
8. Constrained optimization

• equality constrained problems

• constrained quadratic problems

• inequality constrained problems

• projected gradient descent
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Equality constrained problems

minimize 𝑓 (𝑥)
subject to ℎ𝑖 (𝑥) = 0, 𝑖 = 1, . . . , 𝑝

(8.1)

• 𝑓 : R𝑛 → R is the objective function

• ℎ𝑖 : R
𝑛 → R are the equality constraints functions

• we let ℎ(𝑥) = (ℎ1 (𝑥), . . . , ℎ𝑝 (𝑥))

• a point 𝑥 satisfying ℎ(𝑥) = 0 is called a feasible point
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Example

minimize 𝑥1 − 𝑥2
subject to 𝑥21 + 𝑥22 = 1

∇ℎ (𝑥★) = (−
√
2,

√
2)

𝑥★

∇ 𝑓 (𝑥★) = (1, −1)

• circle represent the constraint

• dotted lines are the level sets, 𝑓 (𝑥) = 𝑥1 − 𝑥2 = 𝛾, at different values of 𝛾

• black arrows shows the direction of the gradient ∇ 𝑓 (𝑥) = (1,−1)

• the global minimizer is 𝑥★ = (− 1√
2
, 1√

2
)

• the gradients ∇ 𝑓 (𝑥★) and ∇ℎ(𝑥★) are parallel (linearly dependent):

∇ 𝑓 (𝑥★) = −𝜆∇ℎ(𝑥★) where 𝜆 = 1/
√
2
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Motivation of optimality conditions

suppose that we only have one constraint (𝑝 = 1) and consider the problem

minimize 𝑓 (𝑥) + 𝜆ℎ(𝑥)

• 𝜆 ∈ R is an adjustable parameter

• assume for some 𝜆★, 𝑥★ minimizes 𝑓 (𝑥) + 𝜆★ℎ(𝑥) and satisfies the constraint:

∇ 𝑓 (𝑥★) + 𝜆★∇ℎ(𝑥★) = 0 and ℎ(𝑥★) = 0

• then, we have

𝑓 (𝑥★) = 𝑓 (𝑥★) + 𝜆★ℎ(𝑥★) ≤ 𝑓 (𝑥) + 𝜆★ℎ(𝑥) for all 𝑥

hence, 𝑓 (𝑥★) ≤ 𝑓 (𝑥) for all feasible 𝑥 and 𝑥★ is a solution to the original problem

• we can transform constrained problem into an unconstrained one if such 𝜆★ exists
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Lagrangian function

the Lagrangian function for problem (8.1) is

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) +
𝑝∑

𝑖=1

𝜆𝑖ℎ𝑖 (𝑥)

• the entries of 𝜆𝑖 are called the Lagrange multipliers

• 𝜆 = (𝜆1, . . . , 𝜆𝑝) is a 𝑝-vector

• the gradient of Lagrangian is

∇𝐿 (𝑥, 𝜆) =
[
∇𝑥𝐿 (𝑥, 𝜆)
∇𝜆𝐿 (𝑥, 𝜆)

]
where

∇𝑥𝐿 (𝑥, 𝜆) = ∇ 𝑓 (𝑥) +
𝑝∑

𝑖=1

𝜆𝑖∇ℎ𝑖 (𝑥)

∇𝜆𝐿 (𝑥, 𝜆) = ℎ(𝑥)
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Optimality conditions

Regular point: a feasible point 𝑥 is a regular point if the vectors

∇ℎ1 (𝑥), ∇ℎ2 (𝑥), . . . , ∇ℎ𝑝 (𝑥)

are linearly independent (i.e., 𝐷ℎ(𝑥) has linearly independent rows)

(Lagrange) Optimality conditions: if 𝑥◦ is a regular point and a local minimizer of
the constrained problem (8.1), then there exists a vector 𝜆◦ such that

∇𝑥𝐿 (𝑥◦, 𝜆◦) = ∇ 𝑓 (𝑥◦) +
𝑝∑

𝑖=1

𝜆◦𝑖∇ℎ𝑖 (𝑥◦) = 0 (8.2a)

ℎ(𝑥◦) = 0 (8.2b)

• conditions are necessary but not sufficient

• points that satisfies the above are called stationary points

• there can be stationary points, (𝑥, 𝜆), but 𝑥 is not a local minimizer

• the above method is known as the method of Lagrange multipliers
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Example

minimize 𝑥21 + 𝑥22
subject to 𝑥21 + 2𝑥22 = 1

• the Lagrangian is

𝐿 (𝑥, 𝜆) = 𝑥21 + 𝑥22 + 𝜆(𝑥21 + 2𝑥22 − 1)

• the necessary optimality conditions are

∇𝑥𝐿 (𝑥, 𝜆) =
[
2𝑥1 + 2𝑥1𝜆
2𝑥2 + 4𝑥2𝜆

]
= 0

∇𝜆𝐿 (𝑥, 𝜆) = 𝑥21 + 2𝑥22 − 1 = 0
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• solving, we get the stationary points

𝑥 = (0,± 1√
2
), 𝜆 = −1/2

or
𝑥 = (±1, 0), 𝜆 = −1

• ∇ℎ(𝑥) = (2𝑥1, 4𝑥2) is linearly independent for all feasible points

• so, all feasible points are regular and any minima satisfies the optimality conditions

• checking the value of the objective, we see that it is smallest at

𝑥 (1) = (0, 1√
2
) and 𝑥 (2) = (0,− 1√

2
)

• therefore, the points 𝑥 (1) and 𝑥 (2) are candidate minimizers
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Example

consider the problem of finding the maximum box volume with fixed area 𝑐 = 2:

maximize 𝑥1𝑥2𝑥3

subject to 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 =
𝑐

2

• here, 𝑥 = (𝑥1, 𝑥2, 𝑥3) represent the box dimensions

• the gradient of the constraint function ℎ(𝑥) = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 − 1 is

∇ℎ(𝑥) = (𝑥2 + 𝑥3, 𝑥1 + 𝑥3, 𝑥1 + 𝑥2)

• since ∇ℎ(𝑥) ≠ 0 for all feasible 𝑥, all feasible points are regular

• thus, a local solution must satisfy the Lagrange conditions
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• the Lagrangian of the equivalent minimization problem is

𝐿 (𝑥, 𝜆) = −𝑥1𝑥2𝑥3 + 𝜆(𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 − 1)

• the necessary optimality conditions are

∇𝑥𝐿 (𝑥, 𝜆) =

−𝑥2𝑥3 + 𝜆(𝑥2 + 𝑥3)
−𝑥1𝑥3 + 𝜆(𝑥1 + 𝑥3)
−𝑥1𝑥2 + 𝜆(𝑥1 + 𝑥2)

 = 0

∇𝜆𝐿 (𝑥, 𝜆) = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 − 1 = 0

• 𝑥𝑖 , 𝜆 are nonzero as otherwise, the conditions cannot be met

• solving for the above equations, we get 𝜆 = ±
√
3/6 and

𝑥1 = 𝑥2 = 𝑥3 = ± 1√
3

point 𝑥 = ( 1√
3
, 1√

3
, 1√

3
) has larger objective and is a local maximizer candidate
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Example

minimize 𝑥2
subject to 𝑥21 + 𝑥22 = 1

(𝑥1 − 2)2 + 𝑥22 = 1
𝑥1

𝑥2

𝑥 = (1, 0)

• one feasible point 𝑥 = (1, 0), thus optimal

• (1, 0) is not regular since ∇ℎ1 (𝑥) = (2, 0), ∇ℎ2 (𝑥) = (−2, 0) are dependent

• the Lagrangian is

𝐿 (𝑥, 𝜆) = 𝑥2 + 𝜆1 (𝑥21 + 𝑥22 − 1) + 𝜆2
(
(𝑥1 − 2)2 + 𝑥22 − 1

)
• the first necessary condition

∇𝑥𝐿 (𝑥, 𝜆) =
[
2𝑥1𝜆1 + 2(𝑥1 − 2)𝜆2
1 + 2𝑥2 (𝜆1 + 𝜆2)

]
= 0

cannot be satisfied at 𝑥 = (1, 0)
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Second-order conditions: motivation

if 𝑥◦, 𝜆◦ satisfy the optimality conditions, then, 𝑥◦ is a stationary point of

minimize 𝐿 (𝑥, 𝜆◦) = 𝑓 (𝑥) +
𝑝∑

𝑖=1

𝜆𝑖ℎ𝑖 (𝑥)

• apply second-order optimality condition for unconstrained problem

• we check the definiteness of the Hessian of the Lagrangian

∇2
𝑥𝐿 (𝑥, 𝜆) = ∇2 𝑓 (𝑥) +

𝑝∑
𝑖=1

𝜆𝑖∇2ℎ 𝑗 (𝑥)

• however, we only need to check the Lagrangian Hessian for feasible directions

SA — ENGR507equality constrained problems 8.12



Approximate feasible directions

• using Taylor approximation, we can approximate ℎ𝑖 : R
𝑛 → R around 𝑥 by

ℎ𝑖 (𝑥 + Δ𝑥) ≈ ℎ𝑖 (𝑥) + ∇ℎ𝑖 (𝑥)TΔ𝑥

where Δ𝑥 is close to 𝑥

• if 𝑥 is feasible (ℎ𝑖 (𝑥) = 0), then Δ𝑥 is approximately a feasible direction if

0 = ℎ𝑖 (𝑥 + Δ𝑥) ≈ ∇ℎ𝑖 (𝑥)TΔ𝑥

• hence, the set of approximate feasible directions is

T (𝑥) = {𝑦 | ∇ℎ𝑖 (𝑥)T𝑦 = 0, 𝑖 = 1, . . . , 𝑝}
= {𝑦 | 𝐷ℎ(𝑥)𝑦 = 0} (8.3)
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Tangent space

for regular point 𝑥, set of feasible directions T (𝑥) is a tangent space to the surface:

S = {𝑥 ∈ R𝑛 | ℎ(𝑥) = 0}
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Example

consider the 𝑥3-axis in R3 constraints:

S = {𝑥 ∈ R3 | ℎ1 (𝑥) = 𝑥1 = 0, ℎ2 (𝑥) = 𝑥1 − 𝑥2 = 0}

• we have

𝐷ℎ(𝑥) =
[
∇ℎ1 (𝑥)T
∇ℎ2 (𝑥)T

]
=

[
1 0 0
1 −1 0

]
• the approximate feasible directions, 𝑦, satisfy

𝐷ℎ(𝑥)𝑦 =

[
1 0 0
1 −1 0

] 
𝑦1
𝑦2
𝑦3

 = 0

• the above holds for 𝑦 = (0, 0, 𝛼) where 𝛼 ∈ R; thus, the tangent space is

T (𝑥) = {(0, 0, 𝛼) | 𝛼 ∈ R} = the 𝑥3 axis in R3
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Second order optimality conditions

Necessary conditions

if 𝑥◦ is a regular point and a local minimizer, then there exists 𝜆◦ such that

∇𝑥𝐿 (𝑥◦, 𝜆◦) = ∇ 𝑓 (𝑥◦) +
𝑚∑
𝑖=1

∇ℎ𝑖 (𝑥◦)𝜆◦𝑖 = 0 and ℎ(𝑥◦) = 0

and for all 𝑦 ∈ T (𝑥◦) = {𝑦 | 𝐷ℎ(𝑥◦)𝑦 = 0}, we have

𝑦T∇2
𝑥𝐿 (𝑥◦, 𝜆◦)𝑦 ≥ 0

Sufficient conditions: if there exists points 𝑥◦ and 𝜆◦ such that

∇𝑥𝐿 (𝑥◦, 𝜆◦) = ∇ 𝑓 (𝑥◦) +
𝑚∑
𝑖=1

∇ℎ𝑖 (𝑥◦)𝜆◦𝑖 = 0 and ℎ(𝑥◦) = 0

and for all 𝑦 ∈ T (𝑥◦) = {𝑦 | 𝐷ℎ(𝑥◦)𝑦 = 0}, 𝑦 ≠ 0, we have

𝑦T∇2
𝑥𝐿 (𝑥◦, 𝜆◦)𝑦 > 0

then, 𝑥◦ is a (strict) local minimizer
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Example

minimize 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3
subject to 𝑥1 + 𝑥2 + 𝑥3 = 3

• the Lagrangian is

𝐿 (𝑥, 𝜆) = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 + 𝜆(𝑥1 + 𝑥2 + 𝑥3 − 3)

• the first-order necessary conditions are

∇𝑥𝐿 (𝑥, 𝜆) =

𝑥2 + 𝑥3 + 𝜆

𝑥1 + 𝑥3 + 𝜆

𝑥1 + 𝑥2 + 𝜆

 = 0

𝑥1 + 𝑥2 + 𝑥3 = 3

and the solution is 𝑥 = (1, 1, 1), 𝜆 = −2, so 𝑥 is a candidate minimizer
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we now look at the second-order condition

• note that ∇ℎ(𝑥) = (1, 1, 1) and the Hessian

∇2
𝑥𝐿 (𝑥, 𝜆) =


0 1 1
1 0 1
1 1 0

 is indefinite

• however, on the tangent space

T = {𝑦 | ∇ℎ(𝑥)T𝑦 = 0} = {𝑦 | 𝑦1 + 𝑦2 + 𝑦3 = 0}

we have

𝑦T

0 1 1
1 0 1
1 1 0

 𝑦 = 𝑦1 (𝑦2 + 𝑦3) + 𝑦2 (𝑦1 + 𝑦3) + 𝑦3 (𝑦1 + 𝑦2)

= −(𝑦21 + 𝑦22 + 𝑦23) < 0 (negative definite)

thus, 𝑥 = (1, 1, 1) is not a local minimizer (it is a local maximizer)
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Quadratic objective and constraint

minimize 𝑥T𝑄𝑥

subject to 𝑥T𝑃𝑥 = 1

• 𝑄 = 𝑄T and 𝑃 = 𝑃T ≻ 0

• the Lagrangian is
𝐿 (𝑥, 𝜆) = 𝑥T𝑄𝑥 + 𝜆(1 − 𝑥T𝑃𝑥)

• the Lagrange optimality conditions are

∇𝑥𝐿 (𝑥, 𝜆) = 2𝑄𝑥 − 2𝜆𝑃𝑥 = 0

∇𝜆𝐿 (𝑥, 𝜆) = 1 − 𝑥T𝑃𝑥 = 0
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• from the first equation, we have

𝑃−1𝑄𝑥 = 𝜆𝑥

so, optimal points 𝑥 and 𝜆 if they exists, are eigenvectors/eigenvalues of 𝑃−1𝑄

• multiplying 𝑃−1𝑄𝑥 = 𝜆𝑥 on the left by 𝑥T𝑃 and using 𝑥T𝑃𝑥 = 1, we get

𝜆 = 𝑥T𝑄𝑥 = 𝑓 (𝑥)

• hence, 𝑓 (𝑥) = 𝑥T𝑄𝑥 is minimized when 𝜆 is the smallest eigenvalue of 𝑃−1𝑄

• solution 𝑥 is the eigenvector associated with smallest eigenvalue
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Example

minimize 𝑥T𝑄𝑥

subject to 𝑥T𝑃𝑥 = 1

𝑄 =

[
−4 0
0 −1

]
, 𝑃 =

[
2 0
0 1

]
• the minimum eigenvalue of

𝑃−1𝑄 =

[
−2 0
0 −1

]
is 𝜆 = −2

• substituting, 𝜆 = −2 in the Lagrange conditions, we have

∇𝑥𝐿 (𝑥,−2) = 2𝑄𝑥 − 2𝜆𝑃𝑥 =

[
0
2𝑥2

]
= 0

∇𝜆𝐿 (𝑥,−2) = 1 − 2𝑥21 − 𝑥22 = 0
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• solving, we get the solutions 𝑥1 = (1/
√
2, 0) or 𝑥2 = (−1/

√
2, 0)

• to verify that these points are strict local minimizers, we check the Hessian (for 𝑥1,
the other follow similar steps)

∇2
𝑥𝐿 (𝑥, 𝜆) = 2𝑄 − 2𝜆𝑃 = 2(𝑄 + 2𝑃) =

[
0 0
0 2

]
• since ℎ(𝑥) = 1 − 𝑥T𝑃𝑥 = 0, we have ∇ℎ(𝑥) = −2𝑃𝑥 and the tangent space is

T (𝑥) = {𝑦 | 2𝑥T𝑃𝑦 = 0} = {𝑦 | [
√
2 0]𝑦 = 0} = {(0, 𝑎) | 𝑎 ∈ R}

• for every 𝑦 ∈ T , 𝑦 ≠ 0, we have

𝑦T∇2
𝑥𝐿 (𝑥, 𝜆)𝑦 = 2𝑎2 > 0

we conclude that the point 𝑥 = ( 1√
2
, 0) is a local minimizer

SA — ENGR507equality constrained problems 8.22



Outline

• equality constrained problems

• constrained quadratic problems

• inequality constrained problems

• projected gradient descent



Quadratic program with linear constraints

minimize (1/2)𝑥T𝑄𝑥 + 𝑟T𝑥

subject to 𝐶𝑥 = 𝑑

• 𝑄 is an 𝑛 × 𝑛 symmetric matrix; 𝑟 is an 𝑛-vector

• 𝐶 is a 𝑝 × 𝑛 matrix; 𝑑 is a 𝑝-vector

• the Lagrangian for this problem is

𝐿 (𝑥, 𝜆) = (1/2)𝑥T𝑄𝑥 + 𝑟T𝑥 + 𝜆T (𝐶𝑥 − 𝑑)
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Optimality conditions

if 𝑥★ is a solution, then there exists 𝜆★ such that:

∇𝑥𝐿 (𝑥★, 𝜆★) = 𝑄𝑥★ + 𝑟 + 𝐶T𝜆★ = 0 (8.4a)

𝐶𝑥★ − 𝑑 = 0 (8.4b)

the above can be written as the system of linear equations:[
𝑄 𝐶T

𝐶 0

] [
𝑥★

𝜆★

]
=

[
−𝑟
𝑑

]
• the solution of the above can be a minimizer, maximizer, or a saddle point

• if 𝑄 is positive semidefinite, then any solution of the above is a global minimizer

• conditions are called KKT optimality conditions; matrix on left is called KKT matrix
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Closed-form solution

Assumptions: rank𝐶 = 𝑝, 𝑄 and 𝐶𝑄−1𝐶T are invertible (e.g., 𝑄 ≻ 0)

Closed-form solution

• multiply the first equation in (8.4) by 𝑄−1 on the left

𝑥 = −𝑄−1 (𝑟 + 𝐶T𝜆)

• substituting into the second equation, we get

−𝐶𝑄−1 (𝑟 + 𝐶T𝜆) = 𝑑 ⇐⇒ (𝐶𝑄−1𝐶T)𝜆 = −(𝑑 + 𝐶𝑄−1𝑟)

hence
𝜆 = −(𝐶𝑄−1𝐶T)−1 (𝑑 + 𝐶𝑄−1𝑟)

• putting it all together, we get

𝑥★ = 𝑄−1𝐶T (𝐶𝑄−1𝐶T)−1 (𝐶𝑄−1𝑟 + 𝑑) −𝑄−1𝑟 (8.5)

SA — ENGR507constrained quadratic problems 8.25



Least norm problem

minimize ∥𝑥∥2
subject to 𝐶𝑥 = 𝑑

• 𝐶 is a 𝑝 × 𝑛 matrix, 𝑑 is a 𝑝-vector

• the goal is to find the solution of 𝐶𝑥 = 𝑑 with the smallest norm

• a special case of constrained QP with 𝑄 = 2𝐼 and 𝑟 = 0

Least distance problem: minimizing the distance to a given point 𝑎 ≠ 0:

minimize ∥𝑥 − 𝑎∥2
subject to 𝐶𝑥 = 𝑑

• reduces to least norm problem by a change of variables 𝑦 = 𝑥 − 𝑎

minimize ∥𝑦∥2
subject to 𝐶𝑦 = 𝑑 − 𝐶𝑎

• from least norm solution 𝑦, we obtain solution 𝑥 = 𝑦 + 𝑎 of first problem
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Solution of least norm problem

minimize ∥𝑥∥2
subject to 𝐶𝑥 = 𝑑

Assumption: we assume that 𝐶 has linearly independent rows

• 𝐶𝑥 = 𝑑 has at least one solution for every 𝑑

• 𝐶 is wide or square (𝑝 ≤ 𝑛); if 𝑝 < 𝑛 there are infinite solutions to 𝐶𝑥 = 𝑑

Solution of least norm problem

𝑥 = 𝐶T (𝐶𝐶T)−1𝑑

• solution follows form (8.5) with 𝑄 = 2𝐼 and 𝑟 = 0

• unique solution under the above assumption

• 𝐶T (𝐶𝐶T)−1 = 𝐶† is the pseudo-inverse of 𝐶, which is also a right-inverse
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Constrained least squares

minimize ∥𝐴𝑥 − 𝑏∥2
subject to 𝐶𝑥 = 𝑑

• 𝐴 is an 𝑚 × 𝑛 matrix; 𝑏 is an 𝑚-vector

• 𝐶 is a 𝑝 × 𝑛 matrix; 𝑑 is a 𝑝-vector

• the objective ∥𝐴𝑥 − 𝑏∥2 = 𝑥T (𝐴T𝐴)𝑥 − 2(𝐴T𝑏)T𝑥 + ∥𝑏∥2 is quadratic with

𝑄 = 2𝐴T𝐴, 𝑟 = −2𝐴T𝑏

• the optimality condition is[
2𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥★

𝜆★

]
=

[
2𝐴T𝑏
𝑑

]
• since 𝑄 = 2𝐴T𝐴 ⪰ 0, any solution of the above is a global minimizer

SA — ENGR507constrained quadratic problems 8.28



Linear quadratic control

Linear dynamical system

𝑠𝑡+1 = 𝐴𝑡 𝑠𝑡 + 𝐵𝑡𝑢𝑡 , 𝑦𝑡 = 𝐶𝑡 𝑠𝑡 , 𝑡 = 0, 1, . . .

• 𝑛-vector 𝑠𝑡 is system state (at time 𝑡)

• 𝑚-vector 𝑢𝑡 is system input (we control)

• 𝑝-vector 𝑦𝑡 is system output

• 𝑠𝑡 , 𝑢𝑡 , 𝑦𝑡 are typically desired to be small

Objective: choose inputs 𝑢0, . . . , 𝑢𝑇−1 that minimizes 𝐽output + 𝛿𝐽input with

𝐽output = ∥𝑦0 − 𝑦des0 ∥2 + ··· + ∥𝑦𝑇 − 𝑦des𝑇 ∥2, 𝐽input = ∥𝑢0∥2 + ··· + ∥𝑢𝑇−1∥2

where 𝑦des𝑡 are given desired values (possibly zero)

Constraints

• dynamics constraint

• initial state and (possibly) the final state are specified 𝑠0 = 𝑠init, 𝑠𝑇 = 𝑠des
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Linear quadratic control problem

minimize ∥𝐶0𝑠0 − 𝑦des0 ∥2 + ··· + ∥𝐶𝑇𝑥𝑇 − 𝑦des
𝑇

∥2 + 𝛿
(
∥𝑢0∥2 + ··· + ∥𝑢𝑇−1∥2

)
subject to 𝑠𝑡+1 = 𝐴𝑡 𝑠𝑡 + 𝐵𝑡𝑢𝑡 , 𝑡 = 0, . . . , 𝑇 − 1

𝑠0 = 𝑠init , 𝑠𝑇 = 𝑠des

variables: 𝑠0, . . . , 𝑠𝑇 and 𝑢0, . . . , 𝑢𝑇−1

Constrained least squares formulation

minimize ∥𝐴𝑧 − 𝑏∥2
subject to 𝐶𝑧 = 𝑑

variables: the (𝑛(𝑇 + 1) + 𝑚𝑇)-vector

𝑧 = (𝑠0, . . . , 𝑠𝑇 , 𝑢0, . . . , 𝑢𝑇−1)
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Linear quadratic control problem

Objective function: ∥𝐴𝑧 − 𝑏∥2 with

𝐴 =



𝐶0 · ·· 0 0 · ·· 0
... . . . ... ... . . . ...

0 · ·· 𝐶𝑇 0 · ·· 0

0 · ·· 0
√
𝛿𝐼 · ·· 0

... . . . ... ... . . . ...

0 · ·· 0 0 · ··
√
𝛿𝐼


, 𝑏 =



𝑦des0
...

𝑦des
𝑇

0
...

0


Constraints: 𝐶𝑧 = 𝑑 with

𝐶 =



𝐴0 −𝐼 0 · ·· 0 0 𝐵0 0 · ·· 0
0 𝐴1 −𝐼 · ·· 0 0 0 𝐵1 · ·· 0
... ... ... ... ... ... ... . . . ...

0 0 0 · ·· 𝐴𝑇−1 −𝐼 0 0 · ·· 𝐵𝑇−1
𝐼 0 0 · ·· 0 0 0 0 · ·· 0
0 0 0 · ·· 0 𝐼 0 0 · ·· 0


, 𝑑 =



0
0
...

0
𝑠init

𝑠des


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Linear quadratic regulator

a variation is to consider the linear quadratic control (LQR) objective

(1/2)
𝑇∑
𝑡=0

𝑠T𝑡 𝑄𝑡 𝑠𝑡 + (1/2)
𝑇−1∑
𝑡=0

𝑢T𝑡 𝑅𝑡𝑢𝑡

• 𝑄𝑡 and 𝑅𝑡 are given matrices of appropriate dimensions

• this problem takes the form:

minimize (1/2)𝑧T𝑄𝑧

subject to 𝐶𝑧 = 𝑑

with the variable 𝑧 = (𝑠0, . . . , 𝑠𝑇 , 𝑢0, . . . , 𝑢𝑇−1) and the block-diagonal matrix:

𝑄 =



𝑄0 · ·· 0 0 · ·· 0
... . . . ... ... . . . ...

0 · ·· 𝑄𝑇 0 · ·· 0
0 · ·· 0 𝑅0 · ·· 0
... . . . ... ... . . . ...

0 · ·· 0 0 · ·· 𝑅𝑇−1


where 𝐶 and 𝑑 are defined as previously specified
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Small final state variation

suppose 𝐴𝑡 = 𝐴 and 𝐵𝑡 = 𝐵 and consider the objective:

(1/2)∥𝑠𝑇 ∥2 + (1/2)
𝑇−1∑
𝑡=0

𝑢T𝑡 𝑅𝑡𝑢𝑡

• 𝑠𝑇 is not predefined but is desired to be small

• it is convenient to iterate the dynamics to express 𝑠𝑇 as:

𝑠𝑇 = 𝐴𝑇 𝑠0 + 𝐶𝑢

where 𝑢 = (𝑢0, . . . , 𝑢𝑇−1) and the matrix 𝐶 is

𝐶 =
[
𝐴𝑇−1𝐵 𝐴𝑇−2𝐵 · ·· 𝐴𝐵 𝐵

]
• the control problem then becomes the least norm problem:

minimize (1/2)𝑧T𝑄𝑧

subject to [𝐶 − 𝐼]𝑧 = −𝐴𝑇 𝑠0

with variable 𝑧 = (𝑢, 𝑠𝑇 ) and 𝑄 = diag(𝑅0, . . . , 𝑅𝑇−1, 𝐼)
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Example

consider the discrete-time linear system

𝑠𝑡+1 = 2𝑠𝑡 + 𝑢𝑡 , 𝑡 ≥ 0

with 𝑠0 = 1; we want to find the values of the inputs 𝑢0 and 𝑢1 that minimizes

1

2
𝑢20 +

1

3
𝑢21 + 𝑠22

• we can formulate this problem as a quadratic program with variables 𝑢0, 𝑢1 and 𝑠2

• the state at time 2 can be found recursively as:

𝑠2 = 2𝑠1 + 𝑢1 = 2(2𝑠0 + 𝑢0) + 𝑢2 = 2(2 + 𝑢0) + 𝑢1

hence,
2𝑢0 + 𝑢1 − 𝑠2 = −4
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• therefore, the problem can be formulated as:

minimize 1
2𝑢

2
0 + 1

3𝑢
2
1 + 𝑠22

subject to 2𝑢0 + 𝑢1 − 𝑠2 = −4

• letting 𝑧 = (𝑢0, 𝑢1, 𝑠2), we can write the problem as:

minimize 1
2 𝑧

T𝑄𝑧

subject to 𝐶𝑧 = 𝑑

where

𝑄 = diag(1, 2/3, 2), 𝐶 =
[
2 1 −1

]
, 𝑑 = −4

• since 𝑄 is invertible and 𝐶 is a nonzero row vector, the solution is

𝑧 = (𝑢0, 𝑢1, 𝑠2) = 𝑄−1𝐶T (𝐶𝑄−1𝐶T)−1𝑑 =
(
− 4

3 ,−1,
1
3

)
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Outline

• equality constrained problems

• constrained quadratic problems

• inequality constrained problems

• projected gradient descent



Inequality constrained problems

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝
(8.6)

• 𝑓 : R𝑛 → R is the objective function

• 𝑔𝑖 : R
𝑛 → R are the inequality constraints functions

• ℎ 𝑗 : R
𝑛 → R are the equality constraints functions

• 𝑔(𝑥) = (𝑔1 (𝑥), . . . , 𝑔𝑚 (𝑥))

• ℎ(𝑥) = (ℎ1 (𝑥), . . . , ℎ𝑝 (𝑥))

• 𝑥 is a feasible point if it satisfies the constraints (𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0)
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Lagrangian

the Lagrangian associated with problem (8.6) is

𝐿 (𝑥, 𝜇, 𝜆) = 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜇𝑖𝑔𝑖 (𝑥) +
𝑝∑
𝑗=1

𝜆 𝑗ℎ 𝑗 (𝑥)

• 𝜇 ∈ R𝑚 and 𝜆 ∈ R𝑝

• 𝜇 and 𝜆 are often called Lagrange multipliers vectors

• the gradient of the Lagrangian with respect to 𝑥 is

∇𝑥𝐿 (𝑥, 𝜇, 𝜆) = ∇ 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥) +
𝑝∑
𝑗=1

𝜆 𝑗∇ℎ 𝑗 (𝑥)
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Regular point

Active inequalities

• an inequality constraint 𝑔𝑖 (𝑥) ≤ 0 is active at 𝑥 if 𝑔𝑖 (𝑥) = 0

• it is inactive at 𝑥 if 𝑔𝑖 (𝑥) < 0

• we let I(𝑥) denote the set of indices 𝑖 for the active constraints at 𝑥:

I(𝑥) = {𝑖 | 𝑔𝑖 (𝑥) = 0}

Regular point: a feasible point 𝑥 is a regular point if the vectors

∇𝑔𝑖 (𝑥), ∇ℎ 𝑗 (𝑥), 𝑖 ∈ I(𝑥), 𝑗 = 1, . . . , 𝑝

are linearly independent
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Motivation of optimality conditions

if 𝑥◦ is a local minimizer of (8.6), then it is a local minimizer of the problem:

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) = 0, 𝑖 ∈ I(𝑥◦), ℎ(𝑥) = 0

• applying Lagrange conditions (8.2) to the above problem, we have

∇ 𝑓 (𝑥◦) +
∑

𝑖∈I(𝑥◦ )
𝜇◦𝑖∇𝑔𝑖 (𝑥◦) +

𝑝∑
𝑗=1

𝜆◦𝑗∇ℎ 𝑗 (𝑥◦) = 0

• in terms of the original problem, we can write the above condition as

∇ 𝑓 (𝑥◦) +
𝑚∑
𝑖=1

𝜇◦𝑖∇𝑔𝑖 (𝑥◦) +
𝑝∑
𝑗=1

𝜆◦𝑗∇ℎ 𝑗 (𝑥◦) = 0

𝜇𝑖 = 0 for 𝑖 ∉ I(𝑥◦) ⇒ 𝑔𝑖 (𝑥◦)𝜇◦𝑖 = 0

it can be shown that 𝜇𝑖 ≥ 0 for 𝑖 ∈ I(𝑥◦)
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Karush-Kuhn-Tucker (KKT) conditions

if 𝑥◦ is regular and a local minimizer, then there exists 𝜇◦ ∈ R𝑚, 𝜆◦ ∈ R𝑝 such that:

∇𝑥𝐿 (𝑥◦, 𝜇◦, 𝜆◦) = 0 (8.7a)

𝑔𝑖 (𝑥◦) ≤ 0, 𝑖 = 1, . . . , 𝑚 (8.7b)

ℎ 𝑗 (𝑥◦) = 0, 𝑗 = 1, . . . , 𝑝 (8.7c)

𝜇◦𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚 (8.7d)

𝜇◦𝑖 𝑔𝑖 (𝑥◦) = 0, 𝑖 = 1, . . . , 𝑚 (8.7e)

𝜆◦ and 𝜇◦ are called the Lagrange multiplier and KKT multiplier vectors (or just
Lagrange multiplier vectors)

Complementary slackness: condition 𝜇◦
𝑖
𝑔𝑖 (𝑥◦) = 0 implies that

• 𝑔𝑖 (𝑥◦) < 0 ⇒ 𝜇◦
𝑖
= 0

• 𝜇◦
𝑖
> 0 ⇒ 𝑔𝑖 (𝑥◦) = 0

called the complementary slackness
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Example

minimize 𝑥21 + 𝑥22 + 𝑥1𝑥2 − 3𝑥1
subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0

• the Lagrangian is

𝐿 (𝑥, 𝜇) = 𝑥21 + 𝑥22 + 𝑥1𝑥2 − 3𝑥1 − 𝜇1𝑥1 − 𝜇2𝑥2

• note that 𝑔(𝑥) = (−𝑥1,−𝑥2) and the KKT conditions are

∇𝑥𝐿 (𝑥, 𝜇) =
[
2𝑥1 + 𝑥2 − 3 − 𝜇1
𝑥1 + 2𝑥2 − 𝜇2

]
= 0

𝜇 ≥ 0

−𝑥 ≤ 0

𝜇1𝑥1 = 0

𝜇2𝑥2 = 0
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• to find a solution, assume 𝜇1 = 0, 𝑥2 = 0; then, solving the above, we have

𝑥 =

[
3
2
0

]
, 𝜇 =

[
0
3
2

]
which satisfy the KKT conditions

• for 𝜇2 = 0, 𝑥1 = 0, we get 𝑥2 = 0, 𝜇1 = −3, which violates the condition 𝜇 ≥ 0

• other combinations 𝑥1 = 𝑥2 = 0 and 𝜇1 = 𝜇2 = 0 also violates KKT condition
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Necessary conditions: inequality constrained case

Tangent space

T (𝑥) = {𝑦 | 𝐷ℎ(𝑥)𝑦 = 0, ∇𝑔𝑖 (𝑥)T𝑦 = 0, 𝑖 ∈ I(𝑥)}

• I(𝑥) = {𝑖 | 𝑔𝑖 (𝑥) = 0} is the set with active constraints indices

• tangent space is the set of feasible directions with active constraints

Necessary conditions

suppose 𝑥◦ is regular and a local minimizer, then there exists 𝜇◦, 𝜆◦ such that:

• the KKT conditions (8.7) hold; and

• for all 𝑦 ∈ T (𝑥◦), we have

𝑦T∇2
𝑥𝐿 (𝑥◦, 𝜇◦, 𝜆◦)𝑦 ≥ 0
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Sufficient conditions: inequality constrained case

Critical tangent space

T̄ (𝑥) = {𝑦 | 𝐷ℎ(𝑥)𝑦 = 0, ∇𝑔𝑖 (𝑥)T𝑦 = 0, 𝑖 ∈ Ī(𝑥)}

where Ī (𝑥) = {𝑖 | 𝑔𝑖 (𝑥) = 0, 𝜇𝑖 > 0}

Sufficient conditions: suppose there exists points 𝑥◦, 𝜇◦, 𝜆◦ such that the KKT
conditions (8.7) hold and for all 𝑦 ∈ T̄ (𝑥◦), 𝑦 ≠ 0, we have

𝑦T∇2
𝑥𝐿 (𝑥◦, 𝜆◦, 𝜇◦)𝑦 > 0

then, 𝑥◦ is a strict local minimizer of (8.6)
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Example

minimize 𝑥1𝑥2
subject to 𝑥1 + 𝑥2 ≥ 2, 𝑥1 − 𝑥2 ≤ 0

• the Lagrangian is

𝐿 (𝑥, 𝜇) = 𝑥1𝑥2 + 𝜇1 (2 − 𝑥1 − 𝑥2) + 𝜇2 (𝑥1 − 𝑥2)

• we have 𝑔1 (𝑥) = 2 − 𝑥1 − 𝑥2 and 𝑔2 (𝑥) = 𝑥1 − 𝑥2 and the KKT conditions are

∇𝑥𝐿 (𝑥, 𝜇) =
[
𝑥2 − 𝜇1 + 𝜇2
𝑥1 − 𝜇1 − 𝜇2

]
= 0

2 − 𝑥1 − 𝑥2 ≤ 0

𝑥1 − 𝑥2 ≤ 0

𝜇1, 𝜇2 ≥ 0

𝜇1 (2 − 𝑥1 − 𝑥2) = 0

𝜇2 (𝑥1 − 𝑥2) = 0
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• it can be verified that 𝜇1 ≠ 0 and 𝜇2 = 0

• solving with 𝜇2 = 0, we arrive at one solution: 𝑥1 = 𝑥2 = 1, 𝜇1 = 1, 𝜇2 = 0

• at this solution, the constraints are active, and

∇𝑔1 (𝑥) =
[
−1
−1

]
, ∇𝑔2 (𝑥) =

[
1

−1

]
, ∇2

𝑥𝐿 (𝑥, 𝜇) =
[
0 1
1 0

]
the vectors ∇𝑔1 (𝑥),∇𝑔2 (𝑥) are linearly independent, hence 𝑥 is regular

• since both constraints are active, the tangent space is

T = {𝑦 | ∇𝑔1 (𝑥)T𝑦 = 0, ∇𝑔2 (𝑥)T𝑦 = 0} = {0}

• thus, 𝑦T∇2
𝑥𝐿 (𝑥, 𝜇)𝑦 = 0 for 𝑦 ∈ T and 𝑥 is a candidate local minimizer
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• we now check the sufficient conditions; since 𝜇2 = 0, the critical tangent space is

T̄ = {𝑦 | ∇𝑔1 (𝑥)T𝑦 = 0}
= {𝑦 | − 𝑦1 − 𝑦2 = 0}
= {𝑦 | 𝑦1 = −𝑦2}

• for 𝑦 ∈ T̄ , 𝑦 ≠ 0, we have

𝑦T
[
0 1
1 0

]
𝑦 = 2𝑦1𝑦2 = −2𝑦22 < 0

this means that the sufficient condition does not hold

• hence, 𝑥 is not a local minimizer (it is also not a local maximizer)
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Example

minimize (𝑥1 − 1)2 + 𝑥2 − 2
subject to 𝑥2 = 𝑥1 + 1, 𝑥1 + 𝑥2 ≤ 2

• we have ℎ(𝑥) = 𝑥2 − 𝑥1 − 1 and 𝑔(𝑥) = 𝑥1 + 𝑥2 − 2 and

∇ℎ(𝑥) =
[
−1
1

]
, ∇𝑔(𝑥) =

[
1
1

]
are linearly independent

• all feasible points are regular and a local solution must satisfy the KKT conditions

• the Lagrangian is

𝐿 (𝑥, 𝜇, 𝜆) = (𝑥1 − 1)2 + 𝑥2 − 2 + 𝜇(𝑥1 + 𝑥2 − 2) + 𝜆(𝑥2 − 𝑥1 − 1)
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• KKT conditions: [
2𝑥1 − 2 + 𝜇 − 𝜆

1 + 𝜇 + 𝜆

]
= 0

𝜇(𝑥1 + 𝑥2 − 2) = 0

𝜇 ≥ 0

𝑥2 − 𝑥1 − 1 = 0

𝑥1 + 𝑥2 − 2 ≤ 0

• for 𝜇 > 0, we will get an invalid solution

• solving with 𝜇 = 0, we arrive at the solution

𝑥1 = 1
2 , 𝑥2 = 3

2 , 𝜆 = −1

• the point 𝑥 = ( 12 ,
3
2 ) is a local minimizer candidate
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• the Hessian of the Lagrangian is

∇2
𝑥𝐿 (𝑥, 𝜇, 𝜆) =

[
2 0
0 0

]
for all 𝑥 (positive semi-definite)

• since 𝜇 = 0, the critical tangent space is:

T̄ = {𝑦 | ∇ℎ(𝑥)T𝑦 = 0} = {𝑦 | − 𝑦1 + 𝑦2 = 0}
= {𝑦 = (𝑎, 𝑎) | 𝑎 ∈ R}

• for 𝑦 ∈ T̄ , we have

𝑦T
[
2 0
0 0

]
𝑦 = 2𝑎2 > 0,

which is positive-definite; therefore, the point 𝑥 is a local minimizer
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Outline

• equality constrained problems

• constrained quadratic problems

• inequality constrained problems

• projected gradient descent



Projection

the projection of 𝑥 ∈ R𝑛 onto a set X ⊆ R𝑛 is defined as

ΠX (𝑥) = argmin
𝑧∈X

∥𝑧 − 𝑥∥

• projection ΠX (𝑥) is the “closest” point in X to 𝑥

• for certain constraints, the projection can be computed in closed form

Examples

• box constraint

X = {𝑥 | 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛}, (ΠX (𝑥))𝑖 =

𝑢𝑖 if 𝑥𝑖 > 𝑢𝑖

𝑥𝑖 if 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

𝑙𝑖 if 𝑥𝑖 < 𝑙𝑖

• unit ball constraint: X = {𝑥 | ∥𝑥∥2 = 1}, ΠX (𝑥) = 𝑥/∥𝑥∥
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Gradient descent and projection

minimize 𝑓 (𝑥)
subject to 𝑥 ∈ X

• 𝑥 ∈ R𝑛 is variable; 𝑓 : R𝑛 → R

• X is the constraint set

the gradient descent update has the form:

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝛼𝑘∇ 𝑓 (𝑥 (𝑘 ) )

• the point 𝑥 (𝑘+1) is not guaranteed to be in X even if 𝑥 (𝑘 ) is

• to guarantee feasibility, we can modify the update to

𝑥 (𝑘+1) = ΠX
(
𝑥 (𝑘 ) − 𝛼𝑘∇ 𝑓 (𝑥 (𝑘 ) )

)
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Projected gradient descent

given a starting point 𝑥 (0) and a solution tolerance 𝜖 > 0

repeat for 𝑘 = 0, 1, . . .

1. choose a stepsize 𝛼𝑘

2. update 𝑥 (𝑘+1) :
𝑥 (𝑘+1) = ΠX

(
𝑥 (𝑘 ) − 𝛼𝑘∇ 𝑓 (𝑥 (𝑘 ) )

)
if ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥ ≤ 𝜖 stop and 𝑥 (𝑘+1) is output

ΠX (𝑥) = argmin
𝑧∈X

∥𝑧 − 𝑥∥
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Examples

• for the problem
minimize 1

2𝑥
T𝑄𝑥

subject to ∥𝑥∥2 = 1

the projected gradient descent update is

𝑥 (𝑘+1) =
1

∥(𝐼 − 𝛼𝑘𝑄)𝑥 (𝑘 ) ∥
(𝐼 − 𝛼𝑘𝑄)𝑥 (𝑘 )

• for the problem
minimize (1/2)𝑥T𝑄𝑥 + 𝑟T𝑥

subject to 𝑥 ≥ 0

the projected gradient descent update is

𝑥 (𝑘+1) = (𝑥 (𝑘 ) − 𝛼(𝑄𝑥 (𝑘 ) + 𝑟))+,

where (·)+ replaces negative entries with zero
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