7. Least squares

- linear least-squares
- regularized least-squares
- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method

Linear least-squares

Inconsistent linear equations

$$
A x=b
$$

- $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$ is tall matrix $m>n$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$
- if the system is inconsistent ($\operatorname{rank} A \neq \operatorname{rank}[A \boldsymbol{b}])$, then it has no solution and it is desirable to find an \boldsymbol{x} such that $A \boldsymbol{x} \approx \boldsymbol{b}$
(linear) Least squares problem

$$
\begin{equation*}
\text { minimize }\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2} \tag{7.1}
\end{equation*}
$$

- $\boldsymbol{r}=A \boldsymbol{x}-\boldsymbol{b}$ is called the residual
- A and b are normally called the data for the problem

Column and row interpretations

let \boldsymbol{a}_{i} denote the i th column of A and $\hat{\boldsymbol{a}}_{j}^{T}$ denote the j th row of A :

$$
A=\left[\begin{array}{lll}
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{n}
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{c}
\hat{\boldsymbol{a}}_{1}^{T} \\
\vdots \\
\hat{\boldsymbol{a}}_{m}^{T}
\end{array}\right]
$$

Row interpretation

$$
\text { minimize }\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\left(\hat{\boldsymbol{a}}_{1}^{T} \boldsymbol{x}-b_{1}\right)^{2}+\cdots+\left(\hat{\boldsymbol{a}}_{m}^{T} \boldsymbol{x}-b_{m}\right)^{2}
$$

minimize the sum of squares of the residuals $r_{i}=\hat{\boldsymbol{a}}_{i}^{T} \boldsymbol{x}-b_{i}$
Column interpretation

$$
\text { minimize }\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\left\|\left(x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}\right)-\boldsymbol{b}\right\|^{2}
$$

find the coefficients of the linear combination of the columns that is closest to the m vector \boldsymbol{b}

Solution

Normal equations: the solution of the least squares problem must satisfy the normal equations

$$
\begin{equation*}
A^{T} A \boldsymbol{x}^{\star}=A^{T} \boldsymbol{b} \tag{7.2}
\end{equation*}
$$

- any x satisfying (7.2) is a global minimizer since $\nabla^{2} f(x)=2 A^{T} A \geq 0$
- if the columns of A are linearly independent, then the solution is unique:

$$
\boldsymbol{x}^{\star}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

MATLAB command

>> $A=[]$ \% define the matrix A
$\gg \mathrm{b}=[] \%$ define the vector b
>> $\mathrm{x}=\mathrm{A} \backslash \mathrm{b} \%$ solution

Example 7.1

we are given two different types of concrete:

- the first type contains 30% cement, 40% gravel, and 30% sand (all percentages of weight)
- the second type contains 10% cement, 20% gravel, and 70% sand
how many pounds of each type of concrete should you mix together so that you get a concrete mixture that has as close as possible to a total of 5 pounds of cement, 3 pounds of gravel, and 4 pounds of sand?
- letting x_{1} and x_{2} to be the amounts of concrete of the first and second types, the above problem can be formulated as the least squares problem:

$$
\text { minimize }\left\|\left[\begin{array}{ll}
0.3 & 0.1 \\
0.4 & 0.2 \\
0.3 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
5 \\
3 \\
4
\end{array}\right]\right\|^{2}=\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

where $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$

- since the columns of A are linearly independent, the solution is

$$
\boldsymbol{x}^{\star}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\left[\begin{array}{c}
10.6 \\
0.961
\end{array}\right]
$$

Optimality verification using algebra

$$
\begin{aligned}
\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}= & \left\|\left(A \boldsymbol{x}-A \boldsymbol{x}^{\star}\right)+\left(A \boldsymbol{x}^{\star}-\boldsymbol{b}\right)\right\|^{2} \\
= & \left\|A\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right\|^{2}+\left\|A \boldsymbol{x}^{\star}-\boldsymbol{b}\right\|^{2} \\
& +2\left(A \boldsymbol{x}-A \boldsymbol{x}^{\star}\right)^{T}\left(A \boldsymbol{x}^{\star}-\boldsymbol{b}\right)
\end{aligned}
$$

using $A^{T} A \boldsymbol{x}^{\star}=A^{T} \boldsymbol{b}$, the cross product term is zero; this implies that

$$
\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\left\|A\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right\|^{2}+\left\|A \boldsymbol{x}^{\star}-\boldsymbol{b}\right\|^{2}
$$

- since $\left\|A\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right\|^{2} \geq 0$, we have $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2} \geq\left\|A \boldsymbol{x}^{\star}-\boldsymbol{b}\right\|^{2}$
- if the columns of A are linearly independent, then $\left\|A\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right\|^{2}>0$ and $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}>\left\|A \boldsymbol{x}^{\star}-\boldsymbol{b}\right\|^{2}$ for $\boldsymbol{x} \neq \boldsymbol{x}^{\star}$

Geometric interpretation

Orthogonality principle: the optimal residual $\boldsymbol{r}^{\star}=A \boldsymbol{x}^{\star}-\boldsymbol{b}$ is orthogonal to the columns of A

for any n-vector \boldsymbol{v}, then we have

$$
(A \boldsymbol{v})^{T} \boldsymbol{r}^{\star}=(A \boldsymbol{v})^{T}\left(A \boldsymbol{x}^{\star}-\boldsymbol{b}\right)=\boldsymbol{v}^{T} A^{T}\left(A \boldsymbol{x}^{\star}-\boldsymbol{b}\right)=\boldsymbol{v}^{T} \mathbf{0}=\mathbf{0}
$$

where the zero is due to the normal equation (7.2)

Data fitting

given m data points $\left(\boldsymbol{z}_{i}, y_{i}\right)$ where $\boldsymbol{z}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$, we want to find a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
g\left(\boldsymbol{z}_{i}\right) \approx y_{i}, \quad i=1, \ldots, m \tag{7.3}
\end{equation*}
$$

assume that the function g has the linear structure

$$
g(\boldsymbol{z})=x_{1} g_{1}(\boldsymbol{z})+x_{2} g_{2}(\boldsymbol{z})+\cdots+x_{n} g_{n}(\boldsymbol{z})
$$

- $g_{i}(\boldsymbol{z})$ are given functions, referred to as basis functions
- x_{i} are unknown parameters
- we want to estimate \boldsymbol{x} such that the approximation (7.3) is "good"

Least-squares formulation: minimize $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$ where

$$
A=\left[\begin{array}{cccc}
g_{1}\left(\boldsymbol{z}_{1}\right) & g_{2}\left(\boldsymbol{z}_{1}\right) & \cdots & g_{n}\left(\boldsymbol{z}_{1}\right) \\
g_{1}\left(\boldsymbol{z}_{2}\right) & g_{2}\left(\boldsymbol{z}_{2}\right) & \cdots & g_{n}\left(\boldsymbol{z}_{2}\right) \\
\vdots & \vdots & & \vdots \\
g_{1}\left(\boldsymbol{z}_{m}\right) & g_{2}\left(\boldsymbol{z}_{m}\right) & \cdots & g_{n}\left(\boldsymbol{z}_{m}\right)
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Line fitting

find a straight line that best fits the data $\left(z_{i}, y_{i}\right)$:

$$
x_{1}+x_{2} z_{i} \approx y_{i}
$$

- x_{1} is the displacement
- x_{2} is the slope of the line
- $g(z)=x_{1}+x_{2} z, g_{1}(z)=1, g_{2}(z)=z$

$$
A=\left[\begin{array}{cc}
1 & z_{1} \\
1 & z_{2} \\
\vdots & \vdots \\
1 & z_{m}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
$$

Example 7.2

we want fit a straight line $y_{i} \approx x_{1}+x_{2} z_{i}$ to the data:

$$
\left(z_{1}, y_{1}\right)=(2,3), \quad\left(z_{2}, y_{2}\right)=(3,4), \quad\left(z_{3}, y_{3}\right)=(4,15)
$$

- we can minimize

$$
\begin{aligned}
& \sum_{i=1}^{3}\left(x_{1}+x_{2} z_{i}-y_{i}\right)^{2} \\
& =\left(x_{1}+2 x_{2}-3\right)^{2}+\left(x_{1}+3 x_{2}-4\right)^{2}+\left(x_{1}+4 x_{2}-15\right)^{2}=\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}
\end{aligned}
$$

where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
3 \\
4 \\
15
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- the solution is

$$
\boldsymbol{x}^{\star}=\left[\begin{array}{l}
x_{1}^{\star} \\
x_{2}^{\star}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\left[\begin{array}{c}
-32 / 3 \\
6
\end{array}\right]
$$

Linear estimation (regression)

we have m measurements y_{1}, \ldots, y_{m} of some time-varying linear system:

$$
y_{t}=\boldsymbol{h}_{t}^{T} \boldsymbol{x}+v_{t}, \quad t=1, \ldots, m
$$

where \boldsymbol{h}_{t}^{T} are known or measured linear system parameters, and v_{t} is an unknown small measurement noise

- the estimation problem is to find a good \boldsymbol{x} such that $y_{t}-\boldsymbol{h}_{t}^{T} \boldsymbol{x}$ is minimized for all t
- we can formulate this as a least square problem with

$$
A=\left[\begin{array}{c}
\boldsymbol{h}_{1}^{T} \\
\vdots \\
\boldsymbol{h}_{m}^{T}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Example 7.3

- we apply a 1-ampere current through the resistor and measure a noisy voltage across it
- we have n measurements

$$
V_{i}=R+n_{i} \quad i=1, \ldots, n
$$

we wish to find R that best fits our measurements
this problem can be formulated as

$$
\operatorname{minimize}\left\|\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] R-\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{n}
\end{array}\right]\right\|^{2}
$$

least-squares problem with $A=\mathbf{1}$ and $\boldsymbol{b}=\left(V_{1}, \ldots, V_{n}\right)$; hence solution is

$$
R^{\star}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\frac{1}{n} \sum_{i=1}^{n} V_{i}
$$

Example 7.4

- a wireless transmitter sends three signals s_{0}, s_{1}, and s_{2} at times $t=0,1,2$; the transmitted signal takes two paths to the receiver:
I. direct path, with delay 10 and attenuation factor α_{1}
II. indirect (reflected) path, with delay 12 and attenuation factor α_{2}
- the received signal is measured from times $t=10$ to $t=14$, which is the sum of the signals from these two paths, with their respective delays and attenuation factors plus some unknown noise

find the channel attenuation factors α_{1} and α_{2} that "best" fits the signals:

$$
\begin{aligned}
s=\left(s_{0}, s_{1}, s_{2}\right) & =(1,2,1) \\
\left(r_{10}, r_{11}, r_{12}, r_{13}, r_{14}\right) & =(4,7,8,6,3)
\end{aligned}
$$

we can formulate this as a least-squares problem with

$$
A=\left[\begin{array}{cc}
s_{0} & 0 \\
s_{1} & 0 \\
s_{2} & s_{0} \\
0 & s_{1} \\
0 & s_{2}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
r_{10} \\
r_{11} \\
r_{12} \\
r_{13} \\
r_{14}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
$$

the least-squares solution is

$$
\begin{aligned}
\boldsymbol{x}^{\star} & =\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b} \\
& =\left[\begin{array}{ll}
\|\boldsymbol{s}\|^{2} & s_{0} s_{2} \\
s_{0} s_{2} & \|\boldsymbol{s}\|^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
s_{0} r_{10}+s_{1} r_{11}+s_{0} r_{12} \\
s_{0} r_{12}+s_{1} r_{13}+s_{0} r_{14}
\end{array}\right] \\
& =\left[\begin{array}{ll}
6 & 1 \\
1 & 6
\end{array}\right]^{-1}\left[\begin{array}{l}
4+14+8 \\
8+12+3
\end{array}\right]=\left[\begin{array}{l}
\frac{133}{35} \\
\frac{112}{35}
\end{array}\right]
\end{aligned}
$$

Outline

- linear least-squares
- regularized least-squares
- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method

Regularized least-squares

$$
\operatorname{minimize} \quad\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}+\rho\|R \boldsymbol{x}\|^{2}
$$

- $R \in \mathbb{R}^{p \times n}$ is the regularization matrix and ρ is the regularization parameter
- large ρ gives more emphasis on making the term $\rho\|R \boldsymbol{x}\|^{2}$ small

Why regularization?

- utilize some prior information about \boldsymbol{x}
- useful for algorithm implementations

Solution:

$$
\left(A^{T} A+\rho R^{T} R\right) \boldsymbol{x}=A^{T} \boldsymbol{b}
$$

if $A^{T} A+\rho R^{T} R$ is invertible, then

$$
\boldsymbol{x}^{\star}=\left(A^{T} A+\rho R^{T} R\right)^{-1} A^{T} \boldsymbol{b}
$$

Example: signal de-noising

- $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ represent some signal (e.g., audio signals)
- x_{i} represents the value of the signal sampled at time i
- the signal can be measured with some additive noise

$$
s=\boldsymbol{x}+\boldsymbol{v}
$$

where \boldsymbol{v} is some noise

- the signal does not vary too much $\left|x_{i+1}-x_{i}\right| \ll 1$
- given s, we want to find a "good" estimate of \boldsymbol{x}

Naive solution: directly set $\boldsymbol{x}=\boldsymbol{s}$; however, this can result in a bad estimate if some noise components v_{i} are large

Least-squares formulation

$$
\operatorname{minimize}\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\rho\|R \boldsymbol{x}\|^{2}
$$

- ρ is a smoothing regularization parameter
- R is an $(n-1) \times n$ smoothing matrix:

$$
\|R \boldsymbol{x}\|^{2}=\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}
$$

the matrix R has the structure

$$
R=\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & -1
\end{array}\right] \in \mathbb{R}^{(n-1) \times n}
$$

- the optimal solution is given by

$$
\boldsymbol{x}^{\star}(\rho)=\left(I+\rho R^{T} R\right)^{-1} \boldsymbol{s}
$$

Outline

- linear least-squares
- regularized least-squares
- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method

Nonlinear least squares

$$
\text { minimize } \quad\|r(\boldsymbol{x})\|^{2}=r_{1}(\boldsymbol{x})^{2}+\cdots+r_{m}(\boldsymbol{x})^{2}
$$

- $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is nonlinear function with components $r_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- when $r(\boldsymbol{x})=A \boldsymbol{x}-\boldsymbol{b}$, we recover the linear least-squares problem
- nonlinear least squares are hard to solve
- solution solves/approximate the solution to a set of m nonlinear equations:

$$
r_{i}(\boldsymbol{x})=0, \quad i=1, \ldots, m
$$

Location from distance of measurements

- locate some object with unknown location $\boldsymbol{x} \in \mathbb{R}^{n}$ ($n=2$ or $n=3$)
- we have some noisy measurements of the distance to from \boldsymbol{x} to some known locations \boldsymbol{y}_{i} :

$$
\gamma_{i}=\left\|\boldsymbol{x}-\boldsymbol{y}_{i}\right\|+v_{i}, \quad i=1, \ldots, m
$$

where v_{i} is some small measurement noise

- we can estimate the position of x by solving

$$
\operatorname{minimize} \quad \sum_{i=1}^{m}\left(\left\|\boldsymbol{x}-\boldsymbol{y}_{i}\right\|-\gamma_{i}\right)^{2}
$$

this is a nonlinear least-squares problem with $r_{i}(\boldsymbol{x})=\left\|\boldsymbol{x}-\boldsymbol{y}_{i}\right\|-\gamma_{i}$

Nonlinear data-fitting

Model fitting problem

- we have m data points or measurements $\left(\boldsymbol{z}_{i}, y_{i}\right), i=1, \ldots, m$, where $\boldsymbol{z}_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$
- these points are approximately related by the equation

$$
\begin{equation*}
g\left(\boldsymbol{z}_{i} ; \boldsymbol{x}\right) \approx y_{i}, \quad i=1, \ldots, m \tag{7.4}
\end{equation*}
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is known and x are unknown parameters

Nonlinear least squares formulation

$$
\operatorname{minimize} \sum_{i=1}^{m}\left(g\left(\boldsymbol{z}_{i} ; \boldsymbol{x}\right)-y_{i}\right)^{2}
$$

if g is linear in parameters x_{i}, then we get a linear least-squares

Example 7.5

- given m measurements, $y_{1}, y_{2}, \ldots, y_{m}$, at m points of time, t_{1}, \ldots, t_{m} of a sinusoidal signal:

$$
y_{i}=\beta \sin \left(\omega t_{i}+\phi\right)+n\left(t_{i}\right)
$$

where $n\left(t_{i}\right)$ is a random noise

- find the parameters β, ω and ϕ that gives some optimal fit to these measurements

Nonlinear least-squares formulation

$$
\operatorname{minimize} \quad \sum_{i=1}^{m} r_{i}(\boldsymbol{x})^{2}=\sum_{i=1}^{m}\left(y_{i}-\beta \sin \left(\omega t_{i}+\phi\right)\right)^{2}
$$

with variable $\boldsymbol{x}=(\beta, \omega, \phi)$ and $r_{i}(\boldsymbol{x})=y_{i}-\beta \sin \left(\omega t_{i}+\phi\right)$

Classification

Classification problem

- we have m training data points $\left(\boldsymbol{z}_{i}, y_{i}\right), i=1, \ldots, m$, where y_{i} can take certain discrete values
- we want to fit the data to the model $g\left(\boldsymbol{z}_{i}\right) \approx y_{i}$
- determine which class the a new data point \boldsymbol{z} belongs to

Boolean classification

- $y \in\{+1,-1\}$
- values of y can represent two categories such as true/false, spam/not spam, dog/cat...etc
- the model $g(\boldsymbol{z}) \approx \boldsymbol{y}$ is called a Boolean classifier

Least squares classifier

we are given the data points $\left(\boldsymbol{z}_{i}, y_{i}\right), i=1, \ldots, m$ and a linear in parameter model

$$
g(\boldsymbol{z})=x_{1} g_{1}(\boldsymbol{z})+x_{2} g_{2}(\boldsymbol{z})+\cdots+x_{n} g_{n}(\boldsymbol{z})
$$

we want to determine whether new data \boldsymbol{z}_{m+1} belong to class +1 or class -1

Least squares Boolean classifier

- solve linear least-squares data-fitting problem to find the parameters x_{1}, \ldots, x_{n}
- take the sign of $g(\boldsymbol{z})$ to get the Boolean classifier:

$$
\hat{g}(\boldsymbol{z})=\operatorname{sign}(g(\boldsymbol{z}))= \begin{cases}+1 & \text { if } g(\boldsymbol{z}) \geq 0 \\ -1 & \text { if } g(\boldsymbol{z})<0\end{cases}
$$

better results if we solve a nonlinear least squares problem

Nonlinear formulation

$$
\operatorname{minimize} \sum_{i=1}^{m}\left(\phi\left(x_{1} g_{1}\left(\boldsymbol{z}_{i}\right)+x_{2} g_{2}\left(\boldsymbol{z}_{i}\right)+\cdots+x_{n} g_{n}\left(\boldsymbol{z}_{i}\right)\right)-y_{i}\right)^{2}
$$

where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is the sigmoidal function:

$$
\phi(u)=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}}
$$

which is a differentiable approximation of $\operatorname{sign}(u)$

Outline

- linear least-squares
- regularized least-squares
- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method

Linear least square approximation at each iteration

given an estimate of a solution $\boldsymbol{x}^{(k)}$ at time k, the Gauss-Newton method produces a new estimate $\boldsymbol{x}^{(k+1)}$ that solves the problem

$$
\operatorname{minimize} \quad\left\|\hat{r}\left(\boldsymbol{x} ; \boldsymbol{x}^{(k)}\right)\right\|^{2}=\left\|r\left(\boldsymbol{x}^{(k)}\right)+\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)\right\|^{2}
$$

- $\hat{r}\left(\boldsymbol{x} ; \boldsymbol{x}^{(k)}\right)$ is first order Taylor approximation around \boldsymbol{z} :

$$
r(\boldsymbol{x}) \approx \hat{r}(\boldsymbol{x} ; \boldsymbol{z})=r(\boldsymbol{z})+\operatorname{Dr}(\boldsymbol{z})(\boldsymbol{x}-\boldsymbol{z}) \quad \text { if } \boldsymbol{x} \text { is close to } \boldsymbol{z}
$$

- the above problem is a linear least-squares problem with

$$
A=\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right), \quad \boldsymbol{b}=\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{x}^{(k)}-r\left(\boldsymbol{x}^{(k)}\right)
$$

Gauss-Newton method

setting $\boldsymbol{x}^{(k+1)}$ to be the solution of the previous problem, we have

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)} & =\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b} \\
& =\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{x}^{(k)}-r\left(\boldsymbol{x}^{(k)}\right)\right) \\
& =\boldsymbol{x}^{(k)}-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

- assumes that $A=\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)$ has linearly independent columns
- if converged $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}$, then

$$
\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)=\mathbf{0}
$$

hence $\boldsymbol{x}^{(k)}$ satisfies the optimality condition since the gradient of $\|r(\boldsymbol{x})\|^{2}$ is $2 \operatorname{Dr}(\boldsymbol{x})^{T} r(\boldsymbol{x})$

Stopping criteria

- if $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}$, then $\boldsymbol{x}^{(k)}$ satisfies the optimality condition
- this does not mean that $\boldsymbol{x}^{(k)}$ is a good solution since it can be a local minimizer, local maximizer, or a saddle-point
- in practice, the algorithm can be stopped if $\left\|r\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}$ is small enough
- it is also common to run the algorithm from different starting points and choose the best solution of these multiple runs

Gauss-Newton algorithm

Algorithm Gauss-Newton algorithm

given a starting point $\boldsymbol{x}^{(0)}$ and solution tolerance ϵ
repeat for $k \geq 0$:

1. evaluate $\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)=\left(\nabla r_{1}\left(\boldsymbol{x}^{(k)}\right)^{T}, \ldots, \nabla r_{m}\left(\boldsymbol{x}^{(k)}\right)^{T}\right)$
2. set

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
$$

$$
\text { if }\left\|r\left(\boldsymbol{x}^{(k)}\right)\right\|^{2} \leq \epsilon \text { stop and output } \boldsymbol{x}^{(k+1)}
$$

Gauss-Newton step is

$$
\boldsymbol{d}_{\mathrm{gn}}=-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
$$

Relation to Newton's method

$$
f(\boldsymbol{x})=\frac{1}{2}\|r(\boldsymbol{x})\|^{2}=\frac{1}{2}\left(r_{1}(\boldsymbol{x})^{2}+\cdots+r_{m}(\boldsymbol{x})^{2}\right)
$$

- gradient and Hessian of the above function are

$$
\begin{aligned}
\nabla f(\boldsymbol{z}) & =\operatorname{Dr}(\boldsymbol{z})^{T} r(\boldsymbol{z}) \\
\nabla^{2} f(\boldsymbol{z}) & =\operatorname{Dr}(\boldsymbol{z})^{T} \operatorname{Dr}(\boldsymbol{z})+\sum_{j=1}^{m} r_{j}(\boldsymbol{z}) \nabla^{2} r_{j}(\boldsymbol{z})
\end{aligned}
$$

- suppose we approximate the Hessian by

$$
\nabla^{2} f(\boldsymbol{z}) \approx \operatorname{Dr}(\boldsymbol{z})^{T} \operatorname{Dr}(\boldsymbol{z})
$$

- then, using this approximation, the (undamped) Newton update becomes

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
$$

the above update is the basic Gauss-Newton update

Issues with Gauss-Newton method

an advantage of Gauss-Newton is that it only computes first-order derivatives where Newton's method computes the Hessian; however, it has some issues:

- when $\boldsymbol{x}^{(k+1)}$ is not close to $\boldsymbol{x}^{(k)}$, the affine approximation will not be accurate and the algorithm may fail
- a second major issue is that columns of the matrix $\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)$ may not always be linearly independent; in this case, the next iterate is not defined

Numerical Example II

$$
r(x)=e^{x}-e^{-x}-1
$$

since $r^{\prime}(x)=e^{x}+e^{-x}$, the Gauss-Newton iteration is

$$
x^{(k+1)}=x^{(k)}-\frac{e^{x^{(k)}}-e^{-x^{(k)}}-1}{e^{x^{(k)}}+e^{-x^{(k)}}}
$$

evolution of the error with initial point at $x^{(0)}=5$; the algorithm quickly converges to $x^{\star}=0.4812$

Numerical Example III

$$
r_{i}(\boldsymbol{x})=\sqrt{\left(x_{1}-p_{i}\right)^{2}+\left(x_{2}-q_{i}\right)^{2}}-\gamma_{i}, \quad i=1, \ldots, 5
$$

where p_{i}, q_{i}, γ_{i} are given
the gradient of r_{i} is

$$
\nabla r_{i}(\boldsymbol{x})=\left[\begin{array}{c}
\frac{x_{1}-p_{i}}{\sqrt{\left(x_{1}-p_{i}\right)^{2}+\left(x_{2}-q_{i}\right)^{2}}} \\
\frac{x_{2}-q_{i}}{\sqrt{\left(x_{1}-p_{i}\right)^{2}+\left(x_{2}-q_{i}\right)^{2}}}
\end{array}\right]
$$

thus, the Jacobian of r is

$$
\operatorname{Dr}(\boldsymbol{x})=\left[\begin{array}{ll}
\frac{x_{1}-p_{1}}{\sqrt{\left(x_{1}-p_{1}\right)^{2}+\left(x_{2}-q_{1}\right)^{2}}} & \frac{x_{2}-q_{1}}{\sqrt{\left(x_{1}-p_{1}\right)^{2}+\left(x_{2}-q_{1}\right)^{2}}} \\
\frac{x_{1}-p_{2}}{\sqrt{\left(x_{1}-p_{2}\right)^{2}+\left(x_{2}-q_{2}\right)^{2}}} & \frac{x_{2}-q_{2}}{\sqrt{\left(x_{1}-p_{2}\right)^{2}+\left(x_{2}-q_{2}\right)^{2}}} \\
\frac{x_{1}-p_{3}-x_{2}-q_{3}}{\sqrt{\left(x_{1}-p_{3}\right)^{2}+\left(x_{2}-q_{3}\right)^{2}}} & \frac{x_{1}-p_{4}}{\sqrt{\left.\left(x_{1}-p_{3}\right)^{2}+x_{2}-q_{3}\right)^{2}}} \\
\frac{x_{2}-q_{4}}{\sqrt{\left(x_{1}-p_{4}\right)^{2}+\left(x_{2}-q_{4}\right)^{2}}} & \frac{\sqrt{\left.x_{1}-p_{5}-p_{4}\right)^{2}+\left(x_{2}-q_{4}\right)^{2}}}{\sqrt{\left(x_{1}-p_{5}\right)^{2}+\left(x_{2}-q_{5}\right)^{2}}}
\end{array} \frac{\sqrt{\sqrt{\left.\left(x_{1}-p_{2}\right)^{2}+q_{5}-x_{5}\right)^{2}}}}{\text { and }}\right.
$$

where we assume $\left(x_{1}, x_{2}\right) \neq\left(p_{i}, q_{i}\right)$
results with data $\boldsymbol{p}=\left[\begin{array}{c}8 \\ 2.0 \\ 1.5 \\ 1.5 \\ 2.5\end{array}\right], \quad \boldsymbol{q}=\left[\begin{array}{c}5 \\ 1.7 \\ 1.5 \\ 2.0 \\ 1.5\end{array}\right], \quad \boldsymbol{\gamma}=\left[\begin{array}{c}1.87 \\ 1.24 \\ 0.53 \\ 1.29 \\ 1.49\end{array}\right]$

the evolution of the error with initial point at $x^{(0)}=(1,3)$; the algorithm converges to solution $\boldsymbol{x}^{\star}=(1.1833,0.8275)$

Outline

- linear least-squares
- regularized least-squares
- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method

Regularized approximate problem

$$
\operatorname{minimize} \quad\left\|r\left(\boldsymbol{x}^{(k)}\right)+\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)\right\|^{2}+\rho_{k}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2}
$$

- regularization fixes invertibility issue of Gauss-Newton
- regularization parameter ρ_{k} controls how close $x^{(k+1)}$ is to $x^{(k)}$
- the above problem can be rewritten as

$$
\operatorname{minimize}\left\|\left[\begin{array}{c}
\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right) \\
\sqrt{\rho_{k}} I
\end{array}\right] \boldsymbol{x}-\left[\begin{array}{c}
\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{x}^{(k)}-r\left(\boldsymbol{x}^{(k)}\right) \\
\sqrt{\rho_{k}} \boldsymbol{x}^{(k)}
\end{array}\right]\right\|^{2}
$$

this is just a least-squares problem with cost $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$ where

$$
A=\left[\begin{array}{c}
D r\left(\boldsymbol{x}^{(k)}\right) \\
\sqrt{\rho_{k}} I
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{x}^{(k)}-r\left(\boldsymbol{x}^{(k)}\right) \\
\sqrt{\rho_{k}} \boldsymbol{x}^{(k)}
\end{array}\right]
$$

the solution is

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)+\rho_{k} I\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
$$

Updating ρ

- if ρ_{k} is very small, then $x^{(k+1)}$ can be far from $x^{(k)}$, and the method may fail
- if ρ_{k} is large enough, then $x^{(k+1)}$ becomes close to $x^{(k)}$ and the affine approximation will be accurate enough
- a simple way to update ρ_{k} is to check whether

$$
\left\|r\left(\boldsymbol{x}^{(k+1)}\right)\right\|^{2}<\left\|r\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}
$$

if so, then we can decrease ρ_{k+1}; otherwise, we increase ρ_{k+1}

Algorithm Levenberg-Marquardt algorithm

given a starting point $\boldsymbol{x}^{(0)}$, solution tolerance ϵ, and $\rho_{0}>0$
repeat for $k \geq 0$

1. evaluate $\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)=\left(\nabla r_{1}\left(\boldsymbol{x}^{(k)}\right)^{T}, \ldots, \nabla r_{m}\left(\boldsymbol{x}^{(k)}\right)^{T}\right)$
2. update

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)+\rho_{k} I\right)^{-1} \operatorname{Dr}\left(\boldsymbol{x}^{(k)}\right)^{T} r\left(\boldsymbol{x}^{(k)}\right)
$$

if $\left\|r\left(\boldsymbol{x}^{(k)}\right)\right\|^{2} \leq \epsilon$ stop and output $\boldsymbol{x}^{(k+1)}$
3. if $\left\|r\left(\boldsymbol{x}^{(k+1)}\right)\right\|^{2}<\left\|r\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}$, then decrease ρ_{k+1} (e.g., $\rho_{k+1}=0.9 \rho_{k}$); otherwise, increase $\rho_{k+1}\left(\right.$ e.g., $\left.\rho_{k+1}=10 \rho_{k}\right)$

Numerical example IV

- data-fitting problem with $r_{i}(\beta, \omega, \phi)=y_{i}-\beta \sin \left(\omega t_{i}+\phi\right)$
- find (β, ω, ϕ) given $m=20$ data points

- for this problem, we have

$$
\nabla r_{i}(\beta, \omega, \phi)=\left[\begin{array}{c}
-\sin \left(\omega t_{i}+\phi\right) \\
-\beta t_{i} \cos \left(\omega t_{i}+\phi\right) \\
-\beta \cos \left(\omega t_{i}+\phi\right)
\end{array}\right]
$$

- applying Levenberg-Marquardt algorithm gives

References and further readings

- Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018, chapters 12, 18.
- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013, chapter 12.1.
- Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014, chapter 3.

