4. Optimization problems

- terminology
- problem transformations
- solving optimization problems
- control example

Optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \tag{4.1}\\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is the optimization variable or decision variable
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function or cost function
- $g_{i}(\boldsymbol{x}) \leq 0$ are the inequality constraints $\left(g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
- $h_{j}(\boldsymbol{x})=0$ are the equality constraints $\left(h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
- the problem is said to be unconstrained if $g_{i}=h_{j}=0$

Solution: a point \boldsymbol{x}^{\star} is an optimal point or solution to (4.1) if

$$
f\left(\boldsymbol{x}^{\star}\right) \leq f(\boldsymbol{x})
$$

for any \boldsymbol{x} with $g_{1}(\boldsymbol{x}) \leq 0, \ldots, g_{m}(\boldsymbol{x}) \leq 0$ and $h_{1}(\boldsymbol{x})=0, \ldots, h_{p}(\boldsymbol{x})=0$

Compact representation

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g(\boldsymbol{x}) \leq \mathbf{0} \tag{4.2}\\
& h(\boldsymbol{x})=\mathbf{0}
\end{array}
$$

- $g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$
- $h(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{p}(\boldsymbol{x})\right)$

Maximization problem

$$
\begin{array}{ll}
\text { maximize } & f(\boldsymbol{x}) \\
\text { subject to } & g(\boldsymbol{x}) \leq \mathbf{0}, h(\boldsymbol{x})=\mathbf{0} \tag{4.3}
\end{array}
$$

- a vector \boldsymbol{x}^{\star} is optimal or a solution if it maximizes the objective:

$$
f\left(\boldsymbol{x}^{\star}\right) \geq f(\boldsymbol{x})
$$

for all \boldsymbol{x} satisfying $g(\boldsymbol{x}) \leq \mathbf{0}$ and $h(\boldsymbol{x})=\mathbf{0}$

- f is often called utility function instead of cost

Maximization as minimization: we have

$$
\max f(\boldsymbol{x})=-\min -f(\boldsymbol{x})
$$

hence

maximize	$f(\boldsymbol{x})$			
subject to	$g(\boldsymbol{x}) \leq \mathbf{0}, h(\boldsymbol{x})=\mathbf{0}$	$\leftrightarrow \quad$	minimize	$-f(\boldsymbol{x})$
:---	:---			
subject to	$g(\boldsymbol{x}) \leq \mathbf{0}, h(\boldsymbol{x})=\mathbf{0}$			

- both problems share the same solutions
- the optimal value of one is the negative of the other
- maximization problems can be treated a minimization problems

Standard form

we refer to problem (4.1) (or (4.2)), namely

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, j=1, \ldots, p
\end{array}
$$

as an optimization problem in standard form (the righthand side of the inequality and equality constraints are zero)

- we can represent equality constraints $r_{j}(\boldsymbol{x})=\tilde{r}_{j}(\boldsymbol{x})$ as $h_{j}(\boldsymbol{x})=0$ where $h_{j}(\boldsymbol{x})=r_{j}(\boldsymbol{x})-\tilde{r}_{j}(\boldsymbol{x})$
- we can express inqualities of the form $\tilde{g}_{i}(\boldsymbol{x}) \geq 0$ as $g_{i}(\boldsymbol{x}) \leq 0$ where $g_{i}(\boldsymbol{x})=-\tilde{g}_{i}(\boldsymbol{x})$
- maximization problem can be represented as minimization by changing the objective sign

Example 4.1

the problem

$$
\begin{array}{ll}
\operatorname{maximize} & -x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & -x_{1}+x_{2} \geq 10 \\
& x_{2}=2-x_{1}
\end{array}
$$

can be expressed in standard form with objective

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}-x_{2}^{2} \\
\text { subject to } & x_{1}-x_{2}+10 \leq 0 \\
& x_{1}+x_{2}-2=0
\end{array}
$$

Domain and implicit constraints

the domain of the optimization problem is the set of points for which the objective and all constraint functions are defined

$$
\mathcal{D}=\operatorname{dom} f \cap \bigcap_{i=1}^{m} \operatorname{dom} g_{i} \cap \bigcap_{j=1}^{p} \operatorname{dom} h_{j}
$$

- the standard from problem (4.1) has an implicit constraint $\boldsymbol{x} \in \mathcal{D}$
- explicit constraints: $g_{1}(\boldsymbol{x}) \leq 0, \ldots, g_{m}(\boldsymbol{x}) \leq 0, h_{1}(\boldsymbol{x})=0, \ldots, h_{p}(\boldsymbol{x})=0$
- for example, the problem

$$
\text { minimize } \quad-\log x_{1}+\log \left(x_{2}-x_{1}\right)
$$

is an unconstrained problem with implicit constraints $x_{1}>0, x_{2}-x_{1}>0$

Optimal value

Feasible points

- a point \hat{x} is a feasible point if $\hat{x} \in \mathcal{D}$ and it satisfies the constraints, $h(\hat{\boldsymbol{x}})=\mathbf{0}$ and $g(\hat{\boldsymbol{x}}) \leq \mathbf{0}$; otherwise, it is called infeasible point
- the problem is said to be feasible if there exists at least one feasible point; otherwise, it is said to be infeasible

Optimal value: the optimal value of the minimization problem (4.2), denoted by p^{\star}, is the greatest α such that $\alpha \leq f(\boldsymbol{x})$ for all feasible \boldsymbol{x}

- for maximization problems, it is the smallest α such that $\alpha \geq f(\boldsymbol{x})$
- if there exists an optimal point x^{\star}, we say the optimal value is attained or achieved and the problem is solvable; in this case, we have $p^{\star}=f\left(\boldsymbol{x}^{\star}\right)$
- a minimization problem is unbounded below if $p^{\star}=-\infty$; if a minimization problem is infeasible, then we let $p^{\star}=+\infty$
- a maximization problem is unbounded above if $p^{\star}=\infty$; if a maximization problem is infeasible, then we let $p^{\star}=-\infty$

Example 4.2

- consider the unconstrained problem

$$
\text { minimize } \quad\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}=\|\boldsymbol{x}-\mathbf{1}\|^{2}
$$

the optimal value is $p^{\star}=0$ attained at the optimal point $\boldsymbol{x}^{\star}=(1,1)=\mathbf{1}$

- the problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+x_{2} \\
\text { subject to } & -x_{1} \leq 10 \\
& x_{2} \geq 0
\end{array}
$$

has solution $\boldsymbol{x}^{\star}=(-10,0)$ and $p^{\star}=-10$

- the problem

$$
\operatorname{minimize} \quad x_{1}^{2}-x_{2}^{2}
$$

is unbounded below since $f(\boldsymbol{x}) \rightarrow-\infty=p^{\star}$ as $\left|x_{2}\right| \rightarrow \infty$

- consider minimizing $f(x)=e^{-x}$; for this problem $p^{\star}=0$, but the optimal value is not attained since it only holds as $x \rightarrow \infty$
- consider minimizing $f(x)=1 / x$ with domain dom $f=\{x \mid x>0\}$; for this problem $p^{\star}=0$ but is not attained by any feasible x
- the problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}+x_{2} \geq 2
\end{array}
$$

is an infeasible minimization problem; hence, $p^{\star}=\infty$

Set-constrained problems

$$
\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimize}} \quad f(\boldsymbol{x})
$$

- describes the optimization problem of finding an $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ that minimizes $f(\boldsymbol{x})$ among all points in the constraint set $\mathcal{X} \subset \mathbb{R}^{n}$
- for problem (4.1), the constraint set is described by functional constraints

$$
\mathcal{X}=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x}) \leq 0, h_{j}(\boldsymbol{x})=0, i=1, \ldots, p, j=1, \ldots, m\right\}
$$

- this is not always the case, for example consider the integer set

$$
\mathcal{X}=\{1,2,3\} \subset \mathbb{R}
$$

Simple problems solution

- general optimization problems require sophisticated methods to solve them that utilize derivatives, linear equations, nonlinear operators,...etc
- that said, there are some simple optimization problems that can be solved by inspection or using some basic inequalities such as Cauchy-Schwarz

Example

$$
\begin{array}{ll}
\operatorname{minimize} & \|x-1\| \\
\text { subject to } & -\mathbf{1} \leq x \leq 0
\end{array}
$$

- we seek to find a feasible \boldsymbol{x} that is closest in distance to 1
- hence

$$
\boldsymbol{x}^{\star}=\mathbf{0} \quad \text { and } \quad p^{\star}=\|-\mathbf{1}\|=\sqrt{n}
$$

Another example:

$\begin{array}{ll}\operatorname{minimize} & x_{1}+x_{2} \\ \text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 1\end{array}$

- using Cauchy-Schwarz, we can lower bound the objective by

$$
x_{1}+x_{2}=\mathbf{1}^{T} \boldsymbol{x} \geq-\|\mathbf{1}\|\|\boldsymbol{x}\| \geq-\sqrt{2}
$$

for all $x_{1}^{2}+x_{2}^{2} \leq 1$

- the minimum value is attained at $\boldsymbol{x}=(-1 / \sqrt{2},-1 / \sqrt{2})$, which is feasible
- hence, the optimal point is $\boldsymbol{x}=(-1 / \sqrt{2},-1 / \sqrt{2})$

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Equivalent optimization problems

two optimization problems are said to be equivalent if from a solution of one, we can find a solution of the other, and vice versa

- for example, maximization problems are equivalent to minimization problems (as shown before)
- many optimization problems can be transformed into equivalent optimization problems that are easier to solve
- it is often useful to look for such equivalence to simplify the task of solving such problems

Scaling optimization problems

$$
\begin{array}{ll}
\operatorname{minimize} & \alpha f(\boldsymbol{x}) \\
\text { subject to } & \beta_{i} g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m \tag{4.4}\\
& \gamma_{j} h_{j}(\boldsymbol{x})=0, j=1, \ldots, p
\end{array}
$$

where $\alpha>0, \beta_{i}>0$ and $\gamma_{j} \neq 0$

- this problem is just a scaled version of (4.1)
- the feasible sets problems (4.4) and (4.1) are identical
- a point \boldsymbol{x} is optimal for the original problem (4.1) if and only if it is optimal for the scaled problem (4.4)
- hence, the two problems are equivalent

Slack variables

note that

$$
g_{i}(\boldsymbol{x}) \leq 0 \text { if and only if } g_{i}(\boldsymbol{x})+s_{i}=0
$$

for some $s_{i} \geq 0$
hence, problem (4.1) is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & s_{i} \geq 0, i=1, \ldots, m \tag{4.5}\\
& g_{i}(\boldsymbol{x})+s_{i}=0, i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, j=1, \ldots, p
\end{array}
$$

- the variables are $\boldsymbol{x} \in \mathbb{R}^{n}$ and $s \in \mathbb{R}^{m}$
- the new variable s_{i} is called the slack variable associated with the inequality constraint $g_{i}(\boldsymbol{x}) \leq 0$

Monotone transformations

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(f(\boldsymbol{x})) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m \tag{4.6}\\
& h_{j}(\boldsymbol{x})=0, j=1, \ldots, p
\end{array}
$$

- $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and monotone increasing function (i.e., $\phi(a)>\phi(b)$ for all $a>b)$ over the feasible set \mathcal{X}
- note that ϕ is one-to-one and its inverse ϕ^{-1} is well defined
- problem (4.6) is equivalent to (4.1)

Constraint transformation: functions $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ and $\varphi_{j}: \mathbb{R} \rightarrow \mathbb{R}$ can be used to transform the constraints into equivalent ones if

- $\psi_{i}\left(g_{i}(\boldsymbol{x})\right) \leq 0$ if and only if $g_{i}(\boldsymbol{x}) \leq 0$
- $\varphi_{j}\left(h_{j}(\boldsymbol{x})\right)=0$ if and only if $h_{j}(\boldsymbol{x})=0$

Example 4.3

```
minimize |x|
subject to g(\boldsymbol{x})\leq0
```

the norm is always nonnegative and the square function $\phi(\cdot)=(\cdot)^{2}$ is monotone increasing over nonnegative numbers, hence, we can transform the problem into

$$
\begin{aligned}
\text { minimize } & \|\boldsymbol{x}\|^{2} \\
\text { subject to } & g(\boldsymbol{x}) \leq \mathbf{0}
\end{aligned}
$$

- the two problems are equivalent since the optimal points are the same
- unlike the original problem the new objective function is differentiable, which simplifies the problem

Change of variables

suppose that $F: \mathcal{X} \rightarrow \mathcal{Y}$ is a one-to-one function, i.e., for every $\boldsymbol{y} \in \mathcal{Y}$, there exists a unique $\boldsymbol{x} \in \mathcal{X}$ such that

$$
\boldsymbol{y}=F(\boldsymbol{x}) \Longleftrightarrow \boldsymbol{x}=F^{-1}(\boldsymbol{y})
$$

in this case, problem (4.1) is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f\left(F^{-1}(\boldsymbol{y})\right) \\
\text { subject to } & g_{i}\left(F^{-1}(\boldsymbol{y})\right) \leq 0, i=1, \ldots, m \\
& h_{j}\left(F^{-1}(\boldsymbol{y})\right)=0, j=1, \ldots, p
\end{array}
$$

Example 4.4

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} x_{2} x_{3}^{2} \\
\text { subject to } & x_{1} x_{2} \leq 2 \\
& x_{1}, x_{2}, x_{3}>0
\end{array}
$$

since $\log (\cdot)$ is strictly increasing (for non-negative argument), we can use monotone transformations $\log \left(x_{1} x_{2} x_{3}^{2}\right)$ and $\log \left(x_{1} x_{2}\right) \leq \log (2)$ and the change of variable $z_{i}=\log x_{i}$ to transform the problem into

$$
\begin{array}{ll}
\text { minimize } & z_{1}+z_{2}+2 z_{3} \\
\text { subject to } & z_{1}+z_{2} \leq \log 2
\end{array}
$$

the above problem is linear, which is easier to solve than the original nonlinear formulation

Example 4.5

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} x_{2}-x_{3}^{2} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \leq 20 \\
& x_{2} \geq 10
\end{array}
$$

if we let $y_{1}=\left(x_{1}+x_{2}\right) / 2$ and $y_{2}=\left(x_{1}-x_{2}\right) / 2$ then

$$
x_{1}=y_{1}+y_{2}, \quad x_{2}=y_{1}-y_{2}
$$

using the above change of variables, we can transform the problem into

$$
\begin{array}{ll}
\operatorname{minimize} & y_{1}^{2}-y_{2}^{2}-x_{3}^{2} \\
\text { subject to } & 2 y_{1}+x_{3} \leq 20 \\
& y_{1}-y_{2} \geq 10
\end{array}
$$

notice that the objective is now separable in the new variables; for separable problems, there exist efficient specialized optimization methods

Eliminating equality constraints

let the function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be defined such that \boldsymbol{x} satisfies $h(\boldsymbol{x})=\mathbf{0}$ if and only if there is some \boldsymbol{z} such that $\boldsymbol{x}=\phi(\boldsymbol{z})$, then problem (4.1) is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\phi(\boldsymbol{z})) \\
\text { subject to } & g_{i}(\phi(\boldsymbol{z})) \leq 0, i=1, \ldots, m \tag{4.7}
\end{array}
$$

- if \boldsymbol{z} is optimal for the transformed problem, then $\boldsymbol{x}=\phi(\boldsymbol{z})$ is optimal for the original problem
- conversely, if x is optimal for the original problem, then (since \boldsymbol{x} is feasible) then any \boldsymbol{z} such that $\boldsymbol{x}=\phi(\boldsymbol{z})$ is optimal for the transformed problem

Example 4.6

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}^{2} \\
\text { subject to } & x_{1}-x_{2} x_{3}=1
\end{array}
$$

we can use $x_{1}=1+x_{2} x_{3}$ to remove the equality constraint and get the equivalent problem

$$
\text { minimize } 1+x_{2} x_{3}+x_{2}+x_{3}^{2}
$$

- in this case, we have $\phi\left(z_{1}, z_{2}\right)=\left(1+z_{1} z_{2}, z_{1}, z_{2}\right)$
- this problem is unconstrained, which is easier to solve than the original problem

Example 4.7

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+4 x_{2}+x_{3} \\
\text { subject to } & 2 x_{1}-2 x_{2}+x_{3}=4 \\
& x_{1}-x_{3}=1 \\
& x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

using the equality constraints, we have $x_{1}=1+x_{3}$ and

$$
2 x_{1}-2 x_{2}+x_{3}=2\left(1+x_{3}\right)-2 x_{2}+x_{3}=4 \Rightarrow x_{2}=\frac{3}{2} x_{3}-1
$$

hence, the problem can be simplified to

$$
\begin{array}{ll}
\text { minimize } & 8 x_{3}+3 \\
\text { subject to } & x_{3} \geq 2 / 3
\end{array}
$$

with solution $x_{3}=2 / 3$; putting things together the solution to the original problem is $\boldsymbol{x}^{\star}=(5 / 3,0,2 / 3)$

Removing linear constraints

$$
h(\boldsymbol{x})=A \boldsymbol{x}-\boldsymbol{b}=\mathbf{0}
$$

where $A \in \mathbb{R}^{p \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{p}$; assume that the first p columns of A are linearly independent so that

$$
A=\left[\begin{array}{ll}
B & D
\end{array}\right]
$$

- B is an invertible $p \times p$ matrix and D is an $p \times(n-p)$ matrix
- recall that the solutions of $A \boldsymbol{x}=\boldsymbol{b}$ can parametrized by

$$
\boldsymbol{x}=\hat{\boldsymbol{x}}+F \boldsymbol{z}
$$

for any arbitrary $\boldsymbol{z} \in \mathbb{R}^{(n-p)}$ where

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
B^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right], \quad F=\left[\begin{array}{c}
-B^{-1} D \\
I
\end{array}\right]
$$

the columns of the matrix F form a basis for the nullspace of A $($ range $(F)=\operatorname{null}(A))$
substituting $\boldsymbol{x}=\hat{\boldsymbol{x}}+F \boldsymbol{z}$ into the original problem gives

$$
\begin{array}{ll}
\operatorname{minimize} & f(\hat{\boldsymbol{x}}+F \boldsymbol{z}) \\
\text { subject to } & g_{i}(\hat{\boldsymbol{x}}+F \boldsymbol{z}) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

with variable \boldsymbol{z}

Adding equality constraints: sometimes it is useful to introduce equality constraints; for example, consider

$$
\text { minimize } f(A \boldsymbol{x}+\boldsymbol{b})
$$

where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$; the above problem is equivalent to

$$
\text { minimize } f(\boldsymbol{z}) \quad \text { s.t. } \boldsymbol{z}=A \boldsymbol{x}+\boldsymbol{b}
$$

with variables $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{z} \in \mathbb{R}^{m}$

Example 4.8

$$
\begin{array}{ll}
\text { minimize } & f\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & x_{1}+\cdots+x_{n}=b
\end{array}
$$

we can eliminate any x_{i}, we choose x_{n} :

$$
x_{n}=b-x_{1}-\cdots-x_{n-1}
$$

the above corresponds to the choice

$$
\hat{\boldsymbol{x}}=b \boldsymbol{e}_{n}, \quad F=\left[\begin{array}{c}
I \\
-\mathbf{1}^{T}
\end{array}\right] \in \mathbb{R}^{n \times(n-1)}
$$

the transformed problem is
minimize $f\left(x_{1}, x_{2}, \ldots, b-x_{1}-\cdots-x_{n-1}\right)$

Optimizing over some variables

it holds that (with abuse of inf notation):

$$
\min _{\boldsymbol{x}, \boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})=\min _{\boldsymbol{x}} \tilde{f}(\boldsymbol{x})
$$

where $\tilde{f}(\boldsymbol{x})=\min _{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$

Example:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}_{1}^{T} Q_{11} \boldsymbol{x}_{1}+2 \boldsymbol{x}_{1}^{T} Q_{12} \boldsymbol{x}_{2}+\boldsymbol{x}_{2}^{T} Q_{22} \boldsymbol{x}_{2} \\
\text { subject to } & g_{i}\left(\boldsymbol{x}_{1}\right) \leq 0, \quad i=1, \ldots, m,
\end{array}
$$

where Q_{11} and Q_{22} are symmetric; we can analytically minimize over \boldsymbol{x}_{2} :

$$
\min _{\boldsymbol{x}_{2}}\left(\boldsymbol{x}_{1}^{T} Q_{11} \boldsymbol{x}_{1}+2 \boldsymbol{x}_{1}^{T} Q_{12} \boldsymbol{x}_{2}+\boldsymbol{x}_{2}^{T} Q_{22} \boldsymbol{x}_{2}\right)=\boldsymbol{x}_{1}^{T}\left(Q_{11}-Q_{12} Q_{22}^{-1} Q_{12}^{T}\right) \boldsymbol{x}_{1}
$$

thus, the original problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{x}_{1}^{T}\left(Q_{11}-Q_{12} Q_{22}^{-1} Q_{12}^{T}\right) \boldsymbol{x}_{1} \\
\text { subject to } & g_{i}\left(\boldsymbol{x}_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Optimization methods

after constructing the mathematical model, a suitable solution method is applied to find the best decision

- an optimization algorithm is a set of calculations and rules that are followed to find a solution or an approximate solution to an optimization problem
- a solution method for a class of optimization problems is an algorithm that computes a solution of the problem (to some given accuracy), given a particular problem from the class, i.e., an instance of the problem

Iterative algorithms

an iterative algorithm F uses the current estimate $\boldsymbol{x}^{(k)}$ at time k and the functions $f(\boldsymbol{x}), g_{i}(\boldsymbol{x}), h_{j}(\boldsymbol{x})$ to generate a new estimate $\boldsymbol{x}^{(k+1)}$ that better estimates the solution: $\boldsymbol{x}^{(k+1)}=F\left(\boldsymbol{x}^{(k)}\right)$

- moving from $\boldsymbol{x}^{(k)}$ to $\boldsymbol{x}^{(k+1)}$ is called an iteration of the algorithm
- the algorithm stops when a good estimate of a solution is reached or until convergence where $\boldsymbol{x}^{(T)}=\boldsymbol{x}^{(T+1)}$ from some $T \geq 0$

Algorithm General iterative algorithm

given a starting point $\boldsymbol{x}^{(0)}$, a solution accuracy scalar ϵ, and error criteria
for $k \geq 1$

1. determine a search direction $\boldsymbol{d}^{(k)}$
2. determine a step-size α_{k} that leads to an improved estimate

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
$$

3. if error criteria is met (e.g., $\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right\| \leq \epsilon$ or $\left|f\left(\boldsymbol{x}^{(k+1)}\right)-f\left(\boldsymbol{x}^{(k)}\right)\right| \leq \epsilon$), stop and output $\boldsymbol{x}^{(k+1)}$

Local minimum point

$$
\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimize}} \quad f(\boldsymbol{x})
$$

a point $\boldsymbol{x}^{o} \in \mathcal{X}$ is a local minimizer or local minimum point (locally optimal) if there exists a scalar $r>0$ such that:

$$
f\left(\boldsymbol{x}^{o}\right) \leq f(\boldsymbol{x}) \quad \text { for all } \quad \boldsymbol{x} \in \mathcal{X} \quad \text { and } \quad\left\|\boldsymbol{x}-\boldsymbol{x}^{o}\right\| \leq r
$$

- if $f\left(\boldsymbol{x}^{o}\right)<f(\boldsymbol{x})$, then the point \boldsymbol{x}^{o} is called a strict local minimizer
- a point $\boldsymbol{x}^{\star} \in \mathcal{X}$ is a global minimizer or global minimum point (optimal) if $f\left(\boldsymbol{x}^{\star}\right) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{X}$
- the term 'globally optimal' is sometimes used for 'optimal' to distinguish between 'locally optimal' and 'optimal'

Local maximum point

$$
\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{maximize}} f(\boldsymbol{x})
$$

for maximization problems, a point $\boldsymbol{x}^{o} \in \mathcal{X}$ is called a local maximizer or local maximum point if (locally optimal) there exists a scalar $r>0$ such that

$$
f\left(\boldsymbol{x}^{o}\right) \geq f(\boldsymbol{x}) \quad \text { for all } \quad \boldsymbol{x} \in \mathcal{X} \quad \text { and } \quad\left\|\boldsymbol{x}-\boldsymbol{x}^{o}\right\| \leq r
$$

- if $f\left(\boldsymbol{x}^{o}\right)>f(\boldsymbol{x})$, then the point \boldsymbol{x}^{o} is said to be a strict local maximizer
- a point $\boldsymbol{x}^{\star} \in \mathcal{X}$ is a global maximizer if $f\left(\boldsymbol{x}^{\star}\right) \geq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{X}$
- a point is a local (global) maximum point of f if it is a local (global) minimum point of $-f$

Example 4.9

- $(x-2)^{2}$: optimal value of $\min f(x)=0$; global minimizer $x^{\star}=2$
- $e^{x}+e^{-x}-3 x^{2}$: optimal value -7.02 ; two global minima: $x^{\star}= \pm 2.84$
- $e^{x}+e^{-x}-3 x^{2}+x$ optimal value of -9.9 ; global minimizer $x^{\star}=-2.92$; local minimizer located at $x=2.74$

Nonlinear optimization methods

Local optimization methods

- find a locally optimal solution
- fast, can handle large-scale problems, and are widely applicable
- local optimization can be used to improve the performance of an engineering design obtained by manual, or other, design methods

Global optimization methods

- true global solution of the optimization problem is found
- difficult to find in general; even small problems, with a few tens of variables, can take a very long time (e.g., hours or days) to solve
- many global optimization methods seek the global optimum by finding local solutions to a sequence of approximate subproblems

Efficiently solvable problem classes

(linear) Least squares

$$
\operatorname{minimize} \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}
$$

where the coefficients $a_{i j}, b_{i}$ are given constants

- reliable and efficient algorithms and software
- least-squares problems are easy to recognize
- many applications can be formulated as least-squares problems such as data-fitting and linear estimation

Linear program (optimization)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} g_{i j} x_{j}=h_{i}, \quad i=1, \ldots, p
\end{array}
$$

where the coefficients $c_{j}, a_{i j}, g_{i j}, h_{i}, b_{i}$ are predefined constants

- there exist robust and efficient algorithms and software for solving LPs
- LPs isn't as immediately recognizable as that of least-squares problems
- common techniques are available to transform various problems into the format of linear programs

Convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x})=g_{0}(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

where the coefficients $a_{i j}, b_{i}$ are known

- the objective and constraints functions are convex:

$$
g_{i}(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta g_{i}(\boldsymbol{x})+(1-\theta) g_{i}(\boldsymbol{y}), \quad 0 \leq \theta \leq 1
$$

- problems with nonconvex objective or constraints are commonly referred to as nonconvex optimization problems

convex optimization

- include least-squares problems and linear programs as special cases
- has tons of applications
- reliable and efficient algorithms
- difficult to recognize
- many tricks can be used to transform nonconvex problems into convex form
- basis for several heuristics for solving nonconvex problems

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Dynamical system

a nonlinear dynamical system has the form

$$
\boldsymbol{x}_{k+1}=h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right), \quad k=0,1, \ldots, K
$$

- $\boldsymbol{x}_{k} \in \mathbb{R}^{n}$ is the state vector at instant k
- $\boldsymbol{u}_{k} \in \mathbb{R}^{m}$ is the input or control at instant k
- the function $h: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ describes what is the next state as a function of the current state and input (evolution of the system)
- examples: vehicle dynamics, robots, chemical plants evolution...
- in optimal control, the goal is to choose the inputs $\boldsymbol{u}_{0}, \boldsymbol{u}_{1} \ldots, \boldsymbol{u}_{K-1}$ to achieve some goal for the state and input trajectories

Optimal control problem

in many practical problems, the initial state $x_{0}=x_{\text {initial }}$ is known and we want to reach a desired final state $\boldsymbol{x}_{K+1}=\boldsymbol{x}_{\text {final }}$ while minimizing some objective:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=0}^{K} f\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \\
\text { subject to } & \boldsymbol{x}_{1}=h\left(\boldsymbol{x}_{\text {initial }}, \boldsymbol{u}_{0}\right) \\
& \boldsymbol{x}_{k+1}=h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right), \quad k=1, \ldots, K-1 \\
& \boldsymbol{x}_{\text {final }}=h\left(\boldsymbol{x}_{K}, \boldsymbol{u}_{K}\right) \\
& g_{k}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \leq 0, \quad k=0, \ldots, K
\end{array}
$$

- variables $\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{K}$ and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}$
- $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ represents a certain cost (e.g., fuel consumption, time)
- $g_{k}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ are some constraints functions

Car control example

$$
\begin{aligned}
\frac{d p_{1}}{d t}(t) & =s(t) \cos \theta(t) \\
\frac{d p_{2}}{d t}(t) & =s(t) \sin \theta(t) \\
\frac{d \theta}{d t}(t) & =(s(t) / L) \tan \phi(t)
\end{aligned}
$$

- wheelbase (length) L
- position $p=\left(p_{1}, p_{2}\right)$; orientation (angle) θ
- steering angle ϕ, and speed s
- we can control the speed s and the steering angle ϕ

Goal: move the car over some time period from a given initial position and orientation to a specified final position and orientation while ensuring that the input is small with little variations

Discretized car dynamics

$$
\begin{aligned}
p_{1}(t+\tau) & \approx p_{1}(t)+\tau s(t) \cos \theta(t) \\
p_{2}(t+\tau) & \approx p_{2}(t)+\tau s(t) \sin \theta(t \\
\theta(t+\tau) & \approx \theta(t)+\tau(s(t) / L) \tan \phi(t)
\end{aligned}
$$

- τ is a small time interval
- letting the state and input vectors be $\boldsymbol{x}_{k}=\left(p_{1}(k \tau), p_{2}(k \tau), \theta(k \tau)\right)$ and $\boldsymbol{u}_{k}=(s(k \tau), \phi(k \tau))$, we have

$$
\boldsymbol{x}_{k+1}=h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right)
$$

with

$$
h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right)=\boldsymbol{x}_{k}+\tau\left(\boldsymbol{u}_{k}\right)_{1}\left[\begin{array}{c}
\cos \left(\boldsymbol{x}_{k}\right)_{3} \\
\sin \left(\boldsymbol{x}_{k}\right)_{3} \\
\left(\tan \left(\boldsymbol{u}_{k}\right)_{2}\right) / L
\end{array}\right]
$$

Problem formulation

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{k=0}^{K}\left\|\boldsymbol{u}_{k}\right\|^{2}+\rho \sum_{k=0}^{K-1}\left\|\boldsymbol{u}_{k+1}-\boldsymbol{u}_{k}\right\|^{2} \\
\text { subject to } & \boldsymbol{x}_{1}=h\left(\mathbf{0}, \boldsymbol{u}_{0}\right) \\
& \boldsymbol{x}_{k+1}=h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right), \quad k=1, \ldots, K-1 \\
& \boldsymbol{x}_{\text {final }}=h\left(\boldsymbol{x}_{K}, \boldsymbol{u}_{K}\right)
\end{array}
$$

- variables $\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N}$, and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$
- the initial state is assumed to be zero
- the objective ensures the input is small with little variation
- $\rho>0$ is an input variation trade-off parameter

solution trajectories with different final states for $L=0.1, K=49, \tau=0.1, \rho=10$; the outline of the car shows the position $\left(p_{1}(k \tau) ; p_{2}(k \tau)\right)$, orientation $\theta(k \tau)$, and the steering angle $\phi(k \tau)$ at time $k h$

References and further readings

- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, chapter 4.1.
- Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018 (ch 19.4, car control example).

