
7. Least squares

• linear least-squares

• regularized least-squares

• nonlinear least squares

• Gauss-Newton method

• Levenberg-Marquardt method
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Linear least-squares

Inconsistent linear equations

Ax = b

• A = [aij ] ∈ Rm×n is tall matrix m > n and b = (b1, . . . , bm) ∈ Rm

• if the system is inconsistent (rankA ̸= rank[A b]), then it has no solution
and it is desirable to find an x such that Ax ≈ b

(linear) Least squares problem

minimize ∥Ax− b∥2 =
∑m

i=1

(∑n
j=1 aijxj − bi

)2

(7.1)

• r = Ax− b is called the residual

• A and b are normally called the data for the problem
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Column and row interpretations

let ai denote the ith column of A and âTj denote the jth row of A:

A =
[
a1 · · · an

]
or A =

 âT1
...

âTm


Row interpretation

minimize ∥Ax− b∥2 = (âT1x− b1)
2 + · · ·+ (âTmx− bm)2

minimize the sum of squares of the residuals ri = âTix− bi

Column interpretation

minimize ∥Ax− b∥2 = ∥(x1a1 + · · ·+ xnan)− b∥2

find the coefficients of the linear combination of the columns that is closest to
the m vector b
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Solution

Normal equations: the solution of the least squares problem must satisfy the
normal equations

ATAx⋆ = ATb (7.2)

• any x satisfying (7.2) is a global minimizer since ∇2f(x) = 2ATA ≥ 0

• if the columns of A are linearly independent, then the solution is unique:

x⋆ = (ATA)−1ATb

MATLAB command

>> A=[] % define the matrix A

>> b=[] % define the vector b

>> x=A\b % solution
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Example 7.1

we are given two different types of concrete:

• the first type contains 30% cement, 40% gravel, and 30% sand (all
percentages of weight)

• the second type contains 10% cement, 20% gravel, and 70% sand

how many pounds of each type of concrete should you mix together so that
you get a concrete mixture that has as close as possible to a total of 5 pounds
of cement, 3 pounds of gravel, and 4 pounds of sand?
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• letting x1 and x2 to be the amounts of concrete of the first and second
types, the above problem can be formulated as the least squares problem:

minimize

∥∥∥∥∥∥
0.3 0.1
0.4 0.2
0.3 0.7

[
x1

x2

]
−

53
4

∥∥∥∥∥∥
2

= ∥Ax− b∥2,

where x = (x1, x2)

• since the columns of A are linearly independent, the solution is

x⋆ = (ATA)−1ATb =

[
10.6
0.961

]
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Optimality verification using algebra

∥Ax− b∥2 = ∥(Ax−Ax⋆) + (Ax⋆ − b)∥2

= ∥A(x− x⋆)∥2 + ∥Ax⋆ − b∥2

+ 2(Ax−Ax⋆)T(Ax⋆ − b)

using ATAx⋆ = ATb, the cross product term is zero; this implies that

∥Ax− b∥2 = ∥A(x− x⋆)∥2 + ∥Ax⋆ − b∥2

• since ∥A(x− x⋆)∥2 ≥ 0, we have ∥Ax− b∥2 ≥ ∥Ax⋆ − b∥2

• if the columns of A are linearly independent, then ∥A(x− x⋆)∥2 > 0 and
∥Ax− b∥2 > ∥Ax⋆ − b∥2 for x ̸= x⋆
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Geometric interpretation

Orthogonality principle: the optimal residual r⋆ = Ax⋆ − b is orthogonal to
the columns of A

Ax⋆

a2

r⋆

b

a1

range(A)

for any n-vector v, then we have

(Av)Tr⋆ = (Av)T(Ax⋆ − b) = vTAT(Ax⋆ − b) = vT0 = 0,

where the zero is due to the normal equation (7.2)
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Data fitting

given m data points (zi, yi) where zi ∈ Rn and yi ∈ R, we want to find a
function g : Rn → R such that

g(zi) ≈ yi, i = 1, . . . ,m (7.3)

assume that the function g has the linear structure

g(z) = x1g1(z) + x2g2(z) + · · ·+ xngn(z)

• gi(z) are given functions, referred to as basis functions
• xi are unknown parameters
• we want to estimate x such that the approximation (7.3) is “good”

Least-squares formulation: minimize ∥Ax− b∥2 where

A =


g1(z1) g2(z1) · · · gn(z1)
g1(z2) g2(z2) · · · gn(z2)

... ... ...
g1(zm) g2(zm) · · · gn(zm)

 , b =


y1
y2
...
ym
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Line fitting

(zi, yi)

find a straight line that best fits the data (zi, yi):

x1 + x2zi ≈ yi

• x1 is the displacement
• x2 is the slope of the line
• g(z) = x1 + x2z, g1(z) = 1, g2(z) = z

A =


1 z1
1 z2
... ...
1 zm

 , b =


y1
y2
...
ym

 , x =

[
x1

x2

]
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Example 7.2

we want fit a straight line yi ≈ x1 + x2zi to the data:

(z1, y1) = (2, 3), (z2, y2) = (3, 4), (z3, y3) = (4, 15)

• we can minimize
3∑

i=1

(x1 + x2zi − yi)
2

= (x1 + 2x2 − 3)2 + (x1 + 3x2 − 4)2 + (x1 + 4x2 − 15)2 = ∥Ax− b∥2

where

A =

1 2
1 3
1 4

 , b =

 3
4
15

 , x =

[
x1

x2

]
• the solution is

x⋆ =

[
x⋆
1

x⋆
2

]
= (ATA)−1ATb =

[
−32/3

6

]
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Linear estimation (regression)

we have m measurements y1, . . . , ym of some time-varying linear system:

yt = hT
tx+ vt, t = 1, . . . ,m

where hT
t are known or measured linear system parameters, and vt is an

unknown small measurement noise

• the estimation problem is to find a good x such that yt − hT
tx is minimized

for all t

• we can formulate this as a least square problem with

A =

hT
1
...

hT
m

 , b =

 y1
...
ym
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Example 7.3

• we apply a 1-ampere current through the resistor and measure a noisy
voltage across it

• we have n measurements

Vi = R+ ni i = 1, . . . , n

we wish to find R that best fits our measurements

this problem can be formulated as

minimize

∥∥∥∥∥∥∥∥

1
1
...
1

R−


V1

V2

...
Vn


∥∥∥∥∥∥∥∥
2

least-squares problem with A = 1 and b = (V1, . . . , Vn); hence solution is

R⋆ = (ATA)−1ATb =
1

n

n∑
i=1

Vi
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Example 7.4

• a wireless transmitter sends three signals s0, s1, and s2 at times
t = 0, 1, 2; the transmitted signal takes two paths to the receiver:

I. direct path, with delay 10 and attenuation factor α1

II. indirect (reflected) path, with delay 12 and attenuation factor α2

• the received signal is measured from times t = 10 to t = 14, which is the
sum of the signals from these two paths, with their respective delays and
attenuation factors plus some unknown noise

10 11 12

Receiver

risi

i

Transmitter

i
0 1 2 13 14
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find the channel attenuation factors α1 and α2 that “best” fits the signals:

s = (s0, s1, s2) = (1, 2, 1)

(r10, r11, r12, r13, r14) = (4, 7, 8, 6, 3)

we can formulate this as a least-squares problem with

A =


s0 0
s1 0
s2 s0
0 s1
0 s2

 , b =


r10
r11
r12
r13
r14

 , x =

[
α1

α2

]

the least-squares solution is

x⋆ = (ATA)−1ATb

=

[
∥s∥2 s0s2
s0s2 ∥s∥2

]−1 [
s0r10 + s1r11 + s0r12
s0r12 + s1r13 + s0r14

]
=

[
6 1
1 6

]−1 [
4 + 14 + 8
8 + 12 + 3

]
=

[
133
35
112
35

]
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Outline
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• regularized least-squares

• nonlinear least squares
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Regularized least-squares

minimize ∥Ax− b∥2 + ρ∥Rx∥2

• R ∈ Rp×n is the regularization matrix and ρ is the regularization
parameter

• large ρ gives more emphasis on making the term ρ∥Rx∥2 small

Why regularization?
• utilize some prior information about x
• useful for algorithm implementations

Solution:

(ATA+ ρRTR)x = ATb

if ATA+ ρRTR is invertible, then

x⋆ = (ATA+ ρRTR)−1ATb

SA — ENGR507regularized least-squares 7.16



Example: signal de-noising

• x = (x1, x2, . . . , xn) represent some signal (e.g., audio signals)

• xi represents the value of the signal sampled at time i

• the signal can be measured with some additive noise

s = x+ v

where v is some noise

• the signal does not vary too much |xi+1 − xi| << 1

• given s, we want to find a “good” estimate of x

Naive solution: directly set x = s; however, this can result in a bad estimate
if some noise components vi are large
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Least-squares formulation

minimize ∥x− s∥2 + ρ∥Rx∥2

• ρ is a smoothing regularization parameter
• R is an (n− 1)× n smoothing matrix:

∥Rx∥2 =

n−1∑
i=1

(xi − xi+1)
2

the matrix R has the structure

R =


1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1

 ∈ R(n−1)×n

• the optimal solution is given by

x⋆(ρ) = (I + ρRTR)−1s
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Nonlinear least squares

minimize ∥r(x)∥2 = r1(x)
2 + · · ·+ rm(x)2

• r : Rn → Rm is nonlinear function with components ri : Rn → R
• when r(x) = Ax− b, we recover the linear least-squares problem

• nonlinear least squares are hard to solve

• solution solves/approximate the solution to a set of m nonlinear equations:

ri(x) = 0, i = 1, . . . ,m
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Location from distance of measurements

• locate some object with unknown location x ∈ Rn (n = 2 or n = 3)

• we have some noisy measurements of the distance to from x to some
known locations yi:

γi = ∥x− yi∥+ vi, i = 1, . . . ,m

where vi is some small measurement noise

• we can estimate the position of x by solving

minimize
m∑
i=1

(∥x− yi∥ − γi)
2

this is a nonlinear least-squares problem with ri(x) = ∥x− yi∥ − γi
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Nonlinear data-fitting

Model fitting problem

• we have m data points or measurements (zi, yi), i = 1, . . . ,m , where
zi ∈ Rn and yi ∈ R

• these points are approximately related by the equation

g(zi;x) ≈ yi, i = 1, . . . ,m (7.4)

where g : Rn → R is known and x are unknown parameters

Nonlinear least squares formulation

minimize
m∑
i=1

(g(zi;x)− yi)
2

if g is linear in parameters xi, then we get a linear least-squares
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Example 7.5

• given m measurements, y1, y2, . . . , ym, at m points of time, t1, . . . , tm of
a sinusoidal signal:

yi = β sin(ωti + ϕ) + n(ti)

where n(ti) is a random noise

• find the parameters β, ω and ϕ that gives some optimal fit to these
measurements

Nonlinear least-squares formulation

minimize
m∑
i=1

ri(x)
2 =

m∑
i=1

(
yi − β sin(ωti + ϕ)

)2
with variable x = (β, ω, ϕ) and ri(x) = yi − β sin(ωti + ϕ)
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Classification

Classification problem

• we have m training data points (zi, yi), i = 1, . . . ,m, where yi can take
certain discrete values

• we want to fit the data to the model g(zi) ≈ yi

• determine which class the a new data point z belongs to

Boolean classification

• y ∈ {+1,−1}
• values of y can represent two categories such as true/false, spam/not

spam, dog/cat...etc

• the model g(z) ≈ y is called a Boolean classifier
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Least squares classifier

we are given the data points (zi, yi), i = 1, . . . ,m and a linear in parameter
model

g(z) = x1g1(z) + x2g2(z) + · · ·+ xngn(z)

we want to determine whether new data zm+1 belong to class +1 or class −1

Least squares Boolean classifier

• solve linear least-squares data-fitting problem to find the parameters
x1, . . . , xn

• take the sign of g(z) to get the Boolean classifier:

ĝ(z) = sign(g(z)) =

{
+1 if g(z) ≥ 0

−1 if g(z) < 0

better results if we solve a nonlinear least squares problem
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Nonlinear formulation

minimize
m∑
i=1

(
ϕ
(
x1g1(zi) + x2g2(zi) + · · ·+ xngn(zi)

)
− yi

)2

where ϕ : R → R is the sigmoidal function:

ϕ(u) =
eu − e−u

eu + e−u
,

which is a differentiable approximation of sign(u)

−4 −2 2 4

−1

1

u

ϕ(u)
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Linear least square approximation at each iteration

given an estimate of a solution x(k) at time k, the Gauss-Newton method
produces a new estimate x(k+1) that solves the problem

minimize ∥r̂(x;x(k))∥2 = ∥r(x(k)) +Dr(x(k))(x− x(k))∥2

• r̂(x;x(k)) is first order Taylor approximation around z:

r(x) ≈ r̂(x; z) = r(z) +Dr(z)(x− z) if x is close to z

• the above problem is a linear least-squares problem with

A = Dr(x(k)), b = Dr(x(k))x(k) − r(x(k))
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Gauss-Newton method

setting x(k+1) to be the solution of the previous problem, we have

x(k+1) = (ATA)−1ATb

=

(
Dr(x(k))TDr(x(k))

)−1

Dr(x(k))T
(
Dr(x(k))x(k) − r(x(k))

)
= x(k) −

(
Dr(x(k))TDr(x(k))

)−1

Dr(x(k))Tr(x(k))

• assumes that A = Dr(x(k)) has linearly independent columns

• if converged x(k+1) = x(k), then

Dr(x(k))Tr(x(k)) = 0

hence x(k) satisfies the optimality condition since the gradient of ∥r(x)∥2
is 2Dr(x)Tr(x)
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Stopping criteria

• if x(k+1) = x(k), then x(k) satisfies the optimality condition

• this does not mean that x(k) is a good solution since it can be a local
minimizer, local maximizer, or a saddle-point

• in practice, the algorithm can be stopped if ∥r(x(k))∥2 is small enough

• it is also common to run the algorithm from different starting points and
choose the best solution of these multiple runs
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Gauss-Newton algorithm

Algorithm Gauss-Newton algorithm

given a starting point x(0) and solution tolerance ϵ

repeat for k ≥ 0:

1. evaluate Dr(x(k)) = (∇r1(x(k))T, . . . ,∇rm(x(k))T)

2. set

x(k+1) = x(k) −
(
Dr(x(k))TDr(x(k))

)−1

Dr(x(k))Tr(x(k))

if ∥r(x(k))∥2 ≤ ϵ stop and output x(k+1)

Gauss-Newton step is

dgn = −
(
Dr(x(k))TDr(x(k))

)−1

Dr(x(k))Tr(x(k))
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Relation to Newton’s method

f(x) = 1
2∥r(x)∥

2 = 1
2

(
r1(x)

2 + · · ·+ rm(x)2
)

• gradient and Hessian of the above function are

∇f(z) = Dr(z)Tr(z)

∇2f(z) = Dr(z)TDr(z) +

m∑
j=1

rj(z)∇2rj(z)

• suppose we approximate the Hessian by

∇2f(z) ≈ Dr(z)TDr(z)

• then, using this approximation, the (undamped) Newton update becomes

x(k+1) = x(k) −
(
Dr(x(k))TDr(x(k))

)−1

Dr(x(k))Tr(x(k))

the above update is the basic Gauss-Newton update
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Issues with Gauss-Newton method

an advantage of Gauss-Newton is that it only computes first-order derivatives
where Newton’s method computes the Hessian; however, it has some issues:

• when x(k+1) is not close to x(k), the affine approximation will not be
accurate and the algorithm may fail

• a second major issue is that columns of the matrix Dr(x(k)) may not
always be linearly independent; in this case, the next iterate is not defined
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Numerical Example II

r(x) = ex − e−x − 1

since r′(x) = ex + e−x, the Gauss-Newton iteration is

x(k+1) = x(k) −
ex

(k) − e−x(k) − 1

ex
(k)

+ e−x(k)

evolution of the error with initial point at x(0) = 5; the algorithm quickly
converges to x⋆ = 0.4812
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Numerical Example III

ri(x) =
√
(x1 − pi)2 + (x2 − qi)2 − γi, i = 1, . . . , 5

where pi, qi, γi are given

the gradient of ri is

∇ri(x) =

 x1−pi√
(x1−pi)2+(x2−qi)2

x2−qi√
(x1−pi)2+(x2−qi)2


thus, the Jacobian of r is

Dr(x) =



x1−p1√
(x1−p1)2+(x2−q1)2

x2−q1√
(x1−p1)2+(x2−q1)2

x1−p2√
(x1−p2)2+(x2−q2)2

x2−q2√
(x1−p2)2+(x2−q2)2

x1−p3√
(x1−p3)2+(x2−q3)2

x2−q3√
(x1−p3)2+(x2−q3)2

x1−p4√
(x1−p4)2+(x2−q4)2

x2−q4√
(x1−p4)2+(x2−q4)2

x1−p5√
(x1−p5)2+(x2−q5)2

x2−q5√
(x1−p5)2+(x2−q5)2


where we assume (x1, x2) ̸= (pi, qi)
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results with data p =


8
2.0
1.5
1.5
2.5

 , q =


5
1.7
1.5
2.0
1.5

 , γ =


1.87
1.24
0.53
1.29
1.49



the evolution of the error with initial point at x(0) = (1, 3); the algorithm converges to
solution x⋆ = (1.1833, 0.8275)
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Regularized approximate problem

minimize ∥r(x(k)) +Dr(x(k))(x− x(k))∥2 + ρk∥x− x(k)∥2

• regularization fixes invertibility issue of Gauss-Newton

• regularization parameter ρk controls how close x(k+1) is to x(k)

• the above problem can be rewritten as

minimize

∥∥∥∥[Dr(x(k))√
ρkI

]
x−

[
Dr(x(k))x(k) − r(x(k))√

ρkx
(k)

]∥∥∥∥2
this is just a least-squares problem with cost ∥Ax− b∥2 where

A =

[
Dr(x(k))√

ρkI

]
, b =

[
Dr(x(k))x(k) − r(x(k))√

ρkx
(k)

]
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the solution is

x(k+1) = x(k) −
(
Dr(x(k))TDr(x(k)) + ρkI

)−1

Dr(x(k))Tr(x(k))

Updating ρ

• if ρk is very small, then x(k+1) can be far from x(k), and the method may
fail

• if ρk is large enough, then x(k+1) becomes close to x(k) and the affine
approximation will be accurate enough

• a simple way to update ρk is to check whether

∥r(x(k+1))∥2 < ∥r(x(k))∥2

if so, then we can decrease ρk+1; otherwise, we increase ρk+1
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Algorithm Levenberg-Marquardt algorithm
given a starting point x(0), solution tolerance ϵ, and ρ0 > 0

repeat for k ≥ 0

1. evaluate Dr(x(k)) = (∇r1(x(k))T, . . . ,∇rm(x(k))T)

2. update

x(k+1) = x(k) −
(
Dr(x(k))TDr(x(k)) + ρkI

)−1

Dr(x(k))Tr(x(k))

if ∥r(x(k))∥2 ≤ ϵ stop and output x(k+1)

3. if ∥r(x(k+1))∥2 < ∥r(x(k))∥2, then decrease ρk+1 (e.g., ρk+1 = 0.9ρk); otherwise,
increase ρk+1 (e.g., ρk+1 = 10ρk)
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Numerical example IV

• data-fitting problem with ri(β, ω, ϕ) = yi − β sin(ωti + ϕ)

• find (β, ω, ϕ) given m = 20 data points
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• for this problem, we have

∇ri(β, ω, ϕ) =

 − sin(ωti + ϕ)
−βti cos(ωti + ϕ)
−β cos(ωti + ϕ)


• applying Levenberg-Marquardt algorithm gives
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