4. Optimization problems

- terminology
- problem transformations
- solving optimization problems
- control example

Optimization problem

- $\boldsymbol{x} = (x_1, \dots, x_n)$ is the optimization variable or decision variable
- $f: \mathbb{R}^n \to \mathbb{R}$ is the *objective function* or *cost function*
- $g_i(\boldsymbol{x}) \leq 0$ are the inequality constraints $(g_i : \mathbb{R}^n \to \mathbb{R})$
- $h_j(\boldsymbol{x}) = 0$ are the equality constraints $(h_j : \mathbb{R}^n \to \mathbb{R})$
- the problem is said to be *unconstrained* if $g_i = h_j = 0$

Solution: a point x^* is an *optimal point* or *solution* to (4.1) if

 $f(\boldsymbol{x}^{\star}) \leq f(\boldsymbol{x})$

for any ${m x}$ with $g_1({m x}) \leq 0,\ldots,g_m({m x}) \leq 0$ and $h_1({m x})=0,\ldots,h_p({m x})=0$

terminology

Compact representation

$$\begin{array}{ll} \text{minimize} & f({m{x}}) \\ \text{subject to} & g({m{x}}) \leq {m{0}} \\ & h({m{x}}) = {m{0}} \end{array} \tag{4.2}$$

•
$$g(\boldsymbol{x}) = (g_1(\boldsymbol{x}), \dots, g_m(\boldsymbol{x}))$$

• $h(\boldsymbol{x}) = (h_1(\boldsymbol{x}), \dots, h_p(\boldsymbol{x}))$

Maximization problem

$$\begin{array}{ll} \mbox{maximize} & f({\bm x}) \\ \mbox{subject to} & g({\bm x}) \leq {\bm 0}, \ h({\bm x}) = {\bm 0} \end{array} \tag{4.3}$$

• a vector x^* is *optimal* or a *solution* if it maximizes the objective:

$$f(\boldsymbol{x}^{\star}) \geq f(\boldsymbol{x})$$

for all ${\boldsymbol x}$ satisfying $g({\boldsymbol x}) \leq {\boldsymbol 0}$ and $h({\boldsymbol x}) = {\boldsymbol 0}$

• f is often called utility function instead of cost

terminology

Maximization as minimization: we have

$$\max f(\boldsymbol{x}) = -\min -f(\boldsymbol{x})$$

hence

 $\begin{array}{ll} \mbox{maximize} & f({\bm x}) & \\ \mbox{subject to} & g({\bm x}) \leq {\bm 0}, \ h({\bm x}) = {\bm 0} & \\ \end{array} & \begin{array}{ll} \mbox{minimize} & -f({\bm x}) & \\ \mbox{subject to} & g({\bm x}) \leq {\bm 0}, \ h({\bm x}) = {\bm 0} \end{array} \\ \end{array}$

- both problems share the same solutions
- the optimal value of one is the negative of the other
- maximization problems can be treated a minimization problems

Standard form

we refer to problem (4.1) (or (4.2)), namely

$$\begin{array}{ll} \mbox{minimize} & f(\boldsymbol{x}) \\ \mbox{subject to} & g_i(\boldsymbol{x}) \leq 0, \ i=1,\ldots,m \\ & h_j(\boldsymbol{x})=0, \ j=1,\ldots,p \end{array}$$

as an optimization problem in *standard form* (the righthand side of the inequality and equality constraints are zero)

- we can represent equality constraints $r_j(x) = \tilde{r}_j(x)$ as $h_j(x) = 0$ where $h_j(x) = r_j(x) \tilde{r}_j(x)$
- we can express inqualities of the form $\tilde{g}_i({\bm x})\geq 0$ as $g_i({\bm x})\leq 0$ where $g_i({\bm x})=-\tilde{g}_i({\bm x})$
- maximization problem can be represented as minimization by changing the objective sign

the problem

$$\begin{array}{ll} \mbox{maximize} & -x_1^2+x_2^2 \\ \mbox{subject to} & -x_1+x_2 \geq 10 \\ & x_2=2-x_1 \end{array}$$

can be expressed in standard form with objective

$$\begin{array}{ll} \mbox{minimize} & x_1^2 - x_2^2 \\ \mbox{subject to} & x_1 - x_2 + 10 \leq 0 \\ & x_1 + x_2 - 2 = 0 \end{array}$$

Domain and implicit constraints

the *domain* of the optimization problem is the set of points for which the objective and all constraint functions are defined

$$\mathcal{D} = \operatorname{dom} f \cap \bigcap_{i=1}^{m} \operatorname{dom} g_i \cap \bigcap_{j=1}^{p} \operatorname{dom} h_j$$

- the standard from problem (4.1) has an *implicit constraint* $x \in \mathcal{D}$
- explicit constraints: $g_1(\boldsymbol{x}) \leq 0, \dots, g_m(\boldsymbol{x}) \leq 0, \, h_1(\boldsymbol{x}) = 0, \dots, h_p(\boldsymbol{x}) = 0$
- for example, the problem

minimize
$$-\log x_1 + \log(x_2 - x_1)$$

is an unconstrained problem with implicit constraints $x_1 > 0$, $x_2 - x_1 > 0$

Optimal value

Feasible points

- a point \hat{x} is a *feasible point* if $\hat{x} \in D$ and it satisfies the constraints, $h(\hat{x}) = \mathbf{0}$ and $g(\hat{x}) \leq \mathbf{0}$; otherwise, it is called *infeasible point*
- the problem is said to be *feasible* if there exists at least one feasible point; otherwise, it is said to be *infeasible*

Optimal value: the *optimal value* of the minimization problem (4.2), denoted by p^* , is the greatest α such that $\alpha \leq f(x)$ for all feasible x

- for maximization problems, it is the smallest α such that $\alpha \ge f(x)$
- if there exists an optimal point x^* , we say the optimal value is *attained* or *achieved* and the problem is *solvable*; in this case, we have $p^* = f(x^*)$
- a minimization problem is *unbounded below* if $p^* = -\infty$; if a minimization problem is infeasible, then we let $p^* = +\infty$
- a maximization problem is *unbounded above* if $p^* = \infty$; if a maximization problem is infeasible, then we let $p^* = -\infty$

consider the unconstrained problem

minimize
$$(x_1 - 1)^2 + (x_2 - 1)^2 = \|\boldsymbol{x} - \boldsymbol{1}\|^2$$

the optimal value is $p^{\star} = 0$ attained at the optimal point $\boldsymbol{x}^{\star} = (1,1) = \mathbf{1}$

• the problem

$$\begin{array}{ll} \mbox{minimize} & x_1 + x_2 \\ \mbox{subject to} & -x_1 \leq 10 \\ & x_2 \geq 0 \end{array}$$

has solution $\pmb{x}^{\star}=(-10,0)$ and $p^{\star}=-10$

• the problem

minimize
$$x_1^2 - x_2^2$$

is unbounded below since $f({m x})
ightarrow -\infty = p^{\star}$ as $|x_2|
ightarrow \infty$

- consider minimizing $f(x) = e^{-x}$; for this problem $p^* = 0$, but the optimal value is not attained since it only holds as $x \to \infty$
- consider minimizing f(x) = 1/x with domain dom $f = \{x \mid x > 0\}$; for this problem $p^* = 0$ but is not attained by any feasible x
- the problem

$$\begin{array}{ll} \mbox{minimize} & x_1^2 + x_2^2 \\ \mbox{subject to} & x_1 + x_2 \leq 1 \\ & x_1 + x_2 \geq 2 \end{array}$$

is an infeasible minimization problem; hence, $p^{\star}=\infty$

Set-constrained problems

 $\underset{\boldsymbol{x} \in \mathcal{X}}{\text{minimize}} \quad f(\boldsymbol{x})$

- describes the optimization problem of finding an $x = (x_1, \ldots, x_n)$ that minimizes f(x) among all points in the *constraint set* $\mathcal{X} \subset \mathbb{R}^n$
- for problem (4.1), the constraint set is described by functional constraints

$$\mathcal{X} = \{ \boldsymbol{x} \mid g_i(\boldsymbol{x}) \le 0, \ h_j(\boldsymbol{x}) = 0, \ i = 1, \dots, p, \ j = 1, \dots, m \}$$

· this is not always the case, for example consider the integer set

$$\mathcal{X} = \{1, 2, 3\} \subset \mathbb{R}$$

Simple problems solution

- general optimization problems require sophisticated methods to solve them that utilize derivatives, linear equations, nonlinear operators,...etc
- that said, there are some simple optimization problems that can be solved by inspection or using some basic inequalities such as Cauchy-Schwarz

Example

$$\begin{array}{ll} \mathsf{minimize} & \|x-1\| \\ \mathsf{subject to} & -1 \leq x \leq 0 \end{array}$$

• we seek to find a feasible x that is closest in distance to 1

hence

$$oldsymbol{x}^{\star} = oldsymbol{0}$$
 and $p^{\star} = \| - oldsymbol{1}\| = \sqrt{n}$

Another example:

 $\begin{array}{ll} \mbox{minimize} & x_1+x_2 \\ \mbox{subject to} & x_1^2+x_2^2 \leq 1 \end{array}$

• using Cauchy-Schwarz, we can lower bound the objective by

$$x_1 + x_2 = \mathbf{1}^T \mathbf{x} \ge -\|\mathbf{1}\| \|\mathbf{x}\| \ge -\sqrt{2}$$

for all $x_1^2+x_2^2\leq 1$

- the minimum value is attained at ${m x}=(-1/\sqrt{2},-1/\sqrt{2}),$ which is feasible
- hence, the optimal point is ${m x}=(-1/\sqrt{2},-1/\sqrt{2})$

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Equivalent optimization problems

two optimization problems are said to be *equivalent* if from a solution of one, we can find a solution of the other, and vice versa

- for example, maximization problems are equivalent to minimization problems (as shown before)
- many optimization problems can be transformed into equivalent optimization problems that are easier to solve
- it is often useful to look for such equivalence to simplify the task of solving such problems

Scaling optimization problems

$$\begin{array}{ll} \text{minimize} & \alpha f(\boldsymbol{x}) \\ \text{subject to} & \beta_i g_i(\boldsymbol{x}) \leq 0, \ i=1,\ldots,m \\ & \gamma_j h_j(\boldsymbol{x})=0, \ j=1,\ldots,p \end{array}$$

$$(4.4)$$

where $\alpha > 0$, $\beta_i > 0$ and $\gamma_j \neq 0$

- this problem is just a scaled version of (4.1)
- the feasible sets problems (4.4) and (4.1) are identical
- a point x is optimal for the original problem (4.1) if and only if it is optimal for the scaled problem (4.4)
- · hence, the two problems are equivalent

Slack variables

note that

$$g_i(\boldsymbol{x}) \leq 0$$
 if and only if $g_i(\boldsymbol{x}) + s_i = 0$

for some $s_i \ge 0$

hence, problem (4.1) is equivalent to

minimize
$$f(\boldsymbol{x})$$

subject to $s_i \ge 0, \ i = 1, \dots, m$
 $g_i(\boldsymbol{x}) + s_i = 0, \ i = 1, \dots, m$
 $h_j(\boldsymbol{x}) = 0, \ j = 1, \dots, p$

$$(4.5)$$

- ullet the variables are $oldsymbol{x} \in \mathbb{R}^n$ and $oldsymbol{s} \in \mathbb{R}^m$
- the new variable s_i is called the *slack variable* associated with the inequality constraint $g_i(x) \le 0$

Monotone transformations

$$\begin{array}{ll} \text{minimize} & \phi(f(\boldsymbol{x})) \\ \text{subject to} & g_i(\boldsymbol{x}) \leq 0, \ i = 1, \dots, m \\ & h_j(\boldsymbol{x}) = 0, \ j = 1, \dots, p \end{array}$$

- $\phi : \mathbb{R} \to \mathbb{R}$ is a continuous and monotone increasing function (*i.e.*, $\phi(a) > \phi(b)$ for all a > b) over the feasible set \mathcal{X}
- note that ϕ is one-to-one and its inverse ϕ^{-1} is well defined
- problem (4.6) is equivalent to (4.1)

Constraint transformation: functions $\psi_i : \mathbb{R} \to \mathbb{R}$ and $\varphi_j : \mathbb{R} \to \mathbb{R}$ can be used to transform the constraints into equivalent ones if

- $\psi_i(g_i(\boldsymbol{x})) \leq 0$ if and only if $g_i(\boldsymbol{x}) \leq 0$
- $\varphi_j(h_j(\boldsymbol{x})) = 0$ if and only if $h_j(\boldsymbol{x}) = 0$

 $\begin{array}{ll} \mbox{minimize} & \| {\boldsymbol x} \| \\ \mbox{subject to} & g({\boldsymbol x}) \leq {\boldsymbol 0} \end{array}$

the norm is always nonnegative and the square function $\phi(\cdot)=(\cdot)^2$ is monotone increasing over nonnegative numbers, hence, we can transform the problem into

 $\begin{array}{ll} \mbox{minimize} & \| \boldsymbol{x} \|^2 \\ \mbox{subject to} & g(\boldsymbol{x}) \leq \boldsymbol{0} \end{array}$

- the two problems are equivalent since the optimal points are the same
- unlike the original problem the new objective function is differentiable, which simplifies the problem

Change of variables

suppose that $F : \mathcal{X} \to \mathcal{Y}$ is a one-to-one function, *i.e.*, for every $y \in \mathcal{Y}$, there exists a unique $x \in \mathcal{X}$ such that

$$\boldsymbol{y} = F(\boldsymbol{x}) \iff \boldsymbol{x} = F^{-1}(\boldsymbol{y})$$

in this case, problem (4.1) is equivalent to

$$\begin{array}{ll} \text{minimize} & f\left(F^{-1}(\boldsymbol{y})\right) \\ \text{subject to} & g_i\left(F^{-1}(\boldsymbol{y})\right) \leq 0, \ i=1,\ldots,m \\ & h_j\left(F^{-1}(\boldsymbol{y})\right) = 0, \ j=1,\ldots,p \end{array}$$

$$\begin{array}{ll} \mbox{minimize} & x_1x_2x_3^2 \\ \mbox{subject to} & x_1x_2 \leq 2 \\ & x_1,x_2,x_3 > 0 \end{array}$$

since $\log(\cdot)$ is strictly increasing (for non-negative argument), we can use monotone transformations $\log(x_1x_2x_3^2)$ and $\log(x_1x_2) \le \log(2)$ and the change of variable $z_i = \log x_i$ to transform the problem into

 $\begin{array}{ll} \mbox{minimize} & z_1+z_2+2z_3\\ \mbox{subject to} & z_1+z_2 \leq \log 2 \end{array}$

the above problem is linear, which is easier to solve than the original nonlinear formulation

$$\begin{array}{ll} \mbox{minimize} & x_1x_2-x_3^2 \\ \mbox{subject to} & x_1+x_2+x_3 \leq 20 \\ & x_2 \geq 10 \end{array}$$

if we let $y_1 = (x_1 + x_2)/2$ and $y_2 = (x_1 - x_2)/2$ then

$$x_1 = y_1 + y_2, \quad x_2 = y_1 - y_2$$

using the above change of variables, we can transform the problem into

$$\begin{array}{ll} \mbox{minimize} & y_1^2 - y_2^2 - x_3^2 \\ \mbox{subject to} & 2y_1 + x_3 \leq 20 \\ & y_1 - y_2 \geq 10 \end{array}$$

notice that the objective is now separable in the new variables; for separable problems, there exist efficient specialized optimization methods

Eliminating equality constraints

let the function $\phi : \mathbb{R}^k \to \mathbb{R}^n$ be defined such that x satisfies h(x) = 0 if and only if there is some z such that $x = \phi(z)$, then problem (4.1) is equivalent to

$$\begin{array}{ll} \mbox{minimize} & f(\phi(\boldsymbol{z})) \\ \mbox{subject to} & g_i(\phi(\boldsymbol{z})) \leq 0, \ i=1,\ldots,m \end{array}$$

- if ${m z}$ is optimal for the transformed problem, then ${m x}=\phi({m z})$ is optimal for the original problem
- conversely, if x is optimal for the original problem, then (since x is feasible) then any z such that $x = \phi(z)$ is optimal for the transformed problem

minimize
$$x_1 + x_2 + x_3^2$$

subject to $x_1 - x_2 x_3 = 1$

we can use $x_1 = 1 + x_2 x_3$ to remove the equality constraint and get the equivalent problem

minimize
$$1 + x_2x_3 + x_2 + x_3^2$$

- in this case, we have $\phi(z_1, z_2) = (1 + z_1 z_2, z_1, z_2)$
- this problem is unconstrained, which is easier to solve than the original problem

$$\begin{array}{ll} \mbox{minimize} & x_1 + 4 x_2 + x_3 \\ \mbox{subject to} & 2 x_1 - 2 x_2 + x_3 = 4 \\ & x_1 - x_3 = 1 \\ & x_2 \geq 0, \; x_3 \geq 0 \end{array}$$

using the equality constraints, we have $x_1 = 1 + x_3$ and

$$2x_1 - 2x_2 + x_3 = 2(1 + x_3) - 2x_2 + x_3 = 4 \Rightarrow x_2 = \frac{3}{2}x_3 - 1$$

hence, the problem can be simplified to

minimize $8x_3 + 3$ subject to $x_3 \ge 2/3$

with solution $x_3 = 2/3$; putting things together the solution to the original problem is $x^* = (5/3, 0, 2/3)$

Removing linear constraints

$$h(\boldsymbol{x}) = A\boldsymbol{x} - \boldsymbol{b} = \boldsymbol{0}$$

where $A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^p$; assume that the first p columns of A are linearly independent so that

$$A = [B D]$$

- B is an invertible $p \times p$ matrix and D is an $p \times (n p)$ matrix
- recall that the solutions of Ax = b can parametrized by

$$\boldsymbol{x} = \hat{\boldsymbol{x}} + F\boldsymbol{z}$$

for any arbitrary $\boldsymbol{z} \in \mathbb{R}^{(n-p)}$ where

$$\hat{\boldsymbol{x}} = \begin{bmatrix} B^{-1}\boldsymbol{b}\\ \mathbf{0} \end{bmatrix}, \quad F = \begin{bmatrix} -B^{-1}D\\ I \end{bmatrix}$$

the columns of the matrix F form a basis for the nullspace of A (range(F) = null(A))

problem transformations

substituting $\boldsymbol{x} = \hat{\boldsymbol{x}} + F\boldsymbol{z}$ into the original problem gives

minimize
$$f(\hat{x} + Fz)$$

subject to $g_i(\hat{x} + Fz) \le 0, \quad i = 1, ..., m$

with variable z

Adding equality constraints: sometimes it is useful to introduce equality constraints; for example, consider

minimize $f(A\boldsymbol{x} + \boldsymbol{b})$

where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^m$; the above problem is equivalent to

minimize f(z) s.t. z = Ax + b

with variables $oldsymbol{x} \in \mathbb{R}^n$ and $oldsymbol{z} \in \mathbb{R}^m$

minimize
$$f(x_1, \dots, x_n)$$

subject to $x_1 + \dots + x_n = b$

we can eliminate any x_i , we choose x_n :

$$x_n = b - x_1 - \dots - x_{n-1}$$

the above corresponds to the choice

$$\hat{\boldsymbol{x}} = b\boldsymbol{e}_n, \quad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbb{R}^{n \times (n-1)}$$

the transformed problem is

minimize
$$f(x_1, x_2, ..., b - x_1 - \cdots - x_{n-1})$$

problem transformations

Optimizing over some variables

it holds that (with abuse of \inf notation):

$$\min_{\boldsymbol{x},\boldsymbol{y}} f(\boldsymbol{x},\boldsymbol{y}) = \min_{\boldsymbol{x}} \tilde{f}(\boldsymbol{x})$$

where $\tilde{f}(\boldsymbol{x}) = \min_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$

Example:

$$\begin{array}{ll} \text{minimize} & \boldsymbol{x}_{1}^{T}Q_{11}\boldsymbol{x}_{1} + 2\boldsymbol{x}_{1}^{T}Q_{12}\boldsymbol{x}_{2} + \boldsymbol{x}_{2}^{T}Q_{22}\boldsymbol{x}_{2} \\ \text{subject to} & g_{i}(\boldsymbol{x}_{1}) \leq 0, \quad i = 1, \dots, m, \end{array}$$

where Q_{11} and Q_{22} are symmetric; we can analytically minimize over x_2 :

$$\min_{\boldsymbol{x}_2} \left(\boldsymbol{x}_1^T Q_{11} \boldsymbol{x}_1 + 2 \boldsymbol{x}_1^T Q_{12} \boldsymbol{x}_2 + \boldsymbol{x}_2^T Q_{22} \boldsymbol{x}_2 \right) = \boldsymbol{x}_1^T (Q_{11} - Q_{12} Q_{22}^{-1} Q_{12}^T) \boldsymbol{x}_1$$

thus, the original problem is equivalent to

$$\begin{array}{ll} \text{minimize} & \pmb{x}_{1}^{T} \big(Q_{11} - Q_{12} Q_{22}^{-1} Q_{12}^{T} \big) \pmb{x}_{1} \\ \text{subject to} & g_{i}(\pmb{x}_{1}) \leq 0, \quad i = 1, \dots, m \end{array}$$

problem transformations

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Optimization methods

after constructing the mathematical model, a suitable solution method is applied to find the best decision

- an optimization *algorithm* is a set of calculations and rules that are followed to find a solution or an approximate solution to an optimization problem
- a solution method for a class of optimization problems is an algorithm that computes a solution of the problem (to some given accuracy), given a particular problem from the class, *i.e.*, an instance of the problem

Iterative algorithms

an iterative algorithm F uses the current estimate $x^{(k)}$ at time k and the functions $f(x), g_i(x), h_j(x)$ to generate a new estimate $x^{(k+1)}$ that better estimates the solution: $x^{(k+1)} = F(x^{(k)})$

- moving from $m{x}^{(k)}$ to $m{x}^{(k+1)}$ is called an *iteration* of the algorithm
- the algorithm stops when a good estimate of a solution is reached or until convergence where $x^{(T)} = x^{(T+1)}$ from some $T \ge 0$

Algorithm General iterative algorithm

given a starting point $m{x}^{(0)}$, a solution accuracy scalar ϵ , and error criteria

for $k\geq 1$

- 1. determine a search direction $d^{(k)}$
- 2. determine a step-size α_k that leads to an improved estimate

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$$

3. if error criteria is met (e.g., $\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\| \le \epsilon$ or $|f(\boldsymbol{x}^{(k+1)}) - f(\boldsymbol{x}^{(k)})| \le \epsilon$), stop and output $\boldsymbol{x}^{(k+1)}$

Local minimum point

 $\underset{\boldsymbol{x} \in \mathcal{X}}{\text{minimize}} \quad f(\boldsymbol{x}) \\$

a point $x^o \in \mathcal{X}$ is a *local minimizer* or *local minimum point* (locally optimal) if there exists a scalar r > 0 such that:

 $f({m x}^o) \leq f({m x}) \;\; ext{ for all } \;\; {m x} \in \mathcal{X} \;\; ext{ and } \;\; \|{m x} - {m x}^o\| \leq r$

- if $f(x^{o}) < f(x)$, then the point x^{o} is called a *strict local minimizer*
- a point $x^* \in \mathcal{X}$ is a global minimizer or global minimum point (optimal) if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$
- the term 'globally optimal' is sometimes used for 'optimal' to distinguish between 'locally optimal' and 'optimal'

Local maximum point

 $\underset{\boldsymbol{x} \in \mathcal{X}}{\text{maximize}} \quad f(\boldsymbol{x})$

for maximization problems, a point $x^o \in \mathcal{X}$ is called a *local maximizer* or *local maximum point* if (locally optimal) there exists a scalar r > 0 such that

$$f(\boldsymbol{x}^o) \geq f(\boldsymbol{x})$$
 for all $\boldsymbol{x} \in \mathcal{X}$ and $\|\boldsymbol{x} - \boldsymbol{x}^o\| \leq r$

- if $f(x^o) > f(x)$, then the point x^o is said to be a *strict local maximizer*
- a point $x^{\star} \in \mathcal{X}$ is a *global maximizer* if $f(x^{\star}) \geq f(x)$ for all $x \in \mathcal{X}$
- a point is a local (global) maximum point of f if it is a local (global) minimum point of -f

- $(x-2)^2$: optimal value of min f(x) = 0; global minimizer $x^{\star} = 2$
- $e^x + e^{-x} 3x^2$: optimal value -7.02; two global minima: $x^* = \pm 2.84$
- $e^x + e^{-x} 3x^2 + x$ optimal value of -9.9; global minimizer $x^* = -2.92$; local minimizer located at x = 2.74

Nonlinear optimization methods

Local optimization methods

- find a locally optimal solution
- fast, can handle large-scale problems, and are widely applicable
- local optimization can be used to improve the performance of an engineering design obtained by manual, or other, design methods

Global optimization methods

- true global solution of the optimization problem is found
- difficult to find in general; even small problems, with a few tens of variables, can take a very long time (*e.g.*, hours or days) to solve
- many global optimization methods seek the global optimum by finding local solutions to a sequence of approximate subproblems

Efficiently solvable problem classes

(linear) Least squares

minimize
$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j - b_i \right)^2$$

where the coefficients a_{ij}, b_i are given constants

- reliable and efficient algorithms and software
- · least-squares problems are easy to recognize
- many applications can be formulated as least-squares problems such as data-fitting and linear estimation

Linear program (optimization)

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{n} c_j x_j \\ \text{subject to} & \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i=1,\ldots,m \\ & \sum_{j=1}^{n} g_{ij} x_j = h_i, \quad i=1,\ldots,p, \end{array}$$

where the coefficients c_j , a_{ij} , g_{ij} , h_i , b_i are predefined constants

- · there exist robust and efficient algorithms and software for solving LPs
- LPs isn't as immediately recognizable as that of least-squares problems
- common techniques are available to transform various problems into the format of linear programs

Convex optimization

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) = g_0(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leq 0, \quad i = 1, \dots, m, \\ & \sum_{j=1}^n a_{ij} x_j = b_i, \quad i = 1, \dots, p \end{array}$$

where the coefficients a_{ij} , b_i are known

• the objective and constraints functions are *convex*:

$$g_i(\theta \boldsymbol{x} + (1-\theta)\boldsymbol{y}) \le \theta g_i(\boldsymbol{x}) + (1-\theta)g_i(\boldsymbol{y}), \quad 0 \le \theta \le 1$$

• problems with nonconvex objective or constraints are commonly referred to as *nonconvex optimization problems*

convex optimization

- include least-squares problems and linear programs as special cases
- has tons of applications
- reliable and efficient algorithms
- difficult to recognize
- many tricks can be used to transform nonconvex problems into convex form
- basis for several heuristics for solving nonconvex problems

Outline

- terminology
- problem transformations
- solving optimization problems
- control example

Dynamical system

a nonlinear dynamical system has the form

$$\boldsymbol{x}_{k+1} = h(\boldsymbol{x}_k, \boldsymbol{u}_k), \quad k = 0, 1, \dots, K$$

- $\boldsymbol{x}_k \in \mathbb{R}^n$ is the *state vector* at instant k
- $\boldsymbol{u}_k \in \mathbb{R}^m$ is the *input* or *control* at instant k
- the function $h : \mathbb{R}^{n+m} \to \mathbb{R}^n$ describes what is the next state as a function of the current state and input (evolution of the system)
- examples: vehicle dynamics, robots, chemical plants evolution...
- in optimal control, the goal is to choose the inputs u₀, u₁..., u_{K-1} to achieve some goal for the state and input trajectories

Optimal control problem

in many practical problems, the initial state $x_0 = x_{\text{initial}}$ is known and we want to reach a desired final state $x_{K+1} = x_{\text{final}}$ while minimizing some objective:

$$\begin{array}{ll} \text{minimize} & \sum_{k=0}^{K} f(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}) \\ \text{subject to} & \boldsymbol{x}_{1} = h(\boldsymbol{x}_{\text{initial}}, \boldsymbol{u}_{0}) \\ & \boldsymbol{x}_{k+1} = h(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}), \quad k = 1, \dots, K-1 \\ & \boldsymbol{x}_{\text{final}} = h(\boldsymbol{x}_{K}, \boldsymbol{u}_{K}) \\ & g_{k}(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}) \leq 0, \quad k = 0, \dots, K \end{array}$$

- variables $oldsymbol{u}_0,\ldots,oldsymbol{u}_K$ and $oldsymbol{x}_1,\ldots,oldsymbol{x}_K$
- $f: \mathbb{R}^{n+m} \to \mathbb{R}$ represents a certain cost (*e.g.*, fuel consumption, time)
- $g_k : \mathbb{R}^{n+m} \to \mathbb{R}$ are some constraints functions

Car control example

$$\frac{dp_1}{dt}(t) = s(t)\cos\theta(t)$$
$$\frac{dp_2}{dt}(t) = s(t)\sin\theta(t)$$
$$\frac{d\theta}{dt}(t) = (s(t)/L)\tan\phi(t)$$

- wheelbase (length) L
- position $p = (p_1, p_2)$; orientation (angle) θ
- steering angle ϕ , and speed s
- we can control the speed s and the steering angle ϕ

Goal: move the car over some time period from a given initial position and orientation to a specified final position and orientation while ensuring that the input is small with little variations

Discretized car dynamics

$$p_1(t+\tau) \approx p_1(t) + \tau s(t) \cos \theta(t)$$

$$p_2(t+\tau) \approx p_2(t) + \tau s(t) \sin \theta(t)$$

$$\theta(t+\tau) \approx \theta(t) + \tau(s(t)/L) \tan \phi(t)$$

- τ is a small time interval
- letting the state and input vectors be $x_k = (p_1(k\tau), p_2(k\tau), \theta(k\tau))$ and $u_k = (s(k\tau), \phi(k\tau))$, we have

$$\boldsymbol{x}_{k+1} = h\left(\boldsymbol{x}_k, \boldsymbol{u}_k\right)$$

with

$$h(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}) = \boldsymbol{x}_{k} + \tau (\boldsymbol{u}_{k})_{1} \begin{bmatrix} \cos (\boldsymbol{x}_{k})_{3} \\ \sin (\boldsymbol{x}_{k})_{3} \\ (\tan (\boldsymbol{u}_{k})_{2})/L \end{bmatrix}$$

Problem formulation

$$\begin{array}{ll} \text{minimize} & \sum_{k=0}^{K} \| \boldsymbol{u}_{k} \|^{2} + \rho \sum_{k=0}^{K-1} \| \boldsymbol{u}_{k+1} - \boldsymbol{u}_{k} \|^{2} \\ \text{subject to} & \boldsymbol{x}_{1} = h\left(\boldsymbol{0}, \boldsymbol{u}_{0} \right) \\ & \boldsymbol{x}_{k+1} = h\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k} \right), \quad k = 1, \dots, K-1 \\ & \boldsymbol{x}_{\text{final}} = h\left(\boldsymbol{x}_{K}, \boldsymbol{u}_{K} \right) \end{array}$$

- variables $oldsymbol{u}_0,\ldots,oldsymbol{u}_N$, and $oldsymbol{x}_1,\ldots,oldsymbol{x}_N$
- the initial state is assumed to be zero
- the objective ensures the input is small with little variation
- $\rho > 0$ is an input variation trade-off parameter

solution trajectories with different final states for L = 0.1, K = 49, $\tau = 0.1$, $\rho = 10$; the outline of the car shows the position $(p_1(k\tau); p_2(k\tau))$, orientation $\theta(k\tau)$, and the steering angle $\phi(k\tau)$ at time kh

control example

References and further readings

- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*, Cambridge University Press, 2004, chapter 4.1.
- Stephen Boyd and Lieven Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018 (ch 19.4, car control example).