ENGR 507 (Spring 2025)

6. Unconstrained optimization

e unconstrained minimization
e descent methods
e gradient descent method

o Newton method for unconstrained minimization

S. Alghunaim
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Unconstrained minimization

minimize  f(x)

e x € R" is the optimization or decision variable
o f:R" — Riis the objective function
e fis assumed to be continuously differentiable (with open domain)

e we assume x € dom f whenever dom f # R”

Solution: x* is a minimizer (minimum point) or solution of f if

f&x*) < f(x) forallx € R®
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Optimal value and local minimizer

Optimal value: greatest p such that p < f(x), denoted by p*
e if x* is a minimizer of f, then p* = f(x*) and optimal value is attained at x*
e if p* = —c0, then we say that the function is unbounded below

o the optimal value is unique even though there could be multiple solutions

Local minimizer

e the minimizer x* of f is also called a global minimizer of f

e x°is a local minimizer or local minimum point if there exists r > 0 such that
f(x°) < f(x) forall |x—x°||<r

e itis a strict local minimizerif f(x°) < f(x)

unconstrained minimization
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First-order optimality condition

if the n-vector x° is a local minimizer of f : R" — R, then

af

Via) =0 |5

x°)=0, i=1,...,n

e reduces to f’(x) = 0 for single-variable case n = 1

e this condition is necessary but not sufficient

e points that satisfies V f(x) = 0 are called stationary points or critical points

e stationary points can be minimizers, maximizers, or neither (saddle points)

e minimizing f(x) is the same as solving a nonlinear equation 2(x) = Vf(x) =0

o often difficult to solve and numerical algorithms are used

unconstrained minimization 6.4



Intuition and proof for single-variable case

Intuition

e f’(x) > Oimplies f is increasing, so X slightly less than x gives f(X) < f(x)
e f’(x) <0 means f is decreasing, so X slightly more than x gives f(X) < f(x)
o this means that x is not a minimizer of f

Proof

e if x° is a local minimizer, then f(x°) < f(x° + €) for sufficiently small €

e when € > 0, the limit from the right is

fo+a = f07)
) >

f'(x°) = lim
e—0*

e when € < 0, the limit from the left is

f&E+O - f6)

f'(x°) = lim
e—0" €

e hence,0 < f/(x°) <0= f'(x°) =0

unconstrained minimization



Example

f(x) = 3x* — 20x° + 42x2 — 36x

the optimality condition is

f/(x) = 12x% —60x% + 84x — 36 = 12(x - 1)?(x = 3) = 0

the stationary pointsare x = 1 andx = 3

e x = 1 is not a local optima because f’(x) does not change sign around x = 1

x = 3 is a local minimizer since f’(x) change from -ve to +ve around x = 3

since f(x) — oo as |x| — oo, the point x = 3 must be a global minimizer
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Example

| |
Main BS Neighboring BS

Signal

e power of the received signal measured by the user from each antenna is the
reciprocal of the squared distance from the corresponding antenna

o find position x of user (relative to main station) that maximizes signal-to-noise ratio

unconstrained minimization 6.7



to solve this problem, we need to maximize the signal-to-noise ratio:

setting the derivative to zero:

f(x) = -2(2-x)(1 +x2) - 2x(1+ (2—)6)2) _ 4()(?2 2% —1) 0

(1 +x2)2 (1+x2)2

f'(x)=0atx=1+Vv2

x = 1 — V2 gives larger objective (f(1 — V2) ~ 5.828)

derivative changes its sign from +ve to -ve when passing throughx = 1 — V2

hence, x° =1 — \5 is a local maximizer

it is a global maximizer since f(x) — 1 < f(x°) as |x| — o

unconstrained minimization 6.8



Example

let us find the stationary points of

flx) = x:f - xfxg + 2x§

e we set the gradient (partial derivatives) to zero to obtain optimality condition:

0
6_;1 = 3x% —2x1x9 =0

af
B—XQZ—X%+4)C2=O

e solving, we get two stationary points: (0, 0) and (6, 9)

unconstrained minimization
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Deriving second-order conditions

e if x* is a local minimum, then for any direction v we have

FO* +0) = f(x*) + VM) o+ (1720702 f(x*)o = f(x¥)
e for a very small ||o|], if V.f(x*) # 0, then we can find v such that V £ (x*)Tv < 0
e so we must have Vf(x*) = 0 at a minimum

e at a strict minimum we must also have for all v satisfying 0 < ||v|| < 1
SO +0) = f(x*) + (1/20"V2 ()0 > f(x*)
this will happen if the Hessian matrix V2 £ (x*) is positive definite

e this implies that at a local minimizer, the function has an ‘upward’ curvature
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Second-order optimality condition

Necessary condition: if x° is a local minimizer, then

VF(x°) =0 and VZf(x°) =0

Sufficient condition: if x° satisfies
VF(x°)=0 and V2f(x°)>0
then x° is a (strict) local minimizer

Necessary and sufficient condition
e fisconvex if V2 f(x) = O for all x (positive semidefinite everywhere)

e for convex f, x* is global minimizer if and only if Vf(x*) = 0
(we can find maximizers by finding minimizers of — f)
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Example

X

a minimizer of f(x) = e* + ¢™* — 3x% must satisfy

ffx)=e*—e*-6x=0

solving gives X1 ~ 2.84 and X3 ~ —2.84,and X3 = 0

to find whether these points are local minimizer, we compute the second derivative

ff(x)y=e"+e* -6

f7(2.84) > 0, f”(-2.84) > 0, f””(0) < 0, so X1 and X2 are local minimizers

checking the value of the functions, we see that f(2.84) = f(—2.84); these two
points are global minimizers since f(x) — oo as |x| — oo

unconstrained minimization 6.12



Examples

for f(x) = x>, we have

ffx)=3x>=0=%=0
f”(0) =0, but x = 0 is not a local minimizer since f(x) < f(0) forx <0
(condition f”’(x) > 0 is not enough to characterize local minimizers)

the first and second derivative of f(x) = log(e* + e¢™*) are

ﬁ £ (x) = L
eX +e ' (eX +e™)2

f'(x) =

unique stationary point X = 0

since f”(x) > 0 for all x, x = 0 is a global minimizer

unconstrained minimization
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Example

flx) = x:f - x%xg + 2x§
the stationary points are (0, 0) and (6, 9) (see page 6.9)

the Hessian is
6x1 —2x9 —2x
2 _ 1 2 1
V f('x) - [ —2X1 4 ]

hence,
V2f(0,0):[8 2], V2f(6,9):[_1182 _f]

e V2£(0,0) = 0, soitis still unclear whether (0, 0) is a local minimizer
e V2£(6,9) is indefinite, so (6, 9) is not a local minimizer/maximizer

e since f(€,0) > 0forany € > 0and f(€,0) < 0 for any € < 0, we conclude that
the point (0, 0) is not a local minimizer/maximizer

unconstrained minimization 6.14



Example

for f(x) = $x7 + x1x2 + 2x5 — 4x1 — 4x; — x3, the optimality condition is

Vi) =

X1 +x9—4 _ 0
x1+4xo—4-3x3| " |0
solving, we get the stationary points (4, 0) and (3, 1); the Hessian is

Vi) = E 4—16x2]

thus,

V2f(4,0)=ﬁ ﬂ V2f(3,1)=[} _12]

e V2£(4,0) = 0sox = (4,0) is a local minimizer

e V2£(3,1) is indefinite so (3, 1) is not a minimizer/maximizer

e note that X = (4, 0) is not a global minimizer since f(0,x2) — —oo as xo — oo

unconstrained minimization
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Example

for
f(x) = x% — X1X2 +x§ — 3x9

the optimality condition is

Vi) =

2x1 — X2 _ {0
—x1+2x,-3| " |0
e has a unique solution X1 = 1,x9 = 2

e since the Hessian
2 -1
2 —
V f('x) - [_1 2:|

is positive definite everywhere, the point X = (1, 2) is a global minimizer

unconstrained minimization
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Quadratic functions

flx) = %xTQx+rTx+s, QeSS

Optimality condition: V f(x) = Qx + r = 0 with Hessian V2f(x) = Q

e if O = 0, then x* is a global minimizer iff Qx* +r = 0

— if Q > 0, then there is a unique minimizer x* = —Q~1r
e if Q is singular and r € range(Q), then there exists multiple stationary points
e if r ¢ range(Q), then there is no solution and f is unbounded below
e if O is indefinite, then any stationary point is a saddle-point

e if O is invertible, then there is a unique stationary point: X = —Q‘lr

unconstrained minimization
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Example: maximum power transfer

Zrn

Linear circuit

1M

oo
o

Vry is the Thevenin voltage

Z1y, = Ry + jXTn (j = V1) is the Thevenin impedance

e Z; = Ry +jXi is the impedance of the load

_ Vrn
Ry + Ry + j(XTn + X1)

P=|I*R;, I

is maximized; (assume Vp, = 1 and Ry, > 0)

unconstrained minimization

find load impedance (i.e., Ry, and X1 ) such that average power delivered to load
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problem is
X1

maximize =
imize. f(x) (Rrn + x1)? + (X1 + X2)?2

with variables x1 = Ry, xo = X ; setting the gradient (partial derivatives) to zero:

df _ (Rrn +x1)% + (Xrn +x2)% = 2x1 (Rn, + x1) ~0

Vx1 f(x) = 53
9x1 ((Rtn +x1)2 + (X7n +X2)2)2
of —2x1(X7n + x2)
V()= 55 = ;=0
X2 ((Rpn +x1)2 + (X7n +x2)?)
e from 2nd equation, we have x; = 0 or xo = — X1y,

e note that x; = 0 does not satisfy the 1st condition

e plugging x2 = — X7y, into the 1st condition and simplifying, we get
(Rh +x1)% = 2x1 (R +Xx1) =0 = x1 = Ry,

e hence, the stationary pointis x = (Rty, —XTn)

unconstrained minimization



we now check the second-order conditions

e to simplify derivation of Hessian, let f(x) = g(Ax + b) where

y 1 0 0

1

g(y1,y2,¥3) = 5——, A=|1 0|, b=|Rm
Y2+ Y3 01 X

e by composition rule, the Hessian of f is ATV2g(Ax + b)A

e thus, we need to find the Hessain of 4; the gradient of g is

1
y3+y3
—2y1y2
Vey) = | Gzn2)?
~2y1y3
(y3+y3)2

unconstrained minimization
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o the Hessian of g is

0 —2y2 —2y3
(y3+y3)? (y3+y3)?
2 2w —2y1 (y3+y3)+8y1y3 8y1y2Y3
Vig(y) = (vZ+y2)2 Z+y3)3 (Z+y3)3
-2y3 8Y1Y2Y3 —2y1 (¥5+y3)+8y1y3
(y3+y3)? (y3+y3)® (y3+v3)®
0 —¥y2 -3
2 _y —y1(¥3+y3) +4y1y3 4y1y23
- 2 +y2)2 2 (3 +y3) (v3+y3)
2773 _y 4y1y2ys —y1 (03 +y3)+4y1 53
3 (y3+y3) (y3+y3)
e atx = (Rry, —XTn), we have
Ry
Ax+ b = 2RTh
0

unconstrained minimization
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e hence, atx = (Rty, —XT1,), we have

0 —2RTy 0 0 -2 0

2 _ 2 _ 1
\Y g(A)C + b) = w —2RTh 3RTh 0 ~ (Rtn)? 2 3 0
0 0 —Ry, 0 0 -1

e the Hessian of f atx = (R, —XT1) is
V2f(x) = ATV2g(Ax + b)A

1 [t 10 _g ‘;
(2R3 |0 0 1 0

O~
= o O

1 [—1 0]
(2R3 [ 0 -1

e since Ry, > 0, the Hessian is negative definite and x = (Rty, —Xy,) is a local
maximum; because it is the only point stationary point, it is a global maximum

unconstrained minimization 6.22



Outline

e unconstrained minimization
o descent methods
e gradient descent method

o Newton method for unconstrained minimization



Descent methods
Descent direction: a vector v € R" is called a descent direction for f if

f(x+av) < f(x) for sufficiently small @ > 0

choose a starting pointx(o), a solution tolerance € > 0, and a stopping criteria
repeat for k > (0

1. determine a decent direction oK)

2. if stopping criteria is satisfied, then stop and output x(K)
3. select a stepsize ag

4. update x K+ = x(K) 4 g p(K)

until maximum number of iterations reached

e 0 is a descent direction if the directional derivative of f at x in the direction v is

fGx+av) - f(x)
o

f(x50) = lim =Vfx)Tv<0

e Vf(x) Ty gives an approximate rate of change (increase) of f in direction v at x

descent methods 6.23



Determining the stepsize

Constant stepsize: set oy = a forall k
Exact line search

i = argmin f(x(k) +av®)
a0

it is not always possible to actually find the exact minimizer «

Backtracking line search
e choose 8 € (0,1/2),and y € (0, 1) and initial guess ay (e.g., ax = 1)

e set ay := Bay until
FOE + ™) < f9) +yar V(1) T
this method is a compromise between the above two methods
e simple backtracking algorithm is to set
ax =1,0.5,0.5%,0.5%,. ..
until the above is satisfied or until £ (x%) + ao®)) < £(x))

descent methods
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Stopping criteria

1) — M) < e

D) — xR < €

Ry — N ()] < €
e ®ED — xR < €

V") <e

a A~ W N

e the above conditions do not necessarily imply that x®) isa good solution since it
can be a local minimizer/maximizer or a saddle-point (unless f is convex)

e it is common to run the algorithm from different starting points and choose the
best solution of these multiple runs

descent methods 6.25
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Negative gradient direction

the directional derivative in the direction v = =V f (x) is
vIVF(x) = —|IVL())? <0 forany x with Vf(x) # 0

thus, —V f(x) is a descent direction

e suppose |[v]| = 1, then by Cauchy-Schwarz, we have
—IVF)l < VF(x) T
e equality holds only if v = =V f(x)/||V.f (x)]|
e so —V f(x) point in steepest descent (maximum rate of decrease) direction at x

e setting k) = v f (x(k)) in the descent method gives the gradient method or
gradient descent method

gradient descent method 6.26



Gradient descent method

given a starting pointx(o) and a solution tolerance € > 0
repeat for k > 0

1.
2.
3.

if [|[V£(x¥))|| < € stop and output x %)
choose a stepsize aj
update
Fk+1) o (K) a'ka(x(k))

for ag small enough, the algorithm is a descent method

when ay is large, the algorithm may not be a descent method and may fail

called the method of steepest descent with exact line search

gradient descent method
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Example

f(x1.x2,x3) = (x1 = 4)* + (x2 = 3)* + 4(x3 + 5)*
the gradient of this function is
4()61 — 4)3

Vi(x) =] 2(x2=3)
16(X3 + 5)3

applying one iteration of the gradient descent with x(© (4,2,-1), @ = 0.002 gives

4 4(4 — 4)3 4.000
M =1 21-0.002| 202-3) =] 2.004
-1 16(~1 + 5)3 —3.048

the new objective value is
59.06 = f(4,2.004,-3.048) < f(4,2,-1) = 1025,

which shows that @ = 0.002 is a good choice

gradient descent method 6.28



if we use exact line search, then
ap = argmin f(x'? — @V f(x©))
a>0
= argmin(0 + (2 + 2a — 3)% + 4(~1 - 1024 + 5)%)
a>0

=3.967x 1073

hence,
xW = xO _ gV (@) = (4.000, 2.008, —5.062)

gradient descent method
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Example

2
Xy 2
f(x1,x2) = 5 + x5

o the gradientis V f(x) = (£x1, 2x3)

e we have
fx—aVf(x) = +(x1 - 2ax1)® + (x2 — 2ax2)°

e using exact line search in the gradient method, we have

a = argmin f(x — aV f(x))
a>0

= argmin (£ (x; — Z2ax1)? + (x2 — 2ax3)?)
a>0

gradient descent method
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e setting the derivative with respect to « to zero, we get

—5ex1(x1 — 2axy) — Axa(x2 — 2ax3) = 0

e solving for «, gives
2 + 4)62

24 8x2

>0
125 1

e hence, the method of steepest descent is

l (k+1)l lxik)} ) %(xik))2+4(xék))2 [

k+1 k
(k+1) xé ) x§k))2 +8(xék))2

25 (

gradient descent method

2 (k)
Exlk
2x£ )

|
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Exact line search for quadratic functions

f(x) = %xTQx -rlx

e Q € §', is positive definite

e gradient method with exact line search requires solving:

ax = argmin f(x® + av®))
a>0

where v®) = —V £(x®)) = —(Qx®) — )

Update form

(k1) _ (k) _ |V £ (xR))]|2 ()
x T ®yTgy fioy )

=X

gradient descent method 6.32



Derivation
o letv =0 = -Vfx®)=—(Qx® —r)

e using the chain rule, we have
g (@) = v V(P + av)
=0T(Q(x® + av) - 1)
= avTQv + vT(0x® - )

a/vTQv e

e setting to zero and solving for @, we get

gradient descent method



Convergence

under mild assumptions, {x(k)} of gradient method converge to a stationary point:

lim Viax®)y=0

e converges to a global minimizer for convex f (e.g., V2 f(x) = 0 for all x)

e the rate of convergence is sublinear (slow) in general and linear if ul < V2 f(x)
for all x and some constant u > 0

gradient descent method 6.34
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Newton method

consider n nonlinear equations in n variables
hi(x) =0, ha(x)=0, ..., hy(x)=0
where x = (x1,...,x,) € R";welet h(x) = (h1(x),..., h,(x))
Newton method: choose x(?) and repeat for k > 0
x D = O _ pp(xR)=1p(x k)
assumes Dh(xK)) exists and nonsingular

Unconstrained optimization: if 2(x) = Vf(x), we get

K H) 2 0 g2 ()1 £ (R))

Newton method for unconstrained minimization 6.35



Interpretation of Newton update

x=x® = V2 r(x0)1y £ (xR
1. minimizing the quadratic approximation of f around xh:
F) = FG) 4 V7O T = x®) + Jr = x@) V2 £ (1) (= x8)
2. solve approximate optimality condition around x k)

Vi) = VAE®) + v2 @) —x®) = 0

F(x)
F(x)

f&

X +on, f/(x+0vn))
A ()

(x +0n, f(x+0n))

Newton method for unconstrained minimization 6.36



Damped Newton method

given a starting pointx(o), a solution tolerance € > 0
repeat for k > 0

1.

if stopping criteria is met (e.g., || V.f(x¥))|| < €), stop and return x(K)

2. select a step-size
3.
4. update:

solve V2 £ (x())pK) = v £(x(K)) for p(k)

2+ 20 g (6

assumes V2 f(x) exists and is invertible
vn = =V2 £ (x )1y £(x(0)) is called Newton step at x %)
similar stepsize selection and stopping criteria as before can be used

single-variable update

’ k
x(k+1) = x(k) — akL())
I (x0)

Newton method for unconstrained minimization
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Example

minimize f(x) = %xQ —sinx
given x(¥) = 0.5, @ = 1, € = 10> with stopping criteria |x¥*1) — x(X)| < ¢

e applying Newton’s method, we have

(1) _ (0 £ (x©) 0.5 — cos(0.5)
X =X -—=05-—
F7(x(0) 1 +sin(0.5)
-0.3775
=0.5- T’?Q =0.7552

repeating, we get x(2) = 0.7391, x®) = 0.7390, and x¥ =~ 0.7390
e note that [x*) —x®)| < ¢, F/(x*) = 0,and f/(x*) =1.672 >0

e hence, x® s an approximate local minimizer (it is an approximate global minima)

Newton method for unconstrained minimization 6.38



Example

f(x) — eX1+X2—1 +e.X1—X2—1 + e—xl—l

the gradient and Hessian are

X1+x2—1

Vi) = [

e 4

and

ex1+x2—1 +ex1—x2—1 +e—x1—1

ex1+x2—1 — et —xo—1

Vi f(x) = [

Newton method for unconstrained minimization

e
e

ex1+x271 + exlfxzfl _ efxlfl
x1—x2—1

X1+x2—-1 _

e

x1—X2—1

X1+x2—1 + exl—x2—1

|

6.39



we apply gradient descent and Newton method with x© = (-I,1)anda =1

10°K = = =—Gradient descentj
Newton method
N
~
== ~
*R 10° K il
| R
N
— ~
~ ~
= AN
= ~
~
1010 Mo i
~
N
~
~
~
~
~
~
10715 ‘ ‘ ‘ ‘ ‘ ‘ ‘ b
0 5 10 15 20 25 30 35 40 45

k (iteration)

e Dboth algorithms converge to x* = (—0.34657, 0)

e Newton method is much faster since it uses second-order information

Newton method for unconstrained minimization
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Matlab implementation

g=0(x) [exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)-exp(-x(1)-1);...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1)]; % gradient
hess=0(x) [exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)+exp(-x(1)-1)
exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1);...
exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1)
exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)] % hessain
%% Newton and GD iterations

x = [-1; 1];%GD initilization

xn = [-1; 1];%Newton initilization

alpha=1; Ystep-size

for k=1:50

%hhGradient descent updatel%k

grad=g(x);

if (norm(grad) < 1le-16), break; end;

X = X - alpha*grad;

%hhiNewton updatelilh

vn=-hess (xn)\g(xn) ;

xn = xn + alpha*vn;

end

Newton method for unconstrained minimization
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Alternative way to construct gradient and Hessian
f(x) — ex1+x2—1 +ex1—x2—1 +€_X1_1

we can write f as f(x) = g(Ax + b), where g(y) = e + ¢”2 + €73, and

1 1 -1
A=|1 -1f, b=|-1
-1 0 -1
the gradient and Hessian of g are
en e’ 0 0
Ve(y) =[], V() =|0 &2 0
eyS O O eyS

it follows that

Vf(x) = ATVg(Ax + b)
V2f(x) = ATV2g(Ax + b)A

Newton method for unconstrained minimization
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Matlab implementation

A=[1 1;1 -1;-1 0];
b=[1;1;1];

for k=1:50

%%h% Gradient descent update %%%

y=exp (A*x-b) ;
grad=A’x*y;

if (norm(grad) < le-16), break;

X = X - alpha*grad;

%%% Newton’s update %%
yn=exp (A*xn-b) ;
gradn=A’*yn;

D = diag(yn);

H=A’*D*A;

vn=-H\gradn;

Xn = xn + alpha*vn;
end;

Newton method for unconstrained minimization
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Example

- Te b, T .p
minimize  f(x) = Zlog(eai x=bi |, ,=4; x+b,)
i=1

e g; € R"and b; € R are the problem data
e m and n can be very large

e suppose that we want to solve this problem using Newton’s method with
— initialization x(¥) = 1
— stopping criteria ||V £ (x()|| < 107°
— line search parameters: g = 1, 8 = 1/2,and y = 0.01

for implementation, we first need to find the gradient and Hessian of the function f

Newton method for unconstrained minimization 6.44



the function f can be written as

f(x) =g(Ax = D) where g(y) = ilog(ey" + e
i=1

and

A=|:|, b=

a
3N

S
3

the gradient and Hessian of A are:

(e)h — e—)’1)/(e)’1 + e—)ﬁ)
Vg(y) = :
(e¥ — &™) /(e + e7om)

VZg(y) = diag(4/(e™ + €)%, ..., 4/(e?m + e7¥m)?)
using the composition with affine function property, we have

Vix) = ATVg(Ax —b), VZf(x) = ATVZg(Ax - b)A

Newton method for unconstrained minimization
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MATLAB code

alpha_0=1;

beta=0.5;

gamma=0.01;

ones(n,1); %initialization

Axx-b;

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));
while (norm(grad) >= 1e-5)

k=k+1; %iteration counter

hess = 4%A’*diag(l./(exp(y)+exp(-y)). 2)*A;

d = -hess\grad;

alpha = alpha_0;

f = sum(log(exp(y)+exp(-y)));

while (sum(log(exp(A*(x+alpha*d)-b)+exp(-A*(x+alpha*d)+b)))
> f + gamma*alpha*grad’*d)

alpha = beta*alpha;

x =
k=1;
y =

end

x = x+alphax*d;

y = A*x-b;

f = sum(log(exp(y)+exp(-y)));

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));
end

Newton method for unconstrained minimization



—©— Newton method

10°

10-8 1 1 1 1 1 1 1 1 )
0 1 2 3 4 5 6 7 8 9

k (iteration)
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Convergence

quadratic convergence near the optimal solution

lr®D) — x| < ¢lx® — x*||?  for some positive ¢ > 0

o if V2f(x) > 0 (convex) then v, = =V2 f(xK))~1V £ (x%)) is a descent
direction; converges quadratically to a global minimizer under certain conditions

e may not work well when V? f(x) is not positive definite

— in this case, Newton step is not always a descent direction

e can use hybrid gradient-Newton method by setting

w _ [ VLTV G®) it V(e - 0
C -V x®) otherwise

or o' = ~(V2 £ (xx) + v )TV f(x)

Newton method for unconstrained minimization
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