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Optimization problem

minimize 𝑓 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝
(5.1)

• 𝑥 = (𝑥1, . . . , 𝑥𝑛) is the optimization or decision variable

• 𝑓 : R𝑛 → R is the objective or cost function

• 𝑔𝑖 : R
𝑛 → R are the inequality constraint functions

• ℎ 𝑗 : R
𝑛 → R are the equality constraint functions

• can be compactly written as

minimize 𝑓 (𝑥)
subject to 𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
(5.2)

where 𝑔(𝑥) = (𝑔1 (𝑥), . . . , 𝑔𝑚 (𝑥)) and ℎ(𝑥) = (ℎ1 (𝑥), . . . , ℎ𝑝 (𝑥))
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Feasible and optimal points

Feasible point: 𝑥 is feasible if 𝑥 ∈ dom 𝑓 and it satisfies the constraints

Solution: a point 𝑥★ is an optimal point or a solution if it is feasible and

𝑓 (𝑥★) ≤ 𝑓 (𝑥) for any feasible 𝑥

Optimal value

greatest 𝜌 such that 𝜌 ≤ 𝑓 (𝑥) for all feasible 𝑥, denoted by 𝑝★

• if there exists an optimal point 𝑥★, then 𝑝★ = 𝑓 (𝑥★)
– we say the optimal value is attained or achieved and the problem is solvable

• a minimization problem is unbounded below if 𝑝★ = −∞

• if a minimization problem is infeasible, then we let 𝑝★ = +∞
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Examples

• the unconstrained problem

minimize (𝑥1 − 1)2 + (𝑥2 − 1)2 = ∥𝑥 − 1∥2

has optimal value 𝑝★ = 0, which is attained at the optimal point 𝑥★ = (1, 1) = 1

• the problem
minimize 𝑥1 + 𝑥2
subject to −𝑥1 ≤ 10

𝑥2 ≥ 0

has solution 𝑥★ = (−10, 0) and 𝑝★ = −10

• the problem
minimize 𝑥21 − 𝑥22

is unbounded below since 𝑓 (𝑥) → −∞ = 𝑝★ as |𝑥2 | → ∞
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• consider the problem
minimize 𝑓 (𝑥) = 𝑒−𝑥

the optimal value is 𝑝★ = 0, but it is not attained since it only holds as 𝑥 → ∞

• for the problem

minimize 𝑓 (𝑥) = 1/𝑥, dom 𝑓 = {𝑥 | 𝑥 > 0}

we have 𝑝★ = 0 but is not attained by any feasible 𝑥

• the problem
minimize 𝑥21 + 𝑥22
subject to 𝑥1 + 𝑥2 ≤ 1

𝑥1 + 𝑥2 ≥ 2

is infeasible; hence, 𝑝★ = ∞
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Domain and implicit constraints

the domain of an optimization problem is

D = dom 𝑓 ∩
𝑚⋂
𝑖=1

dom 𝑔𝑖 ∩
𝑝⋂
𝑗=1

dom ℎ 𝑗

• the standard from problem (5.1) has an implicit constraint 𝑥 ∈ D

• the explicit constraints are 𝑔(𝑥) ≤ 0 and ℎ(𝑥) = 0

• a problem is unconstrained if it has no explicit constraints (𝑚 = 𝑝 = 0)

• for example, the unconstrained problem

minimize − log 𝑥1 + log(𝑥2 − 𝑥1)

has implicit constraints 𝑥1 > 0, 𝑥2 − 𝑥1 > 0, which defines the domain D
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Maximization problems

maximize 𝑓 (𝑥)
subject to 𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0

• 𝑓 is often called utility function instead of cost

• note that max 𝑓 (𝑥) = −min− 𝑓 (𝑥)

• thus, maximization problems can be written as minimization problems

maximize 𝑓 (𝑥)
subject to 𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
⇔

minimize − 𝑓 (𝑥)
subject to 𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0

both problems have the same solutions
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Standard form

we refer to problem (5.1) as an optimization problem in standard form

• equality 𝑟 𝑗 (𝑥) = 𝑟 𝑗 (𝑥) is same as ℎ 𝑗 (𝑥) = 0 with ℎ 𝑗 (𝑥) = 𝑟 𝑗 (𝑥) − 𝑟 𝑗 (𝑥)

• inequality 𝑔𝑖 (𝑥) ≥ 0 is same as 𝑔𝑖 (𝑥) ≤ 0 with 𝑔𝑖 (𝑥) = −𝑔𝑖 (𝑥)

• maximization can be represented as minimization by changing the objective sign

Example: the problem
maximize −𝑥21 + 𝑥22
subject to −𝑥1 + 𝑥2 ≥ 10

𝑥2 = 2 − 𝑥1
can be expressed in standard form:

minimize 𝑥21 − 𝑥22
subject to 𝑥1 − 𝑥2 + 10 ≤ 0

𝑥1 + 𝑥2 − 2 = 0
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Set-constrained problems

minimize
𝑥∈X

𝑓 (𝑥)

• find 𝑥 that minimizes 𝑓 (𝑥) among all points in the constraint set X ⊆ R𝑛

• for problem (5.1), the constraint set is described by functional constraints

X = {𝑥 | 𝑔𝑖 (𝑥) ≤ 0, ℎ 𝑗 (𝑥) = 0, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑚}

• this is not always the case, for example consider the integer set

X = {1, 2, 3} ⊂ R
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Existence of a solution

• existence of a solution is not always guaranteed

• can be guaranteed to exists under some conditions

Solution existence: a continuous 𝑓 over X has an optimal point over X if either

• X is nonempty and compact (closed and bounded)

• 𝑓 is coercive:
lim

∥𝑥 ∥→∞
𝑓 (𝑥) = ∞

and X ⊆ R𝑛 is a nonempty closed set
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Simple problems solution

• general optimization problems require sophisticated methods to solve them that
utilize derivatives, linear equations, nonlinear operators,...etc

• that said, there are some simple optimization problems that can be solved by
inspection or using some basic inequalities such as Cauchy-Schwarz

Example
minimize ∥𝑥 − 1∥
subject to −1 ≤ 𝑥 ≤ 0

• we seek to find a feasible 𝑥 that is closest in distance to 1

• we have
𝑥★ = 0 and 𝑝★ = ∥ − 1∥ =

√
𝑛
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Example

minimize 𝑥1 + 𝑥2
subject to 𝑥21 + 𝑥22 ≤ 1

• using Cauchy-Schwarz, we can lower bound the objective by

𝑥1 + 𝑥2 = 1T𝑥 ≥ −∥1∥∥𝑥∥ ≥ −
√
2

for all 𝑥21 + 𝑥22 ≤ 1

• the minimum value is attained at 𝑥 = (−1/
√
2,−1/

√
2), which is feasible

• hence, the optimal point is 𝑥 = (−1/
√
2,−1/

√
2)
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Optimization methods

• after formulating the problem, a suitable algorithm is applied to solve it

• an optimization algorithm is a set of calculations and rules that are followed to find
a solution or an approximate solution to an optimization problem

Iterative algorithms: start from an initial guess 𝑥 (0) and computes

𝑥 (𝑘+1) = 𝐹 (𝑥 (𝑘 ) ), 𝑘 = 0, 1, . . .

• 𝐹 depends on 𝑓 (𝑥), 𝑔𝑖 (𝑥), ℎ 𝑗 (𝑥) to generate a new estimate 𝑥 (𝑘+1)

• moving from 𝑥 (𝑘 ) to 𝑥 (𝑘+1) is called an iteration of the algorithm

• stops when a good estimate of a solution is reached or 𝑘 = 𝑘max for some 𝑘max
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General iterative algorithm

given a starting point 𝑥 (0) , tolerance 𝜖 , stopping criteria, and 𝑘max

for 𝑘 = 0, 1, . . .

1. determine a search direction 𝑣 (𝑘 )

2. quit if stopping criterion is met (depends on 𝜖 ), and output 𝑥 (𝑘 )

3. determine scalar 𝛼𝑘

4. update:
𝑥 (𝑘+1) = 𝑥 (𝑘 ) + 𝛼𝑘𝑣 (𝑘 )

until 𝑘 = 𝑘max

• 𝛼𝑘 is called the stepsize or learning rate

• 𝑣 (𝑘 ) depends on 𝑓 , 𝑔𝑖 , ℎ 𝑗 and their derivatives if differentiable
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Local minimum point

a point 𝑥◦ ∈ X is a local minimizer or local minimum point (locally optimal) of

minimize
𝑥∈X

𝑓 (𝑥)

if there exists a scalar 𝑟 > 0 such that:

𝑓 (𝑥◦) ≤ 𝑓 (𝑥) for all 𝑥 ∈ X and ∥𝑥 − 𝑥◦∥ ≤ 𝑟

• if 𝑓 (𝑥◦) < 𝑓 (𝑥), then the point 𝑥◦ is called a strict local minimizer

• 𝑥★ ∈ X is a global minimizer (minimum point) if 𝑓 (𝑥★) ≤ 𝑓 (𝑥) for all 𝑥 ∈ X

• ‘globally optimal’ is used for ‘optimal’ to distinguish from ‘locally optimal’

• a point is a maximum point of 𝑓 if it is a minimum point of − 𝑓
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Global and local optima

𝑓 (𝑥 )

𝑥
strict local minimizer strict global minimizer local minimizers

unconstrained case X = R𝑛

X

𝑥

𝑓 (𝑥 )

local minimizers

strict global minimizer

strict local minimizer

constrained case 𝑥 ∈ X
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Example
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𝑥
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𝑓 (𝑥 ) = (𝑥 − 2)2
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𝑥
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5 𝑓 (𝑥 ) = 𝑒𝑥 + 𝑒−𝑥 − 3𝑥2
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𝑥

-10
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10
𝑓 (𝑥 ) = 𝑒𝑥 + 𝑒−𝑥 − 3𝑥2 + 𝑥

• (𝑥 − 2)2; 𝑝★ = min 𝑓 (𝑥) = 0; global minimizer 𝑥★ = 2

• 𝑒𝑥 + 𝑒−𝑥 − 3𝑥2; 𝑝★ = −7.02; two global minima: 𝑥★ = ±2.84

• 𝑒𝑥 + 𝑒−𝑥 − 3𝑥2 + 𝑥; 𝑝★ = −9.9; global min. 𝑥★ = −2.92; local min. at 𝑥 = 2.74
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Nonlinear optimization methods

Local optimization methods

• find a locally optimal solution with no global optimality guarantees

• fast, can handle large-scale problems, and are widely applicable

• can be used to improve the performance of an engineering design obtained by
manual, or other, design methods

Global optimization methods

• true global solution is found with optimality guarantees

• difficult to find in general; even small problems, with a few tens of variables, can
take a very long time (e.g., hours or days) to solve

• usually seek the global optimum by finding local solutions to a sequence of
approximate subproblems
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Efficiently solvable problem classes

(linear) Least squares

minimize
𝑚∑
𝑖=1

( 𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 − 𝑏𝑖
)2

where the coefficients 𝑎𝑖 𝑗 , 𝑏𝑖 are given constants

• reliable and efficient algorithms and software

• least-squares problems are easy to recognize

• has many applications such as data-fitting and linear estimation
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Linear program (optimization)

minimize
∑𝑛

𝑗=1 𝑐 𝑗𝑥 𝑗

subject to
∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚∑𝑛

𝑗=1 𝑔𝑖 𝑗𝑥 𝑗 = ℎ𝑖 , 𝑖 = 1, . . . , 𝑝

the coefficients 𝑐 𝑗 , 𝑎𝑖 𝑗 , 𝑔𝑖 𝑗 , ℎ𝑖 , 𝑏𝑖 are given constants

• there exist robust and efficient algorithms and software for solving LPs

• LPs isn’t as immediately recognizable as that of least-squares problems

• common techniques are available to transform various problems into LPs
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Convex optimization

minimize 𝑓 (𝑥) = 𝑔0 (𝑥)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚,∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑥 𝑗 = 𝑏𝑖 , 𝑖 = 1, . . . , 𝑝

the coefficients 𝑎𝑖 𝑗 , 𝑏𝑖 are given constants

• the objective and constraints functions are convex:

𝑔𝑖 (𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑔𝑖 (𝑥) + (1 − 𝜃)𝑔𝑖 (𝑦), 0 ≤ 𝜃 ≤ 1

• if objective or one constraint is nonconvex, problem is called nonconvex

SA — ENGR507solving optimization problems 5.21



Convex optimization

• include least-squares problems and linear programs as special cases

• has many of applications

• reliable and efficient algorithms

• difficult to recognize

• many tricks can be used to transform nonconvex problems into convex form

• basis for several heuristics for solving nonconvex problems
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Equivalent optimization problems

two optimization problems are equivalent if from a solution of one, we can find a
solution of the other, and vice versa

• for example, maximization problems are equivalent to minimization problems

• many optimization problems can be transformed into equivalent ones

• can be very useful if the equivalent problem is easier to solve
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Scaling and slack variables

Scaling: problem (5.1) is equivalent to

minimize 𝛼 𝑓 (𝑥)
subject to 𝛽𝑖𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

𝛾 𝑗ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝

• 𝛼 > 0, 𝛽𝑖 > 0 and 𝛾 𝑗 ≠ 0

• ‘scaling’ does not alter solutions

Slack variables: problem (5.1) is equivalent to

minimize 𝑓 (𝑥)
subject to 𝑠𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚

𝑔𝑖 (𝑥) + 𝑠𝑖 = 0, 𝑖 = 1, . . . , 𝑚
ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝

• the variables are 𝑥 ∈ R𝑛 and 𝑠 ∈ R𝑚

• we replaced 𝑔𝑖 (𝑥) ≤ 0 with 𝑔𝑖 (𝑥) + 𝑠𝑖 = 0 for some 𝑠𝑖 ≥ 0

• variable 𝑠𝑖 is called slack variable associated with inequality constraint 𝑔𝑖 (𝑥) ≤ 0
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Monotone transformations

minimize 𝜙( 𝑓 (𝑥))
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑝

• 𝜙 : R → R is a continuous and monotone increasing function, i.e.,

𝜙(𝑎) > 𝜙(𝑏) for all 𝑎 > 𝑏 over the optimization domain

this implies that 𝜙 is one-to-one and its inverse 𝜙−1 is well defined

• this problem is equivalent to (5.1)

Constraint transformation: find 𝜓𝑖 : R → R and 𝜑 𝑗 : R → R so that

• 𝜓𝑖 (𝑔𝑖 (𝑥)) ≤ 0 if and only if 𝑔𝑖 (𝑥) ≤ 0

• 𝜑 𝑗 (ℎ 𝑗 (𝑥)) = 0 if and only if ℎ 𝑗 (𝑥) = 0
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Example

minimize ∥𝑥∥
subject to 𝑔(𝑥) ≤ 0

• norm is non-differentiable and we prefer differentiable objectives

• norm is nonnegative and 𝜙(·) = (·)2 is monotone increasing over nonneg. no.

• hence, we can transform the problem into

minimize ∥𝑥∥2

subject to 𝑔(𝑥) ≤ 0

• the new objective function is differentiable, which simplifies the problem
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Change of variables

minimize 𝑓 (𝐹 (𝑦))
subject to 𝑔𝑖 (𝐹 (𝑦)) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ 𝑗 (𝐹 (𝑦)) = 0, 𝑗 = 1, . . . , 𝑝

• 𝐹 : R𝑛 → R𝑛 is 1-to-1 with image covering problem domain (D ⊆ 𝐹 (dom 𝐹))

• this implies for each 𝑥 ∈ D, there’s a unique 𝑦 ∈ dom 𝐹 such that

𝑥 = 𝐹 (𝑦) ⇐⇒ 𝑦 = 𝐹−1 (𝑥)

• if 𝑥 solves (5.1), then 𝑦 = 𝐹−1 (𝑥) solves the above problem

• if 𝑦 solves the above problem, then 𝑥 = 𝐹 (𝑦) solves (5.1)
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Example

minimize 𝑥1𝑥2𝑥
2
3

subject to 𝑥1𝑥2 ≤ 2
𝑥1, 𝑥2, 𝑥3 > 0

• log(·) is strictly increasing (for non-negative argument),

• hence, we can use monotone transformations on objective and constraints

log(𝑥1𝑥2𝑥23) and log(𝑥1𝑥2) ≤ log(2)

• also use the change of variable 𝑦𝑖 = log 𝑥𝑖 to transform the problem into

minimize 𝑦1 + 𝑦2 + 2𝑦3
subject to 𝑦1 + 𝑦2 ≤ log 2

this is a linear program, which is easier to solve
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Example

minimize 𝑥1𝑥2 − 𝑥23
subject to 𝑥1 + 𝑥2 + 𝑥3 ≤ 20

𝑥2 ≥ 10

• let 𝑦1 = (𝑥1 + 𝑥2)/2 and 𝑦2 = (𝑥1 − 𝑥2)/2 so that

𝑥1 = 𝑦1 + 𝑦2, 𝑥2 = 𝑦1 − 𝑦2

• thus, we can transform the problem into

minimize 𝑦21 − 𝑦22 − 𝑥23
subject to 2𝑦1 + 𝑥3 ≤ 20

𝑦1 − 𝑦2 ≥ 10

• the objective is now separable in the new variables

• for separable problems, there exist efficient specialized optimization methods
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Eliminating equality constraints

suppose 𝜙 : R𝑘 → R𝑛 and ℎ(𝑥) = 0 iff there is some 𝑧 such that 𝑥 = 𝜙(𝑧)

then problem (5.1) is equivalent to

minimize 𝑓 (𝜙(𝑧))
subject to 𝑔𝑖 (𝜙(𝑧)) ≤ 0, 𝑖 = 1, . . . , 𝑚

• for optimal 𝑧, 𝑥 = 𝜙(𝑧) is optimal for the original problem

• for optimal 𝑥, any 𝑧 such that 𝑥 = 𝜙(𝑧) is optimal for the transformed problem

Example
minimize 𝑥1 + 𝑥2 + 𝑥23
subject to 𝑥1 − 𝑥2𝑥3 = 1

we use 𝑥1 = 1 + 𝑥2𝑥3 to remove the equality constraint and get

minimize 1 + 𝑥2𝑥3 + 𝑥2 + 𝑥23

in this case, we have 𝜙(𝑧1, 𝑧2) = (1 + 𝑧1𝑧2, 𝑧1, 𝑧2)
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Eliminating linear constraints

let 𝐴 ∈ R𝑝×𝑛, 𝑏 ∈ R𝑝 , and consider the constraints

ℎ(𝑥) = 𝐴𝑥 − 𝑏 = 0

• solution of 𝐴𝑥 = 𝑏 can parametrized by (see page 2.41)

𝑥 = 𝑥 + 𝐹𝑧 for any arbitrary 𝑧 ∈ R (𝑛−𝑝)

where columns of 𝐹 form a basis for the nullspace of 𝐴 (range(𝐹) = null(𝐴))

• we can use change of variable 𝑥 = 𝑥 + 𝐹𝑧, to transform (5.1) into

minimize 𝑓 (𝑥 + 𝐹𝑧)
subject to 𝑔𝑖 (𝑥 + 𝐹𝑧) ≤ 0, 𝑖 = 1, . . . , 𝑚

with variable 𝑧
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Example

minimize 𝑓 (𝑥1, . . . , 𝑥𝑛)
subject to 𝑥1 + ··· + 𝑥𝑛 = 𝑏

• we can eliminate any 𝑥𝑖 , we choose 𝑥𝑛:

𝑥𝑛 = 𝑏 − 𝑥1 − ··· − 𝑥𝑛−1

• the above corresponds to the choice

𝑥 = 𝑏𝑒𝑛, 𝐹 =

[
𝐼

−1T
]
∈ R𝑛×(𝑛−1)

• the transformed problem is

minimize 𝑓 (𝑥1, 𝑥2, . . . , 𝑏 − 𝑥1 − ··· − 𝑥𝑛−1)
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Adding equality constraints

• sometimes it is useful to introduce equality constraints

• for example, consider
minimize 𝑓 (𝐴𝑥 + 𝑏)

where 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚

• the above problem is equivalent to

minimize 𝑓 (𝑧)
subject to 𝑧 = 𝐴𝑥 + 𝑏

with variables 𝑥 ∈ R𝑛 and 𝑧 ∈ R𝑚

SA — ENGR507problem transformations 5.33



Example

minimize 𝑥1 + 4𝑥2 + 𝑥3
subject to 2𝑥1 − 2𝑥2 + 𝑥3 = 4

𝑥1 − 𝑥3 = 1
𝑥2 ≥ 0, 𝑥3 ≥ 0

• using the equality constraints, we have 𝑥1 = 1 + 𝑥3 and

2𝑥1 − 2𝑥2 + 𝑥3 = 2(1 + 𝑥3) − 2𝑥2 + 𝑥3 = 4 =⇒ 𝑥2 = 3
2𝑥3 − 1

• hence, the problem can be simplified to

minimize 8𝑥3 + 3
subject to 𝑥3 ≥ 2/3

with solution 𝑥3 = 2/3 from which we can find 𝑥★ = (5/3, 0, 2/3)
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Optimizing over some variables

it holds that (with abuse of inf notation):

min
𝑥,𝑦

𝑓 (𝑥, 𝑦) = min
𝑥

𝑓 (𝑥)

where 𝑓 (𝑥) = min𝑦 𝑓 (𝑥, 𝑦)
Example

minimize 𝑥T1𝑄11𝑥1 + 2𝑥T1𝑄12𝑥2 + 𝑥T2𝑄22𝑥2
subject to 𝑔𝑖 (𝑥1) ≤ 0, 𝑖 = 1, . . . , 𝑚,

where 𝑄11 and 𝑄22 are symmetric; we can analytically minimize over 𝑥2:

min
𝑥2

(
𝑥T1𝑄11𝑥1 + 2𝑥T1𝑄12𝑥2 + 𝑥T2𝑄22𝑥2

)
= 𝑥T1

(
𝑄11 −𝑄12𝑄

−1
22𝑄

T
12

)
𝑥1

thus, the original problem is equivalent to

minimize 𝑥T1
(
𝑄11 −𝑄12𝑄

−1
22𝑄

T
12

)
𝑥1

subject to 𝑔𝑖 (𝑥1) ≤ 0, 𝑖 = 1, . . . , 𝑚
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Dynamical system

a nonlinear dynamical system has the form

𝑥𝑘+1 = ℎ(𝑥𝑘 , 𝑢𝑘), 𝑘 = 0, 1, . . . , 𝐾

• 𝑥𝑘 ∈ R𝑛 is the state vector at instant 𝑘

• 𝑢𝑘 ∈ R𝑚 is the input or control at instant 𝑘

• ℎ : R𝑛+𝑚 → R𝑛 describes evolution of the system (system dynamics)

• examples: vehicle dynamics, robots, chemical plants evolution...

Optimal control

• initial state 𝑥0 = 𝑥initial is known

• choose the inputs 𝑢1, . . . , 𝑢𝐾 to achieve some goal for the states/inputs
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Car control example

𝑑𝑝1

𝑑𝑡
(𝑡) = 𝑠(𝑡) cos 𝜃 (𝑡)

𝑑𝑝2

𝑑𝑡
(𝑡) = 𝑠(𝑡) sin 𝜃 (𝑡)

𝑑𝜃

𝑑𝑡
(𝑡) = (𝑠(𝑡)/𝐿) tan 𝜙(𝑡)

• 𝐿 wheelbase (length)

• 𝑝(𝑡) position

• 𝜃 (𝑡) orientation (angle)

• 𝜙(𝑡) steering angle

• 𝑠(𝑡) speed

• we control speed 𝑠 and steering angle 𝜙

SA — ENGR507control example 5.37



Discretized car dynamics

𝑝1 (𝑡 + 𝜏) ≈ 𝑝1 (𝑡) + 𝜏𝑠(𝑡) cos 𝜃 (𝑡)
𝑝2 (𝑡 + 𝜏) ≈ 𝑝2 (𝑡) + 𝜏𝑠(𝑡) sin 𝜃 (𝑡)
𝜃 (𝑡 + 𝜏) ≈ 𝜃 (𝑡) + 𝜏(𝑠(𝑡)/𝐿) tan 𝜙(𝑡)

• 𝜏 is a small time interval

• let state vector 𝑥𝑘 = (𝑝1 (𝑘𝜏), 𝑝2 (𝑘𝜏), 𝜃 (𝑘𝜏))
• input vector 𝑢𝑘 = (𝑠(𝑘𝜏), 𝜙(𝑘𝜏))
• discretized model is

𝑥𝑘+1 = ℎ(𝑥𝑘 , 𝑢𝑘)

with

ℎ(𝑥𝑘 , 𝑢𝑘) = 𝑥𝑘 + 𝜏 (𝑢𝑘)1


cos(𝑥𝑘)3
sin(𝑥𝑘)3

(tan(𝑢𝑘)2)/𝐿


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Car control problem

• move car from given initial to desired final position and orientation

• using a small and slowly varying input sequence

Problem formulation

minimize
∑𝐾

𝑘=0 ∥𝑢𝑘 ∥2 + 𝜌
∑𝐾−1

𝑘=0 ∥𝑢𝑘+1 − 𝑢𝑘 ∥2
subject to 𝑥1 = ℎ(0, 𝑢0)

𝑥𝑘+1 = ℎ(𝑥𝑘 , 𝑢𝑘), 𝑘 = 1, . . . , 𝐾 − 1
𝑥final = ℎ(𝑥𝐾 , 𝑢𝐾 )

• variables 𝑢0, . . . , 𝑢𝑁 , and 𝑥1, . . . , 𝑥𝑁

• the initial state is assumed to be zero

• the objective ensures the input is small with little variation

• 𝜌 > 0 is an input variation trade-off parameter
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solution trajectories with different final states; the outline of the car shows the position
(𝑝1 (𝑘𝜏); 𝑝2 (𝑘𝜏)), orientation 𝜃 (𝑘𝜏), and the steering angle 𝜙(𝑘𝜏) at time 𝑘𝜏
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References and further readings

• S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. (ch 4.1)

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares. Cambridge University Press, 2018. (ch 19.4, car control example)
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