5. Single-variable optimization

- single variable minimization
- nonlinear equations and iterative methods
- bisection method
- Newton's method

Scalar minimization

$$
\begin{equation*}
\operatorname{minimize} \quad f(x) \tag{5.1}
\end{equation*}
$$

- $x \in \mathbb{R}$ is the variable
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is the objective function

First-order necessary condition (FONC): a minimizer x^{o} satisfies

$$
f^{\prime}\left(x^{o}\right)=0
$$

- this condition is necessary but not sufficient
- there may be other points, known as stationary points or critical points, that satisfy $f^{\prime}(\hat{x})=0$ and are not minimizers (maximizers or saddle points)
- we need to verify whether the solutions of $f^{\prime}(\hat{x})=0$ are minimizers

Intuition and proof

Intuition:

- $f^{\prime}(x)>0$ implies that f is increasing at x (positive slope), therefore, a point \tilde{x} slightly less than x gives $f(\tilde{x})<f(x)$
- $f^{\prime}(x)<0$ implies that f is decreasing at x (negative slope), then a point \tilde{x} slightly more than x gives $f(\tilde{x})<f(x)$, which means that x is not a minimizer of f

Proof: if x^{o} is a local minimizer, then $f\left(x^{o}\right) \leq f\left(x^{o}+\epsilon\right)$ for sufficiently small ϵ; from the definition of the derivatives, when $\epsilon>0$, the limit from the right is

$$
f^{\prime}\left(x^{o}\right)=\lim _{\epsilon \rightarrow 0^{+}} \frac{f\left(x^{o}+\epsilon\right)-f\left(x^{o}\right)}{\epsilon} \geq 0
$$

and when $\epsilon<0$, the limit from the left is

$$
f^{\prime}\left(x^{o}\right)=\lim _{\epsilon \rightarrow 0^{-}} \frac{f\left(x^{o}+\epsilon\right)-f\left(x^{o}\right)}{\epsilon} \leq 0
$$

hence, $0 \leq f^{\prime}\left(x^{o}\right) \leq 0$, i.e., $f^{\prime}\left(x^{o}\right)=0$

Example 5.1

consider the function

$$
f(x)=3 x^{4}-20 x^{3}+42 x^{2}-36 x
$$

the first-order necessary conditions (FONC) is

$$
f^{\prime}(x)=12 x^{3}-60 x^{2}+84 x-36=12(x-1)^{2}(x-3)=0
$$

the stationary points are $x=1$ and $x=3$

- the point $x=1$ is not a local optimal point because the derivative $f^{\prime}(x)$ does not change its sign around $x=1$
- the point $x=3$ is a local minimizer since the derivative changes its sign from negative to positive when passing through $x=3$
- since $f(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, the point $x=3$ must be a global minimizer

Example 5.2

- power of the received signal measured by the user from each antenna is the reciprocal of the squared distance from the corresponding antenna
- find the position x of the user (relative to the main base station) that maximizes the signal-to-noise ratio
to solve this problem, we need to maximize the signal-to-noise ratio:

$$
f(x)=\frac{1+(2-x)^{2}}{1+x^{2}}
$$

setting the derivative to zero:

$$
f^{\prime}(x)=\frac{-2(2-x)\left(1+x^{2}\right)-2 x\left(1+(2-x)^{2}\right)}{\left(1+x^{2}\right)^{2}}=\frac{4\left(x^{2}-2 x-1\right)}{\left(1+x^{2}\right)^{2}}=0
$$

- $f^{\prime}(x)=0$ at $x=1 \pm \sqrt{2}$
- checking the objective values, we see that $x=1-\sqrt{2}$ gives larger objective, and the derivative changes its sign from positive to negative when passing through $x=1-\sqrt{2}$
- hence, $x^{o}=1-\sqrt{2}$ is a local maximizer
- it is a global maximizer since $f(x) \rightarrow 1<f\left(x^{o}\right)$ as $|x| \rightarrow \infty$

Second-order condition

Necessary condition: if x^{o} is a local minimizer, then $f^{\prime}\left(x^{o}\right)=0$ and $f^{\prime \prime}\left(x^{o}\right) \geq 0$

Sufficient condition: if $f\left(x^{o}\right)=0$ and $f^{\prime \prime}\left(x^{o}\right)>0$, then x^{o} is a strict local minimizer

Necessary and sufficient condition: if $f^{\prime \prime}(x) \geq 0$ for all x (' f is convex'), then x^{\star} is global minimizer if and only if $f^{\prime}\left(x^{\star}\right)=0$
(we can find maximizers by finding minimizers of $-f$)

Example 5.3

a) a minimizer of $f(x)=e^{x}+e^{-x}-3 x^{2}$ must satisfy

$$
f^{\prime}(x)=e^{x}-e^{-x}-6 x=0
$$

which holds for the points $\hat{x}_{1} \approx 2.84$ and $\hat{x}_{2} \approx-2.84$, and $\hat{x}_{3}=0$; to find whether these points are local minimizer, we compute the second derivative

$$
f^{\prime \prime}(x)=e^{x}+e^{-x}-6
$$

- since $f^{\prime \prime}(2.84)>0, f^{\prime \prime}(-2.84)>0$, and $f^{\prime \prime}(0)<0$, the points \hat{x}_{1} and \hat{x}_{2} are local minimizers
- checking the value of the functions, we see that $f(2.84)=f(-2.84)$; these two points are global minimizers since $f(x) \rightarrow \infty$ as $|x| \rightarrow \infty$
b) the first and second derivative of $f(x)=\log \left(e^{x}+e^{-x}\right)$ are

$$
f^{\prime}(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad f^{\prime \prime}(x)=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}
$$

only the point $\hat{x}=0$ satisfies $f^{\prime}(x)=0$; since $f^{\prime \prime}(x)>0$ for all x, the point $\hat{x}=0$ is a global minimizer
c) for $f(x)=x^{3}$, we have $f^{\prime}(x)=3 x^{2}=0$, which holds for $\hat{x}=0$; note that $f^{\prime \prime}(x)=6 x$ and $f^{\prime \prime}(0)=0$, but $\hat{x}=0$ is not a local minimizer since $f(x)<f(0)$ for any $x<0$
(this shows that the condition $f^{\prime \prime}(x) \geq 0$ is not enough to characterize local minimizers)

Outline

- single variable minimization
- nonlinear equations and iterative methods
- bisection method
- Newton's method

Nonlinear equation in one variable

$$
h(x)=0, \quad \text { where } \quad x \in[a, b]
$$

- the root or zero is any solution of the above equation
- we assume h is a continuous function on the interval $[a, b]$
- observe that for minimizing $f(x)$, we can find stationary points by solving a nonlinear equation with $h(x)=f^{\prime}(x)$

Example 5.4

(i) $h(x)=\sin (x)$ on $[0,4 \pi]$, (ii) $h(x)=x^{3}-30 x^{2}+2552$ on [0,20], and (iii) $h(x)=10 \cosh \left(\frac{x}{4}\right)-x$ on $[-10,10]$ where $\cosh (t)=\frac{e^{t}+e^{-t}}{2}$

Iterative methods

- for many nonlinear equations, obtaining a solution through an explicit formula or a deterministic, finite-step procedure is not feasible
- we often resorts to iterative techniques that start with an initial guess, denoted x_{0}, and yield a series of subsequent guesses $x^{(1)}, x^{(2)}, \ldots, x^{(k)}, \ldots$ which ideally converge to a root of the target continuous function

$$
x^{(k)} \rightarrow x^{\star} \quad \text { as } k \rightarrow \infty
$$

- one initial strategy to approximate root locations involves graphing the function to study its characteristics
- another complementary tactic is to compute the function's value at various points, aiming to discern intervals where its sign alters

Stopping iterative methods

- Absolute error: $\left|x^{(k)}-x^{(k-1)}\right|<\epsilon$
- Relative error: $\left|x^{(k)}-x^{(k-1)}\right| /\left|x^{(k)}\right|<\epsilon$
- Function value: $\left|h\left(x^{(k)}\right)\right|<\epsilon$
here, ϵ is a tolerance level constant determined by the user

Convergence rate

assume the sequence $x^{(k)}$ converges to a limit x^{\star}

Linear convergence: if there exists a constant $c \in(0,1)$ such that

$$
\left|x^{(k)}-x^{\star}\right| \leq c\left|x^{(k-1)}-x^{\star}\right|
$$

for sufficiently large k

R-linear convergence if a positive constant M and a value $c \in(0,1)$ exist such that

$$
\left|x^{(k)}-x^{\star}\right| \leq M c^{k} \quad \text { for large values of } k
$$

- $x^{(k)}=1+(1 / 2)^{k}$ linearly converges to $x^{\star}=1$:

$$
\left|x^{(k+1)}-x^{\star}\right|=(1 / 2)^{k+1}=\frac{1}{2}\left|x^{(k)}-x^{\star}\right|
$$

meets the definition with $c=1 / 2$

- every linearly convergent sequence is also R-linearly convergent, but the reverse is not necessarily true

Superlinear convergence: if a sequence $c_{k}>0$ with $c_{k} \rightarrow 0$ exists and ensures that

$$
\left|x^{(k)}-x^{\star}\right| \leq c_{k}\left|x^{(k-1)}-x^{\star}\right| \quad \text { for large } k
$$

Quadratic convergence: if a constant $c>0$ exists such that

$$
\left|x^{(k)}-x^{\star}\right| \leq c\left|x^{(k-1)}-x^{\star}\right|^{2} \quad \text { for large } k
$$

- $x^{(k)}=1+(1 / 2)^{2^{k}}$ has quadratic convergence to $x^{\star}=1$, as

$$
\left|x^{(k+1)}-x^{\star}\right|=(1 / 2)^{2^{k+1}}=\left((1 / 2)^{2^{k}}\right)^{2}=\left|x^{(k)}-x^{\star}\right|^{2}
$$

and this satisfies the definition with $c=1$

- $x^{(k)}=1+(1 /(k+1))^{k}$ has superlinear convergence:

$$
\left|x^{(k)}-x^{\star}\right|=\frac{1}{(k+1)^{k}}=\frac{k^{k-1}}{(k+1)^{k}} \frac{1}{k^{k-1}}=\frac{k^{k-1}}{(k+1)^{k}}\left|x^{(k-1)}-x^{\star}\right|
$$

which satisfies the definition with $c_{k}=k^{k-1} /(k+1)^{k}$, a value that indeed approaches zero

Outline

- single variable minimization
- nonlinear equations and iterative methods
- bisection method
- Newton's method

The bisection method

given: a, b with $a<b$ and $h(a) h(b)<0$, tolerance ϵ repeat

1. $x=(a+b) / 2$
2. compute $h(x)$; if $h(x)=0$, return x
3. if $h(x) h(a)<0, b=x$, else, $a=x$
4. stop if $a-b \leq \epsilon$

MATLAB implementation

```
function [p,k] = bisect(func,a,b,fa,fb,atol)
% assuming fa = func(a), fb = func(b), and fa*fb < 0,
% there is a value root in (a,b) such that func(root) = 0.
% this function returns in p a value such that
% | p - root | < atol
% and in k the number of iterations required.
if (a >= b) | (fa*fb >= 0) | (atol <= 0)
disp('something wrong with the input: quitting');
p = NaN; k=NaN;
return
end
k = ceil(log2 (b-a) - log2 (2*atol));
for i=1:k
p = (a+b)/2;
fp = feval(func,p);
if abs(fp) < eps, k = i; return, end
if fa * fp < 0
b = p;
fb = fp;
else
a = p;
```


Example 5.5

- for f unc $(x)=x^{3}-30 x^{2}+2552$, starting from the interval $[0,20]$ with a tolerance of 1×10^{-8}, the method converges to $x^{\star} \approx 11.86150151$ after 30 iterations
- for func $(x)=2.5 \sinh (x / 4)-1$, beginning with the interval $[-10,10]$ and using a tolerance of 1×10^{-10}, the method converges to $x^{\star} \approx 1.5601412791$ after 37 iterations
the associated MATLAB script for the second function is:

```
format long g
[x,k] = bisect('fex3',-10,10,fex3(-10),fex3(10),1.e-10)
function f = fex3(x)
f = 2.5 * sinh (x/4) - 1;
```


Convergence

let $\left[a^{(k)}, b^{(k)}\right]$ be the interval after iteration k, then

$$
b^{(k)}-a^{(k)}=\frac{b^{(0)}-a^{(0)}}{2^{k}}
$$

- after k iterations, the midpoint $x^{(k)}=\left(b^{(k)}+a^{(k)}\right) / 2$ satisfies

$$
\left|x^{(k)}-x^{\star}\right| \leq b^{(k)}-a^{(k)} \leq(1 / 2)^{k}\left(b^{(0)}-a^{(0)}\right)
$$

thus, it is R-linearly convergent with $c=1 / 2$ and $M=b^{(0)}-a^{(0)}$

- the exit condition $b^{(k)}-a^{(k)} \leq \epsilon$ will be satisfied if

$$
\log _{2}\left(\frac{b^{(0)}-a^{(0)}}{2^{k}}\right)=\log _{2}\left(b^{(0)}-a^{(0)}\right)-k \leq \log _{2} \epsilon
$$

the algorithm therefore terminates after

$$
\left\lceil\log _{2}\left(\frac{b^{(0)}-a^{(0)}}{\epsilon}\right)\right]
$$

iterations ($\lceil\alpha\rceil$ is the smallest integer greater than or equal to α)

Outline

- single variable minimization
- nonlinear equations and iterative methods
- bisection method
- Newton's method

Derivation of Newton's method

leveraging Taylor's expansion, h can be approximated around the current iterate $x^{(k)}$ as:

$$
h(x)=h\left(x^{(k)}\right)+h^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{h^{\prime \prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)^{2}}{2}
$$

- if h were linear (meaning $h^{\prime \prime} \equiv 0$), determining the root would involve solving for $0=h\left(x^{(k)}\right)+h^{\prime}\left(x^{(k)}\right)\left(x^{*}-x^{(k)}\right)$, leading to $x^{*}=x^{(k)}-\frac{h\left(x^{(k)}\right)}{h^{\prime}\left(x^{(k)}\right)}$
- for nonlinear functions, the subsequent iterate is defined similarly:

$$
x^{(k+1)}=x^{(k)}-\frac{h\left(x^{(k)}\right)}{h^{\prime}\left(x^{(k)}\right)}, \quad k=0,1,2, \ldots
$$

this iteration update omits the term $\frac{h^{\prime \prime}\left(x^{(k)}\right)\left(x^{*}-x^{(k)}\right)^{2}}{2}$, operating under the assumption that $x^{(k)}$ is nearing the root x^{\star}

Newton's method

given: initial x and tolerance ϵ repeat

1. compute $h(x)$ and $h^{\prime}(x)$
2. if $|h(x)|<\epsilon$, return x
3. $x=x-h(x) / h^{\prime}(x)$

Example 5.6

$$
\text { minimize } \quad f(x)=\frac{1}{2} x^{2}-\sin x
$$

suppose that $x^{(0)}=0.5, \alpha=1$, and $\epsilon=10^{-5}$ with stopping criteria $\left|x^{(k+1)}-x^{(k)}\right|<\epsilon$

- applying Newton's method, we have

$$
\begin{aligned}
x^{(1)}=x^{(0)}-\frac{f^{\prime}\left(x^{(0)}\right)}{f^{\prime \prime}\left(x^{(0)}\right)} & =0.5-\frac{0.5-\cos (0.5)}{1+\sin (0.5)} \\
& =0.5-\frac{-0.3775}{1.479}=0.7552
\end{aligned}
$$

repeating, we get $x^{(2)}=0.7391, x^{(3)}=0.7390$, and $x^{(4)} \approx 0.7390$

- note that $\left|x^{(4)}-x^{(3)}\right|<\epsilon, f^{\prime}\left(x^{(4)}\right) \approx 0$, and $f^{\prime \prime}\left(x^{(4)}\right)=1.672>0$; hence, $x^{(4)}$ is an approximate local minimizer (in fact it is an approximate global minimizer)

Example 5.7

applying Newton's method on $h(x)=2 \cosh \left(\frac{x}{4}\right)-x$ gives

$$
x^{(k+1)}=x^{(k)}-\frac{2 \cosh \left(x^{(k)} / 4\right)-x^{(k)}}{0.5 \sinh \left(x^{(k)} / 4\right)-1}
$$

with tolerance of 1×10^{-8}, we have

- starting from $x_{0}=2,4$ iterations are needed to get $x_{1}^{\star}=2.35755106$ within the specified tolerance
- from $x_{0}=8,5$ iterations are enough to reach $x_{2}^{\star}=8.50719958$ to the given accuracy
for $x_{0}=8$, the values of $h\left(x^{(k)}\right)$ evolve as:

k	0	1	2	3	4	5
$h\left(x^{(k)}\right)$	$-4.76 e-1$	$8.43 e-2$	$1.56 e-3$	$5.65 e-7$	$7.28 e-14$	$1.78 e-15$

Secant method

the secant method modifies Newton's approach by estimating the derivative $h^{\prime}\left(x^{(k)}\right)$:

$$
h^{\prime}\left(x^{(k)}\right) \approx \frac{h\left(x^{(k)}\right)-h\left(x^{(k-1)}\right)}{x^{(k)}-x^{(k-1)}}
$$

incorporating this into Newton's formula, we get the secant method equation:

$$
x^{(k+1)}=x^{(k)}-\frac{h\left(x^{(k)}\right)\left(x^{(k)}-x^{(k-1)}\right)}{h\left(x^{(k)}\right)-h\left(x^{(k-1)}\right)}, \quad k=1,2, \ldots
$$

Example: for $h(x)=2 \cosh (x / 4)-x$, we implement the secant method using the provided tolerance from before with two initial guesses, x_{0} and x_{1} : the $h\left(x^{(k)}\right)$ values, initiating from $x_{0}=10$ and $x_{1}=8$, are as shown:

k	0	1	2	3	4	6	
$h\left(x^{(k)}\right)$	2.26	$-4.76 \mathrm{e}-1$	$-1.64 \mathrm{e}-1$	$2.45 \mathrm{e}-2$	$-9.93 \mathrm{e}-4$	$-5.62 \mathrm{e}-6$	$1.30 \mathrm{e}-9$

References

- E. KP. Chong and S. H. Zak. An Introduction to Optimization, John Wiley \& Sons, 2013.
- Uri M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics, 2011.
- L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

