
8. Constrained optimization

• equality constrained problems

• inequality constrained problems

• quadratic problems with linear constraints

• projected gradient descent

• penalty method
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Equality constrained problems

minimize f(x)
subject to hi(x) = 0, i = 1, . . . , p

(8.1)

• f : Rn → R
• hi : Rn → R
• we let h(x) = (h1(x), . . . , hp(x))

• a point x satisfying h(x) = 0 is called a feasible point
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Example 8.1

minimize x1 − x2

subject to x2
1 + x2

2 = 1

• circle represent the constraint
• dotted lines are the level sets (f(x) = x1−x2 = γ) at different values of γ
• black arrows shows the direction of the gradient ∇f(x) = (1,−1)

• the global minimizer is x⋆ = (− 1√
2
, 1√

2
)

• the gradients ∇f(x⋆) and ∇h(x⋆) are parallel (linearly dependent):

∇f(x⋆) = −λ∇h(x⋆)

where λ = 1/
√
2
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Motivation of optimality conditions

suppose that we only have one constraint (p = 1) and consider the problem

minimize f(x) + λh(x)

where λ ∈ R is an adjustable parameter

• if there exists some λ⋆ such that the solution of the above problem, x⋆, satisfies
h(x⋆) = 0, i.e., there exists some λ⋆ such that:

∇f(x⋆) + λ⋆∇h(x⋆) = 0 and h(x⋆) = 0

then, we have

f(x⋆) = f(x⋆) + λ⋆h(x⋆) ≤ f(x) + λ⋆h(x) for all x

hence, f(x⋆) ≤ f(x) for all feasible x (x⋆ is a solution to the original problem
(8.1))

• we can transform the constrained problem into an unconstrained one if such λ⋆

exists

SA — ENGR507equality constrained problems 8.4



Lagrangian function

the Lagrangian function for problem (8.1) is

L(x,λ) = f(x) +

p∑
i=1

λihi(x)

• λ = (λ1, . . . , λp) is a p-vector

• the entries of λi are called the Lagrange multipliers

• the gradient of Lagrangian is

∇L(x,λ) =

[
∇xL(x,λ)
∇λL(x,λ)

]
where

∇xL(x,λ) = ∇f(x) +

p∑
i=1

λi∇hi(x)

∇λL(x,λ) = h(x)
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Method of Lagrange multipliers

Regular point: a feasible point x is a regular point if the vectors

∇h1(x), ∇h2(x), . . . , ∇hp(x)

are linearly independent

Lagrange theorem: if xo is a regular point and a local minimizer of the
constrained problem (8.1), then there exists a vector λo such that

∇xL(x
o,λo) = ∇f(xo) +

p∑
i=1

λo
i∇hi(x

o) = 0 (8.2a)

h(xo) = 0 (8.2b)

• there can be stationary points (critical points), (x̂, λ̂), that satisfy, but x̂ is
not a local minimizer

• the above method is known as the method of Lagrange multipliers
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Example 8.2

find the stationary points of the optimization problem:

minimize x2
1 + x2

2

subject to x2
1 + 2x2

2 = 1

• the Lagrangian is

L(x, λ) = x2
1 + x2

2 + λ(x2
1 + 2x2

2 − 1)

the necessary optimality conditions are

∇xL(x, λ) =

[
2x1 + 2x1λ
2x2 + 4x2λ

]
= 0

∇λL(x, λ) = x2
1 + 2x2

2 − 1 = 0
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solving, we get the stationary points

x = (0,± 1√
2
), λ = −1/2

or
x = (±1, 0), λ = −1

• all feasible points are regular since ∇h(x) = (2x1, 4x2) is linearly
independent for all feasible points; thus, any minimizer to the above
problem must satisfy the optimality conditions

• checking the value of the objective, we see that it is smallest at

x(1) = (0, 1√
2
) and x(2) = (0,− 1√

2
)

• therefore, the points x(1) and x(2) are candidate minimizers
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Example 8.3

consider the problem of finding the maximum box volume with fixed area
c = 2:

maximize x1x2x3

subject to x1x2 + x2x3 + x1x3 =
c

2

here, x = (x1, x2, x3) represent the box dimensions

• the gradient of the constraint function h(x) = x1x2 + x2x3 + x1x3 − 1 is

∇h(x) = (x2 + x3, x1 + x3, x1 + x2)

since ∇h(x) ̸= 0 for all feasible x, all feasible points are regular, and thus,
a local solution must satisfy the Lagrange conditions

• the Lagrangian of the equivalent minimization problem is

L(x, λ) = −x1x2x3 + λ(x1x2 + x2x3 + x1x3 − 1)
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• the necessary optimality conditions are

∇xL(x, λ) =

−x2x3 + λ(x2 + x3)
−x1x3 + λ(x1 + x3)
−x1x2 + λ(x1 + x2)

 = 0

∇λL(x, λ) = x1x2 + x2x3 + x1x3 − 1 = 0

if either one of x1, x2, x3, λ is zero, then the constraint are not satisfied;
hence, x1, x2, x3, λ are all nonzero

• solving for the above equations, we get λ = ±
√
3/6 and

x1 = x2 = x3 = ± 1√
3

since the point x̂ = (1/
√
3, 1/

√
3, 1/

√
3) has larger objective, it is a local

maximizer candidate
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Example 8.4

minimize x2

subject to x2
1 + x2

2 = 1,
(x1 − 2)2 + x2

2 = 1

one feasible point x̂ = (1, 0), thus optimal

x1

x2

x̂ = (1, 0)

• (1, 0) is not a regular point since ∇h1(x̂) = (2, 0) and ∇h2(x̂) = (−2, 0)
are linearly dependent

• the Lagrangian is

L(x,λ) = x2 + λ1(x
2
1 + x2

2 − 1) + λ2

(
(x1 − 2)2 + x2

2 − 1
)

the first necessary condition

∇xL(x,λ) =

[
2x1λ1 + 2(x1 − 2)λ2

1 + 2x2(λ1 + λ2)

]
= 0

cannot be satisfied at x̂ = (1, 0)
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Second-order conditions: motivation

Lagrange conditions provides necessary conditions and it is still unclear how
to check if a stationary point is a local minimizer or not

if the points xo,λo satisfy the Lagrange conditions, then, xo is a stationary
point of the unconstrained problem

minimize L(x,λo)

where

L(x,λ) = f(x) +

p∑
i=1

λihi(x)

• apply second-order optimality condition for unconstrained problem, that is,
we check the definiteness of the Lagrangian Hessain

∇2
xL(x,λ) = ∇2f(x) +

p∑
i=1

λi∇2hj(x)

• however, we only need to check the Lagrangian Hessian for feasible
directions
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Approximate feasible directions

• using Taylor approximation, we can approximate hi : Rn → R around x by

hi(x+∆x) ≈ hi(x) +∇hi(x)
T∆x

where ∆x is close to x

• if x is feasible (hi(x) = 0), then ∆x is approximately a feasible direction
for hi(x) = 0 if

0 = hi(x+∆x) ≈ ∇hi(x)
T∆x

• hence, the set of approximate feasible directions is

T (x) = {y | ∇hi(x)
Ty = 0, i = 1, . . . , p}

= {y | Dh(x)y = 0} (8.3)
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Tangent space

if x is a regular point then the set of feasible directions T (x) is a tangent
space to the surface:

S = {x ∈ Rn | h(x) = 0}
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Example 8.5

consider the x3-axis in R3 constraints:

S = {x ∈ R3 | h1(x) = x1 = 0, h2(x) = x1 − x2 = 0}

• we have

Dh(x) =

[
∇h1(x)

T

∇h2(x)
T

]
=

[
1 0 0
1 −1 0

]
the approximate feasible directions, y, satisfy

Dh(x)y =

[
1 0 0
1 −1 0

]y1y2
y3

 = 0

the above holds for y = (0, 0, α) where α ∈ R; thus, the tangent space is

T (xo) = {(0, 0, α) | α ∈ R} = the x3 axis in R3
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Second order conditions: equality constrained case

Necessary conditions: if xo is a regular point and a local minimizer of
problem (8.1), then, there exists a point λo such that

• ∇f(xo) +
∑m

i=1 ∇hi(x
o)λo

i = 0

• for all y ∈ T (xo) = {y | Dh(xo)y = 0}, we have

yT∇2
xL(x

o,λo)y ≥ 0

Sufficient conditions: if there exists points xo and λo such that

• ∇f(xo) +
∑m

i=1 ∇hi(x
o)λo

i = 0, h(xo) = 0

• for all y ∈ T (xo) = {y | Dh(xo)y = 0}, y ̸= 0, we have

yT∇2
xL(x

o,λo)y > 0,

then, xo is a strict local minimizer of problem (8.1)
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Example 8.6

minimize x1x2 + x2x3 + x1x3

subject to x1 + x2 + x3 = 3

find the stationary points and determine whether they are local minimizers

• the Lagrangian is

L(x, λ) = x1x2 + x2x3 + x1x3 + λ(x1 + x2 + x3 − 3)

the first-order necessary conditions are

∇xL(x, λ) =

x2 + x3 + λ
x1 + x3 + λ
x1 + x2 + λ

 = 0

x1 + x2 + x3 = 3

and the solution is x1 = x2 = x3 = 1, λ = −2
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• to check whether the point x̂ = (1, 1, 1) is a local minimizer, we look at the
second-order condition

• note that ∇h(x) = (1, 1, 1) and the Hessian

∇2
xL(x,λ) =

0 1 1
1 0 1
1 1 0


is an indefinite matrix; however, on the tangent space

T = {y | ∇h(x̂)Ty = 0} = {y | y1 + y2 + y3 = 0}

we have

yT

0 1 1
1 0 1
1 1 0

y = y1(y2 + y3) + y2(y1 + y3) + y3(y1 + y2)

= −(y21 + y22 + y23) < 0,

which is negative definite; thus, the solution x̂ = (1, 1, 1) is not a local
minimizer (it is a local maximizer)
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Quadratic objective and constraint

minimize xTQx
subject to xTPx = 1

where Q = QT and P = P T > 0

• the Lagrangian is

L(x, λ) = xTQx+ λ(1− xTPx)

• the Lagrange conditions are

∇xL(x, λ) = 2Qx− 2λPx = 0

∇λL(x, λ) = 1− xTPx = 0
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• from the first equation, we have

P−1Qx = λx

hence, a solution x̂ and λ̂ if they exists, are eigenvectors and eigenvalues
of P−1Q

• multiplying the equation P−1Qx = λx on the left by xTP and using
xTPx = 1, we get

λ = xTQx = f(x)

• hence, f(x) = xTQx = λ is minimized when λ is the smallest eigenvalue
of P−1Q and x is the corresponding eigenvector, which is a minimizer
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Example 8.7

minimize xTQx
subject to xTPx = 1

where

Q =

[
−4 0
0 −1

]
, P =

[
2 0
0 1

]
• the minimum eigenvalue of

P−1Q =

[
−2 0
0 −1

]
is λ̂ = −2; substituting, λ = −2 in the Lagrange conditions, we have

∇xL(x,−2) = 2Qx− 2λPx =

[
0

2x2

]
= 0

∇λL(x,−2) = 1− 2x2
1 − x2

2 = 0
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• solving, we get the solutions x̂1 = (1/
√
2, 0) or x̂2 = (−1/

√
2, 0)

• to verify that these points are strict local minimizers, we find the Hessian of
the Lagrangian (for first x̂1, the other follow similar steps)

∇2
xL(x, λ̂) = 2Q− 2λ̂P = 2(Q+ 2P ) =

[
0 0
0 2

]
• since h(x) = 1− xTPx = 0, we have ∇h(x) = −2Px and the tangent

space is

T (x̂) = {y | 2x̂TPy = 0} = {y | [
√
2, 0]y = 0} = {(0, a) | a ∈ R}

• for every y ∈ T , y ̸= 0, we have

yT∇2
xL(x̂, λ̂)y = 2a2 > 0

we conclude that the point x̂ = ( 1√
2
, 0) is a local minimizer
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Outline

• equality constrained problems

• inequality constrained problems

• quadratic problems with linear constraints

• projected gradient descent

• penalty method



Inequality constrained problems

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(8.4)

• f : Rn → R

• gi : Rn → R

• hj : Rn → R

• g(x) = (g1(x), . . . , gm(x))

• h(x) = (h1(x), . . . , hp(x))

• x̂ is a feasible point if it satisfies the constraints (g(x̂) ≤ 0, h(x̂) = 0)
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Lagrangian

the Lagrangian associated with problem (8.4) is

L(x,µ,λ) = f(x) +

m∑
i=1

µigi(x) +

p∑
j=1

λjhj(x)

• µ ∈ Rm and λ ∈ Rp

• both µ and λ are often called Lagrange multipliers vectors

• the gradient of the Lagrangian with respect to x is

∇xL(x,µ,λ) = ∇f(x) +

m∑
i=1

µi∇gi(x) +

p∑
j=1

λj∇hj(x)
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Regular point

Active inequalities

• an inequality constraint gi(x) ≤ 0 is active at x̂ if gi(x̂) = 0

• it is inactive at x̂ if gi(x̂) < 0

• we let I(x̂) denote the set of indices i for the active constraints at x̂:

I(x̂) = {i | gi(x̂) = 0}

Regular point: a feasible point x̂ is a regular point if the vectors

∇gi(x̂), ∇hj(x̂), i ∈ I(x̂), j = 1, . . . , p

are linearly independent
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Motivation of optimality conditions

if xo is a local minimizer of (8.4), then it is a local minimizer of the problem:

minimize f(x)
subject to gi(x) = 0, i ∈ I(xo), h(x) = 0

• using Lagrange conditions (8.2) on the above problem, we have

∇f(xo) +
∑

i∈I(xo)

µo
i∇gi(x

o) +

p∑
j=1

λo
j∇hj(x

o) = 0

• in terms of the original problem, we can write the above condition as

∇f(xo) +

m∑
i=1

µo
i∇gi(x

o) +

p∑
j=1

λo
j∇hj(x

o) = 0

µi = 0 for i /∈ I(xo) ⇒ gi(x
o)Tµo

i = 0

it can be shown that µi ≥ 0 for i ∈ I(xo)

SA — ENGR507inequality constrained problems 8.26



Karush-Kuhn-Tucker (KKT) conditions

if xo is a regular point and a local minimizer for problem (8.4), then there
exists µo ∈ Rm and λo ∈ Rp such that:

∇xL(x
o,µo,λo) = 0 (8.5a)

gi(x
o) ≤ 0, i = 1, . . . ,m (8.5b)

hj(x
o) = 0, j = 1, . . . , p (8.5c)

µo
i ≥ 0, i = 1, . . . ,m (8.5d)

µo
i gi(x

o) = 0, i = 1, . . . ,m (8.5e)

the vectors λo and µo are called the Lagrange multiplier and KKT multiplier
vectors (or just Lagrange multiplier vectors)

Complementary slackness: the last KKT condition µo
i gi(x

o) = 0 is called
the complementary slackness; it implies that

• gi(x
o) < 0 ⇒ µo

i = 0

• µo
i > 0 ⇒ gi(x

o) = 0

SA — ENGR507inequality constrained problems 8.27



Example 8.8

20 V

R

10 Ω

let us determine the value of the resistor R ≥ 0 such that the power absorbed
by this resistor is maximized

the power absorbed R is p = i2R where i = 20/(10 +R); hence, the
problem can formulated as

minimize − 400x
(10+x)2

subject to −x ≤ 0

the variable x represents the resistor R
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the Lagrangian is

L(x, µ) = − 400x

(10 + x)2
− µx

the derivative of the objective function is

−400(10 + x)2 − 800x(10 + x)

(10 + x)4
= −400(10− x)

(10 + x)3

KKT conditions:

−400(10− x)

(10 + x)3
− µ = 0

µ ≥ 0

µx = 0

−x ≤ 0

• if µ > 0, then x = 0, and the first equation does not hold
• let µ = 0; then we get x = 10, which satisfies all conditions
• hence, the point x = 10 is a stationary point and a local minimizer

candidate
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Example 8.9

minimize x2
1 + x2

2 + x1x2 − 3x1

subject to x1 ≥ 0, x2 ≥ 0

• the Lagrangian is

L(x,µ) = x2
1 + x2

2 + x1x2 − 3x1 − µ1x1 − µ2x2

• note that g(x) = (−x1,−x2) and the KKT conditions are

∇xL(x,µ) =

[
2x1 + x2 − 3− µ1

x1 + 2x2 − µ2

]
= 0

µ ≥ 0

−x ≤ 0

µ1x1 = 0

µ2x2 = 0
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• to find a solution, suppose that µ1 = 0 and x2 = 0; then, solving the
above with these values, we have

x =

[
3
2
0

]
, µ =

[
0
3
2

]
which satisfy the KKT conditions

• if we try µ2 = 0 and x1 = 0, we get x2 = 0, µ1 = −3, which violates the
condition µ ≥ 0

• similarly, the other combinations x1 = x2 = 0 and µ1 = µ2 = 0 violates
the KKT condition
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Necessary conditions: inequality constrained case

Tangent space

T (x) = {y | Dh(x)y = 0, ∇gi(x)
Ty = 0, i ∈ I(x)}

• I(x) = {i | gi(x) = 0} is the set with active constraints indices

• tangent space is the set of feasible directions with active constraints

Necessary conditions: suppose xo is a regular point and a local minimizer
of problem (8.4), then, there exists µo,λo such that:

• the KKT conditions (8.5) hold; and

• for all y ∈ T (xo), we have

yT∇2
xL(x

o,µo,λo)y ≥ 0
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Sufficient conditions: inequality constrained case

Critical tangent space: for any points x, µ, and λ satisfying the KKT
conditions (8.5), we define the critical tangent space as:

T̄ (x) = {y | Dh(x)y = 0, ∇gi(x)
Ty = 0, i ∈ Ī(x)}

where Ī(x) = {i | gi(x) = 0, µi > 0}

Sufficient conditions: suppose that there exists points xo, µo, and λo such
that the KKT conditions (8.5) hold; if for all y ∈ T̄ (xo), y ̸= 0, we have

yT∇2
xL(x

o,λo,µo)y > 0,

then, xo is a strict local minimizer of (8.4)
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Example 8.10

minimize x1x2

subject to x1 + x2 ≥ 2, x1 − x2 ≤ 0

• the Lagrangian is

L(x,µ) = x1x2 + µ1(2− x1 − x2) + µ2(x1 − x2)

• we have g1(x) = 2− x1 − x2 and g2(x) = x1 − x2 and the KKT
conditions are

∇xL(x,µ) =

[
x2 − µ1 + µ2

x1 − µ1 − µ2

]
= 0

2− x1 − x2 ≤ 0

x1 − x2 ≤ 0

µ1, µ2 ≥ 0

µ1(2− x1 − x2) = 0

µ2(x1 − x2) = 0
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• it can be verified that µ1 ̸= 0 and µ2 = 0; solving with µ2 = 0, we arrive at
one solution: x̂1 = x̂2 = 1, µ1 = 1, µ2 = 0

• at this solution, the constraints are active, and

∇g1(x̂) =

[
−1
−1

]
, ∇g2(x̂) =

[
1

−1

]
, ∇2

xL(x̂, µ̂) =

[
0 1
1 0

]
the vectors ∇g1(x̂),∇g2(x̂) are linearly independent, hence x̂ is regular

• since both constraints are active, the tangent space is

T = {y | ∇g1(x̂)
Ty = 0, ∇g2(x̂)

Ty = 0} = {0}

therefore, yT∇2
xL(x̂, µ̂)y = 0 for y ∈ T and the point x̂ is a candidate

local minimizer
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• we now check the sufficient conditions; since µ2 = 0, the critical tangent
space is

T̄ = {y | ∇g1(x̂)
Ty = 0}

= {y | − y1 − y2 = 0}
= {y | y1 = −y2}

• for y ∈ T̄ , y ̸= 0, we have

yT
[
0 1
1 0

]
y = 2y1y2 = −2y22 < 0

this means that the sufficient condition does not hold

• hence, x̂ is not a local minimizer (it is also not a local maximizer)
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Example 8.11

minimize (x1 − 1)2 + x2 − 2
subject to x2 = x1 + 1, x1 + x2 ≤ 2

• we have h(x) = x2 − x1 − 1 and g(x) = x1 + x2 − 2 and

∇h(x) =

[
−1
1

]
, ∇g(x) =

[
1
1

]
,

are linearly independent; hence, all feasible points are regular and a local
solution must satisfy the KKT conditions

• the Lagrangian is

L(x, µ, λ) = (x1 − 1)2 + x2 − 2 + µ(x1 + x2 − 2) + λ(x2 − x1 − 1)

SA — ENGR507inequality constrained problems 8.37



KKT conditions: [
2x1 − 2 + µ− λ

1 + µ+ λ

]
= 0

µ(x1 + x2 − 2) = 0

µ ≥ 0

x2 − x1 − 1 = 0

x1 + x2 − 2 ≤ 0

• for µ > 0, we will get an invalid solution; solving with µ = 0, we arrive at
the solution

x1 = 1
2 , x2 = 3

2 , λ = −1

• the point x̂ = ( 12 ,
3
2 ) is a local minimizer candidate
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• the Hessian of the Lagrangian is

∇2
xL(x, µ, λ) =

[
2 0
0 0

]
for all x (positive semi-definite)

• since µ = 0, the critical tangent space is:

T̄ = {y | ∇h(x̂)Ty = 0} = {y | − y1 + y2 = 0}
= {y = (a, a) | a ∈ R}

• for y ∈ T̄ , we have

yT
[
2 0
0 0

]
y = 2a2 > 0,

which is positive-definite; therefore, the point x̂ is a local minimizer

SA — ENGR507inequality constrained problems 8.39



Outline

• equality constrained problems

• inequality constrained problems

• quadratic problems with linear constraints

• projected gradient descent

• penalty method



Quadratic program with linear constraints

minimize 1
2x

TQx+ rTx
subject to Cx = d

• Q is an n× n symmetric matrix; r is an n-vector

• C is a p× n matrix; d is a p-vector

the Lagrangian for this problem is

L(x,λ) = 1
2x

TQx+ rTx+ λT(Cx− d)
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Solution

a solution (if it exists) must satisfy the following Lagrange optimality
conditions:

∇xL(x,λ) = Qx+ r + CTλ = 0 (8.6a)

Cx− d = 0 (8.6b)

the above can be written as the system of linear equations:[
Q CT

C 0

] [
x
λ

]
=

[
−r
d

]
(8.7)

• the solution of the above can be a minimizer, maximizer, or a saddle point

• if Q is positive semidefinite, then any solution of the above is a global
minimizer
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Closed-form solution: assume Q is invertible and C has linearly
independent rows

• multiply the first equation in (8.6) by Q−1 on the left

x = −Q−1(r + CTλ)

• substituting into the second equation, we get

−CQ−1(r + CTλ) = d ⇐⇒
(
CQ−1CT

)
λ = −(d+ CQ−1r)

hence
λ = −

(
CQ−1CT

)−1
(d+AQ−1r)

• putting it all together, we get

x = Q−1CT
(
CQ−1CT

)−1
(CQ−1r + d)−Q−1r
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Example 8.12

consider the discrete-time linear system

sk = 2sk−1 + uk, k ≥ 1,

with s0 = 1; suppose that we want to find the values of the inputs u1 and u2

that minimizes
1

2
u2
1 +

1

3
u2
2 + s22

• we can formulate this problem as a quadratic program with variables
u1, u2 and s2

• the state at time 2 can be found recursively as:

s2 = 2s1 + u2 = 2(2s0 + u1) + u2 = 2(2 + u1) + u2

hence,
2u1 + u2 − s2 = −4
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therefore, the problem can be formulated as:

minimize 1
2u

2
1 +

1
3u

2
2 + s22

subject to 2u1 + u2 − s2 = −4

letting x = (u1, u2, s2), we can write the problem as:

minimize 1
2x

TQx
subject to Cx = d

where

Q = diag(1, 2/3, 2), C =
[
2 1 −1

]
, d = −4

this is a quadratic problem with linear constraints; since Q is invertible and C
is a nonzero row vector, the solution is

x = (u1, u2, s2) = Q−1CT(CQ−1CT)−1d =
(
− 4

3 ,−1, 1
3

)
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Constrained least squares

minimize ∥Ax− b∥2
subject to Cx = d

where A is an m× n matrix, C is a p× n matrix, b is an m-vector, and d is a
p-vector

• the objective is ∥Ax− b∥2 = xT(ATA)x− 2(ATb)Tx+ ∥b∥2

• quadratic objective with Q = 2ATA, r = −2ATb

• hence, the optimality condition is[
2ATA CT

C 0

] [
x
λ

]
=

[
2ATb
d

]
• Q = 2ATA ≥ 0; so any solution of the above is a global minimizer
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Outline

• equality constrained problems

• inequality constrained problems

• quadratic problems with linear constraints

• projected gradient descent

• penalty method



Projection

Constrained optimization

minimize f(x)
subject to x ∈ X

• x ∈ Rn is variable; f : Rn → R
• X is the constraint set

Projection: the projection of x ∈ Rn onto X ⊆ Rn is

ΠX [x] = argmin
z∈X

∥z − x∥

• the point ΠX [x] is the “closest” point in X to x

• for certain constraints, the projection can be computed in closed form
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Examples

• Box constraint

X = {x | li ≤ xi ≤ ui, i = 1, . . . , n}

given x, its projection y = ΠX [x] onto X is

yi =


ui if xi > ui

xi if li ≤ xi ≤ ui

li if xi < li

• Unit ball constraint
X = {x | ∥x∥2 = 1}

the projection is simply the normalization of x:

ΠX [x] = x/∥x∥
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Gradient descent and projection

minimize f(x)
subject to x ∈ X

the gradient descent update has the form:

x(k+1) = x(k) − αk∇f(x(k))

• the point x(k+1) is not guaranteed to be in X even if x(k) is

• to guarantee feasibility, we can modify the update to

x(k+1) = ΠX
[
x(k) − αk∇f(x(k))

]
where ΠX [x] denote the projection of x onto X
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Projected gradient descent

Algorithm Projected gradient descent

given a starting point x(0) and a solution tolerance ϵ > 0

repeat for k ≥ 1

1. choose a stepsize αk

2. update x(k+1):
x(k+1) = ΠX

[
x(k) − αk∇f(x(k))

]
if ∥x(k+1) − x(k)∥ ≤ ϵ stop and x(k+1) is output

ΠX [x] = argmin
z∈X

∥z − x∥
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Examples

• the projected gradient descent update for the problem

minimize 1
2x

TQx
subject to ∥x∥2 = 1

is

x(k+1) =
1

∥(I − αkQ)x(k)∥
(I − αkQ)x(k)

• the projected gradient descent update for the problem

minimize (1/2)xTQx+ rTx
subject to x ≥ 0

is
x(k+1) = [x(k) − α(Qx(k) + r)]+,

where [·]+ replaces negative entries by zero
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Outline

• equality constrained problems

• inequality constrained problems

• quadratic problems with linear constraints

• projected gradient descent

• penalty method



Penalized formulation

minimize f(x)
subject to hi(x) = 0, i = 1, . . . , p

Penalized formulation

minimize f(x) + ρP (h(x))

• h(x) = (h1(x), . . . , hp(x))

• P : Rp → R is the penalty function

• ρ ∈ R is the penalty parameter

• the role of the term ρP (x) is to penalize constraints violation, i.e., has
large values for infeasible points
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Penalty function

Penalty function: the penalty function P satisfies the following conditions:

1. P is continuous

2. P (h(x)) ≥ 0 for all x ∈ Rn

3. P (h(x)) = 0 if and only if x is feasible (h(x) = 0)

Quadratic penalty function

P (h(x)) = ∥h(x)∥2 =

p∑
i=1

(
hi(x)

)2
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Quadratic penalty formulation

minimize f(x) + ρ∥h(x)∥2

• a solution of the above problem might not feasible

• for large ρ we expect to have small values (hi(x)
)2

, i.e., an approximate
solution to the original problem

• minimizing the penalty problem for an increasing sequence of values of ρ
is known as the penalty method
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Quadratic penalty method

Algorithm Quadratic penalty method

given a starting point x(0), ρ0, and a solution tolerance ϵ > 0

repeat for k = 1, 2, . . . ,K

1. set x(k+1) to be the (approximate) minimizer of

minimize f(x) + ρk∥h(x)∥2

using an unconstrained optimization method with initial point x(k)

2. update ρk+1 = 2ρk

• terminate if ∥g+(x)∥2 and ∥h(x)∥2 are small enough
• simple and easy to implement
• but has a major issue: the parameter ρk rapidly increases with iterations;

when solving penalty problem using gradient descent for example, it can
be very slow or simply fail
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Inequality constraints

for problems of the form

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

we can for example consider the penalized problem:

minimize f(x) + ρ∥h(x)∥2 + ρ∥g+(x)∥2

• g+(x) = (g+1 (x), . . . , g
+
m(x)) and

g+i (x) = max{0, gi(x)} =

{
0 if gi(x) ≤ 0

gi(x) if gi(x) > 0

• there are many other choices of penalty functions; here, we just consider
the simple quadratic penalization function
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