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Line segment

Line through non-equal points x € R™ and y € R" has the form

{Ox+(1-60)y | 6 € R}

Line segment between x and y:

{Ox+(1-0)y|6¢<][0,1]}

X
N
) 6<0
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Convex sets
aset C C R"is convexif for any x,y € C, we have
Ox+(1-6)ye C forany 6 € [0,1]

i.e., a convex set contain the line segment between any two points in the set

® ® L

convex sets

I

nonconvex sets

a point on line segment between x and y is called a convex combination of x and y
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Affine sets

aset C C R"is affineif forany x,y € C and 6 € R, we have
O0x+(1-0)yecC

e a set that contains the line through any two distinct points in the set
e a convex set since it holds for any 6, so it holds also for 6 € [0, 1]
e apoint Ox + (1 — 6)y is called an affine combination of x, y

Examples

e solution set of linear equations {x | Ax = b} is affine

e every affine set can be expressed as solution set of linear equations

e the empty set, any single point (singleton), and R" are affine, hence convex

e aline L ={xg+tv]|teR}withxg,v € R" and v # 0 is affine and convex

convex sets
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Convex cones and rays

Convex cone: C C R" is a convex cone if for every x,y € C,

01x+ 602y € C foral 61,0, >0 X2

X1
e apoint 81x + B2y with 61, 85 > 0 is called a conic (nonnegative) combination
e an example of a convex cone is the norm cone: {(x, ) | ||x|| < ¢} € R™*!
o called second-order cone for Euclidean norm, i.e.,
{e,0) [ixllz < 1} = {0, 0) | Ixll5 < 2%, > 0}
Rays: {xg+tv | t > 0} with v # 0, is convex (not affine); it is a convex cone if xg = 0
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Hyperplane

a hyperplane H = {x € R" | aTx = b} with a # 0 is affine and convex

e q is called the normal vector
e forany xo € H (e.g., xo = (b/||al|?)a), x € H if and only if x — xo L a:

ax=b=a"xg = a¥(x—x0) =0
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Halfspaces

the hyperplane {x € R" | a’x = b} divides R" in two halfspaces
H ={xeR"|a'x<b} and H*'={xeR"|a’x>b}

a halfspace is convex

convex sets
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Balls and ellipsoids

Balls: for x. € R", r > 0, and || - || an arbitrary norm, the open and closed balls

Bxe,r) ={x | llx —xell <r}={xc+rulllull <1}
Blxe,r] ={x | llx —xcll < r} = {xc+rullull <1}
are convex
Ellipsoids: an ellipsoid
E={x|xTox+rTx+c <0}

is convex with Q € S7, positive definite, r € R”, and ¢ € R

also written as {x | (x — x.) TP~ (x — x.) < 1} with P € S”, and center x, € R"

convex sets
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Linear matrix inequality

a linear matrix inequality (LMI) has the form

n
F(X) =F0+inFi <0
i=1

e x e R" Fy,...,F, are m X m symmetric matrices

e the solution set of a linear matrix inequality, {x | F(x) < 0}, is convex

Example any solution w(t) to the linear differential equation
w(t) = Aw(t), A eR™"
converges to the origin iff there exists a real symmetric matrix X satisfying:

AX+XAT <0, X>0

convex sets
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let us express the variable vector x € R™ as:
X=x1X1+x3Xo+--- +mem

with X; (i = 1,2, ..., m) basis for subspace spanned by n X n symmetric matrices
(with m = n(n + 1) /2); for instance, when n = 2, we have m = 3 and:

XXz 1 0 b x 0 1 0 0
x2 x3 | 1|10 0 110 0
given this representation, the inequality in (9.1) can be recast as:

[ -x o
F(x)‘[ 0 AX+XAT]<0’

X = + X3

[

which can then be expressed as LMI with F; = 0 and

-X; 0 .
F,-—[ 0 AXi+X,-AT]’ (i=1,...,m)
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Methods for establishing convexity of a set

1. apply definition; recommended only for very simple sets

2. use convex functions (explained later)

3. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm

balls, ...) by operations that preserve convexity

— intersection

affine mapping

perspective mapping

linear-fractional mapping

convex sets
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Intersection, scaling, summation

Intersection: the intersection of any collection of convex sets is convex

Scaling: if C is a convex set and S is a real number, then the set

BC ={By|yeC} isalsoconvex

Summation: if C; and Cs are convex sets, then the set

C1+Co={x1+x2 | x1 € C1,x2 € Co} isconvex

convex sets
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Affine transformation

let A € R™" b e R™ andlet f : R" — R be the affine function
f(x)=Ax+b
e the image of a convex set C C R" under f is convex
CCR" convex = f(C)={Ax+Db|xe€C} isconvex

e the inverse image f~'(C) of a convex set under f is convex

CCR" convex = [ H(C)={xeR"|Ax+beC} isconvex

convex sets



Examples

the image of norm ball under affine transformation
{Ax+b | |lxll <1}
— for example, an ellipsoid
&={x| (r=x) P (x—xe) < 1) = (PYPutxe | flull2 < 1)

is the image of the unit Euclidean ball {u | |jull2 < 1} via f(u) = PY/2u + x,

the inverse image of norm ball under affine transformation

{x | [|[Ax+b|| <1}

hyperbolic cone
T T \2 T ;
{x|x"Px < (c'x)*, ¢*x >0} withPeS!

— inverse image of 2nd cone {(z,7) | z7z < 12,1 > 0} under f(x) = (P/?x, cTx)

solution set of linear matrix inequality

{x | x1A1 + - +x,A,,, < B} with A;,B €SP

convex sets
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Perspective and linear-fractional function

Perspective function P : R — R":
P(x,t) =x/t, domP ={(x,t) |t >0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function f : R" — R™:

A b
f(x)=%, dom f={x|cTx+d>0}

images and inverse images of convex sets under linear-fractional functions are convex

convex sets 9.15



Outline

® convex sets

e convex functions

e operations preserving convexity
® basic properties

e convex problems



Definition

[ R"™ — Ris convexif dom f is a convex set and

fOx+(1-0)y) <0f(x)+(1-0)f(y) (©2)

forallx,y edom f,0<6<1

nonconvex

convex

(x, f(x))

e fis strictly convex if strict inequality holds in (9.2)
e fis concave (strictly concave) if — f is convex (strictly convex)

e fis convex over convex set X € R™ if (9.2) holds for all x,y € X

convex functions 9.16



Examples

e affine functions: f(x) = aTx + bwitha € R, b € R, is convex and concave:

FOx+(1-0)y)=al((Ox+(1-6)y)) +b
=0(a™x+b)+ (1 —-0)(aTy +b)
=0f(x)+(1-0)f(y)

e norm functions: any norm || - || is convex:

J(0x+(1-0)y) = l6x+ (1= 0)y|l
< llox]l +1[(1 = O)yll = 6 (x) + (1 = 6) f ()

where the inequality follows from the triangle inequality

e f(x) =xTQx with Q € S™ and convex dom f is convex if

x-»To(x—-y)>0 foral x,yedom f

convex functions
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o the function
f(x1,x2) =x1x9 with dom f = {x | x1,x2 > 0}

is nonconvex since for x = (1,2), y = (2,1), 8 = 0.5, we have

£(0.5x +0.5y) = ?1 £ 0.5F(x) +0.5f(y) =2,

which violates the definition of convexity

o the function
f(x)=x over domf={x|x=#1}

is not convex even though it is linear; this is because its domain is nonconvex

convex functions
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Extended-value extension

extended-value extension f : R" — R U {co} of f:

=~ Jf(x) xedomf
f(x)—{oo + ¢ dom f

often simplifies notation; for example, the condition
0<0<1 = flx+(1-0)y)<0fx)+(1-0)f(y)
(as an inequality in R U {o0}), means the same as the two conditions

e dom f is convex

e forx,y € dom f,

0<0<1l = fOx+(1-0)y)<0f(x)+(1-0)f(y)

convex functions 9.19



First-order convexity condition

suppose f : R™ — R is differentiable (with open domain)

f is convex if and only if its domain is convex and for any x, y € dom f

F3) 2 f)+ V@) (y-x)

f)

F@)+V )Ty -x)

e fis strictly convex if strict inequality holds
e first order Taylor approximation of convex f is a global underestimator
e if Vf(x) =0,then f(x) < f(y)forally € dom f so x is a global minimizer of f

convex functions 9.20



Second-order convexity condition
suppose that f : R™ — R is twice differentiable (with open domain)
f is convex if and only if its domain is convex and
V2f(x) =0 forallx € dom f (9.3)
e if V2f(x) > Oforallx € dom £, then f is strictly convex
e converse is not true (e.g., f(x) = x* is strictly convex but f”/(x) =0atx =0

Convexity of domain

e dom f must be convex to use the first or second order convexity characterization

e for example, the function
f(x)=1/x* with domf={xeR|x%0}
satisfies f”/(x) = 6/x* > 0 for all x € dom f, but is not a convex function

convex functions 9.21



Examples

the following can be shown using the definition or the second order condition

Convex

e exponential: e** is convex for any @ € R
e powers: x% is convex on R, whena > lora <0
e powers of absolute value: |x|P is convex on R for p > 1

e negative entropy: x log x is convex on R,
Concave

e powers: x* on R, isconcave for0 < a <1

e Jogarithm: log x is concave on R,

convex functions
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Example: quadratic functions

flx) = xTQx+rTx+c with Q = QT

is convex if and only if O > 0

o f(x) =4x? +2x3 + 3x1x2 + 4x1 + Hxy is convex since its Hessian
8 3
2 _

is positive definite

o f(x) =4x? — 2x3 + 3x1x2 + 4x; + Hx2 is nonconvex since its Hessian
8 3
2 _
V f('x) - [3 _4:|
is indefinite

convex functions
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Example: quadratic over linear

the function
f(x,t) =x%/t with dom f={(x,1)|t>0}

is convex

this is because the Hessian

ng(x):2[ 1/t —x/t?

—x/t2 X%/

:%[_tx] [t —x] >0

over its domain (¢ > 0)

convex functions 9.24



Example: log-sum-exp function

the softmax or log-sum-exp function f(x) = log(e** + --- + e*") is convex over R"

e the partial derivatives of f are:

af eXi

o e
T v

the second partial derivatives are

,(I;Xi _ e:iex[ iz

62f — k=1 €K (Zkzl e*k)? /

Ox;dx; |-Gt iti#j
Y (Zk=1 evk)?

e thus, we can express the Hessian as

1 . 1
V2 f(x) = mdmg(w) - Www:r, w=(e",...,e™)
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e forany v € R", we have

2 _ 2
Tvzf( Yo = (> W; U; )((zz::zww;) (v w) 50

e follows by applying Cauchy-Schwarz on the vectors a and b with entries

al:\/w_l'vh bl:M, i:1’~~-7n

(0Tw)? = (aTh)? < ||a||2||b||2=(2wl )(z )

convex functions
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Operations that preserves convexity

Weighted nonnegative sum
f=wifi+ - +wefi

e f convex if f; are convex and w; > 0
e a nonnegative weighted sum of concave functions is concave

e +ve weighted sum of strictly convex (concave) f; is strictly convex (concave)

Integral: if f(x, @) is convex in x for each @ € A, then /ae;z( f(x, @)da is convex

Composition with affine function: for A € R™*" b € R™ let
f(x) =g(Ax+b), with dom f={x|Ax+b e domg}

f is convex (concave) if g is convex (concave)

operations preserving convexity 9.27



Example
e negative entropy function
n
fx)=> xlogx;, dom f=R" ={x|x; >0}
i=1
f is convex since it is the sum of convex functions x; log x;
e |ogarithmic barrier for linear inequalities
m
f(x) ==>"log(b; —aiTx), dom f = {x | al-Tx <b;,i=1,...,m}
i=1

is convex since it is a sum of convex functions

e fora e R"andb e R
f(x) — eaTx+b

is convex over R” since f(x) = g(ax + b) where g(t) = e’ is a convex function

operations preserving convexity 9.28



e the function
f(x1,x2) = xf + 2x1x9 + 3x§ +2x; —3xg +e™
is convex it is the sum of two convex functions f = f; + f> with

fi(x1,x2) = X7 +2x1x0 + 3x5 +2x1 — 3x2,  fo(x1,x0) = €™

. . 1 1]. " e
— f1 is convex since V2f(x1,m) = [1 3] is positive semidefinite

— f2 is also convex since g (1) = e’ is convex and fa(x1,x2) = g(x2)

e the function
F(x1,x0,x3) = X172 4 p2X2 4y

is convex over R?: it is the sum of three convex functions: eXt ~*2*¥3 @2¥2 y,

operations preserving convexity
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Example: generalized quadratic-over-linear

let A € R™" beR™ c¢eR"(c#0),andd € R, then the function

JlAx+b|?
fx) = cTx+d

is convex over dom f = {x | ¢Tx +d > 0}

e we can write f as

2 m
f(x) =g(Ax +b,ch +d), gy, t) = @ = Z -
i=1

withdom f = {(y,¢) | y e R™, t > 0}

2
e g is sum of convex functions g;(y,t) = yT’ over {(y;,1) | v e R, t > 0}

e thus f is convex (composition of convex function with an affine mapping)

operations preserving convexity
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Pointwise maximum

the max of convex functions f; : R" - R,i=1,...,k

Jf(x) = max{f1(x),.... fi(x)}

is convex

Examples

e piece-wise linear function f(x) = max;=; k{aiTx + b;} is convex

.....

e sum of k largest values
Si(x) =xp11+ - + x5 (x[;] is ith largest component of x)
is convex since it is @ maximum of linear functions

Se(x) =max{x; + - +x; | i1,...,ix € {1,2,...,n} are different}

operations preserving convexity 9.31



Pointwise supremum

if f(x,y) is convex in x for each y € A, then g(x) = supyc # f(x,y) is convex

Examples
e the distance to farthest point in a set C:

sup [|lx — yl|
yeC

is convex

e the maximum eigenvalue of symmetric matrix X € S:

Amax(X) = sup yTXy
Iyll=1

is convex

operations preserving convexity
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Partial minimization

if £(x,y) is convexin (x,y) and C is a convex set, then
g(x) = inf f(x,y)
yeC

is convex (provided that g(x) > oo for some x)

Example: for a convex set C € R", the distance function

d(x,C) = myin{llx -yllyecC}

is convex because f(x, y) = ||x — y|| is convex in both (x, y)

operations preserving convexity 9.33



Summary of minimization/maximization rules

if we include the counterparts for concave functions, there are four rules

Maximization

g(x) =sup f(x,y)
yeC

e gisconvex if f is convex in x for fixed y; C can be any set

e gis concave if f is jointly concave in (x, y) and C is a convex set

Minimization
g(x) = inf f(x,y)
yeC

e gisconvex if f is jointly convex in (x,y) and C is a convex set

e gisconcave if f is concave in x for fixed y; C can be any set

operations preserving convexity

9.34



Composition with scalar functions

compositonof #: R" - Randg: R — R:

f(x) =g(h(x)), dom f={x€domh| h(x) €domg}

f is convex if g is convex and one of the following three cases holds
e his convex, and g is nondecreasing

e } is concave, and g is nonincreasing

e g s affine

f is concave if g is concave and one of the following three cases holds
e /i is concave, and g is nondecreasing

e his convex, and g is nonincreasing

e g is affine

operations preserving convexity
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Proof

f(Ox+(1-0)y) =g(h(6x+(1-06)y))
< g(0h(x) + (1 - 60)h(y))
< 0g(h(x)) + (1 -0)g(h(y))
=0f(x)+(1-0)f(x)

e the first inequality arises from convexity of & and the nondecreasing nature of g

e the second inequality is a result of the convexity of g

operations preserving convexity 9.36



Examples

F(x) = exp(||x]|?) is convex since f(x) = g(h(x)) where
— h(x) = ||x||? is a convex function
— g(1) = e’ is a nondecreasing convex function

more generally, exp /h(x) is convex if /1 is convex

e f(x) = (1+|x||?)? is a convex function since f(x) = g(h(x)) where
— h(x) =1+ ||x]|? is convex

— g(#) =% is convex and nondecreasing over £ (i.e., the interval [1, o))
e h(x)? is convex for p > 1if h is convex and nonnegative
e —log(—h(x)) is convex if & is convex and negative
e 1/h(x) is convex if & is concave and positive

e log h(x) is concave if i is concave and positive

operations preserving convexity
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Vector functions composition

composition of 7 : R” — R* and g : R¥ — R:

f(x) = g(h(x)) = g(h1(x), ..., hi(x))

f is convex if g is convex and for each 7, one of the following holds

e }; is convex and g nondecreasing in its ith argument
e h; is concave and g nonincreasing in its ith argument
o h; is affine

operations preserving convexity
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Examples

o f(x)=1log Zl’.‘zl ¢"i(x) is convex when h; are convex

- f(x) =g(h(x)), g(z) =log Zl]le €% is convex and nondecreasing in each argument

1
° (Zl’.‘zl h;(x)P)P is convex for p > 1 and hy, . .., hy convex and nonnegative

-g: R* 5 R
k i
g(2) = (Z[:1 max{z;, 0}7)
g(h(x)) is convex since g is both convex and nondecreasing in its arguments

for nonnegative values of z, g(z) simplifies to
k 1
(Zi=1 le) P

k i
we conclude that (Zizl h; (x)P) P is convex

e f(x)= Zl];l log h;(x) is concave if h; are concave and positive

operations preserving convexity 9.39



Examples

e f(x) = p(x)?/q(x) is convex if
— pis nonnegative and convex
— q is positive and concave

e the function

f(x,y):1 (=) x<1l, y<l1

—max(x,y)’

is convex

x,y,and 1 are affine

max(x, y) is convex; x — y is affine

1 — max(x, y) is concave

function u2/v is convex, monotone decreasing in v for v > 0

f is compos. of g(u,v) = % with u = x — y,v = 1 — max(x, y), hence convex

operations preserving convexity 9.40



Perspective function

the perspective of a function f : R" — R is the function g : R" X R — R,
g(x, 1) =tf(x/t), domg={(x,1)|x/t €dom f,t> 0}
g is convex if f is convex

Examples
e f(x) =xTxis convex, so g(x,t) = xTx/t is convex for t > 0

e f(x) = —logx is convex, so the relative entropy
g(x, 1) =tlogt —tlogx
is convex on R2,
o if f is convex, then
g(x) = (cTx+d) f((Ax + b) /(¢ Tx + d))
is convex on {x | ¢Tx +d > 0, (Ax + b)/(cTx + d) € dom f}

operations preserving convexity
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Restriction of a convex function to a line

f : R" — Ris convex if and only if
g(t)=f(x+tv), domg={t|x+1tvedomf}
is convex in t for any x € dom f andv € R"

e f convex if it remains convex when restricted to any line intersecting its domain

e allows us to check convexity of f by checking convexity of one variable functions

basic properties 9.42



Example: log-determinant function
f:S" = Rwith f(X) = logdet X is concave over dom f = S,

Proof

o let Xy = Xé/QXé/Q € S,,V e R™" be symmetric, then

g(t) =logdet(Xy +1tV) =log det(Xé/2Xé/2 +1V)
= log det Xo +log det (1 + X, *vX; /%)
=logdet Xo +log [T(1 +t4;)

=logdet Xo + Y log(1 + ;)
i-1

where A;, are the eigenvalues of XO_I/QVXO_U2

e 2nd term is sum of concave functions; hence g() is concave and f is concave

basic properties 9.43



Sublevel sets and convexity

the sublevel set of f : R" — R at level y is defined as

Sy ={xedomf| f(x) <y}

e for a convex function f, the sublevel set S, is also convex:
flx+(1-0)y) <0f(x)+(1-6)f(y) <y, foralx,yesS,
e useful to show convexity of a set

e a function can have all its sublevel sets convex, but not be a convex

— for example, f(x) = —e™ is not convex on R but all its sublevel sets are convex

— another example is f(x) = log(x), which is concave; with convex sublevel sets (0, e ]

basic properties
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Example

let P > 0is an n X n matrix, then the set:

C= {x | (xTPx +1)% +log ( 3 ) < 3}
=1

1

is convex since it is the level set of a convex function

e™)

f(x) = (xTPx+1)% +log (
i=1

n
=
e the log-sum-exp function, previously established as convex
o (xTPx +1)?is convex since it is equal g (xTPx) with g(7) = (¢ + 1)2
— g is nondecreasing convex function (defined on R;)
- xTPx convex quadratic function

— convexity follows from composition rule

e fis convex, being the sum of two convex functions

basic properties
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Epigraph
the graph of a function f : R" — R is the set
{(x, f(x)) | x € dom f} c R"™!
the epigraph of f : R™ — R is defined by
epi(f) = {(x,s) | x € dom f, f(x) < s} c R™!

e the epigraph encompasses the points situated on or above the graph of f

epi f !

graph'of f

e a function is convex if and only if its epigraph is a convex set

basic properties

9.46



Example

consider the function f : R" x R"*" — R, represented by

fx,Y)=xTr"1x, vYesS?,

e we can determine the convexity of f is by examining its epigraph:
epi f={(x,Y,0) | Y >0, xTY x <1}

~{eran| )

X
t

ZO,Y>O}

last line follows from Schur complement criteria for positive semidefiniteness
e the latter condition is an LMI in the variables (x, Y, t)

e hence the epigraph of f is convex, and consequently f is convex

basic properties
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Definition

Convex optimization problem in standard form
minimize  f(x)
subjectto g;(x) <0, i=1,...,m
hj(x)=0, j=1...,p
e f and g; are convex
o hj(x) are affine, i.e., hj(x) = aij —bjforsomea; € R"and b; € R

e the feasible set is convex since it is the intersection of convex sets

Concave problems

e maximization with concave objective and convex constraints

e a concave problem is also referred to as a convex problem

convex problems 9.48



Examples

e the problem
minimize  —2x1 + X2
subjectto  x? +x3 <4

is convex

e the problem
minimize  —2x7 + X9
subjectto x? +x3 =4

is nonconvex since the equality constraint function /(x) = x? + x3 — 4 is not affine

convex problems 9.49



Example

minimize  f(x) = x? +x2
subjectto g1(x) =x1/(1+x3) <0
hi(x) = (x1+x2)? =0

problem has convex objective f

the feasible set {(x1,x2) | x1 = —xo < 0} is convex

for our definition, this is not a convex problem (g1 not convex and %1 not affine)

problem is equivalent (but not identical) to the convex problem:
minimize x% + x%
subjectto x; <0
X1 +X9 = 0

convex problems
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Example

an investor wants to invest a total value of at most d into n possible investments
e let x; is investment deposit for investment i

e in economy it is frequently assumed that f; (x;) have forms:

_@ix;

filxi) = @i =P, fixi) = aglog(1+ Bixi). i) = ==

with ;, B; > 0; the above functions are concave

formulation: determine the investment deposits that maximize expected profit

maximize

fl(xt)

subject to x; <d

'M:H M:

Il
—_

x>0, i=1,...,n

this is a convex problem (we can transform max into min)
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Convexity of feasible and optimal set

o feasible set is convex since it is the intersection of convex sets:
dom f, sublevel sets {x | g;(x) < 0}, and affine sets {x | a}"x =bj}
e optimal set is convex: any convex combination of optimal x1, x» is feasible and
f(0x1+ (1= 60)x2) <Of(x1) +(1-6)f(x2) = p*

so f(0x1 + (1 — 0)x3) = p*, i.e., any convex combination is optimal

convex problems
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Local minimizers are global minimizers

any locally optimal point of a convex problem is (globally) optimal

Proof
o if x° is a local minimizer, then f(x°) < f(z) for all feasible z with ||z — x°|| < R

e assume f(y) < f(x°) for some feasible y so that x° is not a global minimizer

since f(y) < f(x°), we have ||y —x°|| > R

let z = 0y + (1 — 8)x°, from convexity definition, we have
J@)=fOy+(1-0)x°) <0f(y)+(1-0)f(x°) < f(x°)

for 6 = R/2||y — x°||, we have ||z —x°|| = R/2 < R

this implies that there is z close to x° such that f(z) < f(x°) (contradiction)

hence, there is no feasible y such that f(y) < f(x°), i.e., x° is a global minimizer
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First-order optimality condition

e suppose f : X — R is convex over a convex set X C R”

e the point x* is optimal if and only if
Vi) T(y-x*) >0, VyeX (9.4)

(the above condition is difficult to verify in practice)

Unconstrained case: for X = R", the above condition reduces to
Vf(x*) =0

to see this suppose that x € dom f is optimal and let y = x — tV f(x), which is in
the domain of f for sufficiently small ¢ (since domain is open by definition); note that

VI =x) ==tV 20 = Vf(x) =0
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Examples

e f(x) = xlogx with dom f = R,; setting the derivative to zero
fx)=logx+1=0=x=1/¢
g the second derivative is
f(x)=1/x>0 foralx € dom f

hence, the function is convex and x = 1/e is a global minimizer

e minimization over the nonnegative orthant

minimize  f(x)
subjectto x >0

using the optimality condition:
x>0, Vf(x)I(y-x)>0foraly >0
equivalent to

x>0, Vf(x)=20, x;Vf(x);=0, i=1,...,n

convex problems



Sufficiency of KKT conditions

for cvx problems, if there exists x* € D, u* € R™, 1* € RP? satisfying

m p
V™) + Z;usgi (™) + 231 AVhj(x*) =0
i= j=
gi(x*) <0, i=1,...,m
Ax* =b
w0, i=1,....m

g(xX =0, i=1,...,m
then, x* is a global minimizer

e there may be optimal points that do not satisfy KKT conditions

e when we discuss duality, we will provide conditions such that the KKT conditions
are both necessary and sufficient
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Proof
e |et x be a feasible solution; note that the function
m P
J(x) = L, p*, 2%) = f(x) + > pufgi(x) + D AT hj(x)
i=1 i=1

is convex since it is the sum of convex functions

e since VJ(x*) = 0, x* is a minimizer of J over R"; thus,

*y kkt * 2 * * P * *
fF&x™) = fx )+;M,~8i(x )+Z;/ljhj(x )
=J(x*)
< J(x)

m p
=fl0)+ Zl pFgi(x) + Zl AT hj(x)
< fx)

e hence, x* is optimal

convex problems

9.57



Example

C Le,2, .2, .2
minimize 5 (x] +x3 +x3)
subjectto  x3 +x2 +x3 =3

the above problem is convex with an equality constraint; the Lagrangian is
L(x,A) = %(x% +x§ +x§) +A(x1 +x2 +x3 —3)

the KKT conditions are

X1+/1=O
xo+4=0
x3+A=0

X1 +X2+X3 =0

the unique optimal solutionis x = (1,1,1) and 2 = -1

convex problems
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Example

minimize x% — X2

subjectto x5 <0
it is easy to see that the solution is x* = (0, 0); for this the Lagrangian is
L(x,u) = %x% — X2+ ux%
the KKT conditions are
2)61 =0
-1+ 2/.1X2 =0
ux2 =0
x2<0
u=0
the above nonlinear system of equations is infeasible
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