8. Constrained optimization

- equality constrained problems
- inequality constrained problems
- quadratic problems with linear constraints
- projected gradient descent
- penalty method

Equality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & h_{i}(\boldsymbol{x})=\mathbf{0}, \quad i=1, \ldots, p \tag{8.1}
\end{array}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- we let $h(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{p}(\boldsymbol{x})\right)$
- a point \boldsymbol{x} satisfying $h(\boldsymbol{x})=\mathbf{0}$ is called a feasible point

Example 8.1

$$
\begin{array}{ll}
\text { minimize } & x_{1}-x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

- circle represent the constraint
- dotted lines are the level sets $\left(f(\boldsymbol{x})=x_{1}-x_{2}=\gamma\right)$ at different values of γ
- black arrows shows the direction of the gradient $\nabla f(\boldsymbol{x})=(1,-1)$
- the global minimizer is $\boldsymbol{x}^{\star}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
- the gradients $\nabla f\left(\boldsymbol{x}^{\star}\right)$ and $\nabla h\left(\boldsymbol{x}^{\star}\right)$ are parallel (linearly dependent):

$$
\nabla f\left(\boldsymbol{x}^{\star}\right)=-\lambda \nabla h\left(\boldsymbol{x}^{\star}\right)
$$

where $\lambda=1 / \sqrt{2}$

Motivation of optimality conditions

suppose that we only have one constraint ($p=1$) and consider the problem

$$
\operatorname{minimize} f(\boldsymbol{x})+\lambda h(\boldsymbol{x})
$$

where $\lambda \in \mathbb{R}$ is an adjustable parameter

- if there exists some λ^{\star} such that the solution of the above problem, \boldsymbol{x}^{\star}, satisfies $h\left(\boldsymbol{x}^{\star}\right)=0$, i.e., there exists some λ^{\star} such that:

$$
\nabla f\left(\boldsymbol{x}^{\star}\right)+\lambda^{\star} \nabla h\left(\boldsymbol{x}^{\star}\right)=\mathbf{0} \quad \text { and } \quad h\left(\boldsymbol{x}^{\star}\right)=0
$$

then, we have

$$
f\left(\boldsymbol{x}^{\star}\right)=f\left(\boldsymbol{x}^{\star}\right)+\lambda^{\star} h\left(\boldsymbol{x}^{\star}\right) \leq f(\boldsymbol{x})+\lambda^{\star} h(\boldsymbol{x}) \text { for all } \boldsymbol{x}
$$

hence, $f\left(\boldsymbol{x}^{\star}\right) \leq f(\boldsymbol{x})$ for all feasible \boldsymbol{x} (\boldsymbol{x}^{\star} is a solution to the original problem (8.1))

- we can transform the constrained problem into an unconstrained one if such λ^{\star} exists

Lagrangian function

the Lagrangian function for problem (8.1) is

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{i} h_{i}(\boldsymbol{x})
$$

- $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is a p-vector
- the entries of λ_{i} are called the Lagrange multipliers
- the gradient of Lagrangian is

$$
\nabla L(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{l}
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\lambda}) \\
\nabla_{\lambda} L(\boldsymbol{x}, \boldsymbol{\lambda})
\end{array}\right]
$$

where

$$
\begin{aligned}
& \nabla_{x} L(\boldsymbol{x}, \boldsymbol{\lambda})=\nabla f(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{i} \nabla h_{i}(\boldsymbol{x}) \\
& \nabla_{\lambda} L(\boldsymbol{x}, \boldsymbol{\lambda})=h(\boldsymbol{x})
\end{aligned}
$$

Method of Lagrange multipliers

Regular point: a feasible point x is a regular point if the vectors

$$
\nabla h_{1}(\boldsymbol{x}), \nabla h_{2}(\boldsymbol{x}), \ldots, \nabla h_{p}(\boldsymbol{x})
$$

are linearly independent
Lagrange theorem: if x^{o} is a regular point and a local minimizer of the constrained problem (8.1), then there exists a vector $\boldsymbol{\lambda}^{o}$ such that

$$
\begin{align*}
\nabla_{x} L\left(\boldsymbol{x}^{o}, \boldsymbol{\lambda}^{o}\right)=\nabla f\left(\boldsymbol{x}^{o}\right)+\sum_{i=1}^{p} \lambda_{i}^{o} \nabla h_{i}\left(\boldsymbol{x}^{o}\right) & =\mathbf{0} \tag{8.2a}\\
h\left(\boldsymbol{x}^{o}\right) & =\mathbf{0} \tag{8.2b}
\end{align*}
$$

- there can be stationary points (critical points), $(\hat{\boldsymbol{x}}, \hat{\boldsymbol{\lambda}})$, that satisfy, but $\hat{\boldsymbol{x}}$ is not a local minimizer
- the above method is known as the method of Lagrange multipliers

Example 8.2

find the stationary points of the optimization problem:

$$
\begin{array}{ll}
\text { minimize } & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}^{2}+2 x_{2}^{2}=1
\end{array}
$$

- the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=x_{1}^{2}+x_{2}^{2}+\lambda\left(x_{1}^{2}+2 x_{2}^{2}-1\right)
$$

the necessary optimality conditions are

$$
\begin{aligned}
\nabla_{x} L(\boldsymbol{x}, \lambda) & =\left[\begin{array}{l}
2 x_{1}+2 x_{1} \lambda \\
2 x_{2}+4 x_{2} \lambda
\end{array}\right]=\mathbf{0} \\
\nabla_{\lambda} L(\boldsymbol{x}, \lambda) & =x_{1}^{2}+2 x_{2}^{2}-1=0
\end{aligned}
$$

solving, we get the stationary points

$$
\boldsymbol{x}=\left(0, \pm \frac{1}{\sqrt{2}}\right), \quad \lambda=-1 / 2
$$

or

$$
\boldsymbol{x}=(\pm 1,0), \quad \lambda=-1
$$

- all feasible points are regular since $\nabla h(\boldsymbol{x})=\left(2 x_{1}, 4 x_{2}\right)$ is linearly independent for all feasible points; thus, any minimizer to the above problem must satisfy the optimality conditions
- checking the value of the objective, we see that it is smallest at

$$
\boldsymbol{x}^{(1)}=\left(0, \frac{1}{\sqrt{2}}\right) \quad \text { and } \quad \boldsymbol{x}^{(2)}=\left(0,-\frac{1}{\sqrt{2}}\right)
$$

- therefore, the points $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are candidate minimizers

Example 8.3

consider the problem of finding the maximum box volume with fixed area $c=2$.

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1} x_{2} x_{3} \\
\text { subject to } & x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}=\frac{c}{2}
\end{array}
$$

here, $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$ represent the box dimensions

- the gradient of the constraint function $h(\boldsymbol{x})=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}-1$ is

$$
\nabla h(\boldsymbol{x})=\left(x_{2}+x_{3}, x_{1}+x_{3}, x_{1}+x_{2}\right)
$$

since $\nabla h(\boldsymbol{x}) \neq \mathbf{0}$ for all feasible \boldsymbol{x}, all feasible points are regular, and thus, a local solution must satisfy the Lagrange conditions

- the Lagrangian of the equivalent minimization problem is

$$
L(\boldsymbol{x}, \lambda)=-x_{1} x_{2} x_{3}+\lambda\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}-1\right)
$$

- the necessary optimality conditions are

$$
\begin{aligned}
& \nabla_{x} L(\boldsymbol{x}, \lambda)=\left[\begin{array}{l}
-x_{2} x_{3}+\lambda\left(x_{2}+x_{3}\right) \\
-x_{1} x_{3}+\lambda\left(x_{1}+x_{3}\right) \\
-x_{1} x_{2}+\lambda\left(x_{1}+x_{2}\right)
\end{array}\right]=\mathbf{0} \\
& \nabla_{\lambda} L(\boldsymbol{x}, \lambda)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}-1=0
\end{aligned}
$$

if either one of $x_{1}, x_{2}, x_{3}, \lambda$ is zero, then the constraint are not satisfied; hence, $x_{1}, x_{2}, x_{3}, \lambda$ are all nonzero

- solving for the above equations, we get $\lambda= \pm \sqrt{3} / 6$ and

$$
x_{1}=x_{2}=x_{3}= \pm \frac{1}{\sqrt{3}}
$$

since the point $\hat{\boldsymbol{x}}=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$ has larger objective, it is a local maximizer candidate

Example 8.4

$$
\begin{array}{ll}
\operatorname{minimize} & x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=1, \\
& \left(x_{1}-2\right)^{2}+x_{2}^{2}=1
\end{array}
$$

one feasible point $\hat{\boldsymbol{x}}=(1,0)$, thus optimal

- $(1,0)$ is not a regular point since $\nabla h_{1}(\hat{\boldsymbol{x}})=(2,0)$ and $\nabla h_{2}(\hat{\boldsymbol{x}})=(-2,0)$ are linearly dependent
- the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=x_{2}+\lambda_{1}\left(x_{1}^{2}+x_{2}^{2}-1\right)+\lambda_{2}\left(\left(x_{1}-2\right)^{2}+x_{2}^{2}-1\right)
$$

the first necessary condition

$$
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
2 x_{1} \lambda_{1}+2\left(x_{1}-2\right) \lambda_{2} \\
1+2 x_{2}\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right]=\mathbf{0}
$$

cannot be satisfied at $\hat{\boldsymbol{x}}=(1,0)$

Second-order conditions: motivation

Lagrange conditions provides necessary conditions and it is still unclear how to check if a stationary point is a local minimizer or not
if the points $\boldsymbol{x}^{o}, \boldsymbol{\lambda}^{o}$ satisfy the Lagrange conditions, then, \boldsymbol{x}^{o} is a stationary point of the unconstrained problem

$$
\text { minimize } L\left(\boldsymbol{x}, \boldsymbol{\lambda}^{o}\right)
$$

where

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{i} h_{i}(\boldsymbol{x})
$$

- apply second-order optimality condition for unconstrained problem, that is, we check the definiteness of the Lagrangian Hessain

$$
\nabla_{x}^{2} L(\boldsymbol{x}, \boldsymbol{\lambda})=\nabla^{2} f(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{i} \nabla^{2} h_{j}(\boldsymbol{x})
$$

- however, we only need to check the Lagrangian Hessian for feasible directions

Approximate feasible directions

- using Taylor approximation, we can approximate $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ around x by

$$
h_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \approx h_{i}(\boldsymbol{x})+\nabla h_{i}(\boldsymbol{x})^{T} \Delta \boldsymbol{x}
$$

where Δx is close to \boldsymbol{x}

- if \boldsymbol{x} is feasible ($h_{i}(\boldsymbol{x})=0$), then $\Delta \boldsymbol{x}$ is approximately a feasible direction for $h_{i}(\boldsymbol{x})=0$ if

$$
0=h_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \approx \nabla h_{i}(\boldsymbol{x})^{T} \Delta \boldsymbol{x}
$$

- hence, the set of approximate feasible directions is

$$
\begin{align*}
\mathcal{T}(\boldsymbol{x}) & =\left\{\boldsymbol{y} \mid \nabla h_{i}(\boldsymbol{x})^{T} \boldsymbol{y}=0, i=1, \ldots, p\right\} \\
& =\{\boldsymbol{y} \mid D h(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}\} \tag{8.3}
\end{align*}
$$

Tangent space

if \boldsymbol{x} is a regular point then the set of feasible directions $\mathcal{T}(\boldsymbol{x})$ is a tangent space to the surface:

$$
\mathcal{S}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid h(\boldsymbol{x})=\mathbf{0}\right\}
$$

Example 8.5

consider the x_{3}-axis in \mathbb{R}^{3} constraints:

$$
\mathcal{S}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid h_{1}(\boldsymbol{x})=x_{1}=0, \quad h_{2}(\boldsymbol{x})=x_{1}-x_{2}=0\right\}
$$

- we have

$$
D h(\boldsymbol{x})=\left[\begin{array}{l}
\nabla h_{1}(\boldsymbol{x})^{T} \\
\nabla h_{2}(\boldsymbol{x})^{T}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

the approximate feasible directions, \boldsymbol{y}, satisfy

$$
D h(\boldsymbol{x}) \boldsymbol{y}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\mathbf{0}
$$

the above holds for $\boldsymbol{y}=(0,0, \alpha)$ where $\alpha \in \mathbb{R}$; thus, the tangent space is

$$
\mathcal{T}\left(\boldsymbol{x}^{o}\right)=\{(0,0, \alpha) \mid \alpha \in \mathbb{R}\}=\text { the } x_{3} \text { axis in } \mathbb{R}^{3}
$$

Second order conditions: equality constrained case

Necessary conditions: if \boldsymbol{x}^{o} is a regular point and a local minimizer of problem (8.1), then, there exists a point $\boldsymbol{\lambda}^{o}$ such that

- $\nabla f\left(\boldsymbol{x}^{o}\right)+\sum_{i=1}^{m} \nabla h_{i}\left(\boldsymbol{x}^{o}\right) \lambda_{i}^{o}=\mathbf{0}$
- for all $\boldsymbol{y} \in \mathcal{T}\left(\boldsymbol{x}^{o}\right)=\left\{\boldsymbol{y} \mid D h\left(\boldsymbol{x}^{o}\right) \boldsymbol{y}=\mathbf{0}\right\}$, we have

$$
\boldsymbol{y}^{T} \nabla_{x}^{2} L\left(\boldsymbol{x}^{o}, \boldsymbol{\lambda}^{o}\right) \boldsymbol{y} \geq 0
$$

Sufficient conditions: if there exists points \boldsymbol{x}^{o} and $\boldsymbol{\lambda}^{o}$ such that

- $\nabla f\left(\boldsymbol{x}^{o}\right)+\sum_{i=1}^{m} \nabla h_{i}\left(\boldsymbol{x}^{o}\right) \lambda_{i}^{o}=\mathbf{0}, h\left(\boldsymbol{x}^{o}\right)=\mathbf{0}$
- for all $\boldsymbol{y} \in \mathcal{T}\left(\boldsymbol{x}^{o}\right)=\left\{\boldsymbol{y} \mid D h\left(\boldsymbol{x}^{o}\right) \boldsymbol{y}=\mathbf{0}\right\}, \boldsymbol{y} \neq \mathbf{0}$, we have

$$
\boldsymbol{y}^{T} \nabla_{x}^{2} L\left(\boldsymbol{x}^{o}, \boldsymbol{\lambda}^{o}\right) \boldsymbol{y}>0,
$$

then, \boldsymbol{x}^{o} is a strict local minimizer of problem (8.1)

Example 8.6

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=3
\end{array}
$$

find the stationary points and determine whether they are local minimizers

- the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}+\lambda\left(x_{1}+x_{2}+x_{3}-3\right)
$$

the first-order necessary conditions are

$$
\begin{aligned}
\nabla_{x} L(\boldsymbol{x}, \lambda)= & {\left[\begin{array}{l}
x_{2}+x_{3}+\lambda \\
x_{1}+x_{3}+\lambda \\
x_{1}+x_{2}+\lambda
\end{array}\right]=\mathbf{0} } \\
& x_{1}+x_{2}+x_{3}=3
\end{aligned}
$$

and the solution is $x_{1}=x_{2}=x_{3}=1, \lambda=-2$

- to check whether the point $\hat{\boldsymbol{x}}=(1,1,1)$ is a local minimizer, we look at the second-order condition
- note that $\nabla h(\boldsymbol{x})=(1,1,1)$ and the Hessian

$$
\nabla_{x}^{2} L(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

is an indefinite matrix; however, on the tangent space

$$
\mathcal{T}=\left\{\boldsymbol{y} \mid \nabla h(\hat{\boldsymbol{x}})^{T} \boldsymbol{y}=0\right\}=\left\{\boldsymbol{y} \mid y_{1}+y_{2}+y_{3}=0\right\}
$$

we have

$$
\begin{aligned}
\boldsymbol{y}^{T}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \boldsymbol{y} & =y_{1}\left(y_{2}+y_{3}\right)+y_{2}\left(y_{1}+y_{3}\right)+y_{3}\left(y_{1}+y_{2}\right) \\
& =-\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)<0
\end{aligned}
$$

which is negative definite; thus, the solution $\hat{\boldsymbol{x}}=(1,1,1)$ is not a local minimizer (it is a local maximizer)

Quadratic objective and constraint

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}^{T} Q \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x}^{T} \boldsymbol{P} \boldsymbol{x}=1
\end{array}
$$

where $Q=Q^{T}$ and $P=P^{T}>0$

- the Lagrangian is

$$
L(\boldsymbol{x}, \lambda)=\boldsymbol{x}^{T} Q \boldsymbol{x}+\lambda\left(1-\boldsymbol{x}^{T} P \boldsymbol{x}\right)
$$

- the Lagrange conditions are

$$
\begin{aligned}
& \nabla_{x} L(\boldsymbol{x}, \lambda)=2 Q \boldsymbol{x}-2 \lambda P \boldsymbol{x}=\mathbf{0} \\
& \nabla_{\lambda} L(\boldsymbol{x}, \lambda)=1-\boldsymbol{x}^{T} P \boldsymbol{x}=0
\end{aligned}
$$

- from the first equation, we have

$$
P^{-1} Q \boldsymbol{x}=\lambda \boldsymbol{x}
$$

hence, a solution $\hat{\boldsymbol{x}}$ and $\hat{\lambda}$ if they exists, are eigenvectors and eigenvalues of $P^{-1} Q$

- multiplying the equation $P^{-1} Q \boldsymbol{x}=\lambda \boldsymbol{x}$ on the left by $\boldsymbol{x}^{T} P$ and using $\boldsymbol{x}^{T} P \boldsymbol{x}=1$, we get

$$
\lambda=\boldsymbol{x}^{T} Q \boldsymbol{x}=f(\boldsymbol{x})
$$

- hence, $f(\boldsymbol{x})=\boldsymbol{x}^{T} Q \boldsymbol{x}=\lambda$ is minimized when λ is the smallest eigenvalue of $P^{-1} Q$ and x is the corresponding eigenvector, which is a minimizer

Example 8.7

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}^{T} Q \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x}^{T} \boldsymbol{P} \boldsymbol{x}=1
\end{array}
$$

where

$$
Q=\left[\begin{array}{rr}
-4 & 0 \\
0 & -1
\end{array}\right], \quad P=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

- the minimum eigenvalue of

$$
P^{-1} Q=\left[\begin{array}{rr}
-2 & 0 \\
0 & -1
\end{array}\right]
$$

is $\hat{\lambda}=-2$; substituting, $\lambda=-2$ in the Lagrange conditions, we have

$$
\begin{aligned}
& \nabla_{x} L(\boldsymbol{x},-2)=2 Q \boldsymbol{x}-2 \lambda P \boldsymbol{x}=\left[\begin{array}{c}
0 \\
2 x_{2}
\end{array}\right]=\mathbf{0} \\
& \nabla_{\lambda} L(\boldsymbol{x},-2)=1-2 x_{1}^{2}-x_{2}^{2}=0
\end{aligned}
$$

- solving, we get the solutions $\hat{\boldsymbol{x}}_{1}=(1 / \sqrt{2}, 0)$ or $\hat{\boldsymbol{x}}_{2}=(-1 / \sqrt{2}, 0)$
- to verify that these points are strict local minimizers, we find the Hessian of the Lagrangian (for first $\hat{\boldsymbol{x}}_{1}$, the other follow similar steps)

$$
\nabla_{x}^{2} L(\boldsymbol{x}, \hat{\lambda})=2 Q-2 \hat{\lambda} P=2(Q+2 P)=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

- since $h(\boldsymbol{x})=1-\boldsymbol{x}^{T} P \boldsymbol{x}=0$, we have $\nabla h(\boldsymbol{x})=-2 P \boldsymbol{x}$ and the tangent space is

$$
\mathcal{T}(\hat{\boldsymbol{x}})=\left\{\boldsymbol{y} \mid 2 \hat{\boldsymbol{x}}^{T} P \boldsymbol{y}=\mathbf{0}\right\}=\{\boldsymbol{y} \mid[\sqrt{2}, 0] \boldsymbol{y}=\mathbf{0}\}=\{(0, a) \mid a \in \mathbb{R}\}
$$

- for every $\boldsymbol{y} \in \mathcal{T}, \boldsymbol{y} \neq \mathbf{0}$, we have

$$
\boldsymbol{y}^{T} \nabla_{x}^{2} L(\hat{\boldsymbol{x}}, \hat{\lambda}) \boldsymbol{y}=2 a^{2}>0
$$

we conclude that the point $\hat{\boldsymbol{x}}=\left(\frac{1}{\sqrt{2}}, 0\right)$ is a local minimizer

Outline

- equality constrained problems
- inequality constrained problems
- quadratic problems with linear constraints
- projected gradient descent
- penalty method

Inequality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \tag{8.4}\\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$
- $h(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{p}(\boldsymbol{x})\right)$
- $\hat{\boldsymbol{x}}$ is a feasible point if it satisfies the constraints $(g(\hat{\boldsymbol{x}}) \leq \mathbf{0}, h(\hat{\boldsymbol{x}})=\mathbf{0})$

Lagrangian

the Lagrangian associated with problem (8.4) is

$$
L(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \lambda_{j} h_{j}(\boldsymbol{x})
$$

- $\boldsymbol{\mu} \in \mathbb{R}^{m}$ and $\boldsymbol{\lambda} \in \mathbb{R}^{p}$
- both $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$ are often called Lagrange multipliers vectors
- the gradient of the Lagrangian with respect to x is

$$
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\lambda})=\nabla f(\boldsymbol{x})+\sum_{i=1}^{m} \mu_{i} \nabla g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \lambda_{j} \nabla h_{j}(\boldsymbol{x})
$$

Regular point

Active inequalities

- an inequality constraint $g_{i}(\boldsymbol{x}) \leq 0$ is active at $\hat{\boldsymbol{x}}$ if $g_{i}(\hat{\boldsymbol{x}})=0$
- it is inactive at $\hat{\boldsymbol{x}}$ if $g_{i}(\hat{\boldsymbol{x}})<0$
- we let $\mathcal{I}(\hat{\boldsymbol{x}})$ denote the set of indices i for the active constraints at $\hat{\boldsymbol{x}}$:

$$
\mathcal{I}(\hat{\boldsymbol{x}})=\left\{i \mid g_{i}(\hat{\boldsymbol{x}})=0\right\}
$$

Regular point: a feasible point $\hat{\boldsymbol{x}}$ is a regular point if the vectors

$$
\nabla g_{i}(\hat{\boldsymbol{x}}), \nabla h_{j}(\hat{\boldsymbol{x}}), \quad i \in \mathcal{I}(\hat{\boldsymbol{x}}), j=1, \ldots, p
$$

are linearly independent

Motivation of optimality conditions

if \boldsymbol{x}^{o} is a local minimizer of (8.4), then it is a local minimizer of the problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x})=\mathbf{0}, i \in \mathcal{I}\left(\boldsymbol{x}^{o}\right), h(\boldsymbol{x})=\mathbf{0}
\end{array}
$$

- using Lagrange conditions (8.2) on the above problem, we have

$$
\nabla f\left(\boldsymbol{x}^{o}\right)+\sum_{i \in \mathcal{I}\left(\boldsymbol{x}^{o}\right)} \mu_{i}^{o} \nabla g_{i}\left(\boldsymbol{x}^{o}\right)+\sum_{j=1}^{p} \lambda_{j}^{o} \nabla h_{j}\left(\boldsymbol{x}^{o}\right)=\mathbf{0}
$$

- in terms of the original problem, we can write the above condition as

$$
\begin{aligned}
& \nabla f\left(\boldsymbol{x}^{o}\right)+\sum_{i=1}^{m} \mu_{i}^{o} \nabla g_{i}\left(\boldsymbol{x}^{o}\right)+\sum_{j=1}^{p} \lambda_{j}^{o} \nabla h_{j}\left(\boldsymbol{x}^{o}\right)=\mathbf{0} \\
& \mu_{i}=0 \text { for } i \notin \mathcal{I}\left(\boldsymbol{x}^{o}\right) \Rightarrow g_{i}\left(\boldsymbol{x}^{o}\right)^{T} \mu_{i}^{o}=0
\end{aligned}
$$

it can be shown that $\mu_{i} \geq 0$ for $i \in \mathcal{I}\left(\boldsymbol{x}^{o}\right)$

Karush-Kuhn-Tucker (KKT) conditions

if \boldsymbol{x}^{o} is a regular point and a local minimizer for problem (8.4), then there exists $\boldsymbol{\mu}^{o} \in \mathbb{R}^{m}$ and $\boldsymbol{\lambda}^{o} \in \mathbb{R}^{p}$ such that:

$$
\begin{array}{rlrl}
\nabla_{x} L\left(\boldsymbol{x}^{o}, \boldsymbol{\mu}^{o}, \boldsymbol{\lambda}^{o}\right) & =\mathbf{0} & & \\
g_{i}\left(\boldsymbol{x}^{o}\right) \leq 0, & i=1, \ldots, m \\
h_{j}\left(\boldsymbol{x}^{o}\right) & =0, \quad j=1, \ldots, p \\
\mu_{i}^{o} \geq 0, & i=1, \ldots, m \\
\mu_{i}^{o} g_{i}\left(\boldsymbol{x}^{o}\right) & =0, & i=1, \ldots, m \tag{8.5e}
\end{array}
$$

the vectors $\boldsymbol{\lambda}^{o}$ and $\boldsymbol{\mu}^{o}$ are called the Lagrange multiplier and KKT multiplier vectors (or just Lagrange multiplier vectors)

Complementary slackness: the last KKT condition $\mu_{i}^{o} g_{i}\left(\boldsymbol{x}^{o}\right)=0$ is called the complementary slackness; it implies that

- $g_{i}\left(\boldsymbol{x}^{o}\right)<0 \Rightarrow \mu_{i}^{o}=0$
- $\mu_{i}^{o}>0 \Rightarrow g_{i}\left(\boldsymbol{x}^{o}\right)=0$

Example 8.8

let us determine the value of the resistor $R \geq 0$ such that the power absorbed by this resistor is maximized
the power absorbed R is $p=i^{2} R$ where $i=20 /(10+R)$; hence, the problem can formulated as

$$
\begin{array}{ll}
\text { minimize } & -\frac{400 x}{(10+x)^{2}} \\
\text { subject to } & -x \leq 0
\end{array}
$$

the variable x represents the resistor R
the Lagrangian is

$$
L(x, \mu)=-\frac{400 x}{(10+x)^{2}}-\mu x
$$

the derivative of the objective function is

$$
-\frac{400(10+x)^{2}-800 x(10+x)}{(10+x)^{4}}=-\frac{400(10-x)}{(10+x)^{3}}
$$

KKT conditions:

$$
\begin{aligned}
-\frac{400(10-x)}{(10+x)^{3}}-\mu & =0 \\
\mu & \geq 0 \\
\mu x & =0 \\
-x & \leq 0
\end{aligned}
$$

- if $\mu>0$, then $x=0$, and the first equation does not hold
- let $\mu=0$; then we get $x=10$, which satisfies all conditions
- hence, the point $x=10$ is a stationary point and a local minimizer candidate

Example 8.9

$$
\begin{array}{ll}
\text { minimize } & x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{1} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

- the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{1}-\mu_{1} x_{1}-\mu_{2} x_{2}
$$

- note that $g(\boldsymbol{x})=\left(-x_{1},-x_{2}\right)$ and the KKT conditions are

$$
\begin{aligned}
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\mu})=\left[\begin{array}{c}
2 x_{1}+x_{2}-3-\mu_{1} \\
x_{1}+2 x_{2}-\mu_{2}
\end{array}\right] & =\mathbf{0} \\
\boldsymbol{\mu} & \geq \mathbf{0} \\
-\boldsymbol{x} & \leq \mathbf{0} \\
\mu_{1} x_{1} & =0 \\
\mu_{2} x_{2} & =0
\end{aligned}
$$

- to find a solution, suppose that $\mu_{1}=0$ and $x_{2}=0$; then, solving the above with these values, we have

$$
\boldsymbol{x}=\left[\begin{array}{l}
\frac{3}{2} \\
0
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
0 \\
\frac{3}{2}
\end{array}\right]
$$

which satisfy the KKT conditions

- if we try $\mu_{2}=0$ and $x_{1}=0$, we get $x_{2}=0, \mu_{1}=-3$, which violates the condition $\boldsymbol{\mu} \geq \mathbf{0}$
- similarly, the other combinations $x_{1}=x_{2}=0$ and $\mu_{1}=\mu_{2}=0$ violates the KKT condition

Necessary conditions: inequality constrained case

Tangent space

$$
\mathcal{T}(\boldsymbol{x})=\left\{\boldsymbol{y} \mid D h(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}, \nabla g_{i}(\boldsymbol{x})^{T} \boldsymbol{y}=0, i \in \mathcal{I}(\boldsymbol{x})\right\}
$$

- $\mathcal{I}(\boldsymbol{x})=\left\{i \mid g_{i}(\boldsymbol{x})=0\right\}$ is the set with active constraints indices
- tangent space is the set of feasible directions with active constraints

Necessary conditions: suppose \boldsymbol{x}^{o} is a regular point and a local minimizer of problem (8.4), then, there exists $\boldsymbol{\mu}^{o}, \boldsymbol{\lambda}^{o}$ such that:

- the KKT conditions (8.5) hold; and
- for all $\boldsymbol{y} \in \mathcal{T}\left(\boldsymbol{x}^{o}\right)$, we have

$$
\boldsymbol{y}^{T} \nabla_{x}^{2} L\left(\boldsymbol{x}^{o}, \boldsymbol{\mu}^{o}, \boldsymbol{\lambda}^{o}\right) \boldsymbol{y} \geq 0
$$

Sufficient conditions: inequality constrained case

Critical tangent space: for any points $\boldsymbol{x}, \boldsymbol{\mu}$, and $\boldsymbol{\lambda}$ satisfying the KKT conditions (8.5), we define the critical tangent space as:

$$
\overline{\mathcal{T}}(\boldsymbol{x})=\left\{\boldsymbol{y} \mid D h(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}, \nabla g_{i}(\boldsymbol{x})^{T} \boldsymbol{y}=0, i \in \overline{\mathcal{I}}(\boldsymbol{x})\right\}
$$

where $\overline{\mathcal{I}}(\boldsymbol{x})=\left\{i \mid g_{i}(\boldsymbol{x})=0, \mu_{i}>0\right\}$
Sufficient conditions: suppose that there exists points $\boldsymbol{x}^{o}, \boldsymbol{\mu}^{o}$, and $\boldsymbol{\lambda}^{o}$ such that the KKT conditions (8.5) hold; if for all $\boldsymbol{y} \in \mathcal{\mathcal { T }}\left(\boldsymbol{x}^{o}\right), \boldsymbol{y} \neq \mathbf{0}$, we have

$$
\boldsymbol{y}^{T} \nabla_{x}^{2} L\left(\boldsymbol{x}^{o}, \boldsymbol{\lambda}^{o}, \boldsymbol{\mu}^{o}\right) \boldsymbol{y}>0,
$$

then, \boldsymbol{x}^{o} is a strict local minimizer of (8.4)

Example 8.10

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 2, \quad x_{1}-x_{2} \leq 0
\end{array}
$$

- the Lagrangian is

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=x_{1} x_{2}+\mu_{1}\left(2-x_{1}-x_{2}\right)+\mu_{2}\left(x_{1}-x_{2}\right)
$$

- we have $g_{1}(\boldsymbol{x})=2-x_{1}-x_{2}$ and $g_{2}(\boldsymbol{x})=x_{1}-x_{2}$ and the KKT conditions are

$$
\begin{aligned}
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\mu})=\left[\begin{array}{l}
x_{2}-\mu_{1}+\mu_{2} \\
x_{1}-\mu_{1}-\mu_{2}
\end{array}\right] & =\mathbf{0} \\
2-x_{1}-x_{2} & \leq 0 \\
x_{1}-x_{2} & \leq 0 \\
\mu_{1}, \mu_{2} & \geq 0 \\
\mu_{1}\left(2-x_{1}-x_{2}\right) & =0 \\
\mu_{2}\left(x_{1}-x_{2}\right) & =0
\end{aligned}
$$

- it can be verified that $\mu_{1} \neq 0$ and $\mu_{2}=0$; solving with $\mu_{2}=0$, we arrive at one solution: $\hat{x}_{1}=\hat{x}_{2}=1, \mu_{1}=1, \mu_{2}=0$
- at this solution, the constraints are active, and

$$
\nabla g_{1}(\hat{\boldsymbol{x}})=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \quad \nabla g_{2}(\hat{\boldsymbol{x}})=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad \nabla_{x}^{2} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{\mu}})=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

the vectors $\nabla g_{1}(\hat{\boldsymbol{x}}), \nabla g_{2}(\hat{\boldsymbol{x}})$ are linearly independent, hence $\hat{\boldsymbol{x}}$ is regular

- since both constraints are active, the tangent space is

$$
\mathcal{T}=\left\{\boldsymbol{y} \mid \nabla g_{1}(\hat{\boldsymbol{x}})^{T} \boldsymbol{y}=0, \nabla g_{2}(\hat{\boldsymbol{x}})^{T} \boldsymbol{y}=0\right\}=\{\mathbf{0}\}
$$

therefore, $\boldsymbol{y}^{T} \nabla_{x}^{2} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{\mu}}) \boldsymbol{y}=0$ for $\boldsymbol{y} \in \mathcal{T}$ and the point $\hat{\boldsymbol{x}}$ is a candidate local minimizer

- we now check the sufficient conditions; since $\mu_{2}=0$, the critical tangent space is

$$
\begin{aligned}
\overline{\mathcal{T}} & =\left\{\boldsymbol{y} \mid \nabla g_{1}(\hat{\boldsymbol{x}})^{T} \boldsymbol{y}=0\right\} \\
& =\left\{\boldsymbol{y} \mid-y_{1}-y_{2}=0\right\} \\
& =\left\{\boldsymbol{y} \mid y_{1}=-y_{2}\right\}
\end{aligned}
$$

- for $\boldsymbol{y} \in \overline{\mathcal{T}}, \boldsymbol{y} \neq \mathbf{0}$, we have

$$
\boldsymbol{y}^{T}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \boldsymbol{y}=2 y_{1} y_{2}=-2 y_{2}^{2}<0
$$

this means that the sufficient condition does not hold

- hence, $\hat{\boldsymbol{x}}$ is not a local minimizer (it is also not a local maximizer)

Example 8.11

$$
\begin{array}{ll}
\operatorname{minimize} & \left(x_{1}-1\right)^{2}+x_{2}-2 \\
\text { subject to } & x_{2}=x_{1}+1, \quad x_{1}+x_{2} \leq 2
\end{array}
$$

- we have $h(\boldsymbol{x})=x_{2}-x_{1}-1$ and $g(\boldsymbol{x})=x_{1}+x_{2}-2$ and

$$
\nabla h(\boldsymbol{x})=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \nabla g(\boldsymbol{x})=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

are linearly independent; hence, all feasible points are regular and a local solution must satisfy the KKT conditions

- the Lagrangian is

$$
L(\boldsymbol{x}, \mu, \lambda)=\left(x_{1}-1\right)^{2}+x_{2}-2+\mu\left(x_{1}+x_{2}-2\right)+\lambda\left(x_{2}-x_{1}-1\right)
$$

KKT conditions:

$$
\begin{aligned}
{\left[\begin{array}{c}
2 x_{1}-2+\mu-\lambda \\
1+\mu+\lambda
\end{array}\right] } & =\mathbf{0} \\
\mu\left(x_{1}+x_{2}-2\right) & =0 \\
\mu & \geq 0 \\
x_{2}-x_{1}-1 & =0 \\
x_{1}+x_{2}-2 & \leq 0
\end{aligned}
$$

- for $\mu>0$, we will get an invalid solution; solving with $\mu=0$, we arrive at the solution

$$
x_{1}=\frac{1}{2}, \quad x_{2}=\frac{3}{2}, \quad \lambda=-1
$$

- the point $\hat{\boldsymbol{x}}=\left(\frac{1}{2}, \frac{3}{2}\right)$ is a local minimizer candidate
- the Hessian of the Lagrangian is

$$
\nabla_{x}^{2} L(\boldsymbol{x}, \mu, \lambda)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

for all \boldsymbol{x} (positive semi-definite)

- since $\mu=0$, the critical tangent space is:

$$
\begin{aligned}
\overline{\mathcal{T}}=\left\{\boldsymbol{y} \mid \nabla h(\hat{\boldsymbol{x}})^{T} \boldsymbol{y}=0\right\} & =\left\{\boldsymbol{y} \mid-y_{1}+y_{2}=0\right\} \\
& =\{\boldsymbol{y}=(a, a) \mid a \in \mathbb{R}\}
\end{aligned}
$$

- for $\boldsymbol{y} \in \overline{\mathcal{T}}$, we have

$$
\boldsymbol{y}^{T}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \boldsymbol{y}=2 a^{2}>0
$$

which is positive-definite; therefore, the point $\hat{\boldsymbol{x}}$ is a local minimizer

Outline

- equality constrained problems
- inequality constrained problems
- quadratic problems with linear constraints
- projected gradient descent
- penalty method

Quadratic program with linear constraints

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x} \\
\text { subject to } & \stackrel{C}{x}=\boldsymbol{d}
\end{array}
$$

- Q is an $n \times n$ symmetric matrix; \boldsymbol{r} is an n-vector
- C is a $p \times n$ matrix; \boldsymbol{d} is a p-vector
the Lagrangian for this problem is

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=\frac{1}{2} \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}+\boldsymbol{\lambda}^{T}(C \boldsymbol{x}-\boldsymbol{d})
$$

Solution

a solution (if it exists) must satisfy the following Lagrange optimality conditions:

$$
\begin{align*}
\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\lambda})=Q \boldsymbol{x}+\boldsymbol{r}+C^{T} \boldsymbol{\lambda} & =\mathbf{0} \tag{8.6a}\\
C \boldsymbol{x}-\boldsymbol{d} & =\mathbf{0} \tag{8.6b}
\end{align*}
$$

the above can be written as the system of linear equations:

$$
\left[\begin{array}{cc}
Q & C^{T} \tag{8.7}\\
C & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{r}
-\boldsymbol{r} \\
\boldsymbol{d}
\end{array}\right]
$$

- the solution of the above can be a minimizer, maximizer, or a saddle point
- if Q is positive semidefinite, then any solution of the above is a global minimizer

Closed-form solution: assume Q is invertible and C has linearly independent rows

- multiply the first equation in (8.6) by Q^{-1} on the left

$$
\boldsymbol{x}=-Q^{-1}\left(\boldsymbol{r}+C^{T} \boldsymbol{\lambda}\right)
$$

- substituting into the second equation, we get

$$
-C Q^{-1}\left(\boldsymbol{r}+C^{T} \boldsymbol{\lambda}\right)=\boldsymbol{d} \Longleftrightarrow\left(C Q^{-1} C^{T}\right) \boldsymbol{\lambda}=-\left(\boldsymbol{d}+C Q^{-1} \boldsymbol{r}\right)
$$

hence

$$
\boldsymbol{\lambda}=-\left(C Q^{-1} C^{T}\right)^{-1}\left(\boldsymbol{d}+A Q^{-1} \boldsymbol{r}\right)
$$

- putting it all together, we get

$$
\boldsymbol{x}=Q^{-1} C^{T}\left(C Q^{-1} C^{T}\right)^{-1}\left(C Q^{-1} \boldsymbol{r}+\boldsymbol{d}\right)-Q^{-1} \boldsymbol{r}
$$

Example 8.12

consider the discrete-time linear system

$$
s_{k}=2 s_{k-1}+u_{k}, \quad k \geq 1
$$

with $s_{0}=1$; suppose that we want to find the values of the inputs u_{1} and u_{2} that minimizes

$$
\frac{1}{2} u_{1}^{2}+\frac{1}{3} u_{2}^{2}+s_{2}^{2}
$$

- we can formulate this problem as a quadratic program with variables u_{1}, u_{2} and s_{2}
- the state at time 2 can be found recursively as:

$$
s_{2}=2 s_{1}+u_{2}=2\left(2 s_{0}+u_{1}\right)+u_{2}=2\left(2+u_{1}\right)+u_{2}
$$

hence,

$$
2 u_{1}+u_{2}-s_{2}=-4
$$

therefore, the problem can be formulated as:

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} u_{1}^{2}+\frac{1}{3} u_{2}^{2}+s_{2}^{2} \\
\text { subject to } & 2 u_{1}+u_{2}-s_{2}=-4
\end{array}
$$

letting $\boldsymbol{x}=\left(u_{1}, u_{2}, s_{2}\right)$, we can write the problem as:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \boldsymbol{x}^{T} Q \boldsymbol{x} \\
\text { subject to } & \boldsymbol{C} \boldsymbol{x}=d
\end{array}
$$

where

$$
Q=\operatorname{diag}(1,2 / 3,2), \quad C=\left[\begin{array}{lll}
2 & 1 & -1
\end{array}\right], \quad d=-4
$$

this is a quadratic problem with linear constraints; since Q is invertible and C is a nonzero row vector, the solution is

$$
\boldsymbol{x}=\left(u_{1}, u_{2}, s_{2}\right)=Q^{-1} C^{T}\left(C Q^{-1} C^{T}\right)^{-1} d=\left(-\frac{4}{3},-1, \frac{1}{3}\right)
$$

Constrained least squares

$$
\begin{array}{ll}
\text { minimize } & \|A \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
\text { subject to } & C \boldsymbol{x}=\boldsymbol{d}
\end{array}
$$

where A is an $m \times n$ matrix, C is a $p \times n$ matrix, \boldsymbol{b} is an m-vector, and \boldsymbol{d} is a p-vector

- the objective is $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\boldsymbol{x}^{T}\left(A^{T} A\right) \boldsymbol{x}-2\left(A^{T} \boldsymbol{b}\right)^{T} \boldsymbol{x}+\|\boldsymbol{b}\|^{2}$
- quadratic objective with $Q=2 A^{T} A, \boldsymbol{r}=-2 A^{T} \boldsymbol{b}$
- hence, the optimality condition is

$$
\left[\begin{array}{cc}
2 A^{T} A & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
2 A^{T} \boldsymbol{b} \\
\boldsymbol{d}
\end{array}\right]
$$

- $Q=2 A^{T} A \geq 0$; so any solution of the above is a global minimizer

Outline

- equality constrained problems
- inequality constrained problems
- quadratic problems with linear constraints
- projected gradient descent
- penalty method

Projection

Constrained optimization

$$
\begin{array}{ll}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \mathcal{X}
\end{array}
$$

- $\boldsymbol{x} \in \mathbb{R}^{n}$ is variable; $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- \mathcal{X} is the constraint set

Projection: the projection of $\boldsymbol{x} \in \mathbb{R}^{n}$ onto $\mathcal{X} \subseteq \mathbb{R}^{n}$ is

$$
\Pi_{\mathcal{X}}[\boldsymbol{x}]=\underset{\boldsymbol{z} \in \mathcal{X}}{\operatorname{argmin}}\|\boldsymbol{z}-\boldsymbol{x}\|
$$

- the point $\Pi_{\mathcal{X}}[\boldsymbol{x}]$ is the "closest" point in \mathcal{X} to \boldsymbol{x}
- for certain constraints, the projection can be computed in closed form

Examples

- Box constraint

$$
\mathcal{X}=\left\{\boldsymbol{x} \mid l_{i} \leq x_{i} \leq u_{i}, i=1, \ldots, n\right\}
$$

given \boldsymbol{x}, its projection $\boldsymbol{y}=\Pi_{\mathcal{X}}[x]$ onto \mathcal{X} is

$$
y_{i}= \begin{cases}u_{i} & \text { if } x_{i}>u_{i} \\ x_{i} & \text { if } l_{i} \leq x_{i} \leq u_{i} \\ l_{i} & \text { if } x_{i}<l_{i}\end{cases}
$$

- Unit ball constraint

$$
\mathcal{X}=\left\{\boldsymbol{x} \mid\|\boldsymbol{x}\|^{2}=1\right\}
$$

the projection is simply the normalization of x :

$$
\Pi_{\mathcal{X}}[\boldsymbol{x}]=\boldsymbol{x} /\|\boldsymbol{x}\|
$$

Gradient descent and projection

$$
\begin{array}{ll}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \mathcal{X}
\end{array}
$$

the gradient descent update has the form:

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)
$$

- the point $\boldsymbol{x}^{(k+1)}$ is not guaranteed to be in \mathcal{X} even if $\boldsymbol{x}^{(k)}$ is
- to guarantee feasibility, we can modify the update to

$$
\boldsymbol{x}^{(k+1)}=\Pi_{\mathcal{X}}\left[\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right]
$$

where $\Pi_{\mathcal{X}}[\boldsymbol{x}]$ denote the projection of \boldsymbol{x} onto \mathcal{X}

Projected gradient descent

Algorithm Projected gradient descent

given a starting point $\boldsymbol{x}^{(0)}$ and a solution tolerance $\epsilon>0$
repeat for $k \geq 1$

1. choose a stepsize α_{k}
2. update $\boldsymbol{x}^{(k+1)}$:

$$
\boldsymbol{x}^{(k+1)}=\Pi_{\mathcal{X}}\left[\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right]
$$

if $\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right\| \leq \epsilon$ stop and $\boldsymbol{x}^{(k+1)}$ is output

$$
\Pi_{\mathcal{X}}[\boldsymbol{x}]=\underset{\boldsymbol{z} \in \mathcal{X}}{\operatorname{argmin}}\|\boldsymbol{z}-\boldsymbol{x}\|
$$

Examples

- the projected gradient descent update for the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \boldsymbol{x}^{T} Q \boldsymbol{x} \\
\text { subject to } & \|\boldsymbol{x}\|^{2}=1
\end{array}
$$

is

$$
\boldsymbol{x}^{(k+1)}=\frac{1}{\left\|\left(I-\alpha_{k} Q\right) \boldsymbol{x}^{(k)}\right\|}\left(I-\alpha_{k} Q\right) \boldsymbol{x}^{(k)}
$$

- the projected gradient descent update for the problem

$$
\begin{array}{ll}
\text { minimize } & (1 / 2) \boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

is

$$
\boldsymbol{x}^{(k+1)}=\left[\boldsymbol{x}^{(k)}-\alpha\left(Q \boldsymbol{x}^{(k)}+\boldsymbol{r}\right)\right]_{+},
$$

where $[\cdot]_{+}$replaces negative entries by zero

Outline

- equality constrained problems
- inequality constrained problems
- quadratic problems with linear constraints
- projected gradient descent
- penalty method

Penalized formulation

```
minimize 
subject to }\mp@subsup{h}{i}{}(\boldsymbol{x})=0,\quadi=1,\ldots,
```


Penalized formulation

$$
\text { minimize } \quad f(\boldsymbol{x})+\rho P(h(\boldsymbol{x}))
$$

- $h(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{p}(\boldsymbol{x})\right)$
- $P: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is the penalty function
- $\rho \in \mathbb{R}$ is the penalty parameter
- the role of the term $\rho P(\boldsymbol{x})$ is to penalize constraints violation, i.e., has large values for infeasible points

Penalty function

Penalty function: the penalty function P satisfies the following conditions:

1. P is continuous
2. $P(h(\boldsymbol{x})) \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$
3. $P(h(\boldsymbol{x}))=0$ if and only if \boldsymbol{x} is feasible $(h(\boldsymbol{x})=\mathbf{0})$

Quadratic penalty function

$$
P(h(\boldsymbol{x}))=\|h(\boldsymbol{x})\|^{2}=\sum_{i=1}^{p}\left(h_{i}(\boldsymbol{x})\right)^{2}
$$

Quadratic penalty formulation

$$
\operatorname{minimize} \quad f(\boldsymbol{x})+\rho\|h(\boldsymbol{x})\|^{2}
$$

- a solution of the above problem might not feasible
- for large ρ we expect to have small values $\left(h_{i}(\boldsymbol{x})\right)^{2}$, i.e., an approximate solution to the original problem
- minimizing the penalty problem for an increasing sequence of values of ρ is known as the penalty method

Quadratic penalty method

Algorithm Quadratic penalty method
given a starting point $\boldsymbol{x}^{(0)}, \rho_{0}$, and a solution tolerance $\epsilon>0$
repeat for $k=1,2, \ldots, K$

1. set $\boldsymbol{x}^{(k+1)}$ to be the (approximate) minimizer of

$$
\operatorname{minimize} \quad f(\boldsymbol{x})+\rho_{k}\|h(\boldsymbol{x})\|^{2}
$$

using an unconstrained optimization method with initial point $\boldsymbol{x}^{(k)}$
2. update $\rho_{k+1}=2 \rho_{k}$

- terminate if $\left\|g^{+}(\boldsymbol{x})\right\|^{2}$ and $\|h(\boldsymbol{x})\|^{2}$ are small enough
- simple and easy to implement
- but has a major issue: the parameter ρ_{k} rapidly increases with iterations; when solving penalty problem using gradient descent for example, it can be very slow or simply fail

Inequality constraints

for problems of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

we can for example consider the penalized problem:

$$
\text { minimize } f(\boldsymbol{x})+\rho\|h(\boldsymbol{x})\|^{2}+\rho\left\|g^{+}(\boldsymbol{x})\right\|^{2}
$$

- $g^{+}(\boldsymbol{x})=\left(g_{1}^{+}(\boldsymbol{x}), \ldots, g_{m}^{+}(\boldsymbol{x})\right)$ and

$$
g_{i}^{+}(\boldsymbol{x})=\max \left\{0, g_{i}(\boldsymbol{x})\right\}= \begin{cases}0 & \text { if } g_{i}(\boldsymbol{x}) \leq 0 \\ g_{i}(\boldsymbol{x}) & \text { if } g_{i}(\boldsymbol{x})>0\end{cases}
$$

- there are many other choices of penalty functions; here, we just consider the simple quadratic penalization function

References and further readings

- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013, chapters 20, 21.

