is convex over \mathbb{R}^{n}; we now show this by showing that the Hessian is positive semidefinite

- the partial derivatives of f are:

$$
\frac{\partial f}{\partial x_{i}}=\frac{e^{x_{i}}}{\sum_{k=1}^{n} e^{x_{k}}}
$$

the second partial derivatives are

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}= \begin{cases}\frac{e^{x_{i}}}{\sum_{k=1}^{n} e^{x_{k}}}-\frac{e^{x_{i}} e^{x_{i}}}{\left(\sum_{k=1}^{n} e^{x_{k}}\right)^{2}}, & \text { if } i=j \\ -\frac{e^{x_{i}} e^{x_{j}}}{\left(\sum_{k=1}^{n} e^{x_{k}}\right)^{2}}, & \text { if } i \neq j\end{cases}
$$

- thus, we can express the Hessian as

$$
\nabla^{2} f(\boldsymbol{x})=\operatorname{diag}(\boldsymbol{w})-\boldsymbol{w} \boldsymbol{w}^{T}
$$

where $\boldsymbol{w}=\left(\frac{e^{x_{1}}}{\sum_{k=1}^{n} e^{x_{k}}}, \ldots, \frac{e^{x_{n}}}{\sum_{k=1}^{n} e^{x_{k}}}\right)$

- note that for any $\boldsymbol{v} \in \mathbb{R}^{n}$, we have

$$
\boldsymbol{v}^{T} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v}=\sum_{i=1}^{n} w_{i} v_{i}^{2}-\left(\boldsymbol{v}^{T} \boldsymbol{w}\right)^{2}
$$

- applying Cauchy-Schwarz on the vectors a and b with entries

$$
a_{i}=\sqrt{w_{i}} v_{i}, \quad b_{i}=\sqrt{w_{i}}, \quad i=1, \ldots, n
$$

we get

$$
\left(\boldsymbol{v}^{T} \boldsymbol{w}\right)^{2}=\left(\boldsymbol{a}^{T} \boldsymbol{b}\right)^{2} \leq\|\boldsymbol{a}\|^{2}\|\boldsymbol{b}\|^{2}=\left(\sum_{i=1}^{n} w_{i} v_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i}\right)=\sum_{i=1}^{n} w_{i} v_{i}^{2}
$$

it follows that $\boldsymbol{v}^{T} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v} \geq 0$ for any $\boldsymbol{v} \in \mathbb{R}^{n}$

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Operations preserving convexity

Weighted nonnegative sum: the function

$$
f=w_{1} f_{1}+\cdots+w_{k} f_{k}
$$

is convex if f_{i} are convex and $w_{i} \geq 0$

- a nonnegative weighted sum of concave functions is concave
- a nonnegative nonzero weighted sum of strictly convex (concave) functions is strictly convex (concave)

Composition with affine mapping: suppose that $g: \mathbb{R}^{m} \rightarrow \mathbb{R}, A \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^{m}$; let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
f(\boldsymbol{x})=g(A \boldsymbol{x}+\boldsymbol{b}),
$$

with $\operatorname{dom} f=\{\boldsymbol{x} \mid A \boldsymbol{x}+\boldsymbol{b} \in \operatorname{dom} g\}$; then, f is convex (concave) if g is convex (concave)

Example 9.7

- Negative entropy function: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i} \log x_{i}$ is convex over $\operatorname{dom} f=\mathbb{R}_{++}^{n}=\left\{\boldsymbol{x} \mid x_{i}>0\right\}$ since it is the sum of convex functions $x_{i} \log x_{i}$
- $f(x)=-\log (a x+b)$ is convex over $a x+b>0$ since $g(t)=-\log (t)$ is convex over $\operatorname{dom} f=\mathbb{R}_{++}$
- $f(\boldsymbol{x})=e^{\boldsymbol{a}^{T} \boldsymbol{x}+b}$ where $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ is convex over \mathbb{R}^{n}; we can write f as $f(\boldsymbol{x})=g\left(\boldsymbol{a}^{T} \boldsymbol{x}+b\right)$ where $g(t)=e^{t}$ is a convex function; hence, f is convex
- consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+2 x_{1}-3 x_{2}+e^{x_{1}}
$$

- we can write f as $f=f_{1}+f_{2}$ with

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+2 x_{1}-3 x_{2}, \quad f_{2}\left(x_{1}, x_{2}\right)=e^{x_{1}}
$$

- f_{1} is convex since $\nabla^{2} f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$ is positive semidefinite
- f_{2} is also convex since $g(t)=e^{t}$ is convex and $f_{2}\left(x_{1}, x_{2}\right)=g\left(x_{2}\right)$ hence, f is convex since it is the sum of two convex functions
- the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=e^{x_{1}-x_{2}+x_{3}}+e^{2 x_{2}}+x_{1}
$$

is convex over \mathbb{R}^{3}; it is the sum of three convex functions: $e^{x_{1}-x_{2}+x_{3}}$, $e^{2 x_{2}}$, and x_{1}

Example 9.8

Generalized quadratic-over-linear: let $A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{c} \in \mathbb{R}^{n}(\boldsymbol{c} \neq \mathbf{0})$, and $d \in \mathbb{R}$, then the function

$$
f(\boldsymbol{x})=\frac{\|A \boldsymbol{x}+\boldsymbol{b}\|^{2}}{\boldsymbol{c}^{T} \boldsymbol{x}+d}
$$

is convex over $\operatorname{dom} f=\left\{\boldsymbol{x} \mid \boldsymbol{c}^{T} \boldsymbol{x}+d>0\right\}$

- we can write f as

$$
f(\boldsymbol{x})=g\left(A \boldsymbol{x}+\boldsymbol{b}, \boldsymbol{c}^{T} \boldsymbol{x}+d\right), \quad g(\boldsymbol{y}, t)=\frac{\|\boldsymbol{y}\|^{2}}{t}
$$

with $\operatorname{dom} f=\left\{(\boldsymbol{y}, t) \mid \boldsymbol{y} \in \mathbb{R}^{m}, t>0\right\}$

- $g=\sum_{i=1}^{m} g_{i}$ where $g_{i}(\boldsymbol{y}, t)=\frac{y_{i}^{2}}{t}$ is convex over $\left\{\left(y_{i}, t\right) \mid y_{i} \in \mathbb{R}, t>0\right\}$; thus, g is convex since it is the sum of convex function
- thus f is convex (composition of convex function with an affine mapping)

Pointwise maximum of convex functions

if $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, k$ are convex, then

$$
f(\boldsymbol{x})=\max \left\{f_{1}(\boldsymbol{x}), \ldots, f_{k}(\boldsymbol{x})\right\}
$$

is convex

Examples

- Maximum function: $f(\boldsymbol{x})=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is convex because it is the maximum of n linear (hence convex) functions
- Sum of k largest values: let $x_{[i]}$ denote the i th largest component of \boldsymbol{x}, then the function

$$
f_{k}(\boldsymbol{x})=x_{[1]}+\cdots+x_{[k]}
$$

is convex; to see this, note that we can rewrite f_{k} as

$$
f_{k}(\boldsymbol{x})=\max \left\{x_{i_{1}}+\cdots+x_{i_{k}} \mid i_{1}, \ldots, i_{k} \in\{1,2, \ldots, n\} \text { are different }\right\}
$$

hence, f_{k} is a maximum of linear functions, hence convex

Composition with a nondecreasing convex function

let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ and define $f=g \circ h: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(\boldsymbol{x})=g(h(\boldsymbol{x})), \quad \operatorname{dom} f=\{\boldsymbol{x} \in \operatorname{dom} h \mid h(\boldsymbol{x}) \in \operatorname{dom} g\}
$$

let \tilde{g} denotes the extended-value extension of the function g, which assigns the value $\infty(-\infty)$ to points not in dom g for g convex (concave)

- f is convex if h is convex, and \tilde{g} is convex and nondecreasing (over the range of h)
- f is convex if h is concave, and \tilde{g} is convex and nonincreasing
- f is concave if h is concave, and \tilde{g} is concave and nondecreasing
- f is concave if h is convex, and \tilde{g} is concave and nonincreasing

Proof:

$$
\begin{aligned}
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) & =g(h(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y})) \\
& \leq g(\theta h(\boldsymbol{x})+(1-\theta) h(\boldsymbol{y})) \\
& \leq \theta g(h(\boldsymbol{x}))+(1-\theta) g(h(\boldsymbol{y})) \\
& =\theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{x}),
\end{aligned}
$$

where the first inequality arises from the convexity of h and the nondecreasing nature of g; the second inequality is a result of the convexity of \tilde{g}

Example 9.9

- $f(\boldsymbol{x})=e^{\|\boldsymbol{x}\|^{2}}$ is convex since $f(\boldsymbol{x})=g(h(\boldsymbol{x}))$ where
- $h(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$ is a convex function
- $g(t)=e^{t}$ is a nondecreasing convex function more generally, $e^{h(x)}$ is convex if h is convex
- $f(\boldsymbol{x})=\left(1+\|\boldsymbol{x}\|^{2}\right)^{2}$ is a convex function since $f(\boldsymbol{x})=g(h(\boldsymbol{x}))$ where
- $h(\boldsymbol{x})=1+\|\boldsymbol{x}\|^{2}$ is convex
- $g(t)=t^{2}$, which is convex and nondecreasing over h (i.e., the interval $[1, \infty)$)
- if h is convex and nonnegative, then $h(\boldsymbol{x})^{p}$ is convex for $p \geq 1$
- if h is convex, then $-\log (-h(\boldsymbol{x}))$ is convex on $\{\boldsymbol{x} \mid h(\boldsymbol{x})<0\}$
- if h is concave and positive, then $1 / h(\boldsymbol{x})$ is convex
- if h is concave and positive, then $\log h(\boldsymbol{x})$ is concave

Vector functions composition

the aforementioned principle can be extended to functions that take a vector as their argument:

$$
f(\boldsymbol{x})=g(h(\boldsymbol{x}))=g\left(h_{1}(\boldsymbol{x}), \ldots, h_{k}(\boldsymbol{x})\right)
$$

- $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1, \ldots, k$, are convex
- if the function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is convex and non-decreasing in every argument, given that dom $h_{i}=\mathbb{R}^{n}$ and $\operatorname{dom} g=\mathbb{R}^{k}$, then the function $f(\boldsymbol{x})$ is also convex

Example 9.10

- $g(\boldsymbol{z})=\log \left(\sum_{i=1}^{k} e^{z_{i}}\right)$ is convex and nondecreasing in each argument; hence, $g(h(\boldsymbol{x}))=\log \left(\sum_{i=1}^{k} e^{h_{i}(\boldsymbol{x})}\right)$ is convex when h_{i} are convex
- suppose $p \geq 1$, and let h_{1}, \ldots, h_{k} be convex and nonnegative functions; then function given by $\left(\sum_{i=1}^{k} h_{i}(\boldsymbol{x})^{p}\right)^{\frac{1}{p}}$ is convex to demonstrate this, we introduce the function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ defined as

$$
g(\boldsymbol{z})=\left(\sum_{i=1}^{k} \max \left\{z_{i}, 0\right\}^{p}\right)^{\frac{1}{p}},
$$

with $\operatorname{dom} g=\mathbb{R}^{k}$; since this function is both convex and nondecreasing in its arguments, $g(h(\boldsymbol{x}))$ is also convex in x; for nonnegative values of z, $g(z)$ simplifies to

$$
\left(\sum_{i=1}^{k} z_{i}^{p}\right)^{\frac{1}{p}},
$$

leading us to conclude that $\left(\sum_{i=1}^{k} h_{i}(\boldsymbol{x})^{p}\right)^{\frac{1}{p}}$ is convex

Minimizing over some variables

suppose that $f: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}$ is convex in $(\boldsymbol{x}, \boldsymbol{y})$ and \mathcal{C} is a convex set; then, the function

$$
g(\boldsymbol{x})=\min _{\boldsymbol{y} \in \mathcal{C}} f(\boldsymbol{x}, \boldsymbol{y})
$$

is convex (provided that $g(\boldsymbol{x})>\infty$ for some \boldsymbol{x}); the domain of g is

$$
\operatorname{dom} g=\{\boldsymbol{x} \mid(\boldsymbol{x}, \boldsymbol{y}) \in \operatorname{dom} f \text { for some } \boldsymbol{y} \in \mathcal{C}\}
$$

Example: for a convex set $\mathcal{C} \subset \mathbb{R}^{n}$, the distance function defined as

$$
d(\boldsymbol{x}, \mathcal{C})=\min _{\boldsymbol{y}}\{\|\boldsymbol{x}-\boldsymbol{y}\| \mid \boldsymbol{y} \in \mathcal{C}\}
$$

is convex because $f(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|$ is convex in both $(\boldsymbol{x}, \boldsymbol{y})$

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Line restriction and convexity

suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and define

$$
g(t)=f(\boldsymbol{x}+t \boldsymbol{v}), \quad \operatorname{dom} g=\{t \mid \boldsymbol{x}+t \boldsymbol{v} \in \operatorname{dom} f\}
$$

- f is convex if and only if, for every $\boldsymbol{x} \in \operatorname{dom} f$ and all $\boldsymbol{v} \in \mathbb{R}^{n}$, the function $g(t)$ is convex over its domain
- this means that function is convex if it remains convex when restricted to any line intersecting its domain

Example 9.11

the log-determinant function $f(X)=-\log \operatorname{det} X$ is convex over the domain of symmetric, positive definite matrices
to verify this let $X_{0} \in \mathbb{R}^{n \times n}$ be a positive definite matrix, $V \in \mathbb{R}^{n \times n}$ be symmetric, and consider the scalar-valued function

$$
g(t)=-\log \operatorname{det}\left(X_{0}+t V\right)
$$

since $X_{0}>0$, it can be factored (matrix square-root factorization) as $X_{0}=X_{0}^{1 / 2} X_{0}^{1 / 2}$, hence

$$
\begin{aligned}
\operatorname{det}\left(X_{0}+t V\right) & =\operatorname{det}\left(X_{0}^{1 / 2} X_{0}^{1 / 2}+t V\right) \\
& =\operatorname{det} X_{0} \operatorname{det}\left(I+t X_{0}^{-1 / 2} V X_{0}^{-1 / 2}\right) \\
& =\operatorname{det} X_{0} \prod_{i=1, \ldots, n}\left(1+t \lambda_{i}(Z)\right)
\end{aligned}
$$

where $\lambda_{i}(Z)$, are the eigenvalues of the matrix $Z=X_{0}^{-1 / 2} V X_{0}^{-1 / 2}$
taking the logarithm, we thus obtain

$$
g(t)=-\log \operatorname{det} X_{0}+\sum_{i=1}^{n}-\log \left(1+t \lambda_{i}(Z)\right)
$$

- the first term in the previous expression is a constant
- the second term is the sum of convex functions
- hence $g(t)$ is convex for any positive definite matrix $X_{0} \in \mathbb{R}^{n \times n}$, and symmetric $V \in \mathbb{R}^{n \times n}$
- it follows that $-\log \operatorname{det} X$ is convex over the domain of positive definite matrices

Sublevel sets and convexity

the sublevel set of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at level γ is defined as

$$
\mathcal{S}_{\gamma}=\{\boldsymbol{x} \mid f(\boldsymbol{x}) \leq \gamma\}
$$

- for a convex function f, the sublevel set \mathcal{S}_{γ} is also convex; to see this, observe that

$$
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y}) \leq \gamma
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}_{\gamma}$

- a function can have all its sublevel sets convex, but not be a convex
- for example, $f(x)=-e^{x}$ is not convex on \mathbf{R} (indeed, it is strictly concave) but all its sublevel sets are convex
- another example is the function $f(x)=\ln (x)$, which is concave; however, its sublevel sets, which are intervals of the form ($\left.0, e^{\gamma}\right]$, are convex

Example 9.12

the set:

$$
\mathcal{C}=\left\{\boldsymbol{x} \mid\left(\boldsymbol{x}^{T} P \boldsymbol{x}+1\right)^{2}+\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right) \leq 3\right\}
$$

where $P \geq 0$ is an $n \times n$ matrix, is convex since it is the level set of a convex function

$$
f(\boldsymbol{x})=\left(\boldsymbol{x}^{T} P \boldsymbol{x}+1\right)^{2}+\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)
$$

- f is convex, being the sum of two convex functions
- the log-sum-exp function, previously established as convex
- the function $h(\boldsymbol{x})=\left(\boldsymbol{x}^{T} P \boldsymbol{x}+1\right)^{2}$, which is convex since it can be represented as a composition of the nondecreasing convex function $g(t)=(t+1)^{2}$ (defined on \mathbb{R}_{+}) with the convex quadratic function $\boldsymbol{x}^{T} P \boldsymbol{x}$

Epigraph

the graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is described as

$$
\{(\boldsymbol{x}, f(\boldsymbol{x})) \mid \boldsymbol{x} \in \operatorname{dom} f\} \subset \mathbb{R}^{n+1}
$$

The epigraph of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{epi}(f)=\{(\boldsymbol{x}, s) \mid \boldsymbol{x} \in \operatorname{dom} f, f(\boldsymbol{x}) \leq s\} \subset \mathbb{R}^{n+1}
$$

- the epigraph encompasses the points situated on or above the graph of f

- a function is convex if and only if its epigraph constitutes a convex set

Example 9.13

consider the function $f: \mathbb{R}^{n} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, represented by

$$
f(\boldsymbol{x}, Y)=\boldsymbol{x}^{T} Y^{-1} \boldsymbol{x}
$$

where Y is positive definite
we can determine the convexity of f is by examining its epigraph:

$$
\text { epi } \begin{aligned}
f & =\left\{(\boldsymbol{x}, Y, t) \mid Y \geq 0, \boldsymbol{x}^{T} Y^{-1} \boldsymbol{x} \leq t\right\} \\
& =\left\{(\boldsymbol{x}, Y, t) \left\lvert\,\left[\begin{array}{cc}
Y & \boldsymbol{x} \\
\boldsymbol{x}^{T} & t
\end{array}\right] \geq 0\right., Y>0\right\}
\end{aligned}
$$

utilizing the Schur complement criteria for a block matrix's positive semidefiniteness; the latter condition is linear matrix inequality (LMI) in the variables (\boldsymbol{x}, Y, t), hence the epigraph of f is convex, and consequently f is convex

Outline

- convex sets
- convex functions
- operations preserving convexity
- basic properties
- convex problems

Definition

Convex optimization problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \tag{9.6}\\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

- f and g_{i} are convex
- $h_{j}(\boldsymbol{x})$ are affine, i.e., $h_{j}(\boldsymbol{x})=\boldsymbol{a}_{j}^{T} \boldsymbol{x}-b_{j}$ for some $\boldsymbol{a}_{j} \in \mathbb{R}^{n}$ and $b_{j} \in \mathbb{R}$
- the feasible set is convex since it is the intersection of convex sets

Concave problems

- when the problem is a maximization with concave objective and convex constraints, then the problem is said to be concave optimization problem
- a concave problem is also referred to as a convex problem

Example 9.14

- the problem

$$
\begin{array}{ll}
\operatorname{minimize} & -2 x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 4
\end{array}
$$

is convex

- the problem

$$
\begin{array}{ll}
\operatorname{minimize} & -2 x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=4
\end{array}
$$

is nonconvex since the equality constraint function $h(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}-4$ is not affine

Example 9.15

- an investor wants to invest a total value of at most d into n possible investment opportunities
- if x_{i} is investment deposit for investment i; in economy it is frequently assumed that $f_{i}\left(x_{i}\right)$ have forms:

$$
f_{i}\left(x_{i}\right)=\alpha_{i}\left(1-e^{-\beta_{i} x_{i}}\right), \quad f_{i}\left(x_{i}\right)=\alpha_{i} \log \left(1+\beta_{i} x_{i}\right), \quad f_{i}\left(x_{i}\right)=\frac{\alpha_{i} x_{i}}{x_{i}+\beta_{i}}
$$

with $\alpha_{i}, \beta_{i}>0$; the above functions are concave

- we want to determine the investment deposits that maximize expected profit; we can formulate the optimization problem:

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { subject to } & \sum_{i=1}^{n} x_{i} \leq d \\
& x_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

this is a convex problem (we can transform max into min)

Local minimizers are global minimizers

if the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex (convex with convex domain), then, any local minimizer is a global minimizer

Proof:

- if \boldsymbol{x}^{o} is a local minimizer of f, then $f\left(\boldsymbol{x}^{o}\right) \leq f(\boldsymbol{z})$ for all points \boldsymbol{z} with $\left\|\boldsymbol{z}-\boldsymbol{x}^{o}\right\| \leq R$
- assume that there exists a feasible \boldsymbol{y} such that $f(\boldsymbol{y})<f\left(\boldsymbol{x}^{o}\right)$ so that \boldsymbol{x}^{o} is not a global minimizer
- since $f(\boldsymbol{y})<f\left(\boldsymbol{x}^{o}\right)$, we have $\left\|\boldsymbol{y}-\boldsymbol{x}^{o}\right\|>R$; let $\boldsymbol{z}=\theta \boldsymbol{y}+(1-\theta) \boldsymbol{x}^{o}$, from convexity definition, we have

$$
f(\boldsymbol{z})=f\left(\theta \boldsymbol{y}+(1-\theta) \boldsymbol{x}^{o}\right) \leq \theta f(\boldsymbol{y})+(1-\theta) f\left(\boldsymbol{x}^{o}\right)<f\left(\boldsymbol{x}^{o}\right)
$$

- for $\theta=R / 2\left\|\boldsymbol{y}-\boldsymbol{x}^{o}\right\|$, we have $\left\|\boldsymbol{z}-\boldsymbol{x}^{o}\right\|=R / 2<R$; this implies that there is a point \boldsymbol{z} close to \boldsymbol{x}^{o} such that $f(\boldsymbol{z})<f\left(\boldsymbol{x}^{o}\right)$; this contradicts that \boldsymbol{x}^{o} is a local minimizer
- hence, there is no feasible \boldsymbol{y} such that $f(\boldsymbol{y})<f\left(\boldsymbol{x}^{o}\right)$, i.e., \boldsymbol{x}^{o} is a global minimizer

A first-order optimality condition

suppose that a convex function $f: \mathcal{X} \rightarrow \mathbb{R}$ is defined on a convex set $\mathcal{X} \subset \mathbb{R}^{n}$; the point \boldsymbol{x}^{\star} is optimal if and only if

$$
\begin{equation*}
\nabla f\left(\boldsymbol{x}^{\star}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{\star}\right) \geq 0, \quad \forall \boldsymbol{y} \in \mathcal{X} \tag{9.7}
\end{equation*}
$$

(the above condition is difficult to verify in practice)
Unconstrained case: for $\mathcal{X}=\mathbb{R}^{n}$, the above condition reduces to

$$
\nabla f\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}
$$

to see this suppose that $\boldsymbol{x} \in \operatorname{dom} f$ is optimal and let $\boldsymbol{y}=\boldsymbol{x}-t \nabla f(\boldsymbol{x})$, which is in the domain of f for sufficiently small t (since domain is open by definition); note that

$$
\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x})=-t\|\nabla f(\boldsymbol{x})\|^{2} \geq 0
$$

hence, $\nabla f(\boldsymbol{x})=\mathbf{0}$

Sufficiency of KKT conditions

suppose that there exists points $\boldsymbol{x}^{\star} \in \mathcal{D}\left(\mathcal{D}\right.$ is domain of (9.6)), $\boldsymbol{\mu}^{\star} \in \mathbb{R}^{m}$, and $\lambda^{\star} \in \mathbb{R}^{p}$ satisfying the KKT conditions

$$
\begin{aligned}
\nabla f\left(\boldsymbol{x}^{\star}\right)+\sum_{i=1}^{m} \mu_{i}^{\star} \nabla g_{i}\left(\boldsymbol{x}^{\star}\right)+\sum_{j=1}^{p} \lambda_{j}^{\star} \nabla h_{j}\left(\boldsymbol{x}^{\star}\right) & =\mathbf{0} \\
g_{i}\left(\boldsymbol{x}^{\star}\right) & \leq 0, \quad i=1, \ldots, m \\
A \boldsymbol{x}^{\star} & =\boldsymbol{b} \\
\mu_{i}^{\star} & \geq 0, \quad i=1, \ldots, m \\
g_{i}\left(\boldsymbol{x}^{\star}\right) \mu_{i}^{\star} & =0, \quad i=1, \ldots, m
\end{aligned}
$$

then, \boldsymbol{x}^{\star} is a global minimizer of problem (9.6)

Proof: let x be a feasible solution; note that the function

$$
J(\boldsymbol{x})=L\left(\boldsymbol{x}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}\right)=f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x})
$$

is convex since it is the sum of convex functions; since $\nabla J\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}, \boldsymbol{x}^{\star}$ is a minimizer of J over \mathbb{R}^{n}; thus,

$$
\begin{aligned}
f\left(\boldsymbol{x}^{\star}\right) & \stackrel{\text { kkt }}{=} f\left(\boldsymbol{x}^{\star}\right)+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}\left(\boldsymbol{x}^{\star}\right)+\sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}\left(\boldsymbol{x}^{\star}\right) \\
& =J\left(\boldsymbol{x}^{\star}\right) \\
& \leq J(\boldsymbol{x}) \\
& =f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i}^{\star} g_{i}(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{j}^{\star} h_{j}(\boldsymbol{x}) \\
& \leq f(\boldsymbol{x})
\end{aligned}
$$

hence, \boldsymbol{x}^{\star} is optimal

Slater's constraint qualification

Slater's condition is satisfied if there exists an $\hat{\boldsymbol{x}} \in \mathbb{R}^{n}$ such that

$$
g_{i}(\hat{\boldsymbol{x}})<0, \quad i=1, \ldots, m, \quad A \hat{\boldsymbol{x}}=\boldsymbol{b}
$$

- if Slater condition holds, then the KKT conditions are necessary and sufficient for optimality
- we can weaken Slater condition if some g_{i} are affine by only requiring the non-affine functions to hold with strict inequality

Example 9.16

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
\text { subject to } & x_{1}+x_{2}+x_{3}=3
\end{array}
$$

the above problem is convex with an equality constraint, hence, the KKT conditions are necessary and sufficient for optimality; the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\lambda\left(x_{1}+x_{2}+x_{3}-3\right)
$$

the KKT conditions are

$$
\begin{aligned}
x_{1}+\lambda & =0 \\
x_{2}+\lambda & =0 \\
x_{3}+\lambda & =0 \\
x_{1}+x_{2}+x_{3} & =0
\end{aligned}
$$

the unique optimal solution is $\boldsymbol{x}=(1,1,1)$ and $\lambda=-1$

Example 9.17

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}-x_{2} \\
\text { subject to } & x_{2}^{2} \leq 0
\end{array}
$$

it is easy to see that the solution is $\boldsymbol{x}^{\star}=(0,0)$; for this problem Slater condition is not satisfied since we cannot find an \boldsymbol{x} such that $x_{2}^{2}<0$; the Lagrangian is

$$
L(\boldsymbol{x}, \mu)=\frac{1}{2} x_{1}^{2}-x_{2}+\mu x_{2}^{2}
$$

the KKT conditions are

$$
\begin{aligned}
2 x_{1} & =0 \\
-1+2 \mu x_{2} & =0 \\
\mu x_{2}^{2} & =0 \\
x_{2}^{2} & \leq 0 \\
\mu & \geq 0
\end{aligned}
$$

the above nonlinear system of equations is infeasible

Example 9.18

$$
\begin{array}{ll}
\operatorname{minimize} & 4 x_{1}^{2}+x_{2}^{2}-x_{1}-2 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 1 \\
& x_{1}^{2} \leq 1
\end{array}
$$

Slater's condition is satisfied for $\hat{\boldsymbol{x}}=(0,0)$, hence, the KKT conditions are necessary and sufficient for optimality; the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=4 x_{1}^{2}+x_{2}^{2}-x_{1}-2 x_{2}+\mu_{1}\left(2 x_{1}+x_{2}-1\right)+\mu_{2}\left(x_{1}^{2}-1\right)
$$

and the KKT conditions are

$$
\begin{aligned}
8 x_{1}-1+2 \mu_{1}+2 \mu_{2} x_{1} & =0 \\
2 x_{2}-2+\mu_{2} & =0 \\
\mu_{1}\left(2 x_{1}+x_{2}-1\right) & =0 \\
\mu_{2}\left(x_{1}^{2}-1\right) & =0 \\
2 x_{1}+x_{2} & \leq 1 \\
x_{1}^{2} & \leq 1 \\
\mu_{1}, \mu_{2} & \geq 0
\end{aligned}
$$

- for $\mu_{1}=\mu_{2}=0$, the KKT system will be infeasible
- for $\mu_{1}, \mu_{2}>0$, the KKT system will be infeasible
- for $\mu_{1}=0, \mu_{2}>0$, the KKT system will be infeasible
- for $\mu_{1}>0, \mu_{2}=0$, we will get $\left(x_{1}, x_{2}, \mu_{1}\right)=\left(\frac{1}{16}, \frac{7}{8}, \frac{1}{4}\right)$
- hence, from convexity $\boldsymbol{x}=\left(\frac{1}{16}, \frac{7}{8}\right)$ is the optimal unique solution

References and further readings

- Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014.
- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013.

