ENGR 507 (Spring 2025)

5. Optimization problems

e optimization problems
e solving optimization problems
e problem transformations

e control example

S. Alghunaim

5.1



Optimization problem

minimize  f(x)

subjectto  g;(x) <0, i=1,...,m
hj(x)=0, j=1,....p
e x = (x1,...,Xy,) is the optimization or decision variable

o f:R" — Ris the objective or cost function
e g;: R" — R are the inequality constraint functions
e 11; : R"™ — R are the equality constraint functions
e can be compactly written as
minimize  f(x)
subjectto  g(x) <0
h(x)=0
where g(x) = (g1(x). .. gm(x)) and h(x) = (h1 (x), ..., hp(x))
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Feasible and optimal points

Feasible point: x is feasible if X € dom f and it satisfies the constraints
Solution: a point x* is an optimal point or a solution if it is feasible and

f(x*) < f(x) forany feasible x

Optimal value

greatest p such that p < f(x) for all feasible x, denoted by p*

e if there exists an optimal point x*, then p* = f(x*)

— we say the optimal value is attained or achieved and the problem is solvable
e a minimization problem is unbounded below if p* = —co

e if a minimization problem is infeasible, then we let p* = +co
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Examples

o the unconstrained problem
minimize  (x1 — 1)2 + (xo — 1)2 = ||x — 12
has optimal value p* = 0, which is attained at the optimal point x* = (1,1) = 1

e the problem
minimize X1 + X9
subjectto —x1 <10
X9 >0

has solution x* = (-10,0) and p* = —10

e the problem

P 2 _ 2
minimize  x7 —x;

is unbounded below since f(x) — —co = p* as |xy| — oo

optimization problems
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e consider the problem

minimize  f(x) = e~

the optimal value is p* = 0, but it is not attained since it only holds as x — oo
e for the problem
minimize  f(x) = 1/x, dom f ={x| x>0}
we have p* = 0 but is not attained by any feasible x
e the problem
minimize x? +x§

subjectto x1+x9 <1
X1 +x9 > 2

is infeasible; hence, p* = oo

optimization problems
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Domain and implicit constraints

the domain of an optimization problem is

D =domf N ﬁdomgi N ﬁdomhli

i=1 Jj=1

the standard from problem (5.1) has an implicit constraint x € D

the explicit constraints are g(x) < 0 and h(x) =0

e a problem is unconstrained if it has no explicit constraints (m = p = 0)
e for example, the unconstrained problem

minimize —log x; + log(xe — x1)

has implicit constraints x; > 0, xo — x1 > 0, which defines the domain D

optimization problems
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Maximization problems

maximize  f(x)
subjectto  g(x) <0
h(x)=0

e fis often called utility function instead of cost
e note that max f(x) = —min —f(x)

e thus, maximization problems can be written as minimization problems

maximize  f(x) minimize  —f(x)
subjectto g(x) <0 &  subjectto g(x) <0
h(x) =0 h(x) =0

both problems have the same solutions

optimization problems
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Standard form

we refer to problem (5.1) as an optimization problem in standard form
e equality r;(x) = 7;(x) is same as /(x) = 0 with 1 (x) = r;(x) — 7; (x)
e inequality g;(x) > 0is same as g;(x) < 0 with g;(x) = —g;(x)
e maximization can be represented as minimization by changing the objective sign
Example: the problem
maximize —x% +x§

subjectto —x1 +x2 > 10
Xo = 2 - X1
can be expressed in standard form:
minimize x% —x%
subjectto x7 —xo+10<0
X1+x0-2=0
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Set-constrained problems

minimize  f(x)
xeX

e find x that minimizes f(x) among all points in the constraint set X C R"
e for problem (5.1), the constraint set is described by functional constraints

X={x]gix)<0, hj(x)=0,i=1,...,p, j=1,...,m}
e this is not always the case, for example consider the integer set

X={1,2,3} cR

solving optimization problems
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Existence of a solution

e existence of a solution is not always guaranteed

e can be guaranteed to exists under some conditions

Solution existence: a continuous f over X has an optimal point over X if either

e X is nonempty and compact (closed and bounded)

e fis coercive:
lim f(x)=oc0

llxll—eo

and X C R" is a nonempty closed set
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Simple problems solution

e general optimization problems require sophisticated methods to solve them that
utilize derivatives, linear equations, nonlinear operators,...etc

e that said, there are some simple optimization problems that can be solved by
inspection or using some basic inequalities such as Cauchy-Schwarz

Example
minimize  ||x — 1||
subjectto -1 <x <0

e we seek to find a feasible x that is closest in distance to 1

e we have
x*=0 and p*=|-1=vn
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Example

minimize  x{ + x9
subjectto x? +x2 <1

e using Cauchy-Schwarz, we can lower bound the objective by
x1+xg =17 > —|[1|Ix]| = -V2
for all xf +x§ <1
e the minimum value is attained at x = (—1/V2, —1/v/2), which is feasible

e hence, the optimal point is x = (=1/v2, —=1/2)

solving optimization problems
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Optimization methods

e after formulating the problem, a suitable algorithm is applied to solve it

e an optimization algorithm is a set of calculations and rules that are followed to find
a solution or an approximate solution to an optimization problem

Iterative algorithms: start from an initial guess x(©) and computes

D = Rk =0,1,...

e F dependson f(x), gi(x), h;(x) to generate a new estimate x (kD)
e moving from x(¥) to x¥*1) is called an iteration of the algorithm

e stops when a good estimate of a solution is reached or k = k™?* for some k™2*

solving optimization problems 5.13



General iterative algorithm

given a starting pointx(o), tolerance €, stopping criteria, and k™2*
fork=0,1,...
1. determine a search direction oK)
2. quit if stopping criterion is met (depends on €), and output x ()
3. determine scalar ai
4. update:

Ky (K)o akv(k)

until k£ = k™ax

e «y is called the stepsize or learning rate

o (M) depends on f, g;, i; and their derivatives if differentiable

solving optimization problems
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Local minimum point

a point x° € X is a local minimizer or local minimum point (locally optimal) of
mi;lienj\jze f(x)
if there exists a scalar r > 0 such that:
f(x°) < f(x) forall xeX and |x—x°|| <r
e if f(x°) < f(x), then the point x° is called a strict local minimizer
e x* € X is a global minimizer (minimum point) if f(x*) < f(x) forallx € X
e ‘globally optimal’ is used for ‘optimal’ to distinguish from ‘locally optimal’

e apoint is a maximum point of f if it is @ minimum point of — f

solving optimization problems
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Global and local optima

F(x)

strict local minimizer

o

strict local m

strict global minimizer Tocal minimizers

unconstrained case X = R"

inimizer

F(x)

local 1

inimi

S

strict global minimizer

solving optimization problems
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Example

15 5 T T T T T T T 2
f(x)=(x-2)?
10 | 4
5 L 4
0t | | ] —1— | | | g
2 1 0 1 2 3 4 5 6
X

o

e (x—2)2; p* =min f(x) = 0; global minimizer x* = 2
o ¢* + e —3x?; p* = —7.02; two global minima: x* = +2.84

o ¢+ —3x? +x; p* = —9.9; global min. x* = —2.92; local min. at x = 2.74
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Nonlinear optimization methods

Local optimization methods

e find a locally optimal solution with no global optimality guarantees
e fast, can handle large-scale problems, and are widely applicable

e can be used to improve the performance of an engineering design obtained by
manual, or other, design methods

Global optimization methods

e true global solution is found with optimality guarantees

o difficult to find in general; even small problems, with a few tens of variables, can
take a very long time (e.g., hours or days) to solve

e usually seek the global optimum by finding local solutions to a sequence of
approximate subproblems
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Efficiently solvable problem classes

(linear) Least squares
m n 2
minimize Y ( doaix;— bi)
i=1 \j=1

where the coefficients a;;, b; are given constants

e reliable and efficient algorithms and software
e |east-squares problems are easy to recognize

e has many applications such as data-fitting and linear estimation

solving optimization problems
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Linear program (optimization)

.. . n
minimize " ¢;x;
. n .
subject to ijlaijxjgbi, i=1,....m

z;'l:pgijxj:hi, i=1,...,p

the coefficients ¢, a;;, gi;, hi, b; are given constants

o there exist robust and efficient algorithms and software for solving LPs
e LPsisn’t as immediately recognizable as that of least-squares problems

e common techniques are available to transform various problems into LPs
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Convex optimization
minimize  f(x) = go(x)
subjectto  g;(x) <0, i=1,...,m,
n .
Ejzlaijszbi, l=1,...,p

the coefficients a;;, b; are given constants
e the objective and constraints functions are convex:

gi(bx+(1-0)y) < 6gi(x) +(1-6)gi(y), 0<6<1

e f objective or one constraint is nonconvex, problem is called nonconvex

solving optimization problems

5.21



Convex optimization

e include least-squares problems and linear programs as special cases

e has many of applications

e reliable and efficient algorithms

e (difficult to recognize

e many tricks can be used to transform nonconvex problems into convex form

e basis for several heuristics for solving nonconvex problems

solving optimization problems
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Equivalent optimization problems

two optimization problems are equivalent if from a solution of one, we can find a
solution of the other, and vice versa

o for example, maximization problems are equivalent to minimization problems
e many optimization problems can be transformed into equivalent ones

e can be very useful if the equivalent problem is easier to solve

problem transformations
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Scaling and slack variables

Scaling: problem (5.1) is equivalent to
minimize  af(x)
subjectto Bigi(x) <0,i=1,...,m
vihi(x)=0, j=1,...,p
e a>0,8>0andy; #0
e ‘scaling’ does not alter solutions

Slack variables: problem (5.1) is equivalent to
minimize  f(x)
subjectto s; >0,i=1,...,m
gix)+s;,=0,i=1,...,m
hj(x)=0,j=1,....p
e the variables are x € R and s € R
e we replaced g;(x) < 0 with g;(x) +s; = 0 for some s; > 0
e variable s; is called slack variable associated with inequality constraint g; (x) < 0
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Monotone transformations

minimize ¢ (f(x))
subjectto g;(x) <0,i=1,...,m
hi(x)=0, j=1,...,p
e ¢ : R — Ris a continuous and monotone increasing function, i.e.,
¢(a) > ¢(b) foralla > b over the optimization domain
this implies that ¢ is one-to-one and its inverse ¢! is well defined
e this problem is equivalent to (5.1)

Constraint transformation: find ¢, : R - Rand ¢; : R — R so that
e Yi(gi(x)) <Oifandonlyif g;(x) <0

e ¢;(hj(x))=0ifandonlyif h;(x) =0
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Example

minimize  ||x||
subjectto  g(x) <0

norm is non-differentiable and we prefer differentiable objectives
e norm is nonnegative and ¢(-) = (-)? is monotone increasing over nonneg. no.
e hence, we can transform the problem into

minimize  ||x]|?

subjectto g(x) <0

the new objective function is differentiable, which simplifies the problem
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Change of variables

minimize  f(F(y))
subjectto  g;(F(y)) <0, i=1,....,m

hi(F(y) =0, j=1,....p

e F:R"™ — R"is 1-to-1 with image covering problem domain (D C F(dom F))

this implies for each x € D, there’s a unique y € dom F such that

x=F(y) &= y=F'(x)

if x solves (5.1), then y = F~1(x) solves the above problem

e if y solves the above problem, then x = F(y) solves (5.1)
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Example

minimize xlxgxg
subjectto  xjxo < 2
X1,X2,X3 > 0

e log(-) is strictly increasing (for non-negative argument),

e hence, we can use monotone transformations on objective and constraints
log(x1xox3) and log(x1x2) < log(2)

e also use the change of variable y; = log x; to transform the problem into

minimize  y; + Y2 + 2y3
subjectto  y1 +yo < log?2

this is a linear program, which is easier to solve

problem transformations
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Example

minimize  x1Xxo — x%
subjectto  x1 +x2 +x3 < 20
X9 > 10

e let y; = (x1 +x2)/2 and yo = (x1 — x2)/2 so that
X1 =Y1+Yy2, X2=Y1—Y2
e thus, we can transform the problem into

minimize y% - y% —xg

subjectto  2y; +x3 < 20
y1—y2 210
e the objective is now separable in the new variables

e for separable problems, there exist efficient specialized optimization methods

problem transformations
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Eliminating equality constraints

suppose ¢ : RK — R” and h(x) = 0 iff there is some z such that x = ¢(z)

then problem (5.1) is equivalent to

minimize  f(¢(z))
subjectto  gi(¢(z)) <0,i=1,...,m

e for optimal z, x = ¢(z) is optimal for the original problem

e for optimal x, any z such that x = ¢(z) is optimal for the transformed problem

Example
minimize X1 + X9 +x§
subjectto x; —xoxg =1

we use x1 = 1 + x2x3 to remove the equality constraint and get
minimize 1+ xox3 + X9 +x§

in this case, we have ¢(z1,z2) = (1 +2122,21,22)
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Eliminating linear constraints

let A € RP*" b € RP, and consider the constraints
h(x)=Ax-b=0
e solution of Ax = b can parametrized by (see page 2.41)
x =x+Fz foranyarbitrary z € R"7P)
where columns of F form a basis for the nullspace of A (range(F) = null(A))
e we can use change of variable x = X + F'z, to transform (5.1) into

minimize  f(X + Fz)
subjectto g;(x+Fz) <0, i=1,...,m

with variable z

problem transformations
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Example

minimize f(x1,..,xp)
subject to X1+ +x,=b

e we can eliminate any x;, we choose x,;:
Xn=b—x1— - —Xp1

e the above corresponds to the choice
s 1 nx(n-1)
X=be,, F= _17| € R

e the transformed problem is

minimize  f(x1,X2,...,b—Xx1 — - —Xp_1)

problem transformations



Adding equality constraints

e sometimes it is useful to introduce equality constraints

e for example, consider
minimize  f(Ax + b)

where A € R™*" and b € R™
o the above problem is equivalent to

minimize  f(z)
subjectto z=Ax+Db

with variables x € R" and z € R™

problem transformations
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Example

minimize  x1 + 4x9 + X3
subjectto  2x1 —2xo +x3 =4
X1 —X3 = 1
X9 >0,x3>0

e using the equality constraints, we have x; = 1 + x5 and
2X1 - 2x2 +Xx3 = 2(1 +X3) - QXQ +Xx3 = 4= Xo = %X3 -1
e hence, the problem can be simplified to

minimize  8x3 + 3
subjectto  x3 > 2/3

with solution x3 = 2/3 from which we can find x* = (5/3,0, 2/3)

problem transformations
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Optimizing over some variables

it holds that (with abuse of inf notation):

min £ (x, ) = min fx)

where f(x) = miny f(x,y)
Example

i T T T
minimize X1Q11X1 + 2x1Q12x2 +x2Q22x2
subjectto  g;(x1) <0, i=1,...,m,

where Q11 and Q2 are symmetric; we can analytically minimize over xs:

T T T T 1T
min (x7011%1 + 2x7Q12%2 + x5020%2) = X1 (Q11 — Q12035 Q15)%1
2

thus, the original problem is equivalent to

minimize x{(Qu - Q12Q521Q1T2))C1
subjectto  g;(x1) <0, i=1,...,m

problem transformations
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Dynamical system

a nonlinear dynamical system has the form
Xk+1 =h(xk7uk)9 k=0’ 1,"'7K

e x; € R" is the state vector at instant k

e 1, € R™ is the input or control at instant k

h : R™™ — R describes evolution of the system (system dynamics)

examples: vehicle dynamics, robots, chemical plants evolution...

Optimal control

e initial state xg = Xjnitial IS known

e choose the inputs u1, . .., ug to achieve some goal for the states/inputs

control example 5.36



Car control example

y
/
)
VAN .
I / -~ dp1
/ ' —
[ dt

dps , . .
70) =s5(¢) sin 6(z)

(t) = s(2) cos 6(1)

de
Z(t) = (s(1)/L) tan ¢(1)

L wheelbase (length)

p(t) position

0(t) orientation (angle)

¢ (1) steering angle

s(t) speed

we control speed s and steering angle ¢

control example
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Discretized car dynamics

p1(t+7) ~ p1(t) + ts(¢) cos 6(1)
p2(t+7) = pa(t) + 7s(t) sin O(¢)
0(t+7)~0(t) +7(s(t)/L) tan ¢ (1)

e 7 is a small time interval

e let state vector x; = (p1(kT), p2(kT),0(kT))
e input vector uy = (s(kt), ¢p(kT7))

e discretized model is

X1 = h(xk, ug)
with

cos(xx)3
h(xp,ug) = xx + 7 (ug), sin(xg)3
(tan(ug)2)/L
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Car control problem

e move car from given initial to desired final position and orientation

e using a small and slowly varying input sequence

Problem formulation

. K K-1
minimize Zk:o llugll® + o Ek:O lutgsr — urll?
subjectto  x1 = A(0, ug)
Xke1 = h(xpux), k=1,...,K-1
Xiinal = h(xXK, ug)

variables ug, ..., uy,and xq,...,xXn

the initial state is assumed to be zero

the objective ensures the input is small with little variation

e p > (is an input variation trade-off parameter

control example
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Zfinal = (0,1,0) Thinal = (0,1,7/2)

T T T
1
1
B
05 0.5
0 0
! ! ! ! !
—0.5 0.5 -0.5 0 0.5
Zfinal = (0.5,0.5, —7/2)
T T T T T T T
0.6
04
0.4
0.2
0.2 0
0 -0.2
! L ! ! ! L ! ! ! ! !
-0.6 -04 -0.2 0 0.2 -0.2 0 02 04 06 08

solution trajectories with different final states; the outline of the car shows the position
(p1(kT); p2(kT)), orientation 8(kT), and the steering angle ¢(k7) at time k7
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