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5. Single-variable optimization

e single variable minimization
e nonlinear equations and iterative methods
e bisection method

e Newton’s method

S. Alghunaim
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Scalar minimization

minimize  f(x) (5.1)
e z € R is the variable

e f:R — Risthe objective function

First-order necessary condition (FONC): a minimizer x° satisfies

7@ =0

e this condition is necessary but not sufficient

e there may be other points, known as stationary points or critical points, that
satisfy f/(Z) = 0 and are not minimizers (maximizers or saddle points)

e we need to verify whether the solutions of f/() = 0 are minimizers
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Intuition and proof

Intuition:

e f/(z) > 0implies that f is increasing at = (positive slope), therefore, a
point  slightly less than z gives f(Z) < f(z)

e f/(x) < 0implies that f is decreasing at « (negative slope), then a point z
slightly more than x gives f(Z) < f(z), which means that « is not a
minimizer of f

Proof: if 2° is a local minimizer, then f(z°) < f(x° + €) for sufficiently small
€; from the definition of the derivatives, when € > 0, the limit from the right is

f(@®+e) = f(z°)

"(z°) = 1i >0
fe) =l =2
and when e < 0, the limit from the left is
fl(xo): hm f(x +€)—f($ ) SO

e—0— €
hence, 0 < f/(z°) <0, i.e., f'(z°) =0
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Example 5.1

consider the function
f(z) = 32" — 2023 4 422% — 36z
the first-order necessary conditions (FONC) is
f'(x) = 1223 — 602% + 842 — 36 = 12(x — 1)*(z — 3) =0

the stationary pointsarex = landz =3

e the point z = 1 is not a local optimal point because the derivative f'(x)
does not change its sign around = = 1

e the point x = 3 is a local minimizer since the derivative changes its sign
from negative to positive when passing through x = 3

e since f(z) — oo as |z| — oo, the point z = 3 must be a global minimizer
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Example 5.2

2 |

Main BS Neighboring BS

Noise

Signal

e power of the received signal measured by the user from each antenna is
the reciprocal of the squared distance from the corresponding antenna

e find the position x of the user (relative to the main base station) that
maximizes the signal-to-noise ratio
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to solve this problem, we need to maximize the signal-to-noise ratio:

:1+(2—x)2

fla) =

setting the derivative to zero:

oy 22 —2)(1+a2?) —22(1+ (2—-2)%)  4@®-22-1)
fi(z) = (1+22)2 - (14 22)2 =0

fllz)=0atx =1++2

e checking the objective values, we see that = = 1 — /2 gives larger
objective, and the derivative changes its sign from positive to negative
when passing through = = 1 — /2

e hence, z° = 1 — /2 is a local maximizer

e it is a global maximizer since f(z) — 1 < f(x°) as || — oo
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Second-order condition

Necessary condition: if z° is a local minimizer, then f/(z°) = 0 and
f”(l’o) Z O

Sufficient condition: if f(z°) = 0 and f”(z°) > 0, then z° is a strict local
minimizer

Necessary and sufficient condition: if /" (z) > 0 for all z (‘f is convex’),
then z* is global minimizer if and only if f/(z*) =0

(we can find maximizers by finding minimizers of — f)
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Example 5.3

a) a minimizer of f(z) = e® + e~ — 322 must satisfy
fl(x)=e"—e ™ —62=0

which holds for the points 1 ~ 2.84 and &2 ~ —2.84, and &3 = 0; to find
whether these points are local minimizer, we compute the second

derivative
f'(x)=e"+e " -6

= since f”(2.84) > 0, f'(—2.84) > 0, and f"”(0) < 0, the points £, and %2
are local minimizers

= checking the value of the functions, we see that f(2.84) = f(—2.84); these
two points are global minimizers since f(z) — oo as |z] — oo
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b) the first and second derivative of f(x) = log(e® + e~%) are

fpoy et —e’® neoN 4
f (l’) - e _1_6_3;7 f (.’E) - (6x+€_'x)2

only the point & = 0 satisfies f'(z) = 0; since f”(x) > 0 for all z, the
point £ = 0 is a global minimizer

c) for f(z) = x3, we have f'(x) = 3x2 = 0, which holds for & = 0; note that
f"(z) = 6z and f”(0) = 0, but & = 0 is not a local minimizer since
f(z) < f(0)forany x < 0

(this shows that the condition f”(x) > 0 is not enough to characterize
local minimizers)
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e single variable minimization
¢ nonlinear equations and iterative methods
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e Newton’s method



Nonlinear equation in one variable

h(z) =0, where z € [a,b]

e the root or zero is any solution of the above equation
e we assume h is a continuous function on the interval [a, b]

e observe that for minimizing f(x), we can find stationary points by solving a
nonlinear equation with h(x) = f/(z)
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Example 5.4

I h I I I I
0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14 16 18 20
~50r
RS
<
0 I
-10 8 6 4 2 0 2 4 6 8 10
X

(i) h(z) = sin(z) on [0, 4], (i) h(z) = =* — 3022 + 2552 on [0, 20], and (ii)
h(z) = 10cosh (£) — z on [-10, 10] where cosh(t) = Lf
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lterative methods

e for many nonlinear equations, obtaining a solution through an explicit
formula or a deterministic, finite-step procedure is not feasible

e we often resorts to iterative techniques that start with an initial guess,
denoted x, and yield a series of subsequent guesses
M 2@ () which ideally converge to a root of the target
continuous function

2 = 2% ask —

e one initial strategy to approximate root locations involves graphing the
function to study its characteristics

e another complementary tactic is to compute the function’s value at various
points, aiming to discern intervals where its sign alters
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Stopping iterative methods

e Absolute error: |z %) — z(F=1| < ¢
e Relative error: |z*) — x| /|z(F)| < €

e Function value: |h(z"™)| < ¢
here, € is a tolerance level constant determined by the user
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Convergence rate

assume the sequence z(*) converges to a limit z*

Linear convergence: if there exists a constant ¢ € (0, 1) such that
|z — 2% < ¢lz* D — 2]

for sufficiently large &

R-linear convergence if a positive constant M and a value ¢ € (0, 1) exist
such that

|28 — 2*| < McF for large values of k

e 2(F) =14 (1/2)* linearly converges to z* = 1:
2+ — | = (1/2) = Lo — o)
2

meets the definition with ¢ = 1/2

e every linearly convergent sequence is also R-linearly convergent, but the

reverse is not necessarily true

nonlinear equations and iterative methods
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Superlinear convergence: if a sequence c; > 0 with ¢, — 0 exists and
ensures that

(k—1)

2 — 2| < el —z*| forlarge k

Quadratic convergence: if a constant ¢ > 0 exists such that
|2®) — 2| < ela®Y — 2*|% for large k
e 20 =1+ (1/2)%" has quadratic convergence to 2* = 1, as
- 2
20— o) = (1727 = (1/2)%) = a0 —

and this satisfies the definition with c =1
e z(®) =14 (1/(k + 1))* has superlinear convergence:

k—

1 kkfl 1 kkfl
(k+ 1k  (k+ 1)k k-1 (k+ 1)k

which satisfies the definition with ¢, = k¥~ /(k + 1)*, a value that indeed
approaches zero
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The bisection method

given: a,b with a < b and h(a)h(b) < 0, tolerance e

repeat

1. 2=(a+b)/2

2. compute h(x); if h(z) = 0, return z
3. if h(z)h(a) < 0,b=z,else,a =2x
4. stopifa—b<e

bisection method
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MATLAB implementation

function [p,k] = bisect(func,a,b,fa,fb,atol)
% assuming fa = func(a), fb = func(b), and fa*fb < 0,

% there is a value root in (a,b) such that func(root) = O.

% this function returns in p a value such that
% | p - root | < atol

% and in k the number of iterations required.
if (a >= b) | (faxfb >= 0) | (atol <= 0)
disp(’something wrong with the input: quitting’);
p = NaN; k=NaN;

return

end

k = ceil(log2 (b-a) - log2 (2*atol));

for i=1:k

p = (a+b)/2;

fp = feval(func,p);

if abs(fp) < eps, k = i; return, end

if fa *x fp < O

b = p;
fb = fp;
else

a = p;

bisection method
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Example 5.5

o for func(x) = z3 - 3022 + 2552, starting from the interval [0,20] with
atolerance of 1 x 10~8, the method converges to z* ~ 11.86150151 after
30 iterations

e for func(x) = 2.5 sinh(x/4) - 1, beginning with the interval [-10,10]
and using a tolerance of 1 x 1019, the method converges to
r* ~ 1.5601412791 after 37 iterations

the associated MATLAB script for the second function is:

format long g

[x,k] = bisect(’fex3’,-10,10,fex3(-10),fex3(10),1.e-10)
function f = fex3(x)

f = 2.5 % sinh (x/4) - 1;
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Convergence

let [a(®), b(®)] be the interval after iteration k, then
o DO — g0
=
e after k iterations, the midpoint z(*) = (6(®) + (%)) /2 satisfies

<b® o < (1/2) (b<o> _ a(o>>

p(E) _ 4

’z(k) —z*

thus, it is R-linearly convergent with ¢ = 1/2 and M = b(®) — ¢(©)
e the exit condition b®) — a(®) < ¢ will be satisfied if

5O _ 40
gy (P ) = om0 ) — b < logy

the algorithm therefore terminates after

b0 _ 40
o ()|
€

iterations ([«/] is the smallest integer greater than or equal to «)

bisection method
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Derivation of Newton’s method

leveraging Taylor’'s expansion, h can be approximated around the current
iterate (%) as:
h”(x(k))(x _ x(k))Q

2 )

h(z) = h(z®) + 1/ () (z — ) +

e if h were linear (meaning i/ = 0), determining the root would involve
solving for 0 = h(z®) + /(™)) (z* — z®)), leading to
k) _ h(z™)

* —_—

z* = R (200
e for nonlinear functions, the subsequent iterate is defined similarly:
k) h(m(k))

- k=0,1,2,...

(k+1)
! W (z®))’

:l‘(

.. . . 1 (k) *_ (k)\2
this iteration update omits the term %

assumption that 2(*) is nearing the root z*

Newton’s method

, operating under the



Newton’s method

given: initial x and tolerance €
repeat

1. compute h(z) and h/(z)
2. if |h(z)| < ¢, return x
3. z=x—h(x)/M(x)

Newton’s method
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Example 5.6

2

1
minimize f(z) = 5%~ sin x

suppose that z(9) = 0.5, « = 1, and e = 10~ with stopping criteria
|zt — 2(R)| < ¢

e applying Newton’s method, we have

1(2(0) _
2 — 20 [ @) —05 0.5 — cos(0.5)

C @) T T 14 sin(0.5)
—0.3775
= 0.5 — — o= = 0.7552

repeating, we get (2 = 0.7391, 2 = 0.7390, and z» ~ 0.7390

e note that [z — 23| < ¢, f/(zD) = 0, and f(z®*) = 1.672 > 0;
hence, (¥ is an approximate local minimizer (in fact it is an approximate
global minimizer)
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Example 5.7

applying Newton’s method on h(z) = 2 cosh (%) — x gives

(k) _ ()
I(k+1) _ :L‘(k) _ 2COSh(CC /4) T
0.5sinh(z(®) /4) — 1

with tolerance of 1 x 10~8, we have

e starting from zy = 2, 4 iterations are needed to get 27 = 2.35755106
within the specified tolerance

e from xo = 8, 5 iterations are enough to reach x5 = 8.50719958 to the
given accuracy

for o = 8, the values of h(z(*)) evolve as:

k 0 1 2 3 2 5
h(z®) | —4.76e—1 843e—2 1.56e—3 5.65e—7 7.28¢—14 1.78¢ —15
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Secant method

the secant method modifies Newton’s approach by estimating the derivative
B (2 (®)):
(k) — g(k=1)

incorporating this into Newton’s formula, we get the secant method equation:

W (™) ~

k+1) _ x(k) _ h(;ﬂ(k))(x(k) —_ I(k'fl))

2
h(z®)) — h(zx(k-1) ~

E=1,2,...

Example: for h(z) = 2 cosh(z:/4) — x, we implement the secant method
using the provided tolerance from before with two initial guesses, xy and x1:
the h(z™*)) values, initiating from zo = 10 and z; = 8, are as shown:

& 0 T 2 3 7 5 6
h(x(k)) 2.26 —4.76e — 1 —1.64e — 1 2.45¢ — 2 —9.93¢ — 4 —5.62¢ — 6 1.30e — 9
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