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Line segment

Line through non-equal points 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑛 has the form

{𝜃𝑥 + (1 − 𝜃)𝑦 | 𝜃 ∈ R}

Line segment between 𝑥 and 𝑦:

{𝜃𝑥 + (1 − 𝜃)𝑦 | 𝜃 ∈ [0, 1]}

𝑥

𝑦

0 ≤ 𝜃 ≤ 1

𝜃 > 1

𝜃 < 0
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Convex sets

a set C ⊆ R𝑛 is convex if for any 𝑥, 𝑦 ∈ C, we have

𝜃𝑥 + (1 − 𝜃)𝑦 ∈ C for any 𝜃 ∈ [0, 1]

i.e., a convex set contain the line segment between any two points in the set

convex sets

nonconvex sets

a point on line segment between 𝑥 and 𝑦 is called a convex combination of 𝑥 and 𝑦
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Affine sets

a set C ⊆ R𝑛 is affine if for any 𝑥, 𝑦 ∈ C and 𝜃 ∈ R, we have

𝜃𝑥 + (1 − 𝜃)𝑦 ∈ C

• a set that contains the line through any two distinct points in the set

• a convex set since it holds for any 𝜃, so it holds also for 𝜃 ∈ [0, 1]

• a point 𝜃𝑥 + (1 − 𝜃)𝑦 is called an affine combination of 𝑥, 𝑦

Examples

• solution set of linear equations {𝑥 | 𝐴𝑥 = 𝑏} is affine

• every affine set can be expressed as solution set of linear equations

• the empty set, any single point (singleton), and R𝑛 are affine, hence convex

• a line L = {𝑥0 + 𝑡𝑣 | 𝑡 ∈ R} with 𝑥0, 𝑣 ∈ R𝑛 and 𝑣 ≠ 0 is affine and convex
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Convex cones and rays

Convex cone: C ⊆ R𝑛 is a convex cone if for every 𝑥, 𝑦 ∈ C,

𝜃1𝑥 + 𝜃2𝑦 ∈ C for all 𝜃1, 𝜃2 ≥ 0 𝑥2

𝑥1
0

• a point 𝜃1𝑥 + 𝜃2𝑦 with 𝜃1, 𝜃2 ≥ 0 is called a conic (nonnegative) combination

• an example of a convex cone is the norm cone: {(𝑥, 𝑡) | ∥𝑥∥ ≤ 𝑡} ⊆ R𝑛+1

• called second-order cone for Euclidean norm, i.e.,

{(𝑥, 𝑡) | ∥𝑥∥2 ≤ 𝑡} = {(𝑥, 𝑡) | ∥𝑥∥22 ≤ 𝑡2, 𝑡 ≥ 0}

Rays: {𝑥0 + 𝑡𝑣 | 𝑡 ≥ 0} with 𝑣 ≠ 0, is convex (not affine); it is a convex cone if 𝑥0 = 0
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Hyperplane

a hyperplane H = {𝑥 ∈ R𝑛 | 𝑎T𝑥 = 𝑏} with 𝑎 ≠ 0 is affine and convex

0

𝑥0 = 𝑏
∥𝑎∥2 𝑎

𝑎T𝑥 = 𝑏

𝑎

𝑥

𝑥 − 𝑥0

• 𝑎 is called the normal vector

• for any 𝑥0 ∈ H (e.g., 𝑥0 = (𝑏/∥𝑎∥2)𝑎), 𝑥 ∈ H if and only if 𝑥 − 𝑥0 ⊥ 𝑎:

𝑎T𝑥 = 𝑏 = 𝑎T𝑥0 =⇒ 𝑎T (𝑥 − 𝑥0) = 0
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Halfspaces

the hyperplane {𝑥 ∈ R𝑛 | 𝑎T𝑥 = 𝑏} divides R𝑛 in two halfspaces

H− = {𝑥 ∈ R𝑛 | 𝑎T𝑥 ≤ 𝑏} and H+ = {𝑥 ∈ R𝑛 | 𝑎T𝑥 ≥ 𝑏}

a halfspace is convex

𝑎T𝑥 ≤ 𝑏𝑎T𝑥 ≥ 𝑏

𝑎T𝑥 = 𝑏𝑎
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Balls and ellipsoids

Balls: for 𝑥𝑐 ∈ R𝑛, 𝑟 > 0, and ∥ · ∥ an arbitrary norm, the open and closed balls

B(𝑥𝑐, 𝑟) = {𝑥 | ∥𝑥 − 𝑥𝑐 ∥ < 𝑟} = {𝑥𝑐 + 𝑟𝑢 | ∥𝑢∥ < 1}

B[𝑥𝑐, 𝑟] = {𝑥 | ∥𝑥 − 𝑥𝑐 ∥ ≤ 𝑟} = {𝑥𝑐 + 𝑟𝑢 | ∥𝑢∥ ≤ 1}
are convex

Ellipsoids: an ellipsoid

E = {𝑥 | 𝑥T𝑄𝑥 + 𝑟T𝑥 + 𝑐 ≤ 0}

is convex with 𝑄 ∈ S𝑛
++ positive definite, 𝑟 ∈ R𝑛, and 𝑐 ∈ R

𝑥𝑐

also written as {𝑥 | (𝑥 − 𝑥𝑐)T𝑃−1 (𝑥 − 𝑥𝑐) ≤ 1} with 𝑃 ∈ S𝑛
++ and center 𝑥𝑐 ∈ R𝑛
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Linear matrix inequality

a linear matrix inequality (LMI) has the form

𝐹 (𝑥) = 𝐹0 +
𝑛∑
𝑖=1

𝑥𝑖𝐹𝑖 ⪯ 0

• 𝑥 ∈ R𝑛, 𝐹0, . . . , 𝐹𝑛 are 𝑚 × 𝑚 symmetric matrices

• the solution set of a linear matrix inequality, {𝑥 | 𝐹 (𝑥) ⪯ 0}, is convex

Example any solution 𝑤(𝑡) to the linear differential equation

¤𝑤(𝑡) = 𝐴𝑤(𝑡), 𝐴 ∈ R𝑛×𝑛

converges to the origin iff there exists a real symmetric matrix 𝑋 satisfying:

𝐴𝑋 + 𝑋𝐴T ≺ 0, 𝑋 ≻ 0 (9.1)
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let us express the variable vector 𝑥 ∈ R𝑚 as:

𝑋 = 𝑥1𝑋1 + 𝑥2𝑋2 + · · · + 𝑥𝑚𝑋𝑚

with 𝑋𝑖 (𝑖 = 1, 2, . . . , 𝑚) basis for subspace spanned by 𝑛 × 𝑛 symmetric matrices
(with 𝑚 = 𝑛(𝑛 + 1)/2); for instance, when 𝑛 = 2, we have 𝑚 = 3 and:

𝑋 =

[
𝑥1 𝑥2
𝑥2 𝑥3

]
= 𝑥1

[
1 0
0 0

]
+ 𝑥2

[
0 1
1 0

]
+ 𝑥3

[
0 0
0 1

]
given this representation, the inequality in (9.1) can be recast as:

𝐹 (𝑥) ≜
[
−𝑋 0
0 𝐴𝑋 + 𝑋𝐴T

]
≺ 0,

which can then be expressed as LMI with 𝐹0 = 0 and

𝐹𝑖 =

[
−𝑋𝑖 0
0 𝐴𝑋𝑖 + 𝑋𝑖𝐴

T

]
, (𝑖 = 1, . . . , 𝑚)
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Methods for establishing convexity of a set

1. apply definition; recommended only for very simple sets

2. use convex functions (explained later)

3. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm
balls, ...) by operations that preserve convexity

– intersection

– affine mapping

– perspective mapping

– linear-fractional mapping
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Intersection, scaling, summation

Intersection: the intersection of any collection of convex sets is convex

Scaling: if C is a convex set and 𝛽 is a real number, then the set

𝛽C = {𝛽𝑦 | 𝑦 ∈ C} is also convex

Summation: if C1 and C2 are convex sets, then the set

C1 + C2 = {𝑥1 + 𝑥2 | 𝑥1 ∈ C1, 𝑥2 ∈ C2} is convex
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Affine transformation

let 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚 and let 𝑓 : R𝑛 → R be the affine function

𝑓 (𝑥) = 𝐴𝑥 + 𝑏

• the image of a convex set C ⊆ R𝑛 under 𝑓 is convex

C ⊆ R𝑛 convex =⇒ 𝑓 (C) = {𝐴𝑥 + 𝑏 | 𝑥 ∈ C} is convex

• the inverse image 𝑓 −1 (C) of a convex set under 𝑓 is convex

C ⊆ R𝑛 convex =⇒ 𝑓 −1 (C) = {𝑥 ∈ R𝑛 | 𝐴𝑥 + 𝑏 ∈ C} is convex
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Examples

• the image of norm ball under affine transformation

{𝐴𝑥 + 𝑏 | ∥𝑥∥ ≤ 1}
– for example, an ellipsoid

E = {𝑥 | (𝑥 − 𝑥𝑐)T𝑃−1 (𝑥 − 𝑥𝑐) ≤ 1} = {𝑃1/2𝑢 + 𝑥𝑐 | ∥𝑢∥2 ≤ 1}

is the image of the unit Euclidean ball {𝑢 | ∥𝑢∥2 ≤ 1} via 𝑓 (𝑢) = 𝑃1/2𝑢 + 𝑥𝑐

• the inverse image of norm ball under affine transformation

{𝑥 | ∥𝐴𝑥 + 𝑏∥ ≤ 1}

• hyperbolic cone

{𝑥 | 𝑥T𝑃𝑥 ≤ (𝑐T𝑥)2, 𝑐T𝑥 ≥ 0} with 𝑃 ∈ S𝑛
+

– inverse image of 2nd cone {(𝑧, 𝑡) | 𝑧T𝑧 ≤ 𝑡2, 𝑡 ≥ 0} under 𝑓 (𝑥) = (𝑃1/2𝑥, 𝑐T𝑥)

• solution set of linear matrix inequality

{𝑥 | 𝑥1𝐴1 + ··· + 𝑥𝑚𝐴𝑚 ⪯ 𝐵} with 𝐴𝑖 , 𝐵 ∈ S𝑝
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Perspective and linear-fractional function

Perspective function 𝑃 : R𝑛+1 → R𝑛:

𝑃(𝑥, 𝑡) = 𝑥/𝑡, dom 𝑃 = {(𝑥, 𝑡) | 𝑡 > 0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function 𝑓 : R𝑛 → R𝑚:

𝑓 (𝑥) = 𝐴𝑥 + 𝑏

𝑐T𝑥 + 𝑑
, dom 𝑓 = {𝑥 | 𝑐T𝑥 + 𝑑 > 0}

images and inverse images of convex sets under linear-fractional functions are convex
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Definition

𝑓 : R𝑛 → R is convex if dom 𝑓 is a convex set and

𝑓
(
𝜃𝑥 + (1 − 𝜃)𝑦

)
≤ 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦) (9.2)

for all 𝑥, 𝑦 ∈ dom 𝑓 , 0 ≤ 𝜃 ≤ 1

(𝑦, 𝑓 (𝑦) )

convex nonconvex

(𝑥, 𝑓 (𝑥 ) ) (𝑦, 𝑓 (𝑦) )

(𝑥, 𝑓 (𝑥 ) )

• 𝑓 is strictly convex if strict inequality holds in (9.2)

• 𝑓 is concave (strictly concave) if − 𝑓 is convex (strictly convex)

• 𝑓 is convex over convex set X ⊆ R𝑛 if (9.2) holds for all 𝑥, 𝑦 ∈ X
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Examples

• affine functions: 𝑓 (𝑥) = 𝑎T𝑥 + 𝑏 with 𝑎 ∈ R𝑛, 𝑏 ∈ R, is convex and concave:

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) = 𝑎T ((𝜃𝑥 + (1 − 𝜃)𝑦)) + 𝑏

= 𝜃 (𝑎T𝑥 + 𝑏) + (1 − 𝜃) (𝑎T𝑦 + 𝑏)
= 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦)

• norm functions: any norm ∥ · ∥ is convex:

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) = ∥𝜃𝑥 + (1 − 𝜃)𝑦∥
≤ ∥𝜃𝑥∥ + ∥(1 − 𝜃)𝑦∥ = 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦)

where the inequality follows from the triangle inequality

• 𝑓 (𝑥) = 𝑥T𝑄𝑥 with 𝑄 ∈ S𝑛 and convex dom 𝑓 is convex if

(𝑥 − 𝑦)T𝑄(𝑥 − 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ dom 𝑓
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• the function

𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2 with dom 𝑓 = {𝑥 | 𝑥1, 𝑥2 ≥ 0}

is nonconvex since for 𝑥 = (1, 2), 𝑦 = (2, 1), 𝜃 = 0.5, we have

𝑓 (0.5𝑥 + 0.5𝑦) = 9

4
≰ 0.5 𝑓 (𝑥) + 0.5 𝑓 (𝑦) = 2,

which violates the definition of convexity

• the function
𝑓 (𝑥) = 𝑥 over dom 𝑓 = {𝑥 | 𝑥 ≠ 1}

is not convex even though it is linear; this is because its domain is nonconvex
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Extended-value extension

extended-value extension 𝑓 : R𝑛 → R ∪ {∞} of 𝑓 :

𝑓 (𝑥) =
{
𝑓 (𝑥) 𝑥 ∈ dom 𝑓

∞ 𝑥 ∉ dom 𝑓

often simplifies notation; for example, the condition

0 ≤ 𝜃 ≤ 1 =⇒ 𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom 𝑓 is convex

• for 𝑥, 𝑦 ∈ dom 𝑓 ,

0 ≤ 𝜃 ≤ 1 =⇒ 𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦)
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First-order convexity condition

suppose 𝑓 : R𝑛 → R is differentiable (with open domain)

𝑓 is convex if and only if its domain is convex and for any 𝑥, 𝑦 ∈ dom 𝑓

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)T (𝑦 − 𝑥)

𝑓 (𝑦)

(𝑥, 𝑓 (𝑥))

𝑓 (𝑥) + ∇ 𝑓 (𝑥)T (𝑦 − 𝑥)

• 𝑓 is strictly convex if strict inequality holds

• first order Taylor approximation of convex 𝑓 is a global underestimator

• if ∇ 𝑓 (𝑥) = 0, then 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all 𝑦 ∈ dom 𝑓 so 𝑥 is a global minimizer of 𝑓
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Second-order convexity condition

suppose that 𝑓 : R𝑛 → R is twice differentiable (with open domain)

𝑓 is convex if and only if its domain is convex and

∇2 𝑓 (𝑥) ⪰ 0 for all 𝑥 ∈ dom 𝑓 (9.3)

• if ∇2 𝑓 (𝑥) ≻ 0 for all 𝑥 ∈ dom 𝑓 , then 𝑓 is strictly convex

• converse is not true (e.g., 𝑓 (𝑥) = 𝑥4 is strictly convex but 𝑓 ′′ (𝑥) = 0 at 𝑥 = 0

Convexity of domain

• dom 𝑓 must be convex to use the first or second order convexity characterization

• for example, the function

𝑓 (𝑥) = 1/𝑥2 with dom 𝑓 = {𝑥 ∈ R | 𝑥 ≠ 0}

satisfies 𝑓 ′′ (𝑥) = 6/𝑥4 > 0 for all 𝑥 ∈ dom 𝑓 , but is not a convex function

SA — ENGR507convex functions 9.21



Examples

the following can be shown using the definition or the second order condition

Convex

• exponential: 𝑒𝛼𝑥 is convex for any 𝛼 ∈ R

• powers: 𝑥𝛼 is convex on R++ when 𝛼 ≥ 1 or 𝛼 ≤ 0

• powers of absolute value: |𝑥 |𝑝 is convex on R for 𝑝 ≥ 1

• negative entropy: 𝑥 log 𝑥 is convex on R++

Concave

• powers: 𝑥𝛼 on R++ is concave for 0 ≤ 𝛼 ≤ 1

• logarithm: log 𝑥 is concave on R++

SA — ENGR507convex functions 9.22



Example: quadratic functions

𝑓 (𝑥) = 𝑥T𝑄𝑥 + 𝑟T𝑥 + 𝑐 with 𝑄 = 𝑄T

is convex if and only if 𝑄 ⪰ 0

• 𝑓 (𝑥) = 4𝑥21 + 2𝑥22 + 3𝑥1𝑥2 + 4𝑥1 + 5𝑥2 is convex since its Hessian

∇2 𝑓 (𝑥) =
[
8 3
3 4

]
is positive definite

• 𝑓 (𝑥) = 4𝑥21 − 2𝑥22 + 3𝑥1𝑥2 + 4𝑥1 + 5𝑥2 is nonconvex since its Hessian

∇2 𝑓 (𝑥) =
[
8 3
3 −4

]
is indefinite
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Example: quadratic over linear

the function
𝑓 (𝑥, 𝑡) = 𝑥2/𝑡 with dom 𝑓 = {(𝑥, 𝑡) | 𝑡 > 0}

is convex

this is because the Hessian

∇2 𝑓 (𝑥) = 2

[
1/𝑡 −𝑥/𝑡2

−𝑥/𝑡2 𝑥2/𝑡3
]

=
2

𝑡3

[
𝑡

−𝑥

] [
𝑡 −𝑥

]
⪰ 0

over its domain (𝑡 > 0)
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Example: log-sum-exp function

the softmax or log-sum-exp function 𝑓 (𝑥) = log(𝑒𝑥1 + ··· + 𝑒𝑥𝑛 ) is convex over R𝑛

• the partial derivatives of 𝑓 are:

𝜕 𝑓

𝜕𝑥𝑖
=

𝑒𝑥𝑖∑𝑛

𝑘=1 𝑒
𝑥𝑘

the second partial derivatives are

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗

=


𝑒𝑥𝑖∑𝑛

𝑘=1
𝑒𝑥𝑘

− 𝑒𝑥𝑖 𝑒𝑥𝑖

(
∑𝑛

𝑘=1
𝑒𝑥𝑘 )2

if 𝑖 = 𝑗

− 𝑒𝑥𝑖 𝑒
𝑥 𝑗

(
∑𝑛

𝑘=1
𝑒𝑥𝑘 )2

if 𝑖 ≠ 𝑗

• thus, we can express the Hessian as

∇2 𝑓 (𝑥) = 1

1T𝑤
diag(𝑤) − 1

(1T𝑤)2
𝑤𝑤T, 𝑤 = (𝑒𝑥1 , . . . , 𝑒𝑥𝑛 )
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• for any 𝑣 ∈ R𝑛, we have

𝑣T∇2 𝑓 (𝑥)𝑣 =
(∑𝑖 𝑤𝑖𝑣

2
𝑖
) (∑𝑖 𝑤𝑖) − (𝑣T𝑤)2

(∑𝑖 𝑤𝑖)2
≥ 0

• follows by applying Cauchy-Schwarz on the vectors 𝑎 and 𝑏 with entries

𝑎𝑖 =
√
𝑤𝑖𝑣𝑖 , 𝑏𝑖 =

√
𝑤𝑖 , 𝑖 = 1, . . . , 𝑛

i.e.,

(𝑣T𝑤)2 = (𝑎T𝑏)2 ≤ ∥𝑎∥2∥𝑏∥2 =

(
𝑛∑
𝑖=1

𝑤𝑖𝑣
2
𝑖

) (
𝑛∑
𝑖=1

𝑤𝑖

)

SA — ENGR507convex functions 9.26



Outline

• convex sets

• convex functions

• operations preserving convexity

• basic properties

• convex problems



Operations that preserves convexity

Weighted nonnegative sum

𝑓 = 𝑤1 𝑓1 + ··· + 𝑤𝑘 𝑓𝑘

• 𝑓 convex if 𝑓𝑖 are convex and 𝑤𝑖 ≥ 0

• a nonnegative weighted sum of concave functions is concave

• +ve weighted sum of strictly convex (concave) 𝑓𝑖 is strictly convex (concave)

Integral: if 𝑓 (𝑥, 𝛼) is convex in 𝑥 for each 𝛼 ∈ A, then
∫
𝛼∈A 𝑓 (𝑥, 𝛼)𝑑𝛼 is convex

Composition with affine function: for 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, let

𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏), with dom 𝑓 = {𝑥 | 𝐴𝑥 + 𝑏 ∈ dom 𝑔}

𝑓 is convex (concave) if 𝑔 is convex (concave)
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Example

• negative entropy function

𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑥𝑖 log 𝑥𝑖 , dom 𝑓 = R𝑛
++ = {𝑥 | 𝑥𝑖 > 0}

𝑓 is convex since it is the sum of convex functions 𝑥𝑖 log 𝑥𝑖

• logarithmic barrier for linear inequalities

𝑓 (𝑥) = −
𝑚∑
𝑖=1

log(𝑏𝑖 − 𝑎T𝑖 𝑥), dom 𝑓 = {𝑥 | 𝑎T𝑖 𝑥 < 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚}

is convex since it is a sum of convex functions

• for 𝑎 ∈ R𝑛 and 𝑏 ∈ R

𝑓 (𝑥) = 𝑒𝑎
T𝑥+𝑏

is convex over R𝑛 since 𝑓 (𝑥) = 𝑔(𝑎T𝑥 + 𝑏) where 𝑔(𝑡) = 𝑒𝑡 is a convex function
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• the function

𝑓 (𝑥1, 𝑥2) = 𝑥21 + 2𝑥1𝑥2 + 3𝑥22 + 2𝑥1 − 3𝑥2 + 𝑒𝑥1

is convex it is the sum of two convex functions 𝑓 = 𝑓1 + 𝑓2 with

𝑓1 (𝑥1, 𝑥2) = 𝑥21 + 2𝑥1𝑥2 + 3𝑥22 + 2𝑥1 − 3𝑥2, 𝑓2 (𝑥1, 𝑥2) = 𝑒𝑥1

– 𝑓1 is convex since ∇2 𝑓 (𝑥1, 𝑥2) =
[
1 1
1 3

]
is positive semidefinite

– 𝑓2 is also convex since 𝑔(𝑡) = 𝑒𝑡 is convex and 𝑓2 (𝑥1, 𝑥2) = 𝑔(𝑥2)

• the function
𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑒𝑥1−𝑥2+𝑥3 + 𝑒2𝑥2 + 𝑥1

is convex over R3; it is the sum of three convex functions: 𝑒𝑥1−𝑥2+𝑥3 , 𝑒2𝑥2 , 𝑥1
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Example: generalized quadratic-over-linear

let 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 (𝑐 ≠ 0), and 𝑑 ∈ R, then the function

𝑓 (𝑥) = ∥𝐴𝑥 + 𝑏∥2
𝑐T𝑥 + 𝑑

is convex over dom 𝑓 = {𝑥 | 𝑐T𝑥 + 𝑑 > 0}

• we can write 𝑓 as

𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏, 𝑐T𝑥 + 𝑑), 𝑔(𝑦, 𝑡) = ∥𝑦∥2
𝑡

=
𝑚∑
𝑖=1

𝑦2
𝑖

𝑡

with dom 𝑓 = {(𝑦, 𝑡) | 𝑦 ∈ R𝑚, 𝑡 > 0}

• 𝑔 is sum of convex functions 𝑔𝑖 (𝑦, 𝑡) =
𝑦2
𝑖

𝑡
over {(𝑦𝑖 , 𝑡) | 𝑦𝑖 ∈ R, 𝑡 > 0}

• thus 𝑓 is convex (composition of convex function with an affine mapping)
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Pointwise maximum

the max of convex functions 𝑓𝑖 : R
𝑛 → R, 𝑖 = 1, . . . , 𝑘

𝑓 (𝑥) = max{ 𝑓1 (𝑥), . . . , 𝑓𝑘 (𝑥)}

is convex

Examples

• piece-wise linear function 𝑓 (𝑥) = max𝑖=1,...,𝑘{𝑎T𝑖 𝑥 + 𝑏𝑖} is convex

• sum of 𝑘 largest values

𝑓𝑘 (𝑥) = 𝑥 [1] + ··· + 𝑥 [𝑘 ] (𝑥 [𝑖 ] is 𝑖th largest component of 𝑥)

is convex since it is a maximum of linear functions

𝑓𝑘 (𝑥) = max{𝑥𝑖1 + ··· + 𝑥𝑖𝑘 | 𝑖1, . . . , 𝑖𝑘 ∈ {1, 2, . . . , 𝑛} are different}
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Pointwise supremum

if 𝑓 (𝑥, 𝑦) is convex in 𝑥 for each 𝑦 ∈ A, then 𝑔(𝑥) = sup𝑦∈A 𝑓 (𝑥, 𝑦) is convex

Examples

• the distance to farthest point in a set C:

sup
𝑦∈C

∥𝑥 − 𝑦∥

is convex

• the maximum eigenvalue of symmetric matrix 𝑋 ∈ S:

𝜆max (𝑋) = sup
∥𝑦 ∥=1

𝑦T𝑋𝑦

is convex
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Partial minimization

if 𝑓 (𝑥, 𝑦) is convex in (𝑥, 𝑦) and C is a convex set, then

𝑔(𝑥) = inf
𝑦∈C

𝑓 (𝑥, 𝑦)

is convex (provided that 𝑔(𝑥) > ∞ for some 𝑥)

Example: for a convex set C ⊂ R𝑛, the distance function

𝑑 (𝑥, C) = min
𝑦

{∥𝑥 − 𝑦∥ | 𝑦 ∈ C}

is convex because 𝑓 (𝑥, 𝑦) = ∥𝑥 − 𝑦∥ is convex in both (𝑥, 𝑦)
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Summary of minimization/maximization rules

if we include the counterparts for concave functions, there are four rules

Maximization
𝑔(𝑥) = sup

𝑦∈C
𝑓 (𝑥, 𝑦)

• 𝑔 is convex if 𝑓 is convex in 𝑥 for fixed 𝑦; C can be any set

• 𝑔 is concave if 𝑓 is jointly concave in (𝑥, 𝑦) and C is a convex set

Minimization
𝑔(𝑥) = inf

𝑦∈C
𝑓 (𝑥, 𝑦)

• 𝑔 is convex if 𝑓 is jointly convex in (𝑥, 𝑦) and C is a convex set

• 𝑔 is concave if 𝑓 is concave in 𝑥 for fixed 𝑦; C can be any set
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Composition with scalar functions

composition of ℎ : R𝑛 → R and 𝑔 : R → R:

𝑓 (𝑥) = 𝑔(ℎ(𝑥)), dom 𝑓 = {𝑥 ∈ dom ℎ | ℎ(𝑥) ∈ dom 𝑔}

𝑓 is convex if 𝑔 is convex and one of the following three cases holds

• ℎ is convex, and 𝑔 is nondecreasing

• ℎ is concave, and 𝑔 is nonincreasing

• 𝑔 is affine

𝑓 is concave if 𝑔 is concave and one of the following three cases holds

• ℎ is concave, and 𝑔 is nondecreasing

• ℎ is convex, and 𝑔 is nonincreasing

• 𝑔 is affine

SA — ENGR507operations preserving convexity 9.35



Proof

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) = 𝑔(ℎ(𝜃𝑥 + (1 − 𝜃)𝑦))
≤ 𝑔(𝜃ℎ(𝑥) + (1 − 𝜃)ℎ(𝑦))
≤ 𝜃𝑔(ℎ(𝑥)

)
+ (1 − 𝜃)𝑔(ℎ(𝑦))

= 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑥)

• the first inequality arises from convexity of ℎ and the nondecreasing nature of 𝑔

• the second inequality is a result of the convexity of 𝑔
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Examples

• 𝑓 (𝑥) = exp(∥𝑥∥2) is convex since 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) where

– ℎ(𝑥) = ∥𝑥∥2 is a convex function

– 𝑔(𝑡) = 𝑒𝑡 is a nondecreasing convex function

more generally, exp ℎ(𝑥) is convex if ℎ is convex

• 𝑓 (𝑥) = (1 + ∥𝑥∥2)2 is a convex function since 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) where

– ℎ(𝑥) = 1 + ∥𝑥∥2 is convex

– 𝑔(𝑡) = 𝑡2 is convex and nondecreasing over ℎ (i.e., the interval [1,∞))

• ℎ(𝑥) 𝑝 is convex for 𝑝 ≥ 1 if ℎ is convex and nonnegative

• − log(−ℎ(𝑥)) is convex if ℎ is convex and negative

• 1/ℎ(𝑥) is convex if ℎ is concave and positive

• log ℎ(𝑥) is concave if ℎ is concave and positive
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Vector functions composition

composition of ℎ : R𝑛 → R𝑘 and 𝑔 : R𝑘 → R:

𝑓 (𝑥) = 𝑔(ℎ(𝑥)) = 𝑔(ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥))

𝑓 is convex if 𝑔 is convex and for each 𝑖, one of the following holds

• ℎ𝑖 is convex and 𝑔 nondecreasing in its 𝑖th argument

• ℎ𝑖 is concave and 𝑔 nonincreasing in its 𝑖th argument

• ℎ𝑖 is affine
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Examples

• 𝑓 (𝑥) = log
∑𝑘

𝑖=1 𝑒
ℎ𝑖 (𝑥 ) is convex when ℎ𝑖 are convex

– 𝑓 (𝑥) = 𝑔(ℎ(𝑥)), 𝑔(𝑧) = log
∑𝑘

𝑖=1 𝑒
𝑧𝑖 is convex and nondecreasing in each argument

•
(∑𝑘

𝑖=1 ℎ𝑖 (𝑥) 𝑝
) 1
𝑝 is convex for 𝑝 ≥ 1 and ℎ1, . . . , ℎ𝑘 convex and nonnegative

– 𝑔 : R𝑘 → R

𝑔(𝑧) = (
∑𝑘

𝑖=1max{𝑧𝑖 , 0}𝑝)
1
𝑝

– 𝑔(ℎ(𝑥)) is convex since 𝑔 is both convex and nondecreasing in its arguments

– for nonnegative values of 𝑧, 𝑔(𝑧) simplifies to

(
∑𝑘

𝑖=1 𝑧
𝑝

𝑖
)

1
𝑝

– we conclude that (
∑𝑘

𝑖=1 ℎ𝑖 (𝑥)𝑝)
1
𝑝 is convex

• 𝑓 (𝑥) =
∑𝑘

𝑖=1 log ℎ𝑖 (𝑥) is concave if ℎ𝑖 are concave and positive
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Examples

• 𝑓 (𝑥) = 𝑝(𝑥)2/𝑞(𝑥) is convex if
– 𝑝 is nonnegative and convex
– 𝑞 is positive and concave

• the function

𝑓 (𝑥, 𝑦) = (𝑥 − 𝑦)2
1 −max(𝑥, 𝑦) , 𝑥 < 1, 𝑦 < 1

is convex

– 𝑥, 𝑦, and 1 are affine

– max(𝑥, 𝑦) is convex; 𝑥 − 𝑦 is affine

– 1 −max(𝑥, 𝑦) is concave

– function 𝑢2/𝑣 is convex, monotone decreasing in 𝑣 for 𝑣 > 0

– 𝑓 is compos. of 𝑔(𝑢, 𝑣) = 𝑢2

𝑣 with 𝑢 = 𝑥 − 𝑦, 𝑣 = 1 −max(𝑥, 𝑦), hence convex
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Perspective function

the perspective of a function 𝑓 : R𝑛 → R is the function 𝑔 : R𝑛 ×R → R,

𝑔(𝑥, 𝑡) = 𝑡 𝑓 (𝑥/𝑡), dom 𝑔 = {(𝑥, 𝑡) | 𝑥/𝑡 ∈ dom 𝑓 , 𝑡 > 0}

𝑔 is convex if 𝑓 is convex

Examples

• 𝑓 (𝑥) = 𝑥T𝑥 is convex, so 𝑔(𝑥, 𝑡) = 𝑥T𝑥/𝑡 is convex for 𝑡 > 0

• 𝑓 (𝑥) = − log 𝑥 is convex, so the relative entropy

𝑔(𝑥, 𝑡) = 𝑡 log 𝑡 − 𝑡 log 𝑥

is convex on R2
++

• if 𝑓 is convex, then

𝑔(𝑥) = (𝑐T𝑥 + 𝑑) 𝑓
(
(𝐴𝑥 + 𝑏)/(𝑐T𝑥 + 𝑑)

)
is convex on {𝑥 | 𝑐T𝑥 + 𝑑 > 0, (𝐴𝑥 + 𝑏)/(𝑐T𝑥 + 𝑑) ∈ dom 𝑓 }
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Restriction of a convex function to a line

𝑓 : R𝑛 → R is convex if and only if

𝑔(𝑡) = 𝑓 (𝑥 + 𝑡𝑣), dom 𝑔 = {𝑡 | 𝑥 + 𝑡𝑣 ∈ dom 𝑓 }

is convex in 𝑡 for any 𝑥 ∈ dom 𝑓 and 𝑣 ∈ R𝑛

• 𝑓 convex if it remains convex when restricted to any line intersecting its domain

• allows us to check convexity of 𝑓 by checking convexity of one variable functions
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Example: log-determinant function

𝑓 : S𝑛 → R with 𝑓 (𝑋) = log det 𝑋 is concave over dom 𝑓 = S𝑛
++

Proof

• let 𝑋0 = 𝑋
1/2
0 𝑋

1/2
0 ∈ S𝑛

++, 𝑉 ∈ R𝑛×𝑛 be symmetric, then

𝑔(𝑡) = log det(𝑋0 + 𝑡𝑉) = log det(𝑋1/2
0 𝑋

1/2
0 + 𝑡𝑉)

= log det 𝑋0 + log det(𝐼 + 𝑡𝑋
−1/2
0 𝑉𝑋

−1/2
0 )

= log det 𝑋0 + log
∏
𝑖

(1 + 𝑡𝜆𝑖)

= log det 𝑋0 +
𝑛∑
𝑖=1

log(1 + 𝑡𝜆𝑖)

where 𝜆𝑖 , are the eigenvalues of 𝑋−1/2
0 𝑉𝑋

−1/2
0

• 2nd term is sum of concave functions; hence 𝑔(𝑡) is concave and 𝑓 is concave
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Sublevel sets and convexity

the sublevel set of 𝑓 : R𝑛 → R at level 𝛾 is defined as

S𝛾 = {𝑥 ∈ dom 𝑓 | 𝑓 (𝑥) ≤ 𝛾}

• for a convex function 𝑓 , the sublevel set S𝛾 is also convex:

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃 𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦) ≤ 𝛾, for all 𝑥, 𝑦 ∈ S𝛾

• useful to show convexity of a set

• a function can have all its sublevel sets convex, but not be a convex

– for example, 𝑓 (𝑥) = −𝑒𝑥 is not convex on R but all its sublevel sets are convex

– another example is 𝑓 (𝑥) = log(𝑥), which is concave; with convex sublevel sets (0, 𝑒𝛾]
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Example

let 𝑃 ⪰ 0 is an 𝑛 × 𝑛 matrix, then the set:

C =

{
𝑥 | (𝑥T𝑃𝑥 + 1)2 + log

( 𝑛∑
𝑖=1

𝑒𝑥𝑖
) ≤ 3

}
is convex since it is the level set of a convex function

𝑓 (𝑥) = (𝑥T𝑃𝑥 + 1)2 + log
( 𝑛∑
𝑖=1

𝑒𝑥𝑖
)

• the log-sum-exp function, previously established as convex

• (𝑥T𝑃𝑥 + 1)2 is convex since it is equal 𝑔(𝑥T𝑃𝑥) with 𝑔(𝑡) = (𝑡 + 1)2

– 𝑔 is nondecreasing convex function (defined on R+)

– 𝑥T𝑃𝑥 convex quadratic function

– convexity follows from composition rule

• 𝑓 is convex, being the sum of two convex functions
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Epigraph

the graph of a function 𝑓 : R𝑛 → R is the set

{(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ dom 𝑓 } ⊂ R𝑛+1

the epigraph of 𝑓 : R𝑛 → R is defined by

epi( 𝑓 ) = {(𝑥, 𝑠) | 𝑥 ∈ dom 𝑓 , 𝑓 (𝑥) ≤ 𝑠} ⊂ R𝑛+1

• the epigraph encompasses the points situated on or above the graph of 𝑓

epi 𝑓

graph of 𝑓

𝑓

• a function is convex if and only if its epigraph is a convex set
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Example

consider the function 𝑓 : R𝑛 ×R𝑛×𝑛 → R, represented by

𝑓 (𝑥,𝑌 ) = 𝑥T𝑌−1𝑥, 𝑌 ∈ S𝑛
++

• we can determine the convexity of 𝑓 is by examining its epigraph:

epi 𝑓 = {(𝑥,𝑌 , 𝑡) | 𝑌 ≻ 0, 𝑥T𝑌−1𝑥 ≤ 𝑡}

=

{
(𝑥,𝑌 , 𝑡) |

[
𝑌 𝑥

𝑥T 𝑡

]
⪰ 0, 𝑌 ≻ 0

}
last line follows from Schur complement criteria for positive semidefiniteness

• the latter condition is an LMI in the variables (𝑥,𝑌 , 𝑡)

• hence the epigraph of 𝑓 is convex, and consequently 𝑓 is convex
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Definition

Convex optimization problem in standard form

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝

• 𝑓 and 𝑔𝑖 are convex

• ℎ 𝑗 (𝑥) are affine, i.e., ℎ 𝑗 (𝑥) = 𝑎T
𝑗
𝑥 − 𝑏 𝑗 for some 𝑎 𝑗 ∈ R𝑛 and 𝑏 𝑗 ∈ R

• the feasible set is convex since it is the intersection of convex sets

Concave problems

• maximization with concave objective and convex constraints

• a concave problem is also referred to as a convex problem
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Examples

• the problem
minimize −2𝑥1 + 𝑥2
subject to 𝑥21 + 𝑥22 ≤ 4

is convex

• the problem
minimize −2𝑥1 + 𝑥2
subject to 𝑥21 + 𝑥22 = 4

is nonconvex since the equality constraint function ℎ(𝑥) = 𝑥21 + 𝑥22 − 4 is not affine
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Example

minimize 𝑓 (𝑥) = 𝑥21 + 𝑥22
subject to 𝑔1 (𝑥) = 𝑥1/(1 + 𝑥22) ≤ 0

ℎ1 (𝑥) = (𝑥1 + 𝑥2)2 = 0

• problem has convex objective 𝑓

• the feasible set {(𝑥1, 𝑥2) | 𝑥1 = −𝑥2 ≤ 0} is convex

• for our definition, this is not a convex problem (𝑔1 not convex and ℎ1 not affine)

• problem is equivalent (but not identical) to the convex problem:

minimize 𝑥21 + 𝑥22
subject to 𝑥1 ≤ 0

𝑥1 + 𝑥2 = 0
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Example

• an investor wants to invest a total value of at most 𝑑 into 𝑛 possible investments

• let 𝑥𝑖 is investment deposit for investment 𝑖

• in economy it is frequently assumed that 𝑓𝑖 (𝑥𝑖) have forms:

𝑓𝑖 (𝑥𝑖) = 𝛼𝑖 (1 − 𝑒−𝛽𝑖 𝑥𝑖 ), 𝑓𝑖 (𝑥𝑖) = 𝛼𝑖 log(1 + 𝛽𝑖𝑥𝑖), 𝑓𝑖 (𝑥𝑖) =
𝛼𝑖𝑥𝑖

𝑥𝑖 + 𝛽𝑖

with 𝛼𝑖 , 𝛽𝑖 > 0; the above functions are concave

• formulation: determine the investment deposits that maximize expected profit

maximize
𝑛∑
𝑖=1

𝑓𝑖 (𝑥𝑖)

subject to
𝑛∑
𝑖=1

𝑥𝑖 ≤ 𝑑

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛

this is a convex problem (we can transform max into min)
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Convexity of feasible and optimal set

• feasible set is convex since it is the intersection of convex sets:

dom 𝑓 , sublevel sets {𝑥 | 𝑔𝑖 (𝑥) ≤ 0}, and affine sets {𝑥 | 𝑎T𝑗 𝑥 = 𝑏 𝑗 }

• optimal set is convex: any convex combination of optimal 𝑥1, 𝑥2 is feasible and

𝑓 (𝜃𝑥1 + (1 − 𝜃)𝑥2) ≤ 𝜃 𝑓 (𝑥1) + (1 − 𝜃) 𝑓 (𝑥2) = 𝑝★

so 𝑓 (𝜃𝑥1 + (1 − 𝜃)𝑥2) = 𝑝★, i.e., any convex combination is optimal
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Local minimizers are global minimizers

any locally optimal point of a convex problem is (globally) optimal

Proof

• if 𝑥◦ is a local minimizer, then 𝑓 (𝑥◦) ≤ 𝑓 (𝑧) for all feasible 𝑧 with ∥𝑧 − 𝑥◦∥ ≤ 𝑅

• assume 𝑓 (𝑦) < 𝑓 (𝑥◦) for some feasible 𝑦 so that 𝑥◦ is not a global minimizer

• since 𝑓 (𝑦) < 𝑓 (𝑥◦), we have ∥𝑦 − 𝑥◦∥ > 𝑅

• let 𝑧 = 𝜃𝑦 + (1 − 𝜃)𝑥◦, from convexity definition, we have

𝑓 (𝑧) = 𝑓 (𝜃𝑦 + (1 − 𝜃)𝑥◦) ≤ 𝜃 𝑓 (𝑦) + (1 − 𝜃) 𝑓 (𝑥◦) < 𝑓 (𝑥◦)

• for 𝜃 = 𝑅/2∥𝑦 − 𝑥◦∥, we have ∥𝑧 − 𝑥◦∥ = 𝑅/2 < 𝑅

• this implies that there is 𝑧 close to 𝑥◦ such that 𝑓 (𝑧) < 𝑓 (𝑥◦) (contradiction)

• hence, there is no feasible 𝑦 such that 𝑓 (𝑦) < 𝑓 (𝑥◦), i.e., 𝑥◦ is a global minimizer
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First-order optimality condition

• suppose 𝑓 : X → R is convex over a convex set X ⊂ R𝑛

• the point 𝑥★ is optimal if and only if

∇ 𝑓 (𝑥★)T (𝑦 − 𝑥★) ≥ 0, ∀ 𝑦 ∈ X (9.4)

(the above condition is difficult to verify in practice)

Unconstrained case: for X = R𝑛, the above condition reduces to

∇ 𝑓 (𝑥★) = 0

to see this suppose that 𝑥 ∈ dom 𝑓 is optimal and let 𝑦 = 𝑥 − 𝑡∇ 𝑓 (𝑥), which is in
the domain of 𝑓 for sufficiently small 𝑡 (since domain is open by definition); note that

∇ 𝑓 (𝑥)T (𝑦 − 𝑥) = −𝑡∥∇ 𝑓 (𝑥)∥2 ≥ 0 =⇒ ∇ 𝑓 (𝑥) = 0
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Examples

• 𝑓 (𝑥) = 𝑥 log 𝑥 with dom 𝑓 = R++; setting the derivative to zero

𝑓 ′ (𝑥) = log 𝑥 + 1 = 0 =⇒ 𝑥 = 1/𝑒

g the second derivative is

𝑓 ′′ (𝑥) = 1/𝑥 > 0 for all 𝑥 ∈ dom 𝑓

hence, the function is convex and 𝑥 = 1/𝑒 is a global minimizer

• minimization over the nonnegative orthant

minimize 𝑓 (𝑥)
subject to 𝑥 ≥ 0

using the optimality condition:

𝑥 ≥ 0, ∇ 𝑓 (𝑥)T (𝑦 − 𝑥) ≥ 0 for all 𝑦 ≥ 0

equivalent to

𝑥 ≥ 0, ∇ 𝑓 (𝑥) ≥ 0, 𝑥𝑖∇ 𝑓 (𝑥)𝑖 = 0, 𝑖 = 1, . . . , 𝑛
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Sufficiency of KKT conditions

for cvx problems, if there exists 𝑥★ ∈ D, 𝜇★ ∈ R𝑚, 𝜆★ ∈ R𝑝 satisfying

∇ 𝑓 (𝑥★) +
𝑚∑
𝑖=1

𝜇★𝑖 ∇𝑔𝑖 (𝑥★) +
𝑝∑
𝑗=1

𝜆★𝑗∇ℎ 𝑗 (𝑥★) = 0

𝑔𝑖 (𝑥★) ≤ 0, 𝑖 = 1, . . . , 𝑚

𝐴𝑥★ = 𝑏

𝜇★𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚

𝑔𝑖 (𝑥★)𝜇★𝑖 = 0, 𝑖 = 1, . . . , 𝑚

then, 𝑥★ is a global minimizer

• there may be optimal points that do not satisfy KKT conditions

• when we discuss duality, we will provide conditions such that the KKT conditions
are both necessary and sufficient
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Proof

• let 𝑥 be a feasible solution; note that the function

𝐽 (𝑥) = 𝐿 (𝑥, 𝜇★, 𝜆★) = 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜇★𝑖 𝑔𝑖 (𝑥) +
𝑝∑
𝑖=1

𝜆★𝑗 ℎ 𝑗 (𝑥)

is convex since it is the sum of convex functions

• since ∇𝐽 (𝑥★) = 0, 𝑥★ is a minimizer of 𝐽 over R𝑛; thus,

𝑓 (𝑥★) kkt
= 𝑓 (𝑥★) +

𝑚∑
𝑖=1

𝜇★𝑖 𝑔𝑖 (𝑥★) +
𝑝∑
𝑖=1

𝜆★𝑗 ℎ 𝑗 (𝑥★)

= 𝐽 (𝑥★)
≤ 𝐽 (𝑥)

= 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜇★𝑖 𝑔𝑖 (𝑥) +
𝑝∑
𝑖=1

𝜆★𝑗 ℎ 𝑗 (𝑥)

≤ 𝑓 (𝑥)

• hence, 𝑥★ is optimal
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Example

minimize 1
2 (𝑥

2
1 + 𝑥22 + 𝑥23)

subject to 𝑥1 + 𝑥2 + 𝑥3 = 3

the above problem is convex with an equality constraint; the Lagrangian is

𝐿 (𝑥, 𝜆) = 1
2 (𝑥

2
1 + 𝑥22 + 𝑥23) + 𝜆(𝑥1 + 𝑥2 + 𝑥3 − 3)

the KKT conditions are

𝑥1 + 𝜆 = 0

𝑥2 + 𝜆 = 0

𝑥3 + 𝜆 = 0

𝑥1 + 𝑥2 + 𝑥3 = 0

the unique optimal solution is 𝑥 = (1, 1, 1) and 𝜆 = −1
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Example

minimize 𝑥21 − 𝑥2
subject to 𝑥22 ≤ 0

it is easy to see that the solution is 𝑥★ = (0, 0); for this the Lagrangian is

𝐿 (𝑥, 𝜇) = 1
2𝑥

2
1 − 𝑥2 + 𝜇𝑥22

the KKT conditions are

2𝑥1 = 0

−1 + 2𝜇𝑥2 = 0

𝜇𝑥22 = 0

𝑥22 ≤ 0

𝜇 ≥ 0

the above nonlinear system of equations is infeasible
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