6. Unconstrained optimization

- unconstrained minimization
- descent methods
- the gradient descent method
- Newton's method

Unconstrained minimization

minimize
$$f(\boldsymbol{x})$$
 (6.1)

- $\boldsymbol{x} = (x_1, \dots, x_n)$ is the *variable*
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function

Solution: the point $x^* = (x_1^*, \dots, x_n^*)$ is a *minimizer (minimum point)* of f or *solution* of (6.1) if

$$f(\boldsymbol{x}^{\star}) \leq f(\boldsymbol{x})$$

for all n-vectors \boldsymbol{x}

Optimal value and local minimizer

Optimal value: the *optimal value* of the minimization problem is the greatest p such that $p \le f(x)$, denoted by $\min f(x)$

- if x^* is a minimizer of f, then $f(x^*) = \min f(x)$ and we say that the optimal value is attained at x^*
- if $\min f({m x})=-\infty,$ then we say that the function is unbounded below
- the optimal value is unique even though there could be multiple solutions

Local minimizer

- the minimizer \pmb{x}^\star of f is also called a $\emph{global minimizer}$ of f
- a vector x^o is a *local minimizer* or *local minimum point* if there exists a scalar r > 0 such that $f(x^o) \le f(x)$ for all $||x x^o|| \le r$; it is a *strict local minimizer* if $f(x^o) < f(x)$

First-order necessary condition

if the *n*-vector \boldsymbol{x}^o is a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$, then

$$\nabla f(\boldsymbol{x}^{o}) = \boldsymbol{0} \qquad \left(\frac{\partial f}{\partial x_{i}}(\boldsymbol{x}^{o}) = 0, \quad i = 1, \dots, n\right)$$

- this condition is *necessary* but not sufficient; points that satisfy $\nabla f(\hat{x}) = 0$ can be minimizers, maximizers, or neither (saddle points)
- points that satisfies $\nabla f(\hat{x}) = 0$ are called *stationary points* or *critical points*
- in general, to find a global minimizer, we need to check whether the solutions of $\nabla f(\hat{x}) = 0$ are in fact global minimizers
- it often is very difficult to solve the set of nonlinear equations and numerical algorithms are often used for finding stationary points

Example 6.1

find the stationary points of

$$f(\boldsymbol{x}) = x_1^3 - x_1^2 x_2 + 2x_2^2$$

setting the gradient (partial derivatives) to zero, we get the FONC:

$$\frac{\partial f}{\partial x_1} = 3x_1^2 - 2x_1x_2 = 0$$
$$\frac{\partial f}{\partial x_2} = -x_1^2 + 4x_2 = 0$$

solving, we get two stationary points: (0,0) and (6,9)

Second-order condition

Necessary condition: if x^o is a local minimizer, then $\nabla f(x^o)=\mathbf{0}$ and $\nabla^2 f(x^o)\geq 0$

Sufficient condition: if $\nabla f(x^o) = 0$ and $\nabla^2 f(x^o) > 0$, then x^o is a strict local minimizer

Necessary and sufficient condition: if $\nabla^2 f(x) \ge 0$ for all x ('f is convex'), then x^* is global minimizer if and only if $\nabla f(x^*) = 0$

- for single variable, the Hessian is just the second derivative f''(x)
- we can find maximizers by finding minimizers of -f

Example 6.2

find the stationary points of $f(\boldsymbol{x})$ and, if possible, determine whether they are local or global minimizers

a)
$$f(\boldsymbol{x}) = x_1^3 - x_1^2 x_2 + 2x_2^2$$

b)
$$f(\boldsymbol{x}) = \frac{1}{2}x_1^2 + x_1x_2 + 2x_2^2 - 4x_1 - 4x_2 - x_2^3$$

c)
$$f(\boldsymbol{x}) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2$$

a) for $f(x) = x_1^3 - x_1^2 x_2 + 2x_2^2$, setting the gradient, we find that the stationary points are (0,0) and (6,9) (see page 6.5); the Hessian is

$$\nabla^2 f(\boldsymbol{x}) = \begin{bmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{bmatrix}$$

hence,

$$\nabla^2 f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}, \quad \nabla^2 f(6,9) = \begin{bmatrix} 18 & -12 \\ -12 & 4 \end{bmatrix}$$

- since $\nabla^2 f(0,0)$ is only positive semidefinite, it is still unclear whether (0,0) is a local minimizer
- since the matrix $\nabla^2 f(6,9)$ is indefinite, the point (6,9) is not a local minimizer/maximizer
- since $f(\epsilon, 0) > 0$ for any $\epsilon > 0$ and $f(\epsilon, 0) < 0$ for any $\epsilon < 0$, we conclude that the point (0, 0) is not a local minimizer/maximizer

b) for $f(\mathbf{x}) = \frac{1}{2}x_1^2 + x_1x_2 + 2x_2^2 - 4x_1 - 4x_2 - x_2^3$, the FONC is $\nabla f(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 - 4\\ x_1 + 4x_2 - 4 - 3x_2^2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$

solving, we get the stationary points (4,0) and (3,1); the Hessian is

$$abla^2 f(oldsymbol{x}) = egin{bmatrix} 1 & 1 \ 1 & 4 - 6x_2 \end{bmatrix}$$

thus,

$$\nabla^2 f(4,0) = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}, \quad \nabla^2 f(3,1) = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

- since $\nabla^2 f(4,0) > 0$ and $\nabla^2 f(3,1)$ is indefinite, $\hat{x} = (4,0)$ is a local minimizer and (3,1) is not a minimizer/maximizer
- note that the point $\hat{x} = (4,0)$ is not a global minimizer since $f(0,x_2) \to -\infty$ as $x_2 \to \infty$

c) for $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$, the FONC is $\nabla f(x) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 3 \end{bmatrix} = \mathbf{0}$ or

$$2x_1 - x_2 = 0 -x_1 + 2x_2 = 3$$

these two equations have a unique solution $\hat{x}_1 = 1, \hat{x}_2 = 2$, which is a candidate for a global minimizer; since the Hessian

$$abla^2 f(oldsymbol{x}) = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}$$

is positive definite, the point $\hat{x} = (1,2)$ is a global minimizer

unconstrained minimization

Example 6.3 (quadratic functions)

suppose we want to minimize $f(x) = \frac{1}{2}x^TQx + r^Tx + c$ where Q is an $n \times n$ symmetric matrix; the FONC is

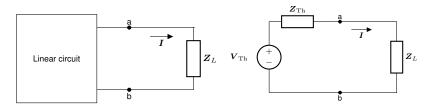
$$\nabla f(\boldsymbol{x}) = Q\boldsymbol{x} + \boldsymbol{r} = \boldsymbol{0}$$

the Hessian is $abla^2 f({m x}) = Q$

- if $Q \geq 0$, then ${m x}^\star$ is a global minimizer iff $Q {m x}^\star + {m r} = {m 0}$
 - if $r \notin \operatorname{range}(Q)$, then there is no solution and f is unbounded below
 - if Q>0, then there is a unique minimizer ${m x}^\star=-Q^{-1}{m r}$
 - if Q is singular but $\boldsymbol{r} \in \operatorname{range}(Q)$, then there exists multiple solutions
- if Q is indefinite, then any point satisfying the FONC is a saddle-point (not a minimizer/maximizer)
- if Q is invertible, then there is a unique stationary point:

$$\hat{\boldsymbol{x}} = -Q^{-1}\boldsymbol{r}$$

Example 6.4 (maximum power transfer)



- V_{Th} is the Thevenin voltage, $Z_{Th} = R_{Th} + jX_{Th}$ $(j = \sqrt{-1}$ is the Thevenin impedance, $Z_L = R_L + jX_L$ is the impedance of the load
- · from circuit analysis, the average power delivered to the load is

$$P = |\boldsymbol{I}|^2 R_L, \qquad \boldsymbol{I} = \frac{\boldsymbol{V}_{\mathrm{Th}}}{R_{\mathrm{Th}} + R_L + j(X_{\mathrm{Th}} + X_L)}$$

we want to find the load impedance (*i.e.*, R_L and X_L) such that average power delivered to the load P is maximized; (suppose that $V_{\rm Th} = 1$ and $R_{\rm Th} > 0$)

we can maximize the power by solving

maximize
$$f(\mathbf{x}) = \frac{x_1}{(R_{\rm Th} + x_1)^2 + (X_{\rm Th} + x_2)^2}$$

setting the gradient (partial derivatives) to zero:

$$\nabla_{x_1} f(\boldsymbol{x}) = \frac{\partial f}{\partial x_1} = \frac{(R_{\rm Th} + x_1)^2 + (X_{\rm Th} + x_2)^2 - 2x_1(R_{\rm Th} + x_1)}{\left[(R_{\rm Th} + x_1)^2 + (X_{\rm Th} + x_2)^2\right]^2} = 0$$
$$\nabla_{x_2} f(\boldsymbol{x}) = \frac{\partial f}{\partial x_2} = \frac{-2x_1(X_{\rm Th} + x_2)}{\left[(R_{\rm Th} + x_1)^2 + (X_{\rm Th} + x_2)^2\right]^2} = 0$$

from the second equation, we have $x_1 = 0$ or $x_2 = -X_{Th}$; note that $x_1 = 0$ does not satisfy the first condition; using $x_2 = -X_{Th}$ into the second condition and simplifying, we get

$$(R_{\rm Th} + x_1)^2 - 2x_1(R_{\rm Th} + x_1) = 0 \iff x_1 = R_{\rm Th}$$

hence, the stationary point is

$$\boldsymbol{x} = (R_{\mathrm{Th}}, -X_{\mathrm{Th}})$$

unconstrained minimization

we now check the second-order conditions; to simplify derivation of the Hessian, we let

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} + \boldsymbol{b})$$

where

$$g(y_1, y_2, y_3) = \frac{y_1}{y_2^2 + y_3^2}, \quad A = \begin{bmatrix} 1 & 0\\ 1 & 0\\ 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0\\ R_{\rm Th}\\ X_{\rm Th} \end{bmatrix}$$

the Hessian of f is $A^T \nabla^2 g(A x + b)A$; thus, we need to find the Hessain of h; the gradient of g is

$$abla g(oldsymbol{y}) = egin{bmatrix} rac{1}{y_2^2+y_3^2} \ rac{-2y_1y_2}{\left(y_2^2+y_3^2
ight)^2} \ rac{-2y_1y_3}{\left(y_2^2+y_3^2
ight)^2} \end{bmatrix}$$

the Hessian of g is

$$\begin{split} \nabla^2 g(\boldsymbol{y}) &= \begin{bmatrix} 0 & \frac{-2y_2}{(y_2^2 + y_3^2)^2} & \frac{-2y_3}{(y_2^2 + y_3^2)^2} \\ \frac{-2y_2}{(y_2^2 + y_3^2)^2} & \frac{-2y_1 \left(y_2^2 + y_3^2\right) + 8y_1 y_2^2}{\left(y_2^2 + y_3^2\right)^3} & \frac{8y_1 y_2 y_3}{\left(y_2^2 + y_3^2\right)^3} \\ \frac{-2y_3}{(y_2^2 + y_3^2)^2} & \frac{8y_1 y_2 y_3}{\left(y_2^2 + y_3^2\right)^3} & \frac{-2y_1 \left(y_2^2 + y_3^2\right) + 8y_1 y_3^2}{\left(y_2^2 + y_3^2\right)^3} \end{bmatrix} \\ &= \frac{2}{\left(y_2^2 + y_3^2\right)^2} \begin{bmatrix} 0 & -y_2 & -y_3 \\ -y_2 & \frac{-y_1 \left(y_2^2 + y_3^2\right) + 4y_1 y_2^2}{\left(y_2^2 + y_3^2\right)} & \frac{4y_1 y_2 y_3}{\left(y_2^2 + y_3^2\right)} \\ -y_3 & \frac{4y_1 y_2 y_3}{\left(y_2^2 + y_3^2\right)} & \frac{-y_1 \left(y_2^2 + y_3^2\right) + 4y_1 y_3^2}{\left(y_2^2 + y_3^2\right)} \end{bmatrix} \end{split}$$

note that at $oldsymbol{x} = (R_{\mathrm{Th}}, -X_{\mathrm{Th}})$

$$A\boldsymbol{x} + \boldsymbol{b} = \begin{bmatrix} R_{\mathrm{Th}} \\ 2R_{\mathrm{Th}} \\ 0 \end{bmatrix}$$

hence, at $\boldsymbol{x} = (R_{\mathrm{Th}}, -X_{\mathrm{Th}})$, we have

$$\nabla^2 g(A\boldsymbol{x} + \boldsymbol{b}) = \frac{2}{(2R_{\rm Th})^4} \begin{bmatrix} 0 & -2R_{\rm Th} & 0\\ -2R_{\rm Th} & 3R_{\rm Th} & 0\\ 0 & 0 & -R_{\rm Th} \end{bmatrix}$$
$$= \frac{1}{(2R_{\rm Th})^3} \begin{bmatrix} 0 & -2 & 0\\ -2 & 3 & 0\\ 0 & 0 & -1 \end{bmatrix}$$

the Hessian of f at $\boldsymbol{x} = (R_{\rm Th}, -X_{\rm Th})$ is

$$\nabla^2 f(\boldsymbol{x}) = A^T \nabla^2 g(A\boldsymbol{x} + \boldsymbol{b}) A$$

= $\frac{1}{(2R_{\rm Th})^3} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $\frac{1}{(2R_{\rm Th})^3} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

since $R_{\rm Th} > 0$, the above Hessian is negative definite, the point $m{x} = (R_{\mathrm{Th}}, -X_{\mathrm{Th}})$ is a local maximum; because it is the only point stationary point, it is a global maximum unconstrained minimization

6.16

Outline

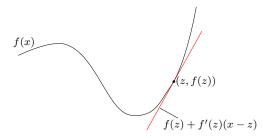
- unconstrained minimization
- descent methods
- the gradient descent method
- Newton's method

First-order approximation

First-order (Taylor) approximation of f(x) around z:

$$\hat{f}(\boldsymbol{x}) = f(\boldsymbol{z}) + f'(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{z}) \qquad (f : \mathbb{R} \to \mathbb{R})
\hat{f}(\boldsymbol{x}) = f(\boldsymbol{z}) + \nabla f(\boldsymbol{z})^{T}(\boldsymbol{x} - \boldsymbol{z}) \qquad (f : \mathbb{R}^{n} \to \mathbb{R})
\hat{f}(\boldsymbol{x}) = f(\boldsymbol{z}) + Df(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{z}) \qquad (f : \mathbb{R}^{n} \to \mathbb{R}^{m})$$
(6.2)

Geometrical interpretation



approximation is good if x is close to z and bad otherwise

descent methods

Descent direction

Descent direction: a vector $d \in \mathbb{R}^n$ is called a *descent direction* for f if

 $f(\boldsymbol{x} + \alpha \boldsymbol{d}) < f(\boldsymbol{x})$

for sufficiently small $\alpha > 0$

Directional derivative: the *directional derivative* of f at x in the direction d is

$$f'(\boldsymbol{x};\boldsymbol{d}) = \lim_{\alpha \to 0} \frac{f(\boldsymbol{x} + \alpha \boldsymbol{d}) - f(\boldsymbol{x})}{\alpha} = \nabla f(\boldsymbol{x})^T \boldsymbol{d}$$
(6.3)

- directional derivative $\nabla f(x)^T d$ gives an approximate rate of change (increase) of f in the direction d at the point x
- a vector $oldsymbol{d} \in \mathbb{R}^n$ is a descent method if

$$f'(\boldsymbol{x};\boldsymbol{d}) = \nabla f(\boldsymbol{x})^T \boldsymbol{d} < 0$$

descent methods

Descent methods

Algorithm General descent method

choose a starting point $\pmb{x}^{(0)},$ a solution tolerance $\epsilon>0,$ and a stopping criteria repeat for $k\geq 1$

- (a) determine a decent direction $oldsymbol{d}^{(k)}$
- (b) choose a stepsize α_k
- (c) update $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$ if stopping criteria is satisfied, then stop and output $x^{(k+1)}$
- α_k is called a *learning rate* or *stepsize*
- the stepsize determines the rate that ${m x}^{(k+1)}$ changes from ${m x}^{(k)}$ in the descent direction ${m d}^{(k)}$

Outline

- unconstrained minimization
- descent methods
- the gradient descent method
- Newton's method

Negative gradient direction

the directional derivative of f at ${m x}$ in the direction ${m d} = -
abla f({m x})$ is

$$\boldsymbol{d}^{T} \nabla f(\boldsymbol{x}) = - \|\nabla f(\boldsymbol{x})\|^{2} < 0$$

for any ${m x}$ with $abla f({m x})
eq {m 0}$; thus, $abla f({m x})$ is a descent direction

• suppose $\|d\| = 1$, then by Cauchy-Schwarz, we have

$$-\|\nabla f(\boldsymbol{x})\| \leq \nabla f(\boldsymbol{x})^T \boldsymbol{d}$$

and equality holds only if ${m d} =
abla f({m x}) / \|
abla f({m x}) \|$

- hence, $-\nabla f(x)$ point in the *steepest descent* (maximum rate of decrease) direction at x
- if we set $d^{(k)} = -\nabla f(x^{(k)})$ in the general descent method, we get the gradient descent method or gradient descent algorithm

Gradient descent method

Algorithm Gradient descent algorithm

```
given a starting point \boldsymbol{x}^{(0)} and a solution tolerance \epsilon > 0
```

repeat for $k\geq 1$

- 1. choose a stepsize α_k
- 2. update

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \nabla f(\boldsymbol{x}^{(k)})$$

if $\|\nabla f(\boldsymbol{x}^{(k+1)})\| \leq \epsilon$ stop and output $\boldsymbol{x}^{(k+1)}$

- for α_k small enough, the algorithm is a descent method
- when α_k is large enough, the algorithm may not be a descent method and often does not work

Determining the stepsize

(suppose $d^{(k)}$ is any descent direction)

Constant stepsize: set $\alpha_k = \alpha$ for all k

Exact line search

$$\alpha_k = \underset{\alpha \ge 0}{\operatorname{argmin}} \quad f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$$

- it is not always possible to actually find the exact minimizer α
- called the method of steepest descent if $d^{(k)} = -\nabla f(x^{(k)})$

Backtracking line search: choose $\beta \in (0, 1)$, and $\gamma \in (0, 1)$ and start with an initial guess α_k (*e.g.*, $\alpha_k = 1$), set $\alpha_k := \beta \alpha_k$ until

$$f(\boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}) - f(\boldsymbol{x}^{(k)}) < \gamma \alpha_k \nabla f(\boldsymbol{x}^{(k)})^T \boldsymbol{d}^{(k)}$$

this method is a compromise between the above two methods

the gradient descent method

Stopping criteria

- $\begin{aligned} &1. \ |f(\boldsymbol{x}^{(k+1)}) f(\boldsymbol{x}^{(k)})| < \epsilon \\ &2. \ \|\boldsymbol{x}^{(k+1)} \boldsymbol{x}^{(k)}\| < \epsilon \\ &3. \ |f(\boldsymbol{x}^{(k+1)}) f(\boldsymbol{x}^{(k)})| / |f(\boldsymbol{x}^{(k)})| < \epsilon \end{aligned}$
- 4. $\| \boldsymbol{x}^{(k+1)} \boldsymbol{x}^{(k)} \| / | \boldsymbol{x}^{(k)} | < \epsilon$
- 5. $\|\nabla f(\boldsymbol{x}^{(k)})\| < \epsilon$
- the above conditions do not necessarily imply that $x^{(k)}$ is a good solution since it can be a local minimizer/maximizer or a saddle-point (unless f is convex)
- it is common to run the algorithm from different starting points and choose the best solution of these multiple runs

Example 6.5

$$f(x_1, x_2, x_3) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4$$

the gradient of this function is

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} 4(x_1 - 4)^3 \\ 2(x_2 - 3) \\ 16(x_3 + 5)^3 \end{bmatrix}$$

let the initial point be $x^{(0)} = (4, 2, -1)$; applying one iteration of the gradient descent with $\alpha = 0.002$ gives

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 4\\2\\-1 \end{bmatrix} - 0.002 \begin{bmatrix} 4(4-4)^3\\2(2-3)\\16(-1+5)^3 \end{bmatrix} = \begin{bmatrix} 4.000\\2.004\\-3.048 \end{bmatrix}$$

notice that

$$59.06 = f(4, 2.004, -3.048) < f(4, 2, -1) = 1025$$

this shows that $\alpha = 0.002$ is a good choice

the gradient descent method

if we use exact line search, then

$$\alpha_0 = \underset{\alpha>0}{\operatorname{argmin}} f(\boldsymbol{x}^{(0)} - \alpha \nabla f(\boldsymbol{x}^{(0)}))$$

=
$$\underset{\alpha>0}{\operatorname{argmin}} (0 + (2 + 2\alpha - 3)^2 + 4(-1 - 1024\alpha + 5)^4) = 3.967 \times 10^{-3}$$

hence,

$$\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} - \alpha_0 \nabla f(\boldsymbol{x}^{(0)}) = (4.000, 2.008, -5.062)$$

Example 6.6

$$f(x_1, x_2) = \frac{x_1^2}{5} + x_2^2$$

• the gradient is
$$\nabla f(\boldsymbol{x}) = (\frac{2}{5}x_1, 2x_2)$$

• we have

$$f(\boldsymbol{z} - \alpha \nabla f(\boldsymbol{z})) = \frac{1}{5}(z_1 - \frac{2}{5}\alpha z_1)^2 + (z_2 - 2\alpha z_2)^2$$

• finding the the stepsize at iteration k in the method of steepest descent requires solving

$$\begin{aligned} \alpha &= \operatorname*{argmin}_{\alpha > 0} f(\boldsymbol{z} - \alpha \nabla f(\boldsymbol{z})) \\ &= \operatorname*{argmin}_{\alpha > 0} \left(\frac{1}{5} (z_1 - \frac{2}{5} \alpha z_1)^2 + (z_2 - 2\alpha z_2)^2 \right) \end{aligned}$$

• setting the derivative with respect to α to zero, we get

$$-\frac{4}{25}z_1(z_1 - \frac{2}{5}\alpha z_1) - 4z_2(z_2 - 2\alpha z_2) = 0$$

• solving for α , gives

$$\alpha = \frac{\frac{4}{25}z_1^2 + 4z_2^2}{\frac{8}{125}z_1^2 + 8z_2^2} > 0$$

• hence, the method of steepest descent is

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} - \frac{\frac{4}{25}(x_1^{(k)})^2 + 4(x_2^{(k)})^2}{\frac{8}{125}(x_1^{(k)})^2 + 8(x_2^{(k)})^2} \begin{bmatrix} \frac{2}{5}x_1^{(k)} \\ \frac{2}{5}x_2^{(k)} \end{bmatrix}$$

Exact line search for quadratic functions

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x} - \boldsymbol{b}^{T}\boldsymbol{x}$$

where Q is positive definite; gradient method with exact line search requires solving:

$$\alpha_k = \operatorname*{argmin}_{\alpha>0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$$

where
$$oldsymbol{d}^{(k)} = -
abla f(oldsymbol{x}^{(k)})$$

Update form

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \frac{\|\nabla f(\boldsymbol{x}^{(k)})\|^2}{\nabla f(\boldsymbol{x}^{(k)})^T Q \nabla f(\boldsymbol{x}^{(k)})} \nabla f(\boldsymbol{x}^{(k)})$$

where $\nabla f(\boldsymbol{x}) = Q\boldsymbol{x} - \boldsymbol{b}$

Derivation

• letting $\boldsymbol{d} = \boldsymbol{d}^{(k)}$ and using the chain rule, we have

$$g'(\alpha) = \boldsymbol{d}^T \nabla f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d})$$

= $\boldsymbol{d}^T (Q(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}) - \boldsymbol{b})$
= $\alpha \boldsymbol{d}^T Q \boldsymbol{d} + \boldsymbol{d}^T (Q \boldsymbol{x}^{(k)} - \boldsymbol{b})$
= $\alpha \boldsymbol{d}^T Q \boldsymbol{d} + \boldsymbol{d}^T \boldsymbol{d}$

- setting to zero and solving for $\alpha,$ we get

$$lpha_k = rac{oldsymbol{d}^Toldsymbol{d}}{oldsymbol{d}^TQoldsymbol{d}}$$

where
$$\boldsymbol{d} = -
abla f(\boldsymbol{x}^{(k)}) = -(Q \boldsymbol{x}^{(k)} - \boldsymbol{b})$$

Convergence discussion

under certain mild assumptions, the iterates $\{x^{(k)}\}$ of the gradient algorithm can be shown to converge to a stationary point, *i.e.*,

$$\lim_{k \to \infty} \nabla f(\boldsymbol{x}^{(k)}) = \boldsymbol{0}$$

- if f is convex (*e.g.*, $\nabla^2 f(x) \ge 0$ for all x), then the iterates $\{x^{(k)}\}$ of gradient algorithm converges to a global minimizer
- the rate of convergence is sublinear (slow) in general and linear if $\mu I \leq \nabla^2 f(x)$ for all x and some constant $\mu > 0$

Outline

- unconstrained minimization
- descent methods
- the gradient descent method
- Newton's method

Newton's method

consider n nonlinear equation in n variables

$$r_1(x) = 0, \quad r_2(x) = 0, \quad \dots, \quad r_n(x) = 0$$

where $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$; we let $r(\boldsymbol{x}) = (r_1(\boldsymbol{x}), \ldots, r_n(\boldsymbol{x}))$

Newton's method: choose $\boldsymbol{x}^{(0)}$ and repeat for $k \geq 0$

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - Dr(\boldsymbol{x}^{(k)})^{-1}r(\boldsymbol{x}^{(k)})$$

assumes $Dr({m{x}}^{(k)})$ exists and nonsingular

Unconstrained optimization: if $\boldsymbol{r}(\boldsymbol{x}) = \nabla f(\boldsymbol{x})$, we get

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

Newton's method

Interpretation of Newton update

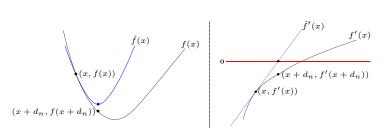
$$\boldsymbol{x} = \boldsymbol{x}^{(k)} - \nabla^2 f(\boldsymbol{x}^{(k)})^{-1} \nabla f(\boldsymbol{x}^{(k)})$$

(I) minimizing the quadratic approximation of f around $x^{(k)}$:

$$\hat{f}(\boldsymbol{x}) = f(\boldsymbol{x}^{(k)}) + \nabla f(\boldsymbol{x}^{(k)})^{T}(\boldsymbol{x} - \boldsymbol{x}^{(k)}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^{(k)})^{T} \nabla^{2} f(\boldsymbol{x}^{(k)})(\boldsymbol{x} - \boldsymbol{x}^{(k)})$$

 $\widehat{\nabla f}(\boldsymbol{x}) = \nabla f(\boldsymbol{x}^{(k)}) + \nabla^2 f(\boldsymbol{x}^{(k)})(\boldsymbol{x} - \boldsymbol{x}^{(k)}) = \boldsymbol{0}$

(II) solve approximate optimality condition around $x^{(k)}$:



Damped Newton's method

Algorithm Damped Newton method

given a starting point $\boldsymbol{x}^{(0)}$, a solution tolerance $\epsilon > 0$

repeat for $k\geq 1$

- 1. choose a stepsize α_k
- 2. update

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \left(\nabla^2 f(\boldsymbol{x}^{(k)}) \right)^{-1} \nabla f(\boldsymbol{x}^{(k)})$$

if $\| \nabla f(\boldsymbol{x}^{(k+1)}) \| \leq \epsilon$ stop and output $\boldsymbol{x}^{(k+1)}$

- assumes $\nabla^2 f(x)$ exists and is invertible
- $d_n = -(\nabla^2 f(\boldsymbol{x}^{(k)}))^{-1} \nabla f(\boldsymbol{x}^{(k)})$ is called *Newton step* at $\boldsymbol{x}^{(k)}$
- similar stepsize selection and stopping criteria as before can be used

single-variable update

$$x^{(k+1)} = x^{(k)} - \alpha_k \frac{f'(x^{(k)})}{f''(x^{(k)})}$$

Convergence discussion

• under certain assumptions one can prove local quadratic rate of convergence (fast), *i.e.*, near the optimal solution the error $||x^{(k)} - x^*||$ (where x^* is an optimal solution) satisfies

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{\star}\| \le c \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{\star}\|^2$$

for some positive c > 0

- if $\nabla^2 f(\boldsymbol{x}) > 0$ then $\boldsymbol{d}_n = -(\nabla^2 f(\boldsymbol{x}^{(k)}))^{-1} \nabla f(\boldsymbol{x}^{(k)})$ is a descent direction and quadratic convergence to the global minimizer is guaranteed under certain conditions
- does not work well if $\nabla^2 f(x)$ is not positive-definite since it is not a descent method in this case
- can use hybrid gradient-Newton method by setting $d^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$ if $\nabla^2 f(x^{(k)})$ is positive-definite and $d^{(k)} = -\nabla f(x^{(k)})$ otherwise

Numerical example I

$$f(\mathbf{x}) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

the gradient and Hessian are

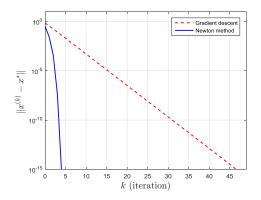
$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} - e^{-x_1 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \end{bmatrix}$$

and

$$\nabla^2 f(\boldsymbol{x}) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1} & e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} & e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} \end{bmatrix}$$

Newton's method

we apply gradient descent and Newton method with initial starting point $x^{(0)}=(-1,1)$ and step-size $\alpha=1$



- both algorithms converge to $\boldsymbol{x}^{\star} = (-0.34657, 0)$
- Newton method is much faster since it uses second-order information

Newton's method

Matlab implementation

```
g=Q(x)[exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)-exp(-x(1)-1);...
\exp(x(1)+x(2)-1)-\exp(x(1)-x(2)-1)]; % gradient
hess=@(x) [exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)+exp(-x(1)-1) ...
\exp(x(1)+x(2)-1)-\exp(x(1)-x(2)-1);\ldots
\exp(x(1)+x(2)-1)-\exp(x(1)-x(2)-1) ...
\exp(x(1)+x(2)-1)+\exp(x(1)-x(2)-1)] % hessain
%% Newton and GD iterations
x = [-1; 1];%GD initilization
xn = [-1; 1]; Newton initilization
alpha=1; %step-size
for k=1:50
%%%Gradient descent update%%%%
grad=g(x);
if (norm(grad) < 1e-16), break; end;
x = x - alpha*grad;
%%%Newton update%%%
dn=-hess(xn)(g(xn));
xn = xn + alpha*dn;
end
```

Alternative way to construct gradient and Hessian

$$f(\boldsymbol{x}) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

we can write f as $f(\boldsymbol{x})=g(A\boldsymbol{x}+\boldsymbol{b}),$ where $g(\boldsymbol{y})=e^{y_1}+e^{y_2}+e^{y_3},$ and

$$A = \begin{bmatrix} 1 & 1\\ 1 & -1\\ -1 & 0 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -1\\ -1\\ -1\\ -1 \end{bmatrix}$$

the gradient and Hessian of g are

$$\nabla g(\boldsymbol{y}) = \begin{bmatrix} e^{y_1} \\ e^{y_2} \\ e^{y_3} \end{bmatrix}, \quad \nabla^2 g(\boldsymbol{y}) = \begin{bmatrix} e^{y_1} & 0 & 0 \\ 0 & e^{y_2} & 0 \\ 0 & 0 & e^{y_3} \end{bmatrix}$$

it follows that

$$\nabla f(\boldsymbol{x}) = A^T \nabla g(A\boldsymbol{x} + \boldsymbol{b})$$
$$\nabla^2 f(\boldsymbol{x}) = A^T \nabla^2 g(A\boldsymbol{x} + \boldsymbol{b})A$$

Matlab implementation

```
A = [1 \ 1; 1 \ -1; -1 \ 0];
b=[1;1;1];
for k=1:50
%%% Gradient descent update %%%
v=exp(A*x-b);
grad=A'*v;
if (norm(grad) < 1e-16), break; end;
x = x - alpha*grad;
%%% Newton's update %%%
vn=exp(A*xn-b);
gradn=A'*vn;
D = diag(vn);
H=A'*D*A:
dn=-H\gradn;
xn = xn + alpha*dn;
end:
```

Numerical example II

minimize
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} \log(e^{\boldsymbol{a}_i^T \boldsymbol{x} - b_i} + e^{-\boldsymbol{a}_i^T \boldsymbol{x} + b_i})$$

•
$$\boldsymbol{a}_i \in \mathbb{R}^n$$
 and $b_i \in \mathbb{R}$ are the problem data

- *m* and *n* can be very large
- suppose that we want to solve this problem using Newton's method with initialization $\boldsymbol{x}^{(0)} = \boldsymbol{1}$, stopping criteria $\|\nabla f(\boldsymbol{x}^{(k)})\| < 10^{-5}$, and line search parameters: $\alpha_0 = 1$, $\beta = 1/2$, and $\gamma = 0.01$
- to implement the algorithm, we first need to find the gradient and Hessian of the function \boldsymbol{f}

the function f can be written as

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} - \boldsymbol{b}) \quad \text{where} \quad g(\boldsymbol{y}) = \sum_{i=1}^m \log(e^{y_i} + e^{-y_i})$$

and

$$A = \begin{bmatrix} \boldsymbol{a}_1^T \\ \vdots \\ \boldsymbol{a}_m^T \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

the gradient and Hessian of h are:

$$\nabla g(\boldsymbol{y}) = \begin{bmatrix} (e^{y_1} - e^{-y_1})/(e^{y_1} + e^{-y_1}) \\ \vdots \\ (e^{y_m} - e^{-y_m})/(e^{y_m} + e^{-y_m}) \end{bmatrix}$$
$$\nabla^2 g(\boldsymbol{y}) = \operatorname{diag}(4/(e^{y_1} + e^{-y_1})^2, \dots, 4/(e^{y_m} + e^{-y_m})^2)$$

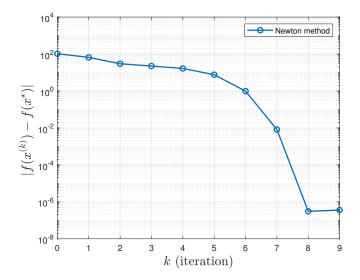
using the composition with affine function property, we have

$$\nabla f(\boldsymbol{x}) = A^T \nabla g(A\boldsymbol{x} - \boldsymbol{b}), \quad \nabla^2 f(\boldsymbol{x}) = A^T \nabla^2 g(A\boldsymbol{x} - \boldsymbol{b})A$$

Newton's method

MATLAB code

```
alpha_0=1;
beta=0.5;
gamma=0.01;
x = ones(n,1); %initialization
k=1:
v = A*x-b:
grad = A'*((exp(y)-exp(-y))./(exp(y)+exp(-y)));
while (norm(grad) >= 1e-5)
k=k+1: %iteration counter
hess = 4*A'*diag(1./(exp(y)+exp(-y)).^2)*A;
d = -hess \grad;
alpha = alpha_0;
f = sum(log(exp(y)+exp(-y)));
while (sum(log(exp(A*(x+alpha*d)-b)+exp(-A*(x+alpha*d)+b))) ...
> f + gamma*alpha*grad'*d)
alpha = beta*alpha;
end
x = x+alpha*d;
v = A*x-b:
f = sum(log(exp(y)+exp(-y)));
grad = A'*((exp(y)-exp(-y))./(exp(y)+exp(-y)));
end
```



References and further readings

- A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014.
- E. KP. Chong and S. H. Zak. An Introduction to Optimization, John Wiley & Sons, 2013.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)
- Uri M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics, 2011.