ENGR 507 (Spring 2025)

8. Constrained optimization

e equality constrained problems
e constrained quadratic problems
e inequality constrained problems

e projected gradient descent

S. Alghunaim
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Equality constrained problems

minimize  f(x)
subjectto  h;(x) =0, i=1,...,p

o f:R" — Ris the objective function

h; : R" — R are the equality constraints functions

we let h(x) = (hi(x),...,hp(x))

e a point x satisfying £(x) = 0 is called a feasible point

equality constrained problems
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Example

Vh(x*) = (N2,N2) 7

e

minimize  x; — X9 0
subjectto  x? +x2 =1

/

.

e circle represent the constraint

black arrows shows the direction of the gradient V f (x) = (1, -1)

L . *x _(_1 1

the global minimizer is x* = ( 5 \E)

the gradients V f (x*) and Vh(x*) are parallel (linearly dependent):
Vf(x*) = —AVh(x*) where A=1/V2

equality constrained problems

dotted lines are the level sets, f(x) = x1 — x2 = v, at different values of y
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Motivation of optimality conditions

suppose that we only have one constraint (p = 1) and consider the problem
minimize  f(x) + Ah(x)
e 1 € R is an adjustable parameter

e assume for some A*, x* minimizes f(x) + A*h(x) and satisfies the constraint:

VF(x*) + A*VA(x*) =0 and h(x*) =0

then, we have
F&*) = f(x*) + *h(x™) < f(x) + *h(x) forallx

hence, f(x*) < f(x) for all feasible x and x™* is a solution to the original problem

we can transform constrained problem into an unconstrained one if such A1* exists
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Lagrangian function

the Lagrangian function for problem (8.1) is
p
L(x,2) = f(x) + > Aihi(x)
i=1

e the entries of A; are called the Lagrange multipliers
e 1=(A1,...,4,) is a p-vector
e the gradient of Lagrangian is

V.L(x,1)

VL(x,A) = [V,lL(x, )

where
ViL(x,2) = Vf(x)+ f A;Vh;(x)
i=1

VaL(x,4) = h(x)

equality constrained problems



Optimality conditions
Regular point: a feasible point x is a regular point if the vectors
Vhi(x), Vha(x), ..., Vhp(x)
are linearly independent (i.e., Dh(x) has linearly independent rows)

(Lagrange) Optimality conditions: if x° is a regular point and a local minimizer of
the constrained problem (8.1), then there exists a vector A° such that

P
ViL(x°,2°) = Vf(x°) + Z/l?Vh,-(xo) =0 (8.2a)

i=1
h(x°) =0 (8.2b)
e conditions are necessary but not sufficient
e points that satisfies the above are called stationary points
e there can be stationary points, (£, A), but % is not a local minimizer

e the above method is known as the method of Lagrange multipliers
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Example

minimize x% + x%
subjectto x? +2x2 =1
e the Lagrangian is
L(x,A) = x2 + x5+ A(x] +2x3 - 1)
e the necessary optimality conditions are

2)(1 + 2.X1/l
2x9 + 4x94

VaL(x,A) =x?+2x2-1=0

V,.L(x,A) = =0

equality constrained problems
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e solving, we get the stationary points

x=(0,+ A=-1/2

1
v
or
x=(x1,0), A=-1
e Vh(x) = (2x1, 4x5) is linearly independent for all feasible points

e 50, all feasible points are regular and any minima satisfies the optimality conditions

e checking the value of the objective, we see that it is smallest at

xM = (0, 1) and x? = o-—)

e therefore, the points x() and x(?) are candidate minimizers
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Example

consider the problem of finding the maximum box volume with fixed area ¢ = 2:

maximize X1Xx2X3

) c
subjectto  x1x2 + XoX3 + x1x3 = 5

here, x = (x1, x2, x3) represent the box dimensions

the gradient of the constraint function 2(x) = x1xo + xox3 + Xx1x3 — 1 is

Vh(x) = (xo +x3,X1 + X3,X1 + X2)

since VA (x) # O for all feasible x, all feasible points are regular

thus, a local solution must satisfy the Lagrange conditions

equality constrained problems
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e the Lagrangian of the equivalent minimization problem is
L(x, ) = —x1x9x3 + A(x1X2 + Xox3 + x1x3 — 1)
e the necessary optimality conditions are
—Xxox3 + A(x2 + x3)

VXL()C, l) = |—X1X3 +/1(X1 +X3) =0
—X1X2 + /1()61 +)C2)

V,{L(x, /1) =X1X2 + Xox3 +x1x3—1=0

e x;, A are nonzero as otherwise, the conditions cannot be met

e solving for the above equations, we get A = i\/§/6 and

X1 =Xg =X3 ==

Sl-

L L

point X = (\5, \/ig, \/g) has larger objective and is a local maximizer candidate

equality constrained problems
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Example

X2

(Xl —2)2+x§ =1

minimize  Xs W\
subjectto  x? +x2 =1 w x1

e one feasible point X = (1, 0), thus optimal

(1, 0) is not regular since Vi1 (X) = (2,0), Vhy(x) = (-2, 0) are dependent

the Lagrangian is

L(x,A) =xo + A1 (x] +x5 = 1) + Ao ((x1 = 2)% + x5 - 1)

the first necessary condition

2X1&1 + 2()C1 - 2)/12

ViL(x,2) = 14 2x5(A1 + A2)

=0

cannot be satisfied at X = (1, 0)

equality constrained problems
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Second-order conditions: motivation

if x°, A° satisfy the optimality conditions, then, x° is a stationary point of
P
minimize  L(x,2°) = f(x) + »_ A;h; (x)
i=1

e apply second-order optimality condition for unconstrained problem

e we check the definiteness of the Hessian of the Lagrangian
p
V2L(x, ) = V2f(x) + > 4,V (x)
i=1

e however, we only need to check the Lagrangian Hessian for feasible directions
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Approximate feasible directions

e using Taylor approximation, we can approximate 4; : R" — R around x by
hi(x + Ax) ~ hi(x) + Vh;(x) TAx
where Ax is close to x
e if x is feasible (h; (x) = 0), then Ax is approximately a feasible direction if
0= hi(x + Ax) ~ Vh; (x)TAx
e hence, the set of approximate feasible directions is

Tx) ={y|Vhx)Ty=0,i=1,...,p}
={y | Dh(x)y = 0}

equality constrained problems

(8.3)
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Tangent space

for regular point x, set of feasible directions 7 (x) is a tangent space to the surface:

S ={xeR"|h(x)=0}

N
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Example

consider the x3-axis in R® constraints:

S={xeR3|hi(x)=x1 =0, hao(x) =x; —xs =0}

e we have

[VRi@T] _[t 0 0
Dh(x)_[Vh;(x)T}_[l -1 o]

o the approximate feasible directions, y, satisfy

Y1
1 0 0
Dh(-x)y: [1 -1 O:| Y2 =0
Y3

e the above holds for y = (0, 0, @) where a € R; thus, the tangent space is

T (x) ={(0,0,@) | @ € R} = the x3 axis in R®

equality constrained problems
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Second order optimality conditions

Necessary conditions

if x° is a regular point and a local minimizer, then there exists A° such that
m
ViL(x°,2°) = Vf(x°) + > Vhi(x°)A; =0 and h(x°) =0
i=1
andforally € 7(x°) = {y | Dh(x°)y = 0}, we have
yIVEL(x°,2%)y 2 0
Sufficient conditions: if there exists points x° and A° such that
m
ViL(x°,2°) = VF(x°) + > Vhi(x°)A; =0 and h(x°) =0
i=1
andforally € 7(x°) = {y | Dh(x°)y = 0}, y # 0, we have
yIVEL(x°,2%)y > 0
then, x° is a (strict) local minimizer

equality constrained problems
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Example

minimize  X1X9 + XoX3 + X1X3
subjectto x; +x9 +x3 =3

e the Lagrangian is

L(x,A) = x1x2 + xox3 + x1x3 + A(x1 + X2 + x3 — 3)

e the first-order necessary conditions are

Xo+x3+ 4
ViL(x,2) = [x1 +x3+4| =0
X1 +x9+4

X1+ X2 +X3 = 3
and the solutionis X = (1,1,1), 4 = =2, so x is a candidate minimizer

equality constrained problems
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we now look at the second-order condition

e note that Vi(x) = (1,1, 1) and the Hessian

VZL(x,1) =

L)
_ O =

1
1 is indefinite
0

e however, on the tangent space

T ={y|VRx)Ty =0} = {y | y1 +y2 + y3 = 0}

we have
0 1 1
Y1 0 1|y =yi(ya+ys) +y2(y1 +y3) +ya(y1 +y2)
1 1 0

=—(y]+y5+y3) <0 (negative definite)
thus, X = (1, 1, 1) is not a local minimizer (it is a local maximizer)
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Quadratic objective and constraint

minimize  xTQx
subjectto xTPx =1
e 0=0TandP=PT>0

e the Lagrangian is
L(x, ) =xT0x + A(1 — xTPx)

o the Lagrange optimality conditions are

V. L(x,1) = 20x — 2APx = 0
ViL(x,)=1-xTPx=0

equality constrained problems
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e from the first equation, we have
P_le = Ax
S0, optimal points x and Aif they exists, are eigenvectors/eigenvalues of P~1Q
e multiplying P~1Qx = Ax on the left by xTP and using xTPx = 1, we get
A=xT0x = f(x)
e hence, f(x) = xTQx is minimized when A is the smallest eigenvalue of P~1Q

e solution x is the eigenvector associated with smallest eigenvalue

equality constrained problems
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Example

minimize  xTQx
subjectto xTPx =1

-4 0 2 0
o= A refi
o the minimum eigenvalue of

. -2 0
ro=[ ]

isA=—-2
e substituting, 4 = —2 in the Lagrange conditions, we have

V. L(x,-2) = 20x — 2APx = 0 ] =0
QJCQ

VaL(x,-2)=1-2x3 —x3=0

equality constrained problems
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e solving, we get the solutions X1 = (1/V2,0) or %2 = (=1/V2,0)

e to verify that these points are strict local minimizers, we check the Hessian (for X1,
the other follow similar steps)

V2L(x,1) = 2Q - 2AP = 2(Q + 2P) = [8 g}
e since h(x) =1 —xTPx = 0, we have Vi(x) = —2Px and the tangent space is
T (%) = {y|2t"Py = 0} = {y | [V2 0]y = 0} = {(0,a) | a € R}
e foreveryy € 7,y # 0, we have
yTV)ZCL()E, Ay =24%>>0

we conclude that the point X = (‘/%, 0) is a local minimizer
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Quadratic program with linear constraints

minimize  (1/2)x70x + rTx
subjectto Cx =d

e () is an n X n symmetric matrix; r is an n-vector
e Cisa p X nmatrix; d is a p-vector

e the Lagrangian for this problem is

L(x,A) = (1/2)xT0x + rTx + AT(Cx - d)

constrained quadratic problems
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Optimality conditions

if x* is a solution, then there exists A* such that:

VoL(x*, %) = Qx* +r+CTA* = 0
Cx*-d=0

the above can be written as the system of linear equations:

2 S]-

e the solution of the above can be a minimizer, maximizer, or a saddle point

(8.4a)
(8.4b)

e if O is positive semidefinite, then any solution of the above is a global minimizer

e conditions are called KKT optimality conditions; matrix on left is called KKT matrix

constrained quadratic problems
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Closed-form solution
Assumptions: rank C = p, Q and CQ~'C7 are invertible (e.g., Q > 0)

Closed-form solution
o multiply the first equation in (8.4) by Q! on the left

x=-07'(r+CTa)
e substituting into the second equation, we get
—CO ' r+C) =d = (€O 'CHa=—-(d+CQO7'r)

hence
A=—(Co ¢ Y (d+CO'r)

e putting it all together, we get

=07 'cl(co e (cotr+d) -0y (85)

constrained quadratic problems 8.25



Least norm problem

minimize  ||x]?
subjectto Cx =d
e Cisa p X nmatrix, d is a p-vector
e the goal is to find the solution of Cx = d with the smallest norm
e a special case of constrained QP with Q = 2/ andr =0
Least distance problem: minimizing the distance to a given point a # 0:

minimize  ||x — al|?
subjectto Cx =d

e reduces to least norm problem by a change of variables y = x — a

minimize  ||y||?
subjectto Cy =d —Ca

e from least norm solution y, we obtain solution x =y + a of first problem

constrained quadratic problems
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Solution of least norm problem

minimize  ||x]?
subjectto Cx =d

Assumption: we assume that C has linearly independent rows
e Cx = d has at least one solution for every d

e Cis wide or square (p < n);if p < n there are infinite solutions to Cx = d
Solution of least horm problem

t=clcchHta
e solution follows form (8.5) with Q = 2/ andr = 0

e unique solution under the above assumption

e CT(CcCT)~! = CT is the pseudo-inverse of C, which is also a right-inverse

constrained quadratic problems



Constrained least squares

minimize || Ax — b]|?
subjectto Cx =d

e Ais an m X n matrix; b is an m-vector

e Cisa p X nmatrix; d is a p-vector

the objective [|Ax — b||? = xT(ATA)x — 2(ATb)Tx + ||b||? is quadratic with

0 =2ATA, r=-24"p

=[]

e since Q = 2ATA = 0, any solution of the above is a global minimizer

the optimality condition is

2474 CT
C 0

constrained quadratic problems
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Linear quadratic control

Linear dynamical system

St11 = Arse + Beuy, y, = Crsy, t=0,1,. ..

e n-vector s; is system state (at time ¢)

e m-vector u; is system input (we control)

e p-vector y; is system output

e s:,U;, Yy, are typically desired to be small

Objective: choose inputs ug, . . ., ur_1 that minimizes Joyput + 6Jinpur With

des |2
Joutput = ||)’0 _yoeq” + -+ ”yT =T

where y

des
t

des
SN2, Jinput = llutol? + o+ [lur—a]|

are given desired values (possibly zero)

Constraints

e dynamics constraint

e initial state and (possibly) the final state are specified sg = s

|n|t, ST = sdes

constrained quadratic problems 8.29



Linear quadratic control problem

minimize || Coso = g% + -+ + ICrar = y§=II* +6 (lluoll* + -+ + lur—1]1%)

SUbjeCt o s41 = Atst + B,ut, = 0, . ,T -1

Sp = sinit , ST = sdes

variables: sg, ..., st andug, ..., Uur—1

Constrained least squares formulation

minimize  ||Az — b||?
subjectto Cz=d

variables: the (n(T + 1) + mT)-vector

= (SO,...,ST,MO,...,MTfl)

constrained quadratic problems 8.30



Linear quadratic control problem

Objective function: ||Az — b||? with

[ Co -+ O 0 0 ] [ yges 1
| o cr| o 0 | ydes
A=170 0 | VoI O R G

0 0] 0 Vi 0

Constraints: C’z = d with

Ap -1 0 - 0 0]|By 0 - 0
0 Ay = - 0 0|0 B - 0

O T E I |
0 0 0 Ar.e -1 0 0 Br_:
I 0 0 0 010 O 0
0 0 0 0o I1/0 o 0

constrained quadratic problems

init

des
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Linear quadratic regulator

a variation is to consider the linear quadratic control (LQR) objective

(1125 570,54 (1D Y ¥Rt
e (; and R, are given matrif::eg of appropriate dirtn:é)nsions
e this problem takes the form:
minimize (~1/2)zer~z
subjectto Cz=d

with the variable z = (sq, ..., ST, Ug, . . ., ur—1) and the block-diagonal matrix:
[0y -+ 0 0 - 0
Q~ 10 or| 0 0
10 0 | Ry 0
0 - 0 0 - Rri |

where C and d are defined as previously specified

constrained quadratic problems
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Small final state variation

suppose A; = A and B; = B and consider the objective:

T-1
@/2)lIs7l1* + (1/2) Y ulReu,
t=0

e st is not predefined but is desired to be small

e it is convenient to iterate the dynamics to express st as:
ST = ATSO +Cu
where u = (uq, ..., ur_1) and the matrix C is
C=[AT"'B AT2B .. AB B]
e the control problem then becomes the least norm problem:

minimize  (1/2)z70z
subjectto  [C — 1]z =—-ATs

with variable z = (u, s7) and Q = diag(Ry, ..., Rr-1,1)
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Example

consider the discrete-time linear system
St+1 =2St+ut, t>0

with so = 1; we want to find the values of the inputs ©g and u; that minimizes

1 1
514% + gbt% + S%

e we can formulate this problem as a quadratic program with variables g, u1 and so
e the state at time 2 can be found recursively as:
So =251 +u = 2(2S0 + Mo) +Uus = 2(2 + I/to) + uq
hence,

2u0+M1—S2=—4

constrained quadratic problems 8.34



o therefore, the problem can be formulated as:

[ 1.2 1.2 2
minimize SUy + §“1 + S5

subjectto  2ug +uy — 5o = -4
e letting z = (ug, u1, s2), we can write the problem as:

minimize %ZTQZ
subjectto Cz=d

where

0 =diag(1,2/3,2), C=[2 1 -1], d=-4

e since Q is invertible and C is a nonzero row vector, the solution is

2= (ug,u1,50) = Q7'CT(CcQ'C)d = (- 3,-1,

constrained quadratic problems

1
3

)
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Inequality constrained problems

minimize  f(x)
subjectto g;(x) <0, i=1,....,m
hi(x)=0, j=1,...,p

o f:R" — Ris the objective function
e g; : R" — R are the inequality constraints functions

e 11; : R"™ — R are the equality constraints functions

g(x) = (g1(x), ..., gm(x))
h(-x) = (hl(x)7 RN hp (.X'))

X is a feasible point if it satisfies the constraints (g(xX) < 0, k(x) = 0)

inequality constrained problems
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Lagrangian

the Lagrangian associated with problem (8.6) is
m P
L(x,p,2) = f(x) + D pigi(x) + D Ajhj(x)
i=1 j=1

e yeR™and A € R?
e 1 and A are often called Lagrange multipliers vectors

e the gradient of the Lagrangian with respect to x is

m p
ViL(x,u, ) = Vf(x)+ ;ingi(x) + Zlflehj(x)
i= J=

inequality constrained problems
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Regular point

Active inequalities
e an inequality constraint g; (x) < 0 is active at X if g;(X) =0
e itis inactive at X if g;(x) <0

e we let 7 (x) denote the set of indices i for the active constraints at x:

I(x) ={ilgi(x) =0}
Regular point: a feasible point X is a regular point if the vectors
Vgi(%), Vhj(x), i€el(x),j=1,...,p

are linearly independent
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Motivation of optimality conditions

if x° is a local minimizer of (8.6), then it is a local minimizer of the problem:

minimize  f(x)
subjectto  g;(x) =0, i € 7 (x°), h(x) =

e applying Lagrange conditions (8.2) to the above problem, we have

Vi) + >, pivgi(x® )+Z/l Vhj(x°) =0

iel(x°)

e in terms of the original problem, we can write the above condition as

m P

V(%) + 3 uiVei(x®) + 3 A5Vh;(x°) = 0
i=1 J=1

pi =0fori ¢ I(x°) = g;(x)us =

it can be shown that w; > 0 fori € 1 (x°)

inequality constrained problems
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Karush-Kuhn-Tucker (KKT) conditions

if x° is regular and a local minimizer, then there exists u° € R™, 1° € R? such that:

ViL(x°,u°,2°%) =0 (8.72)
gi(x°) <0, i=1,...,m (8.7b)
hj(x°) =0, j=1,...,p (8.7¢)

w20, i=1,...,m (8.7d)
ugi(x°) =0, i=1,....m (8.7¢)

A° and u° are called the Lagrange multiplier and KKT multiplier vectors (or just
Lagrange multiplier vectors)

Complementary slackness: condition 7 g;(x°) = 0 implies that
* gi(x°) <0=pu; =0
o 1P>0=gi(x°) =0

called the complementary slackness
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Example

minimize x% + x% + X1X2 — 3x1
subjectto x; > 0,x2 >0
e the Lagrangian is
_ .2, .2
L(x,u) = x7 +x5 +Xx1x — 3xX1 — 41X — HaX

e note that g(x) = (—x1, —x2) and the KKT conditions are

e = [ 500 <0
u=0

—x <0

Hix1 =0

Hoxo =0
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e to find a solution, assume u; = 0, xo = 0; then, solving the above, we have

3 0
w=[i) w-
which satisfy the KKT conditions

e for us = 0,x; =0, we getxe =0, 1 = —3, which violates the condition & > 0

e other combinations x; = xo = 0 and p; = us = 0 also violates KKT condition

inequality constrained problems 8.42



Necessary conditions: inequality constrained case

Tangent space
7 (x) ={y | Dh(x)y =0, Vg;i(x)Ty =0, i € I (x)}

e I (x)={i|gi(x) =0} is the set with active constraints indices
e tangent space is the set of feasible directions with active constraints

Necessary conditions

suppose x° is regular and a local minimizer, then there exists u°, 1° such that:
e the KKT conditions (8.7) hold; and

e forally € 7(x°), we have

YIVALGE, 1%, %)y 2 0
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Sufficient conditions: inequality constrained case

Critical tangent space
T(x) ={y | Dh(x)y =0, Vg;(x)Ty =0, i € T (x)}

where 7 (x) = {i | gi(x) = 0, u; > 0}

Sufficient conditions: suppose there exists points x°, 1°, 1° such that the KKT
conditions (8.7) hold and for all y € 7 (x°), y # 0, we have

yIVEL(x°,2°, 1)y > 0

then, x° is a strict local minimizer of (8.6)
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Example

minimize  x1Xo
subjectto x1 +x9>2, x1—x2<0

e the Lagrangian is
L(x, ) =x1x0 + p1(2 —x1 —x2) + pa(xy — x2)
e we have g1(x) =2 —x1 —x2 and g2(x) = x1 — x2 and the KKT conditions are
Xo — M1+ U2
ViL(x,u) =
xL(x, p) [xl_ﬂl_m
2—x1—-x2<0

X1 —x9 <0
M1, 2 20
H1(2=x1—x2) =0
p2(x1 —x2) =0
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e it can be verified that 1 # 0 and s = 0
e solving with 15 = 0, we arrive at one solution: X1 = X3 = 1,3 = 1,42 =0
e at this solution, the constraints are active, and
Ve =[] vew-| | vaa-|]
the vectors Vg1 (x), Vgo(X) are linearly independent, hence X is regular
e since both constraints are active, the tangent space is
T ={y|V§:(®)Ty =0, Vg2(0)7y = 0} = {0}

e thus, y'V2L(%, i)y = Ofor y € 7 and & is a candidate local minimizer

inequality constrained problems
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e we now check the sufficient conditions; since po = 0, the critical tangent space is

T ={y|Vgi(®)Ty =0}
={yl =y1-y2=0}
={y|y1=-y2}

e fory e 7,y # 0, we have

0 1
yT y=2y1y2 = —2y2 <0
1 0
this means that the sufficient condition does not hold

e hence, X is not a local minimizer (it is also not a local maximizer)
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Example

minimize  (x; — 1)% + x3 — 2
subjectto xo =x1+1, x1+x2<2

e we have h(x) = xo —x; — 1 and g(x) = x; + x2 — 2 and
-1 1
are linearly independent
e all feasible points are regular and a local solution must satisfy the KKT conditions
e the Lagrangian is

L) =(x1 =12 +x0 -2+ u(xq +x3—2) + A(xg —x1 — 1)
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e KKT conditions:
[2x1—2+,u—/l] _0
1+u+4
uxi+x0-2)=0
u=0
Xo—x1—1=0
X1+x20—-2<0

e for ;1 > 0, we will get an invalid solution

e solving with u = 0, we arrive at the solution

[\l [9N}

, A=-1

o=

X1 =35, X2 =

e the point £ = (3, 3) is a local minimizer candidate

inequality constrained problems
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o the Hessian of the Lagrangian is

2 0
V)QCL(_X,,U,/l) = [0 0]
for all x (positive semi-definite)

e since u = 0, the critical tangent space is:

T={|Va®Ty=0}={y| —y1 +y2=0}
={y=(a,a)|a e R}

e fory e‘7f,we have
r(2 0 =242>0
Y 0 0 Y ’

which is positive-definite; therefore, the point X is a local minimizer
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Outline

e equality constrained problems
e constrained quadratic problems
e inequality constrained problems

e projected gradient descent



Projection

the projection of x € R" onto a set X C R" is defined as

IIx(x) = argmin ||z — x||
zeX

e projection Iy (x) is the “closest” point in X to x

e for certain constraints, the projection can be computed in closed form

Examples

e box constraint

u; ifx; >u;
X={x|li<xi<u;,i=1,...,n} (Mx(x)); =<9x; ifl; <x; <uy
l,' ifxl-<li

e unit ball constraint: X = {x | ||x]|*> = 1}, Hx (x) = x/||x]|

projected gradient descent
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Gradient descent and projection

minimize f(x)
subject to xeX

e x € R"isvariable; f : R" —» R
e X is the constraint set
the gradient descent update has the form:
Fk+1) (k) _ aka(x(k>)
e the point x &+ s not guaranteed to be in X even if x®) is
e to guarantee feasibility, we can modify the update to

RALARDES § P (x<k) - aka(x(k>))
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Projected gradient descent

given a starting pointx(o) and a solution tolerance € > 0
repeatfor k =0,1,...
1. choose a stepsize ay
2. update x**1):
x D = Ty (x®) = 0, VF(xR)))

if |Jx K*+1) — x(K)|| < € stop and x**1) is output

IIx(x) = argmin ||z — x||
zeX
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Examples

o for the problem

minimize %x TOx

subjectto x| =1

the projected gradient descent update is

1
(k+1) _ (k)
X = (I - axQ)x
(7 = axQ)x ™|

o for the problem
minimize  (1/2)x70x + rTx
subjectto x>0

the projected gradient descent update is
K = (O — (@ + 1))

where (-); replaces negative entries with zero

projected gradient descent
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