
6. Unconstrained optimization

• unconstrained minimization

• descent methods

• gradient descent method

• Newton method for unconstrained minimization

ENGR 507 (Spring 2025) S. Alghunaim

6.1

Unconstrained minimization

minimize 𝑓 (𝑥)

• 𝑥 ∈ R𝑛 is the optimization or decision variable

• 𝑓 : R𝑛 → R is the objective function

• 𝑓 is assumed to be continuously differentiable (with open domain)

• we assume 𝑥 ∈ dom 𝑓 whenever dom 𝑓 ≠ R𝑛

Solution: 𝑥★ is a minimizer (minimum point) or solution of 𝑓 if

𝑓 (𝑥★) ≤ 𝑓 (𝑥) for all 𝑥 ∈ R𝑛

SA — ENGR507unconstrained minimization 6.2

Optimal value and local minimizer

Optimal value: greatest 𝜌 such that 𝜌 ≤ 𝑓 (𝑥), denoted by 𝑝★

• if 𝑥★ is a minimizer of 𝑓 , then 𝑝★ = 𝑓 (𝑥★) and optimal value is attained at 𝑥★

• if 𝑝★ = −∞, then we say that the function is unbounded below

• the optimal value is unique even though there could be multiple solutions

Local minimizer

• the minimizer 𝑥★ of 𝑓 is also called a global minimizer of 𝑓

• 𝑥◦ is a local minimizer or local minimum point if there exists 𝑟 > 0 such that

𝑓 (𝑥◦) ≤ 𝑓 (𝑥) for all ∥𝑥 − 𝑥◦∥ ≤ 𝑟

• it is a strict local minimizer if 𝑓 (𝑥◦) < 𝑓 (𝑥)

SA — ENGR507unconstrained minimization 6.3

First-order optimality condition

if the 𝑛-vector 𝑥◦ is a local minimizer of 𝑓 : R𝑛 → R, then

∇ 𝑓 (𝑥◦) = 0

(
𝜕 𝑓

𝜕𝑥𝑖
(𝑥◦) = 0, 𝑖 = 1, . . . , 𝑛

)
• reduces to 𝑓 ′ (𝑥) = 0 for single-variable case 𝑛 = 1

• this condition is necessary but not sufficient

• points that satisfies ∇ 𝑓 (𝑥) = 0 are called stationary points or critical points

• stationary points can be minimizers, maximizers, or neither (saddle points)

• minimizing 𝑓 (𝑥) is the same as solving a nonlinear equation ℎ(𝑥) = ∇ 𝑓 (𝑥) = 0

• often difficult to solve and numerical algorithms are used

SA — ENGR507unconstrained minimization 6.4

Intuition and proof for single-variable case

Intuition

• 𝑓 ′ (𝑥) > 0 implies 𝑓 is increasing, so 𝑥 slightly less than 𝑥 gives 𝑓 (𝑥) < 𝑓 (𝑥)
• 𝑓 ′ (𝑥) < 0 means 𝑓 is decreasing, so 𝑥 slightly more than 𝑥 gives 𝑓 (𝑥) < 𝑓 (𝑥)
• this means that 𝑥 is not a minimizer of 𝑓

Proof

• if 𝑥◦ is a local minimizer, then 𝑓 (𝑥◦) ≤ 𝑓 (𝑥◦ + 𝜖) for sufficiently small 𝜖

• when 𝜖 > 0, the limit from the right is

𝑓 ′ (𝑥◦) = lim
𝜖→0+

𝑓 (𝑥◦ + 𝜖) − 𝑓 (𝑥◦)
𝜖

≥ 0

• when 𝜖 < 0, the limit from the left is

𝑓 ′ (𝑥◦) = lim
𝜖→0−

𝑓 (𝑥◦ + 𝜖) − 𝑓 (𝑥◦)
𝜖

≤ 0

• hence, 0 ≤ 𝑓 ′ (𝑥◦) ≤ 0 ⇒ 𝑓 ′ (𝑥◦) = 0

SA — ENGR507unconstrained minimization 6.5

Example

𝑓 (𝑥) = 3𝑥4 − 20𝑥3 + 42𝑥2 − 36𝑥

the optimality condition is

𝑓 ′ (𝑥) = 12𝑥3 − 60𝑥2 + 84𝑥 − 36 = 12(𝑥 − 1)2 (𝑥 − 3) = 0

• the stationary points are 𝑥 = 1 and 𝑥 = 3

• 𝑥 = 1 is not a local optima because 𝑓 ′ (𝑥) does not change sign around 𝑥 = 1

• 𝑥 = 3 is a local minimizer since 𝑓 ′ (𝑥) change from -ve to +ve around 𝑥 = 3

• since 𝑓 (𝑥) → ∞ as |𝑥 | → ∞, the point 𝑥 = 3 must be a global minimizer

SA — ENGR507unconstrained minimization 6.6

Example

1

𝑥
User

Neighboring BSMain BS

1

2

• power of the received signal measured by the user from each antenna is the
reciprocal of the squared distance from the corresponding antenna

• find position 𝑥 of user (relative to main station) that maximizes signal-to-noise ratio

SA — ENGR507unconstrained minimization 6.7

to solve this problem, we need to maximize the signal-to-noise ratio:

𝑓 (𝑥) = 1 + (2 − 𝑥)2
1 + 𝑥2

setting the derivative to zero:

𝑓 ′ (𝑥) = −2(2 − 𝑥) (1 + 𝑥2) − 2𝑥(1 + (2 − 𝑥)2)
(1 + 𝑥2)2 =

4(𝑥2 − 2𝑥 − 1)
(1 + 𝑥2)2 = 0

• 𝑓 ′ (𝑥) = 0 at 𝑥 = 1 ±
√
2

• 𝑥 = 1 −
√
2 gives larger objective (𝑓 (1 −

√
2) ≈ 5.828)

• derivative changes its sign from +ve to -ve when passing through 𝑥 = 1 −
√
2

• hence, 𝑥◦ = 1 −
√
2 is a local maximizer

• it is a global maximizer since 𝑓 (𝑥) → 1 < 𝑓 (𝑥◦) as |𝑥 | → ∞

SA — ENGR507unconstrained minimization 6.8

Example

let us find the stationary points of

𝑓 (𝑥) = 𝑥31 − 𝑥21𝑥2 + 2𝑥22

• we set the gradient (partial derivatives) to zero to obtain optimality condition:

𝜕 𝑓

𝜕𝑥1
= 3𝑥21 − 2𝑥1𝑥2 = 0

𝜕 𝑓

𝜕𝑥2
= −𝑥21 + 4𝑥2 = 0

• solving, we get two stationary points: (0, 0) and (6, 9)

SA — ENGR507unconstrained minimization 6.9

Deriving second-order conditions

• if 𝑥★ is a local minimum, then for any direction 𝑣 we have

𝑓 (𝑥★ + 𝑣) = 𝑓 (𝑥★) + ∇ 𝑓 (𝑥★)T𝑣 + (1/2)𝑣T∇2 𝑓 (𝑥★)𝑣 ≥ 𝑓 (𝑥★)

• for a very small ∥𝑣∥, if ∇ 𝑓 (𝑥★) ≠ 0, then we can find 𝑣 such that ∇ 𝑓 (𝑥★)T𝑣 < 0

• so we must have ∇ 𝑓 (𝑥★) = 0 at a minimum

• at a strict minimum we must also have for all 𝑣 satisfying 0 < ∥𝑣∥ ≪ 1

𝑓 (𝑥★ + 𝑣) = 𝑓 (𝑥★) + (1/2)𝑣T∇2 𝑓 (𝑥★)𝑣 > 𝑓 (𝑥★)

this will happen if the Hessian matrix ∇2 𝑓 (𝑥★) is positive definite

• this implies that at a local minimizer, the function has an ‘upward’ curvature

SA — ENGR507unconstrained minimization 6.10

Second-order optimality condition

Necessary condition: if 𝑥◦ is a local minimizer, then

∇ 𝑓 (𝑥◦) = 0 and ∇2 𝑓 (𝑥◦) ⪰ 0

Sufficient condition: if 𝑥◦ satisfies

∇ 𝑓 (𝑥◦) = 0 and ∇2 𝑓 (𝑥◦) ≻ 0

then 𝑥◦ is a (strict) local minimizer

Necessary and sufficient condition

• 𝑓 is convex if ∇2 𝑓 (𝑥) ⪰ 0 for all 𝑥 (positive semidefinite everywhere)

• for convex 𝑓 , 𝑥★ is global minimizer if and only if ∇ 𝑓 (𝑥★) = 0

(we can find maximizers by finding minimizers of − 𝑓)

SA — ENGR507unconstrained minimization 6.11

Example

a minimizer of 𝑓 (𝑥) = 𝑒𝑥 + 𝑒−𝑥 − 3𝑥2 must satisfy

𝑓 ′ (𝑥) = 𝑒𝑥 − 𝑒−𝑥 − 6𝑥 = 0

• solving gives 𝑥1 ≈ 2.84 and 𝑥2 ≈ −2.84, and 𝑥3 = 0

• to find whether these points are local minimizer, we compute the second derivative

𝑓 ′′ (𝑥) = 𝑒𝑥 + 𝑒−𝑥 − 6

• 𝑓 ′′ (2.84) > 0, 𝑓 ′′ (−2.84) > 0, 𝑓 ′′ (0) < 0, so 𝑥1 and 𝑥2 are local minimizers

• checking the value of the functions, we see that 𝑓 (2.84) = 𝑓 (−2.84); these two
points are global minimizers since 𝑓 (𝑥) → ∞ as |𝑥 | → ∞

SA — ENGR507unconstrained minimization 6.12

Examples

• for 𝑓 (𝑥) = 𝑥3, we have

𝑓 ′ (𝑥) = 3𝑥2 = 0 ⇒ 𝑥 = 0

𝑓 ′′ (0) = 0, but 𝑥 = 0 is not a local minimizer since 𝑓 (𝑥) < 𝑓 (0) for 𝑥 < 0

(condition 𝑓 ′′ (𝑥) ≥ 0 is not enough to characterize local minimizers)

• the first and second derivative of 𝑓 (𝑥) = log(𝑒𝑥 + 𝑒−𝑥) are

𝑓 ′ (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑓 ′′ (𝑥) = 4

(𝑒𝑥 + 𝑒−𝑥)2

unique stationary point 𝑥 = 0

since 𝑓 ′′ (𝑥) > 0 for all 𝑥, 𝑥 = 0 is a global minimizer

SA — ENGR507unconstrained minimization 6.13

Example

𝑓 (𝑥) = 𝑥31 − 𝑥21𝑥2 + 2𝑥22

the stationary points are (0, 0) and (6, 9) (see page 6.9)

the Hessian is

∇2 𝑓 (𝑥) =
[
6𝑥1 − 2𝑥2 −2𝑥1
−2𝑥1 4

]
hence,

∇2 𝑓 (0, 0) =
[
0 0
0 4

]
, ∇2 𝑓 (6, 9) =

[
18 −12

−12 4

]
• ∇2 𝑓 (0, 0) ⪰ 0 , so it is still unclear whether (0, 0) is a local minimizer

• ∇2 𝑓 (6, 9) is indefinite, so (6, 9) is not a local minimizer/maximizer

• since 𝑓 (𝜖, 0) > 0 for any 𝜖 > 0 and 𝑓 (𝜖, 0) < 0 for any 𝜖 < 0, we conclude that
the point (0, 0) is not a local minimizer/maximizer

SA — ENGR507unconstrained minimization 6.14

Example

for 𝑓 (𝑥) = 1
2𝑥

2
1 + 𝑥1𝑥2 + 2𝑥22 − 4𝑥1 − 4𝑥2 − 𝑥32, the optimality condition is

∇ 𝑓 (𝑥) =
[

𝑥1 + 𝑥2 − 4
𝑥1 + 4𝑥2 − 4 − 3𝑥22

]
=

[
0
0

]
solving, we get the stationary points (4, 0) and (3, 1); the Hessian is

∇2 𝑓 (𝑥) =
[
1 1
1 4 − 6𝑥2

]
thus,

∇2 𝑓 (4, 0) =
[
1 1
1 4

]
, ∇2 𝑓 (3, 1) =

[
1 1
1 −2

]
• ∇2 𝑓 (4, 0) ⪰ 0 so 𝑥 = (4, 0) is a local minimizer

• ∇2 𝑓 (3, 1) is indefinite so (3, 1) is not a minimizer/maximizer

• note that 𝑥 = (4, 0) is not a global minimizer since 𝑓 (0, 𝑥2) → −∞ as 𝑥2 → ∞

SA — ENGR507unconstrained minimization 6.15

Example

for
𝑓 (𝑥) = 𝑥21 − 𝑥1𝑥2 + 𝑥22 − 3𝑥2

the optimality condition is

∇ 𝑓 (𝑥) =
[

2𝑥1 − 𝑥2
−𝑥1 + 2𝑥2 − 3

]
=

[
0
0

]
• has a unique solution 𝑥1 = 1, 𝑥2 = 2

• since the Hessian

∇2 𝑓 (𝑥) =
[
2 −1

−1 2

]
is positive definite everywhere, the point 𝑥 = (1, 2) is a global minimizer

SA — ENGR507unconstrained minimization 6.16

Quadratic functions

𝑓 (𝑥) = 1
2𝑥

T𝑄𝑥 + 𝑟T𝑥 + 𝑠, 𝑄 ∈ S𝑛

Optimality condition: ∇ 𝑓 (𝑥) = 𝑄𝑥 + 𝑟 = 0 with Hessian ∇2 𝑓 (𝑥) = 𝑄

• if 𝑄 ⪰ 0, then 𝑥★ is a global minimizer iff 𝑄𝑥★ + 𝑟 = 0

– if 𝑄 ≻ 0, then there is a unique minimizer 𝑥★ = −𝑄−1𝑟

• if 𝑄 is singular and 𝑟 ∈ range(𝑄), then there exists multiple stationary points

• if 𝑟 ∉ range(𝑄), then there is no solution and 𝑓 is unbounded below

• if 𝑄 is indefinite, then any stationary point is a saddle-point

• if 𝑄 is invertible, then there is a unique stationary point: 𝑥 = −𝑄−1𝑟

SA — ENGR507unconstrained minimization 6.17

Example: maximum power transfer

Linear circuit

b

𝒁𝐿

𝑰

a

−
+

𝑽Th

𝒁Th
a

𝑰

𝒁𝐿

b

• 𝑽Th is the Thevenin voltage

• 𝒁Th = 𝑅Th + j𝑋Th (j =
√
−1) is the Thevenin impedance

• 𝒁𝐿 = 𝑅𝐿 + j𝑋𝐿 is the impedance of the load

• find load impedance (i.e., 𝑅𝐿 and 𝑋𝐿) such that average power delivered to load

𝑃 = |𝑰 |2𝑅𝐿 , 𝑰 =
𝑽Th

𝑅Th + 𝑅𝐿 + 𝑗 (𝑋Th + 𝑋𝐿)

is maximized; (assume 𝑽Th = 1 and 𝑅Th > 0)

SA — ENGR507unconstrained minimization 6.18

problem is

maximize 𝑓 (𝑥) = 𝑥1

(𝑅Th + 𝑥1)2 + (𝑋Th + 𝑥2)2

with variables 𝑥1 = 𝑅𝐿 , 𝑥2 = 𝑋𝐿 ; setting the gradient (partial derivatives) to zero:

∇𝑥1 𝑓 (𝑥) =
𝜕 𝑓

𝜕𝑥1
=

(𝑅Th + 𝑥1)2 + (𝑋Th + 𝑥2)2 − 2𝑥1 (𝑅Th + 𝑥1)(
(𝑅Th + 𝑥1)2 + (𝑋Th + 𝑥2)2

)2 = 0

∇𝑥2 𝑓 (𝑥) =
𝜕 𝑓

𝜕𝑥2
=

−2𝑥1 (𝑋Th + 𝑥2)(
(𝑅Th + 𝑥1)2 + (𝑋Th + 𝑥2)2

)2 = 0

• from 2nd equation, we have 𝑥1 = 0 or 𝑥2 = −𝑋Th

• note that 𝑥1 = 0 does not satisfy the 1st condition

• plugging 𝑥2 = −𝑋Th into the 1st condition and simplifying, we get

(𝑅Th + 𝑥1)2 − 2𝑥1 (𝑅Th + 𝑥1) = 0 =⇒ 𝑥1 = 𝑅Th

• hence, the stationary point is 𝑥 = (𝑅Th,−𝑋Th)

SA — ENGR507unconstrained minimization 6.19

we now check the second-order conditions

• to simplify derivation of Hessian, let 𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏) where

𝑔(𝑦1, 𝑦2, 𝑦3) =
𝑦1

𝑦22 + 𝑦23
, 𝐴 =


1 0
1 0
0 1

 , 𝑏 =


0

𝑅Th

𝑋Th


• by composition rule, the Hessian of 𝑓 is 𝐴T∇2𝑔(𝐴𝑥 + 𝑏)𝐴

• thus, we need to find the Hessain of ℎ; the gradient of 𝑔 is

∇𝑔(𝑦) =


1

𝑦22+𝑦23
−2𝑦1𝑦2
(𝑦22+𝑦23)2
−2𝑦1𝑦3
(𝑦22+𝑦23)2


SA — ENGR507unconstrained minimization 6.20

• the Hessian of 𝑔 is

∇2𝑔(𝑦) =


0 −2𝑦2

(𝑦22+𝑦23)2
−2𝑦3

(𝑦22+𝑦23)2

−2𝑦2
(𝑦22+𝑦23)2

−2𝑦1 (𝑦22+𝑦23)+8𝑦1𝑦22
(𝑦22+𝑦23)3

8𝑦1𝑦2𝑦3
(𝑦22+𝑦23)3

−2𝑦3
(𝑦22+𝑦23)2

8𝑦1𝑦2𝑦3
(𝑦22+𝑦23)3

−2𝑦1 (𝑦22+𝑦23)+8𝑦1𝑦23
(𝑦22+𝑦23)3


=

2

(𝑦22 + 𝑦23)2


0 −𝑦2 −𝑦3

−𝑦2
−𝑦1 (𝑦22+𝑦23)+4𝑦1𝑦22

(𝑦22+𝑦23)
4𝑦1𝑦2𝑦3
(𝑦22+𝑦23)

−𝑦3 4𝑦1𝑦2𝑦3
(𝑦22+𝑦23)

−𝑦1 (𝑦22+𝑦23)+4𝑦1𝑦23
(𝑦22+𝑦23)


• at 𝑥 = (𝑅Th,−𝑋Th), we have

𝐴𝑥 + 𝑏 =


𝑅Th

2𝑅Th

0


SA — ENGR507unconstrained minimization 6.21

• hence, at 𝑥 = (𝑅Th,−𝑋Th), we have

∇2𝑔(𝐴𝑥 + 𝑏) = 2
(2𝑅Th)4


0 −2𝑅Th 0

−2𝑅Th 3𝑅Th 0

0 0 −𝑅Th

 =
1

(2𝑅Th)3


0 −2 0

−2 3 0
0 0 −1


• the Hessian of 𝑓 at 𝑥 = (𝑅Th,−𝑋Th) is

∇2 𝑓 (𝑥) = 𝐴T∇2𝑔(𝐴𝑥 + 𝑏)𝐴

=
1

(2𝑅Th)3

[
1 1 0
0 0 1

] 
0 −2 0

−2 3 0
0 0 −1



1 0
1 0
0 1


=

1

(2𝑅Th)3

[
−1 0
0 −1

]
• since 𝑅Th > 0, the Hessian is negative definite and 𝑥 = (𝑅Th,−𝑋Th) is a local

maximum; because it is the only point stationary point, it is a global maximum

SA — ENGR507unconstrained minimization 6.22

Outline

• unconstrained minimization

• descent methods

• gradient descent method

• Newton method for unconstrained minimization

Descent methods

Descent direction: a vector 𝑣 ∈ R𝑛 is called a descent direction for 𝑓 if

𝑓 (𝑥 + 𝛼𝑣) < 𝑓 (𝑥) for sufficiently small 𝛼 > 0

choose a starting point 𝑥 (0) , a solution tolerance 𝜖 > 0, and a stopping criteria
repeat for 𝑘 ≥ 0

1. determine a decent direction 𝑣 (𝑘)

2. if stopping criteria is satisfied, then stop and output 𝑥 (𝑘)

3. select a stepsize 𝛼𝑘

4. update 𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼𝑘𝑣
(𝑘)

until maximum number of iterations reached

• 𝑣 is a descent direction if the directional derivative of 𝑓 at 𝑥 in the direction 𝑣 is

𝑓 ′ (𝑥; 𝑣) = lim
𝛼→0

𝑓 (𝑥 + 𝛼𝑣) − 𝑓 (𝑥)
𝛼

= ∇ 𝑓 (𝑥)T𝑣 < 0

• ∇ 𝑓 (𝑥)T𝑣 gives an approximate rate of change (increase) of 𝑓 in direction 𝑣 at 𝑥

SA — ENGR507descent methods 6.23

Determining the stepsize

Constant stepsize: set 𝛼𝑘 = 𝛼 for all 𝑘

Exact line search
𝛼𝑘 = argmin

𝛼≥0
𝑓 (𝑥 (𝑘) + 𝛼𝑣 (𝑘))

it is not always possible to actually find the exact minimizer 𝛼

Backtracking line search

• choose 𝛽 ∈ (0, 1/2), and 𝛾 ∈ (0, 1) and initial guess 𝛼𝑘 (e.g., 𝛼𝑘 = 1)

• set 𝛼𝑘 := 𝛽𝛼𝑘 until

𝑓 (𝑥 (𝑘) + 𝛼𝑘𝑣
(𝑘)) < 𝑓 (𝑥 (𝑘)) + 𝛾𝛼𝑘∇ 𝑓 (𝑥 (𝑘))T𝑣 (𝑘)

this method is a compromise between the above two methods

• simple backtracking algorithm is to set

𝛼𝑘 = 1, 0.5, 0.52, 0.53, . . .

until the above is satisfied or until 𝑓 (𝑥 (𝑘) + 𝛼𝑘𝑣
(𝑘)) < 𝑓 (𝑥 (𝑘))

SA — ENGR507descent methods 6.24

Stopping criteria

1. | 𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) | < 𝜖

2. ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥ < 𝜖

3. | 𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) |/| 𝑓 (𝑥 (𝑘)) | < 𝜖

4. ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥/∥𝑥 (𝑘) ∥ < 𝜖

5. ∥∇ 𝑓 (𝑥 (𝑘))∥ < 𝜖

• the above conditions do not necessarily imply that 𝑥 (𝑘) is a good solution since it
can be a local minimizer/maximizer or a saddle-point (unless 𝑓 is convex)

• it is common to run the algorithm from different starting points and choose the
best solution of these multiple runs

SA — ENGR507descent methods 6.25

Outline

• unconstrained minimization

• descent methods

• gradient descent method

• Newton method for unconstrained minimization

Negative gradient direction

the directional derivative in the direction 𝑣 = −∇ 𝑓 (𝑥) is

𝑣T∇ 𝑓 (𝑥) = −∥∇ 𝑓 (𝑥)∥2 < 0 for any 𝑥 with ∇ 𝑓 (𝑥) ≠ 0

thus, −∇ 𝑓 (𝑥) is a descent direction

• suppose ∥𝑣∥ = 1, then by Cauchy-Schwarz, we have

−∥∇ 𝑓 (𝑥)∥ ≤ ∇ 𝑓 (𝑥)T𝑣

• equality holds only if 𝑣 = −∇ 𝑓 (𝑥)/∥∇ 𝑓 (𝑥)∥

• so −∇ 𝑓 (𝑥) point in steepest descent (maximum rate of decrease) direction at 𝑥

• setting 𝑣 (𝑘) = −∇ 𝑓 (𝑥 (𝑘)) in the descent method gives the gradient method or
gradient descent method

SA — ENGR507gradient descent method 6.26

Gradient descent method

given a starting point 𝑥 (0) and a solution tolerance 𝜖 > 0

repeat for 𝑘 ≥ 0

1. if ∥∇ 𝑓 (𝑥 (𝑘))∥ ≤ 𝜖 stop and output 𝑥 (𝑘)

2. choose a stepsize 𝛼𝑘

3. update
𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼𝑘∇ 𝑓 (𝑥 (𝑘))

• for 𝛼𝑘 small enough, the algorithm is a descent method

• when 𝛼𝑘 is large, the algorithm may not be a descent method and may fail

• called the method of steepest descent with exact line search

SA — ENGR507gradient descent method 6.27

Example

𝑓 (𝑥1, 𝑥2, 𝑥3) = (𝑥1 − 4)4 + (𝑥2 − 3)2 + 4(𝑥3 + 5)4

the gradient of this function is

∇ 𝑓 (𝑥) =

4(𝑥1 − 4)3
2(𝑥2 − 3)
16(𝑥3 + 5)3


applying one iteration of the gradient descent with 𝑥 (0) = (4, 2,−1), 𝛼 = 0.002 gives

𝑥 (1) =


4
2

−1

 − 0.002


4(4 − 4)3
2(2 − 3)

16(−1 + 5)3

 =


4.000
2.004
−3.048


the new objective value is

59.06 = 𝑓 (4, 2.004,−3.048) < 𝑓 (4, 2,−1) = 1025,

which shows that 𝛼 = 0.002 is a good choice

SA — ENGR507gradient descent method 6.28

if we use exact line search, then

𝛼0 = argmin
𝛼>0

𝑓 (𝑥 (0) − 𝛼∇ 𝑓 (𝑥 (0)))

= argmin
𝛼>0

(0 + (2 + 2𝛼 − 3)2 + 4(−1 − 1024𝛼 + 5)4)

= 3.967 × 10−3

hence,
𝑥 (1) = 𝑥 (0) − 𝛼0∇ 𝑓 (𝑥 (0)) = (4.000, 2.008,−5.062)

SA — ENGR507gradient descent method 6.29

Example

𝑓 (𝑥1, 𝑥2) =
𝑥21

5
+ 𝑥22

• the gradient is ∇ 𝑓 (𝑥) = (25𝑥1, 2𝑥2)

• we have
𝑓 (𝑥 − 𝛼∇ 𝑓 (𝑥)) = 1

5 (𝑥1 −
2
5𝛼𝑥1)

2 + (𝑥2 − 2𝛼𝑥2)2

• using exact line search in the gradient method, we have

𝛼 = argmin
𝛼>0

𝑓 (𝑥 − 𝛼∇ 𝑓 (𝑥))

= argmin
𝛼>0

(
1
5 (𝑥1 −

2
5𝛼𝑥1)

2 + (𝑥2 − 2𝛼𝑥2)2
)

SA — ENGR507gradient descent method 6.30

• setting the derivative with respect to 𝛼 to zero, we get

− 4
25𝑥1 (𝑥1 −

2
5𝛼𝑥1) − 4𝑥2 (𝑥2 − 2𝛼𝑥2) = 0

• solving for 𝛼, gives

𝛼 =

4
25𝑥

2
1 + 4𝑥22

8
125𝑥

2
1 + 8𝑥22

> 0

• hence, the method of steepest descent is[
𝑥
(𝑘+1)
1

𝑥
(𝑘+1)
2

]
=

[
𝑥
(𝑘)
1

𝑥
(𝑘)
2

]
−

4
25 (𝑥

(𝑘)
1)2 + 4(𝑥 (𝑘)2)2

8
125 (𝑥

(𝑘)
1)2 + 8(𝑥 (𝑘)2)2

[
2
5𝑥

(𝑘)
1

2𝑥 (𝑘)2

]

SA — ENGR507gradient descent method 6.31

Exact line search for quadratic functions

𝑓 (𝑥) = 1
2𝑥

T𝑄𝑥 − 𝑟T𝑥

• 𝑄 ∈ S𝑛
++ is positive definite

• gradient method with exact line search requires solving:

𝛼𝑘 = argmin
𝛼>0

𝑓 (𝑥 (𝑘) + 𝛼𝑣 (𝑘))

where 𝑣 (𝑘) = −∇ 𝑓 (𝑥 (𝑘)) = −(𝑄𝑥 (𝑘) − 𝑟)

Update form

𝑥 (𝑘+1) = 𝑥 (𝑘) − ∥∇ 𝑓 (𝑥 (𝑘))∥2

∇ 𝑓 (𝑥 (𝑘))T𝑄∇ 𝑓 (𝑥 (𝑘))
∇ 𝑓 (𝑥 (𝑘))

SA — ENGR507gradient descent method 6.32

Derivation

• let 𝑣 = 𝑣 (𝑘) = −∇ 𝑓 (𝑥 (𝑘)) = −(𝑄𝑥 (𝑘) − 𝑟)

• using the chain rule, we have

𝑔′ (𝛼) = 𝑣T∇ 𝑓 (𝑥 (𝑘) + 𝛼𝑣)
= 𝑣T

(
𝑄(𝑥 (𝑘) + 𝛼𝑣) − 𝑟

)
= 𝛼𝑣T𝑄𝑣 + 𝑣T (𝑄𝑥 (𝑘) − 𝑟)
= 𝛼𝑣T𝑄𝑣 − 𝑣T𝑣

• setting to zero and solving for 𝛼, we get

𝛼𝑘 =
𝑣T𝑣

𝑣T𝑄𝑣

SA — ENGR507gradient descent method 6.33

Convergence

under mild assumptions, {𝑥 (𝑘) } of gradient method converge to a stationary point:

lim
𝑘→∞

∇ 𝑓 (𝑥 (𝑘)) = 0

• converges to a global minimizer for convex 𝑓 (e.g., ∇2 𝑓 (𝑥) ⪰ 0 for all 𝑥)

• the rate of convergence is sublinear (slow) in general and linear if 𝜇𝐼 ⪯ ∇2 𝑓 (𝑥)
for all 𝑥 and some constant 𝜇 > 0

SA — ENGR507gradient descent method 6.34

Outline

• unconstrained minimization

• descent methods

• gradient descent method

• Newton method for unconstrained minimization

Newton method

consider 𝑛 nonlinear equations in 𝑛 variables

ℎ1 (𝑥) = 0, ℎ2 (𝑥) = 0, . . . , ℎ𝑛 (𝑥) = 0

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛; we let ℎ(𝑥) = (ℎ1 (𝑥), . . . , ℎ𝑛 (𝑥))

Newton method: choose 𝑥 (0) and repeat for 𝑘 ≥ 0

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝐷ℎ(𝑥 (𝑘))−1ℎ(𝑥 (𝑘))

assumes 𝐷ℎ(𝑥 (𝑘)) exists and nonsingular

Unconstrained optimization: if ℎ(𝑥) = ∇ 𝑓 (𝑥), we get

𝑥 (𝑘+1) = 𝑥 (𝑘) − ∇2 𝑓 (𝑥 (𝑘))−1∇ 𝑓 (𝑥 (𝑘))

SA — ENGR507Newton method for unconstrained minimization 6.35

Interpretation of Newton update

𝑥 = 𝑥 (𝑘) − ∇2 𝑓 (𝑥 (𝑘))−1∇ 𝑓 (𝑥 (𝑘))

1. minimizing the quadratic approximation of 𝑓 around 𝑥 (𝑘) :

𝑓 (𝑥) = 𝑓 (𝑥 (𝑘)) + ∇ 𝑓 (𝑥 (𝑘))T (𝑥 − 𝑥 (𝑘)) + 1
2 (𝑥 − 𝑥 (𝑘))T∇2 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

2. solve approximate optimality condition around 𝑥 (𝑘) :

∇̂ 𝑓 (𝑥) = ∇ 𝑓 (𝑥 (𝑘)) + ∇2 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘)) = 0

(𝑥, 𝑓 ′ (𝑥))
(𝑥 + 𝑣n , 𝑓

′ (𝑥 + 𝑣n))

𝑓 ′ (𝑥)
𝑓 ′ (𝑥)

𝑓 (𝑥)𝑓 (𝑥)

(𝑥, 𝑓 (𝑥))

(𝑥 + 𝑣n , 𝑓 (𝑥 + 𝑣n))

SA — ENGR507Newton method for unconstrained minimization 6.36

Damped Newton method

given a starting point 𝑥 (0) , a solution tolerance 𝜖 > 0

repeat for 𝑘 ≥ 0

1. if stopping criteria is met (e.g., ∥∇ 𝑓 (𝑥 (𝑘))∥ ≤ 𝜖), stop and return 𝑥 (𝑘)

2. select a step-size 𝛼𝑘

3. solve ∇2 𝑓 (𝑥 (𝑘))𝑣 (𝑘) = −∇ 𝑓 (𝑥 (𝑘)) for 𝑣 (𝑘)

4. update:
𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼𝑘𝑣

(𝑘)

• assumes ∇2 𝑓 (𝑥) exists and is invertible

• 𝑣n = −∇2 𝑓 (𝑥 (𝑘))−1∇ 𝑓 (𝑥 (𝑘)) is called Newton step at 𝑥 (𝑘)

• similar stepsize selection and stopping criteria as before can be used

• single-variable update

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝛼𝑘

𝑓 ′ (𝑥 (𝑘))
𝑓 ′′ (𝑥 (𝑘))

SA — ENGR507Newton method for unconstrained minimization 6.37

Example

minimize 𝑓 (𝑥) = 1
2𝑥

2 − sin 𝑥

given 𝑥 (0) = 0.5, 𝛼 = 1, 𝜖 = 10−5 with stopping criteria |𝑥 (𝑘+1) − 𝑥 (𝑘) | < 𝜖

• applying Newton’s method, we have

𝑥 (1) = 𝑥 (0) − 𝑓 ′ (𝑥 (0))
𝑓 ′′ (𝑥 (0))

= 0.5 − 0.5 − cos(0.5)
1 + sin(0.5)

= 0.5 − −0.3775
1.479

= 0.7552

repeating, we get 𝑥 (2) = 0.7391, 𝑥 (3) = 0.7390, and 𝑥 (4) ≈ 0.7390

• note that |𝑥 (4) − 𝑥 (3) | < 𝜖 , 𝑓 ′ (𝑥 (4)) ≈ 0, and 𝑓 ′′ (𝑥 (4)) = 1.672 > 0

• hence, 𝑥 (4) is an approximate local minimizer (it is an approximate global minima)

SA — ENGR507Newton method for unconstrained minimization 6.38

Example

𝑓 (𝑥) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

the gradient and Hessian are

∇ 𝑓 (𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 − 𝑒−𝑥1−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

]
and

∇2 𝑓 (𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1 𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1

]

SA — ENGR507Newton method for unconstrained minimization 6.39

we apply gradient descent and Newton method with 𝑥 (0) = (−1, 1) and 𝛼 = 1

𝑘 (iteration)

∥𝑥
(𝑘

)
−
𝑥
★
∥

• both algorithms converge to 𝑥★ = (−0.34657, 0)

• Newton method is much faster since it uses second-order information

SA — ENGR507Newton method for unconstrained minimization 6.40

Matlab implementation

g=@(x)[exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)-exp(-x(1)-1);...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1)]; % gradient

hess=@(x)[exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)+exp(-x(1)-1) ...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1);...

exp(x(1)+x(2)-1)-exp(x(1)-x(2)-1) ...

exp(x(1)+x(2)-1)+exp(x(1)-x(2)-1)] % hessain

%% Newton and GD iterations

x = [-1; 1];%GD initilization

xn = [-1; 1];%Newton initilization

alpha=1; %step-size

for k=1:50

%%%Gradient descent update%%%%

grad=g(x);

if (norm(grad) < 1e-16), break; end;

x = x - alpha*grad;

%%%Newton update%%%

vn=-hess(xn)\g(xn);

xn = xn + alpha*vn;

end

SA — ENGR507Newton method for unconstrained minimization 6.41

Alternative way to construct gradient and Hessian

𝑓 (𝑥) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

we can write 𝑓 as 𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏), where 𝑔(𝑦) = 𝑒𝑦1 + 𝑒𝑦2 + 𝑒𝑦3 , and

𝐴 =


1 1
1 −1

−1 0

 , 𝑏 =


−1
−1
−1


the gradient and Hessian of 𝑔 are

∇𝑔(𝑦) =

𝑒𝑦1

𝑒𝑦2

𝑒𝑦3

 , ∇2𝑔(𝑦) =

𝑒𝑦1 0 0
0 𝑒𝑦2 0
0 0 𝑒𝑦3


it follows that

∇ 𝑓 (𝑥) = 𝐴T∇𝑔(𝐴𝑥 + 𝑏)
∇2 𝑓 (𝑥) = 𝐴T∇2𝑔(𝐴𝑥 + 𝑏)𝐴

SA — ENGR507Newton method for unconstrained minimization 6.42

Matlab implementation

A=[1 1;1 -1;-1 0];

b=[1;1;1];

for k=1:50

%%% Gradient descent update %%%

y=exp(A*x-b);

grad=A’*y;

if (norm(grad) < 1e-16), break; end;

x = x - alpha*grad;

%%% Newton’s update %%%

yn=exp(A*xn-b);

gradn=A’*yn;

D = diag(yn);

H=A’*D*A;

vn=-H\gradn;

xn = xn + alpha*vn;

end;

SA — ENGR507Newton method for unconstrained minimization 6.43

Example

minimize 𝑓 (𝑥) =
𝑚∑
𝑖=1

log(𝑒𝑎T𝑖 𝑥−𝑏𝑖 + 𝑒−𝑎
T
𝑖
𝑥+𝑏𝑖)

• 𝑎𝑖 ∈ R𝑛 and 𝑏𝑖 ∈ R are the problem data

• 𝑚 and 𝑛 can be very large

• suppose that we want to solve this problem using Newton’s method with
– initialization 𝑥 (0) = 1

– stopping criteria ∥∇ 𝑓 (𝑥 (𝑘))∥ < 10−5

– line search parameters: 𝛼0 = 1, 𝛽 = 1/2, and 𝛾 = 0.01

• for implementation, we first need to find the gradient and Hessian of the function 𝑓

SA — ENGR507Newton method for unconstrained minimization 6.44

the function 𝑓 can be written as

𝑓 (𝑥) = 𝑔(𝐴𝑥 − 𝑏) where 𝑔(𝑦) =
𝑚∑
𝑖=1

log(𝑒𝑦𝑖 + 𝑒−𝑦𝑖)

and

𝐴 =


𝑎T1
...

𝑎T𝑚

 , 𝑏 =


𝑏1
...

𝑏𝑚


the gradient and Hessian of ℎ are:

∇𝑔(𝑦) =

(𝑒𝑦1 − 𝑒−𝑦1)/(𝑒𝑦1 + 𝑒−𝑦1)

...

(𝑒𝑦𝑚 − 𝑒−𝑦𝑚)/(𝑒𝑦𝑚 + 𝑒−𝑦𝑚)


∇2𝑔(𝑦) = diag

(
4/(𝑒𝑦1 + 𝑒−𝑦1)2, . . . , 4/(𝑒𝑦𝑚 + 𝑒−𝑦𝑚)2

)
using the composition with affine function property, we have

∇ 𝑓 (𝑥) = 𝐴T∇𝑔(𝐴𝑥 − 𝑏), ∇2 𝑓 (𝑥) = 𝐴T∇2𝑔(𝐴𝑥 − 𝑏)𝐴

SA — ENGR507Newton method for unconstrained minimization 6.45

MATLAB code

alpha_0=1;

beta=0.5;

gamma=0.01;

x = ones(n,1); %initialization

k=1;

y = A*x-b;

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));

while (norm(grad) >= 1e-5)

k=k+1; %iteration counter

hess = 4*A’*diag(1./(exp(y)+exp(-y)).^2)*A;

d = -hess\grad;

alpha = alpha_0;

f = sum(log(exp(y)+exp(-y)));

while (sum(log(exp(A*(x+alpha*d)-b)+exp(-A*(x+alpha*d)+b))) ...

> f + gamma*alpha*grad’*d)

alpha = beta*alpha;

end

x = x+alpha*d;

y = A*x-b;

f = sum(log(exp(y)+exp(-y)));

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));

end

SA — ENGR507Newton method for unconstrained minimization 6.46

𝑘 (iteration)

𝑓
(𝑥
)−

𝑓
(𝑥

★
)

SA — ENGR507Newton method for unconstrained minimization 6.47

Convergence

quadratic convergence near the optimal solution

∥𝑥 (𝑘+1) − 𝑥★∥ ≤ 𝑐∥𝑥 (𝑘) − 𝑥★∥2 for some positive 𝑐 > 0

• if ∇2 𝑓 (𝑥) ≻ 0 (convex) then 𝑣n = −∇2 𝑓 (𝑥 (𝑘))−1∇ 𝑓 (𝑥 (𝑘)) is a descent
direction; converges quadratically to a global minimizer under certain conditions

• may not work well when ∇2 𝑓 (𝑥) is not positive definite

– in this case, Newton step is not always a descent direction

• can use hybrid gradient-Newton method by setting

𝑣 (𝑘) =

{
−∇2 𝑓 (𝑥 (𝑘))−1∇ 𝑓 (𝑥 (𝑘)) if ∇2 𝑓 (𝑥 (𝑘)) ≻ 0
−∇ 𝑓 (𝑥 (𝑘)) otherwise

or 𝑣 (𝑘) = −(∇2 𝑓 (𝑥𝑘) + 𝛾𝑘 𝐼)−1∇ 𝑓 (𝑥 (𝑘))

SA — ENGR507Newton method for unconstrained minimization 6.48

References and further readings

• E. K.P. Chong, Wu-S. Lu, and S. H. Zak. An Introduction to Optimization: With Applications to Machine
Learning. John Wiley & Sons, 2023. (ch 8 and 9)

• A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with Python and
MATLAB. SIAM, 2023. (ch 4 and 5)

• L. Vandenberghe, EE133A Lecture Notes, UCLA.

• U. M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics,
2011. (ch 9)

SA — ENGR507References 6.49

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	unconstrained minimization
	descent methods
	gradient descent method
	Newton method for unconstrained minimization
	References

