
6. Unconstrained optimization

• unconstrained minimization

• descent methods

• the gradient descent method

• Newton’s method

ENGR 507 (Fall 2023) S. Alghunaim

6.1

Unconstrained minimization

minimize f(x) (6.1)

• x = (x1, . . . , xn) is the variable

• f : Rn → R is the objective function

Solution: the point x⋆ = (x⋆
1, . . . , x

⋆
n) is a minimizer (minimum point) of f or

solution of (6.1) if
f(x⋆) ≤ f(x)

for all n-vectors x

SA — ENGR507unconstrained minimization 6.2

Optimal value and local minimizer

Optimal value: the optimal value of the minimization problem is the greatest
p such that p ≤ f(x), denoted by min f(x)

• if x⋆ is a minimizer of f , then f(x⋆) = min f(x) and we say that the
optimal value is attained at x⋆

• if min f(x) = −∞, then we say that the function is unbounded below

• the optimal value is unique even though there could be multiple solutions

Local minimizer

• the minimizer x⋆ of f is also called a global minimizer of f
• a vector xo is a local minimizer or local minimum point if there exists a

scalar r > 0 such that f(xo) ≤ f(x) for all ∥x− xo∥ ≤ r; it is a strict
local minimizer if f(xo) < f(x)

SA — ENGR507unconstrained minimization 6.3

First-order necessary condition

if the n-vector xo is a local minimizer of f : Rn → R, then

∇f(xo) = 0

(
∂f

∂xi
(xo) = 0, i = 1, . . . , n

)

• this condition is necessary but not sufficient; points that satisfy ∇f(x̂) = 0
can be minimizers, maximizers, or neither (saddle points)

• points that satisfies ∇f(x̂) = 0 are called stationary points or critical
points

• in general, to find a global minimizer, we need to check whether the
solutions of ∇f(x̂) = 0 are in fact global minimizers

• it often is very difficult to solve the set of nonlinear equations and
numerical algorithms are often used for finding stationary points

SA — ENGR507unconstrained minimization 6.4

Example 6.1

find the stationary points of

f(x) = x3
1 − x2

1x2 + 2x2
2

setting the gradient (partial derivatives) to zero, we get the FONC:

∂f

∂x1
= 3x2

1 − 2x1x2 = 0

∂f

∂x2
= −x2

1 + 4x2 = 0

solving, we get two stationary points: (0, 0) and (6, 9)

SA — ENGR507unconstrained minimization 6.5

Second-order condition

Necessary condition: if xo is a local minimizer, then ∇f(xo) = 0 and
∇2f(xo) ≥ 0

Sufficient condition: if ∇f(xo) = 0 and ∇2f(xo) > 0, then xo is a strict
local minimizer

Necessary and sufficient condition: if ∇2f(x) ≥ 0 for all x (‘f is convex’),
then x⋆ is global minimizer if and only if ∇f(x⋆) = 0

• for single variable, the Hessian is just the second derivative f ′′(x)

• we can find maximizers by finding minimizers of −f

SA — ENGR507unconstrained minimization 6.6

Example 6.2

find the stationary points of f(x) and, if possible, determine whether they are
local or global minimizers

a) f(x) = x3
1 − x2

1x2 + 2x2
2

b) f(x) = 1
2x

2
1 + x1x2 + 2x2

2 − 4x1 − 4x2 − x3
2

c) f(x) = x2
1 − x1x2 + x2

2 − 3x2

SA — ENGR507unconstrained minimization 6.7

a) for f(x) = x3
1 − x2

1x2 + 2x2
2, setting the gradient, we find that the

stationary points are (0, 0) and (6, 9) (see page 6.5); the Hessian is

∇2f(x) =

[
6x1 − 2x2 −2x1

−2x1 4

]
hence,

∇2f(0, 0) =

[
0 0
0 4

]
, ∇2f(6, 9) =

[
18 −12

−12 4

]
■ since ∇2f(0, 0) is only positive semidefinite, it is still unclear whether (0, 0)

is a local minimizer

■ since the matrix ∇2f(6, 9) is indefinite, the point (6, 9) is not a local
minimizer/maximizer

■ since f(ϵ, 0) > 0 for any ϵ > 0 and f(ϵ, 0) < 0 for any ϵ < 0, we conclude
that the point (0, 0) is not a local minimizer/maximizer

SA — ENGR507unconstrained minimization 6.8

b) for f(x) = 1
2x

2
1 + x1x2 + 2x2

2 − 4x1 − 4x2 − x3
2, the FONC is

∇f(x) =

[
x1 + x2 − 4

x1 + 4x2 − 4− 3x2
2

]
=

[
0
0

]
solving, we get the stationary points (4, 0) and (3, 1); the Hessian is

∇2f(x) =

[
1 1
1 4− 6x2

]
thus,

∇2f(4, 0) =

[
1 1
1 4

]
, ∇2f(3, 1) =

[
1 1
1 −2

]
■ since ∇2f(4, 0) > 0 and ∇2f(3, 1) is indefinite, x̂ = (4, 0) is a local

minimizer and (3, 1) is not a minimizer/maximizer

■ note that the point x̂ = (4, 0) is not a global minimizer since
f(0, x2) → −∞ as x2 → ∞

SA — ENGR507unconstrained minimization 6.9

c) for f(x) = x2
1 − x1x2 + x2

2 − 3x2, the FONC is

∇f(x) =

[
2x1 − x2

−x1 + 2x2 − 3

]
= 0

or

2x1 − x2 = 0

−x1 + 2x2 = 3

these two equations have a unique solution x̂1 = 1, x̂2 = 2, which is a
candidate for a global minimizer; since the Hessian

∇2f(x) =

[
2 −1

−1 2

]
is positive definite, the point x̂ = (1, 2) is a global minimizer

SA — ENGR507unconstrained minimization 6.10

Example 6.3 (quadratic functions)

suppose we want to minimize f(x) = 1
2x

TQx+ rTx+ c where Q is an
n× n symmetric matrix; the FONC is

∇f(x) = Qx+ r = 0

the Hessian is ∇2f(x) = Q

• if Q ≥ 0, then x⋆ is a global minimizer iff Qx⋆ + r = 0

■ if r /∈ range(Q), then there is no solution and f is unbounded below

■ if Q > 0, then there is a unique minimizer x⋆ = −Q−1r

■ if Q is singular but r ∈ range(Q), then there exists multiple solutions

• if Q is indefinite, then any point satisfying the FONC is a saddle-point (not
a minimizer/maximizer)

• if Q is invertible, then there is a unique stationary point:

x̂ = −Q−1r

SA — ENGR507unconstrained minimization 6.11

Example 6.4 (maximum power transfer)

Linear circuit

b

ZL

I

a

−
+

V Th

ZTh
a

I

ZL

b

• V Th is the Thevenin voltage, ZTh = RTh + jXTh (j =
√
−1 is the

Thevenin impedance, ZL = RL + jXL is the impedance of the load
• from circuit analysis, the average power delivered to the load is

P = |I|2RL, I =
V Th

RTh +RL + j(XTh +XL)
.

we want to find the load impedance (i.e., RL and XL) such that average
power delivered to the load P is maximized; (suppose that V Th = 1 and
RTh > 0)

SA — ENGR507unconstrained minimization 6.12

we can maximize the power by solving

maximize f(x) =
x1

(RTh + x1)2 + (XTh + x2)2

setting the gradient (partial derivatives) to zero:

∇x1f(x) =
∂f

∂x1
=

(RTh + x1)
2 + (XTh + x2)

2 − 2x1(RTh + x1)[
(RTh + x1)2 + (XTh + x2)2

]2 = 0

∇x2
f(x) =

∂f

∂x2
=

−2x1(XTh + x2)[
(RTh + x1)2 + (XTh + x2)2

]2 = 0

from the second equation, we have x1 = 0 or x2 = −XTh; note that x1 = 0
does not satisfy the first condition; using x2 = −XTh into the second
condition and simplifying, we get

(RTh + x1)
2 − 2x1(RTh + x1) = 0 ⇐⇒ x1 = RTh

hence, the stationary point is

x = (RTh,−XTh)

SA — ENGR507unconstrained minimization 6.13

we now check the second-order conditions; to simplify derivation of the
Hessian, we let

f(x) = g(Ax+ b)

where

g(y1, y2, y3) =
y1

y22 + y23
, A =

1 0
1 0
0 1

 , b =

 0
RTh

XTh

the Hessian of f is AT∇2g(Ax+ b)A; thus, we need to find the Hessain of
h; the gradient of g is

∇g(y) =

1

y2
2+y2

3

−2y1y2(
y2
2+y2

3

)2

−2y1y3(
y2
2+y2

3

)2

SA — ENGR507unconstrained minimization 6.14

the Hessian of g is

∇2g(y) =

0 −2y2

(y2
2+y2

3)
2

−2y3

(y2
2+y2

3)
2

−2y2

(y2
2+y2

3)
2

−2y1

(
y2
2+y2

3

)
+8y1y

2
2(

y2
2+y2

3

)3
8y1y2y3(
y2
2+y2

3

)3

−2y3

(y2
2+y2

3)
2

8y1y2y3(
y2
2+y2

3

)3

−2y1

(
y2
2+y2

3

)
+8y1y

2
3(

y2
2+y2

3

)3

=
2

(y22 + y23)
2

0 −y2 −y3

−y2
−y1

(
y2
2+y2

3

)
+4y1y

2
2(

y2
2+y2

3

) 4y1y2y3(
y2
2+y2

3

)
−y3

4y1y2y3(
y2
2+y2

3

) −y1

(
y2
2+y2

3

)
+4y1y

2
3(

y2
2+y2

3

)

note that at x = (RTh,−XTh)

Ax+ b =

 RTh

2RTh

0

SA — ENGR507unconstrained minimization 6.15

hence, at x = (RTh,−XTh), we have

∇2g(Ax+ b) =
2

(2RTh)4

 0 −2RTh 0

−2RTh 3RTh 0

0 0 −RTh

=

1

(2RTh)3

 0 −2 0
−2 3 0
0 0 −1

the Hessian of f at x = (RTh,−XTh) is

∇2f(x) = AT∇2g(Ax+ b)A

=
1

(2RTh)3

[
1 1 0
0 0 1

] 0 −2 0
−2 3 0
0 0 −1

1 0
1 0
0 1

=

1

(2RTh)3

[
−1 0
0 −1

]
since RTh > 0, the above Hessian is negative definite, the point
x = (RTh,−XTh) is a local maximum; because it is the only point stationary
point, it is a global maximum

SA — ENGR507unconstrained minimization 6.16

Outline

• unconstrained minimization

• descent methods

• the gradient descent method

• Newton’s method

First-order approximation

First-order (Taylor) approximation of f(x) around z:

f̂(x) = f(z) + f ′(z)(x− z) (f : R → R)

f̂(x) = f(z) +∇f(z)T(x− z) (f : Rn → R)

f̂(x) = f(z) +Df(z)(x− z) (f : Rn → Rm)

(6.2)

Geometrical interpretation

f(x)

(z, f(z))

f(z) + f ′(z)(x− z)

approximation is good if x is close to z and bad otherwise

SA — ENGR507descent methods 6.17

Descent direction

Descent direction: a vector d ∈ Rn is called a descent direction for f if

f(x+ αd) < f(x)

for sufficiently small α > 0

Directional derivative: the directional derivative of f at x in the direction d is

f ′(x;d) = lim
α→0

f(x+ αd)− f(x)

α
= ∇f(x)Td (6.3)

• directional derivative ∇f(x)Td gives an approximate rate of change
(increase) of f in the direction d at the point x

• a vector d ∈ Rn is a descent method if

f ′(x;d) = ∇f(x)Td < 0

SA — ENGR507descent methods 6.18

Descent methods

Algorithm General descent method
choose a starting point x(0), a solution tolerance ϵ > 0, and a stopping criteria
repeat for k ≥ 1

(a) determine a decent direction d(k)

(b) choose a stepsize αk

(c) update x(k+1) = x(k) + αkd
(k) if stopping criteria is satisfied, then stop and output

x(k+1)

• αk is called a learning rate or stepsize

• the stepsize determines the rate that x(k+1) changes from x(k) in the
descent direction d(k)

SA — ENGR507descent methods 6.19

Outline

• unconstrained minimization

• descent methods

• the gradient descent method

• Newton’s method

Negative gradient direction

the directional derivative of f at x in the direction d = −∇f(x) is

dT∇f(x) = −∥∇f(x)∥2 < 0

for any x with ∇f(x) ̸= 0; thus, −∇f(x) is a descent direction

• suppose ∥d∥ = 1, then by Cauchy-Schwarz, we have

−∥∇f(x)∥ ≤ ∇f(x)Td

and equality holds only if d = ∇f(x)/∥∇f(x)∥

• hence, −∇f(x) point in the steepest descent (maximum rate of decrease)
direction at x

• if we set d(k) = −∇f(x(k)) in the general descent method, we get the
gradient descent method or gradient descent algorithm

SA — ENGR507the gradient descent method 6.20

Gradient descent method

Algorithm Gradient descent algorithm

given a starting point x(0) and a solution tolerance ϵ > 0

repeat for k ≥ 1

1. choose a stepsize αk

2. update
x(k+1) = x(k) − αk∇f(x(k))

if ∥∇f(x(k+1))∥ ≤ ϵ stop and output x(k+1)

• for αk small enough, the algorithm is a descent method
• when αk is large enough, the algorithm may not be a descent method and

often does not work

SA — ENGR507the gradient descent method 6.21

Determining the stepsize

(suppose d(k) is any descent direction)

Constant stepsize: set αk = α for all k

Exact line search

αk = argmin
α≥0

f
(
x(k) + αd(k)

)
• it is not always possible to actually find the exact minimizer α

• called the method of steepest descent if d(k) = −∇f(x(k))

Backtracking line search: choose β ∈ (0, 1), and γ ∈ (0, 1) and start with
an initial guess αk (e.g., αk = 1), set αk := βαk until

f(x(k) + αkd
(k))− f(x(k)) < γαk∇f(x(k))Td(k)

this method is a compromise between the above two methods

SA — ENGR507the gradient descent method 6.22

Stopping criteria

1. |f(x(k+1))− f(x(k))| < ϵ

2. ∥x(k+1) − x(k)∥ < ϵ

3. |f(x(k+1))− f(x(k))|/|f(x(k))| < ϵ

4. ∥x(k+1) − x(k)∥/|x(k)| < ϵ

5. ∥∇f(x(k))∥ < ϵ

• the above conditions do not necessarily imply that x(k) is a good solution
since it can be a local minimizer/maximizer or a saddle-point (unless f is
convex)

• it is common to run the algorithm from different starting points and choose
the best solution of these multiple runs

SA — ENGR507the gradient descent method 6.23

Example 6.5

f(x1, x2, x3) = (x1 − 4)4 + (x2 − 3)2 + 4(x3 + 5)4

the gradient of this function is

∇f(x) =

 4(x1 − 4)3

2(x2 − 3)
16(x3 + 5)3

let the initial point be x(0) = (4, 2,−1); applying one iteration of the gradient
descent with α = 0.002 gives

x(1) =

 4
2

−1

− 0.002

 4(4− 4)3

2(2− 3)
16(−1 + 5)3

 =

 4.000
2.004
−3.048

notice that

59.06 = f(4, 2.004,−3.048) < f(4, 2,−1) = 1025

this shows that α = 0.002 is a good choice

SA — ENGR507the gradient descent method 6.24

if we use exact line search, then

α0 = argmin
α>0

f(x(0) − α∇f(x(0)))

= argmin
α>0

(0 + (2 + 2α− 3)2 + 4(−1− 1024α+ 5)4) = 3.967× 10−3

hence,
x(1) = x(0) − α0∇f(x(0)) = (4.000, 2.008,−5.062)

SA — ENGR507the gradient descent method 6.25

Example 6.6

f(x1, x2) =
x2
1

5
+ x2

2

• the gradient is ∇f(x) = (25x1, 2x2)

• we have

f
(
z − α∇f(z)

)
= 1

5 (z1 −
2
5αz1)

2 + (z2 − 2αz2)
2

• finding the the stepsize at iteration k in the method of steepest descent
requires solving

α = argmin
α>0

f
(
z − α∇f(z)

)
= argmin

α>0

(
1
5 (z1 −

2
5αz1)

2 + (z2 − 2αz2)
2

)

SA — ENGR507the gradient descent method 6.26

• setting the derivative with respect to α to zero, we get

− 4
25z1(z1 −

2
5αz1)− 4z2(z2 − 2αz2) = 0

• solving for α, gives

α =
4
25z

2
1 + 4z22

8
125z

2
1 + 8z22

> 0

• hence, the method of steepest descent is[
x
(k+1)
1

x
(k+1)
2

]
=

[
x
(k)
1

x
(k)
2

]
−

4
25 (x

(k)
1)2 + 4(x

(k)
2)2

8
125 (x

(k)
1)2 + 8(x

(k)
2)2

[
2
5x

(k)
1

2x
(k)
2

]

SA — ENGR507the gradient descent method 6.27

Exact line search for quadratic functions

f(x) = 1
2x

TQx− bTx

where Q is positive definite; gradient method with exact line search requires
solving:

αk = argmin
α>0

f
(
x(k) + αd(k)

)
where d(k) = −∇f(x(k))

Update form

x(k+1) = x(k) − ∥∇f(x(k))∥2

∇f(x(k))TQ∇f(x(k))
∇f(x(k))

where ∇f(x) = Qx− b

SA — ENGR507the gradient descent method 6.28

Derivation

• letting d = d(k) and using the chain rule, we have

g′(α) = dT∇f
(
x(k) + αd

)
= dT

(
Q
(
x(k) + αd

)
− b

)
= αdTQd+ dT

(
Qx(k) − b

)
= αdTQd+ dTd

• setting to zero and solving for α, we get

αk =
dTd

dTQd

where d = −∇f(x(k)) = −(Qx(k) − b)

SA — ENGR507the gradient descent method 6.29

Convergence discussion

under certain mild assumptions, the iterates {x(k)} of the gradient algorithm
can be shown to converge to a stationary point, i.e.,

lim
k→∞

∇f(x(k)) = 0

• if f is convex (e.g., ∇2f(x) ≥ 0 for all x), then the iterates {x(k)} of
gradient algorithm converges to a global minimizer

• the rate of convergence is sublinear (slow) in general and linear if
µI ≤ ∇2f(x) for all x and some constant µ > 0

SA — ENGR507the gradient descent method 6.30

Outline

• unconstrained minimization

• descent methods

• the gradient descent method

• Newton’s method

Newton’s method

consider n nonlinear equation in n variables

r1(x) = 0, r2(x) = 0, . . . , rn(x) = 0

where x = (x1, . . . , xn) ∈ Rn; we let r(x) = (r1(x), . . . , rn(x))

Newton’s method: choose x(0) and repeat for k ≥ 0

x(k+1) = x(k) −Dr(x(k))−1r(x(k))

assumes Dr(x(k)) exists and nonsingular

Unconstrained optimization: if r(x) = ∇f(x), we get

x(k+1) = x(k) −∇2f(x(k))−1∇f(x(k))

SA — ENGR507Newton’s method 6.31

Interpretation of Newton update

x = x(k) −∇2f(x(k))−1∇f(x(k))

(I) minimizing the quadratic approximation of f around x(k):

f̂(x) = f(x(k)) +∇f(x(k))T(x− x(k)) + 1
2
(x− x(k))T∇2f(x(k))(x− x(k))

(II) solve approximate optimality condition around x(k):

∇̂f(x) = ∇f(x(k)) +∇2f(x(k))(x− x(k)) = 0

(x, f ′(x))

(x + dn, f ′(x + dn))

f ′(x)
f̂ ′(x)

f(x)f̂(x)

(x, f(x))

(x + dn, f(x + dn))

SA — ENGR507Newton’s method 6.32

Damped Newton’s method

Algorithm Damped Newton method

given a starting point x(0), a solution tolerance ϵ > 0

repeat for k ≥ 1

1. choose a stepsize αk

2. update
x(k+1) = x(k) − αk

(
∇2f(x(k))

)−1∇f(x(k))

if ∥∇f(x(k+1))∥ ≤ ϵ stop and output x(k+1)

• assumes ∇2f(x) exists and is invertible
• dn = −

(
∇2f(x(k))

)−1∇f(x(k)) is called Newton step at x(k)

• similar stepsize selection and stopping criteria as before can be used

single-variable update

x(k+1) = x(k) − αk
f ′(x(k))

f ′′(x(k))

SA — ENGR507Newton’s method 6.33

Convergence discussion

• under certain assumptions one can prove local quadratic rate of
convergence (fast), i.e., near the optimal solution the error ∥x(k) − x⋆∥
(where x⋆ is an optimal solution) satisfies

∥x(k+1) − x⋆∥ ≤ c∥x(k) − x⋆∥2

for some positive c > 0

• if ∇2f(x) > 0 then dn = −
(
∇2f(x(k))

)−1∇f(x(k)) is a descent
direction and quadratic convergence to the global minimizer is guaranteed
under certain conditions

• does not work well if ∇2f(x) is not positive-definite since it is not a
descent method in this case

• can use hybrid gradient-Newton method by setting
d(k) = −∇2f(x(k))−1∇f(x(k)) if ∇2f(x(k)) is positive-definite and
d(k) = −∇f(x(k)) otherwise

SA — ENGR507Newton’s method 6.34

Numerical example I

f(x) = ex1+x2−1 + ex1−x2−1 + e−x1−1

the gradient and Hessian are

∇f(x) =

[
ex1+x2−1 + ex1−x2−1 − e−x1−1

ex1+x2−1 − ex1−x2−1

]
and

∇2f(x) =

[
ex1+x2−1 + ex1−x2−1 + e−x1−1 ex1+x2−1 − ex1−x2−1

ex1+x2−1 − ex1−x2−1 ex1+x2−1 + ex1−x2−1

]

SA — ENGR507Newton’s method 6.35

we apply gradient descent and Newton method with initial starting point
x(0) = (−1, 1) and step-size α = 1

• both algorithms converge to x⋆ = (−0.34657, 0)

• Newton method is much faster since it uses second-order information

SA — ENGR507Newton’s method 6.36

Matlab implementation

g=@(x)[exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)-exp(-x(1)-1);...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1)]; % gradient

hess=@(x)[exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)+exp(-x(1)-1) ...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1);...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1) ...

exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)] % hessain

%% Newton and GD iterations

x = [-1; 1];%GD initilization

xn = [-1; 1];%Newton initilization

alpha=1; %step-size

for k=1:50

%%%Gradient descent update%%%%

grad=g(x);

if (norm(grad) < 1e-16), break; end;

x = x - alpha*grad;

%%%Newton update%%%

dn=-hess(xn)\g(xn);

xn = xn + alpha*dn;

end

SA — ENGR507Newton’s method 6.37

Alternative way to construct gradient and Hessian

f(x) = ex1+x2−1 + ex1−x2−1 + e−x1−1

we can write f as f(x) = g(Ax+ b), where g(y) = ey1 + ey2 + ey3 , and

A =

 1 1
1 −1

−1 0

 , b =

−1
−1
−1

the gradient and Hessian of g are

∇g(y) =

ey1

ey2

ey3

 , ∇2g(y) =

ey1 0 0
0 ey2 0
0 0 ey3

it follows that

∇f(x) = AT∇g(Ax+ b)

∇2f(x) = AT∇2g(Ax+ b)A

SA — ENGR507Newton’s method 6.38

Matlab implementation

A=[1 1;1 -1;-1 0];

b=[1;1;1];

for k=1:50

%%% Gradient descent update %%%

v=exp(A*x-b);

grad=A’*v;

if (norm(grad) < 1e-16), break; end;

x = x - alpha*grad;

%%% Newton’s update %%%

vn=exp(A*xn-b);

gradn=A’*vn;

D = diag(vn);

H=A’*D*A;

dn=-H\gradn;

xn = xn + alpha*dn;

end;

SA — ENGR507Newton’s method 6.39

Numerical example II

minimize f(x) =

m∑
i=1

log(ea
T
i x−bi + e−aTi x+bi)

• ai ∈ Rn and bi ∈ R are the problem data

• m and n can be very large

• suppose that we want to solve this problem using Newton’s method with
initialization x(0) = 1, stopping criteria ∥∇f(x(k))∥ < 10−5, and line
search parameters: α0 = 1, β = 1/2, and γ = 0.01

• to implement the algorithm, we first need to find the gradient and Hessian
of the function f

SA — ENGR507Newton’s method 6.40

the function f can be written as

f(x) = g(Ax− b) where g(y) =

m∑
i=1

log(eyi + e−yi)

and

A =

aT1
...

aTm

 , b =

 b1
...
bm

the gradient and Hessian of h are:

∇g(y) =

 (ey1 − e−y1)/(ey1 + e−y1)
...

(eym − e−ym)/(eym + e−ym)

∇2g(y) = diag

(
4/(ey1 + e−y1)2, . . . , 4/(eym + e−ym)2

)
using the composition with affine function property, we have

∇f(x) = AT∇g(Ax− b), ∇2f(x) = AT∇2g(Ax− b)A

SA — ENGR507Newton’s method 6.41

MATLAB code

alpha_0=1;

beta=0.5;

gamma=0.01;

x = ones(n,1); %initialization

k=1;

y = A*x-b;

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));

while (norm(grad) >= 1e-5)

k=k+1; %iteration counter

hess = 4*A’*diag(1./(exp(y)+exp(-y)).^2)*A;

d = -hess\grad;

alpha = alpha_0;

f = sum(log(exp(y)+exp(-y)));

while (sum(log(exp(A*(x+alpha*d)-b)+exp(-A*(x+alpha*d)+b))) ...

> f + gamma*alpha*grad’*d)

alpha = beta*alpha;

end

x = x+alpha*d;

y = A*x-b;

f = sum(log(exp(y)+exp(-y)));

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));

end

SA — ENGR507Newton’s method 6.42

0 1 2 3 4 5 6 7 8 9
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Newton method

SA — ENGR507Newton’s method 6.43

References and further readings

• A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with
MATLAB, SIAM, 2014.

• E. KP. Chong and S. H. Zak. An Introduction to Optimization, John Wiley & Sons, 2013.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

• Uri M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied
Mathematics, 2011.

SA — ENGR507References 6.44

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	unconstrained minimization
	descent methods
	the gradient descent method
	Newton's method
	References

