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• single variable minimization

• nonlinear equations and iterative methods

• bisection method

• Newton’s method
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Scalar minimization

minimize f(x) (5.1)

• x ∈ R is the variable

• f : R → R is the objective function

First-order necessary condition (FONC): a minimizer xo satisfies

f ′(xo) = 0

• this condition is necessary but not sufficient

• there may be other points, known as stationary points or critical points, that
satisfy f ′(x̂) = 0 and are not minimizers (maximizers or saddle points)

• we need to verify whether the solutions of f ′(x̂) = 0 are minimizers
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Intuition and proof

Intuition:
• f ′(x) > 0 implies that f is increasing at x (positive slope), therefore, a

point x̃ slightly less than x gives f(x̃) < f(x)

• f ′(x) < 0 implies that f is decreasing at x (negative slope), then a point x̃
slightly more than x gives f(x̃) < f(x), which means that x is not a
minimizer of f

Proof: if xo is a local minimizer, then f(xo) ≤ f(xo + ϵ) for sufficiently small
ϵ; from the definition of the derivatives, when ϵ > 0, the limit from the right is

f ′(xo) = lim
ϵ→0+

f(xo + ϵ)− f(xo)

ϵ
≥ 0

and when ϵ < 0, the limit from the left is

f ′(xo) = lim
ϵ→0−

f(xo + ϵ)− f(xo)

ϵ
≤ 0

hence, 0 ≤ f ′(xo) ≤ 0, i.e., f ′(xo) = 0
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Example 5.1

consider the function

f(x) = 3x4 − 20x3 + 42x2 − 36x

the first-order necessary conditions (FONC) is

f ′(x) = 12x3 − 60x2 + 84x− 36 = 12(x− 1)2(x− 3) = 0

the stationary points are x = 1 and x = 3

• the point x = 1 is not a local optimal point because the derivative f ′(x)
does not change its sign around x = 1

• the point x = 3 is a local minimizer since the derivative changes its sign
from negative to positive when passing through x = 3

• since f(x) → ∞ as |x| → ∞, the point x = 3 must be a global minimizer
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Example 5.2
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• power of the received signal measured by the user from each antenna is
the reciprocal of the squared distance from the corresponding antenna

• find the position x of the user (relative to the main base station) that
maximizes the signal-to-noise ratio
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to solve this problem, we need to maximize the signal-to-noise ratio:

f(x) =
1 + (2− x)2

1 + x2

setting the derivative to zero:

f ′(x) =
−2(2− x)(1 + x2)− 2x(1 + (2− x)2)

(1 + x2)2
=

4(x2 − 2x− 1)

(1 + x2)2
= 0

• f ′(x) = 0 at x = 1±
√
2

• checking the objective values, we see that x = 1−
√
2 gives larger

objective, and the derivative changes its sign from positive to negative
when passing through x = 1−

√
2

• hence, xo = 1−
√
2 is a local maximizer

• it is a global maximizer since f(x) → 1 < f(xo) as |x| → ∞
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Second-order condition

Necessary condition: if xo is a local minimizer, then f ′(xo) = 0 and
f ′′(xo) ≥ 0

Sufficient condition: if f(xo) = 0 and f ′′(xo) > 0, then xo is a strict local
minimizer

Necessary and sufficient condition: if f ′′(x) ≥ 0 for all x (‘f is convex’),
then x⋆ is global minimizer if and only if f ′(x⋆) = 0

(we can find maximizers by finding minimizers of −f )
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Example 5.3

a) a minimizer of f(x) = ex + e−x − 3x2 must satisfy

f ′(x) = ex − e−x − 6x = 0

which holds for the points x̂1 ≈ 2.84 and x̂2 ≈ −2.84, and x̂3 = 0; to find
whether these points are local minimizer, we compute the second
derivative

f ′′(x) = ex + e−x − 6

■ since f ′′(2.84) > 0, f ′′(−2.84) > 0, and f ′′(0) < 0, the points x̂1 and x̂2

are local minimizers

■ checking the value of the functions, we see that f(2.84) = f(−2.84); these
two points are global minimizers since f(x) → ∞ as |x| → ∞
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b) the first and second derivative of f(x) = log(ex + e−x) are

f ′(x) =
ex − e−x

ex + e−x
, f ′′(x) =

4

(ex + e−x)2

only the point x̂ = 0 satisfies f ′(x) = 0; since f ′′(x) > 0 for all x, the
point x̂ = 0 is a global minimizer

c) for f(x) = x3, we have f ′(x) = 3x2 = 0, which holds for x̂ = 0; note that
f ′′(x) = 6x and f ′′(0) = 0, but x̂ = 0 is not a local minimizer since
f(x) < f(0) for any x < 0

(this shows that the condition f ′′(x) ≥ 0 is not enough to characterize
local minimizers)
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Outline

• single variable minimization
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Nonlinear equation in one variable

h(x) = 0, where x ∈ [a, b]

• the root or zero is any solution of the above equation

• we assume h is a continuous function on the interval [a, b]

• observe that for minimizing f(x), we can find stationary points by solving a
nonlinear equation with h(x) = f ′(x)
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Example 5.4
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(i) h(x) = sin(x) on [0, 4π], (ii) h(x) = x3 − 30x2 + 2552 on [0, 20], and (iii)
h(x) = 10 cosh

(
x
4

)
− x on [−10, 10] where cosh(t) = et+e−t

2

SA — ENGR507nonlinear equations and iterative methods 5.11



Iterative methods

• for many nonlinear equations, obtaining a solution through an explicit
formula or a deterministic, finite-step procedure is not feasible

• we often resorts to iterative techniques that start with an initial guess,
denoted x0, and yield a series of subsequent guesses
x(1), x(2), . . . , x(k), . . . which ideally converge to a root of the target
continuous function

x(k) → x⋆ as k → ∞

• one initial strategy to approximate root locations involves graphing the
function to study its characteristics

• another complementary tactic is to compute the function’s value at various
points, aiming to discern intervals where its sign alters
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Stopping iterative methods

• Absolute error: |x(k) − x(k−1)| < ϵ

• Relative error: |x(k) − x(k−1)|/|x(k)| < ϵ

• Function value: |h(x(k))| < ϵ

here, ϵ is a tolerance level constant determined by the user
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Convergence rate

assume the sequence x(k) converges to a limit x⋆

Linear convergence: if there exists a constant c ∈ (0, 1) such that

|x(k) − x⋆| ≤ c|x(k−1) − x⋆|

for sufficiently large k

R-linear convergence if a positive constant M and a value c ∈ (0, 1) exist
such that

|x(k) − x⋆| ≤ Mck for large values of k

• x(k) = 1 + (1/2)k linearly converges to x⋆ = 1:

|x(k+1) − x⋆| = (1/2)k+1 =
1

2
|x(k) − x⋆|

meets the definition with c = 1/2
• every linearly convergent sequence is also R-linearly convergent, but the

reverse is not necessarily true
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Superlinear convergence: if a sequence ck > 0 with ck → 0 exists and
ensures that

|x(k) − x⋆| ≤ ck|x(k−1) − x⋆| for large k

Quadratic convergence: if a constant c > 0 exists such that

|x(k) − x⋆| ≤ c|x(k−1) − x⋆|2 for large k

• x(k) = 1 + (1/2)2
k

has quadratic convergence to x⋆ = 1, as

|x(k+1) − x⋆| = (1/2)2
k+1

=
(
(1/2)2

k
)2

= |x(k) − x⋆|2

and this satisfies the definition with c = 1

• x(k) = 1 + (1/(k + 1))k has superlinear convergence:

|x(k) − x⋆| = 1

(k + 1)k
=

kk−1

(k + 1)k
1

kk−1
=

kk−1

(k + 1)k
|x(k−1) − x⋆|

which satisfies the definition with ck = kk−1/(k + 1)k, a value that indeed
approaches zero
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The bisection method

given: a, b with a < b and h(a)h(b) < 0, tolerance ϵ
repeat

1. x = (a+ b)/2
2. compute h(x); if h(x) = 0, return x
3. if h(x)h(a) < 0, b = x, else, a = x
4. stop if a− b ≤ ϵ
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MATLAB implementation

function [p,k] = bisect(func,a,b,fa,fb,atol)

% assuming fa = func(a), fb = func(b), and fa*fb < 0,

% there is a value root in (a,b) such that func(root) = 0.

% this function returns in p a value such that

% | p - root | < atol

% and in k the number of iterations required.

if (a >= b) | (fa*fb >= 0) | (atol <= 0)

disp(’something wrong with the input: quitting’);

p = NaN; k=NaN;

return

end

k = ceil(log2 (b-a) - log2 (2*atol));

for i=1:k

p = (a+b)/2;

fp = feval(func,p);

if abs(fp) < eps, k = i; return, end

if fa * fp < 0

b = p;

fb = fp;

else

a = p;
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Example 5.5

• for func(x) = x3 - 30x2 + 2552, starting from the interval [0,20] with
a tolerance of 1× 10−8, the method converges to x⋆ ≈ 11.86150151 after
30 iterations

• for func(x) = 2.5 sinh(x/4) - 1, beginning with the interval [-10,10]
and using a tolerance of 1× 10−10, the method converges to
x⋆ ≈ 1.5601412791 after 37 iterations

the associated MATLAB script for the second function is:

format long g

[x,k] = bisect(’fex3’,-10,10,fex3(-10),fex3(10),1.e-10)

function f = fex3(x)

f = 2.5 * sinh (x/4) - 1;
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Convergence

let [a(k), b(k)] be the interval after iteration k, then

b(k) − a(k) =
b(0) − a(0)

2k

• after k iterations, the midpoint x(k) =
(
b(k) + a(k)

)
/2 satisfies∣∣∣x(k) − x⋆

∣∣∣ ≤ b(k) − a(k) ≤ (1/2)k
(
b(0) − a(0)

)
thus, it is R-linearly convergent with c = 1/2 and M = b(0) − a(0)

• the exit condition b(k) − a(k) ≤ ϵ will be satisfied if

log2

(
b(0) − a(0)

2k

)
= log2(b

(0) − a(0))− k ≤ log2 ϵ

the algorithm therefore terminates after⌈
log2

(
b(0) − a(0)

ϵ

)]
iterations (⌈α⌉ is the smallest integer greater than or equal to α)
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Derivation of Newton’s method

leveraging Taylor’s expansion, h can be approximated around the current
iterate x(k) as:

h(x) = h(x(k)) + h′(x(k))(x− x(k)) +
h′′(x(k))(x− x(k))2

2
,

• if h were linear (meaning h′′ ≡ 0), determining the root would involve
solving for 0 = h(x(k)) + h′(x(k))(x∗ − x(k)), leading to

x∗ = x(k) − h(x(k))
h′(x(k))

• for nonlinear functions, the subsequent iterate is defined similarly:

x(k+1) = x(k) − h(x(k))

h′(x(k))
, k = 0, 1, 2, . . .

this iteration update omits the term h′′(x(k))(x⋆−x(k))2

2 , operating under the
assumption that x(k) is nearing the root x⋆
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Newton’s method

given: initial x and tolerance ϵ
repeat

1. compute h(x) and h′(x)

2. if |h(x)| < ϵ, return x

3. x = x− h(x)/h′(x)
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Example 5.6

minimize f(x) =
1

2
x2 − sinx

suppose that x(0) = 0.5, α = 1, and ϵ = 10−5 with stopping criteria
|x(k+1) − x(k)| < ϵ

• applying Newton’s method, we have

x(1) = x(0) − f ′(x(0))

f ′′(x(0))
= 0.5− 0.5− cos(0.5)

1 + sin(0.5)

= 0.5− −0.3775

1.479
= 0.7552

repeating, we get x(2) = 0.7391, x(3) = 0.7390, and x(4) ≈ 0.7390

• note that |x(4) − x(3)| < ϵ, f ′(x(4)) ≈ 0, and f ′′(x(4)) = 1.672 > 0;
hence, x(4) is an approximate local minimizer (in fact it is an approximate
global minimizer)

SA — ENGR507Newton’s method 5.22



Example 5.7

applying Newton’s method on h(x) = 2 cosh
(
x
4

)
− x gives

x(k+1) = x(k) − 2 cosh(x(k)/4)− x(k)

0.5 sinh(x(k)/4)− 1

with tolerance of 1× 10−8, we have

• starting from x0 = 2, 4 iterations are needed to get x⋆
1 = 2.35755106

within the specified tolerance

• from x0 = 8, 5 iterations are enough to reach x⋆
2 = 8.50719958 to the

given accuracy

for x0 = 8, the values of h(x(k)) evolve as:

k 0 1 2 3 4 5
h(x(k)) −4.76e− 1 8.43e− 2 1.56e− 3 5.65e− 7 7.28e− 14 1.78e− 15
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Secant method

the secant method modifies Newton’s approach by estimating the derivative
h′(x(k)):

h′(x(k)) ≈ h(x(k))− h(x(k−1))

x(k) − x(k−1)

incorporating this into Newton’s formula, we get the secant method equation:

x(k+1) = x(k) − h(x(k))(x(k) − x(k−1))

h(x(k))− h(x(k−1))
, k = 1, 2, . . .

Example: for h(x) = 2 cosh(x/4)− x, we implement the secant method
using the provided tolerance from before with two initial guesses, x0 and x1:
the h(x(k)) values, initiating from x0 = 10 and x1 = 8, are as shown:

k 0 1 2 3 4 5 6

h(x(k)) 2.26 −4.76e − 1 −1.64e − 1 2.45e − 2 −9.93e − 4 −5.62e − 6 1.30e − 9
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