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Optimization problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(4.1)

• x = (x1, . . . , xn) is the optimization variable or decision variable
• f : Rn → R is the objective function or cost function
• gi(x) ≤ 0 are the inequality constraints (gi : Rn → R)
• hj(x) = 0 are the equality constraints (hj : Rn → R)
• the problem is said to be unconstrained if gi = hj = 0

Solution: a point x⋆ is an optimal point or solution to (4.1) if

f(x⋆) ≤ f(x)

for any x with g1(x) ≤ 0, . . . , gm(x) ≤ 0 and h1(x) = 0, . . . , hp(x) = 0
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Compact representation

minimize f(x)
subject to g(x) ≤ 0

h(x) = 0
(4.2)

• g(x) = (g1(x), . . . , gm(x))

• h(x) = (h1(x), . . . , hp(x))

Maximization problem

maximize f(x)
subject to g(x) ≤ 0, h(x) = 0

(4.3)

• a vector x⋆ is optimal or a solution if it maximizes the objective:

f(x⋆) ≥ f(x)

for all x satisfying g(x) ≤ 0 and h(x) = 0

• f is often called utility function instead of cost
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Maximization as minimization: we have

max f(x) = −min −f(x)

hence

maximize f(x)
subject to g(x) ≤ 0, h(x) = 0

↔ minimize −f(x)
subject to g(x) ≤ 0, h(x) = 0

• both problems share the same solutions

• the optimal value of one is the negative of the other

• maximization problems can be treated a minimization problems
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Standard form

we refer to problem (4.1) (or (4.2)), namely

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

as an optimization problem in standard form (the righthand side of the
inequality and equality constraints are zero)

• we can represent equality constraints rj(x) = r̃j(x) as hj(x) = 0 where
hj(x) = rj(x)− r̃j(x)

• we can express inqualities of the form g̃i(x) ≥ 0 as gi(x) ≤ 0 where
gi(x) = −g̃i(x)

• maximization problem can be represented as minimization by changing
the objective sign
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Example 4.1

the problem
maximize −x21 + x22
subject to −x1 + x2 ≥ 10

x2 = 2− x1

can be expressed in standard form with objective

minimize x21 − x22
subject to x1 − x2 + 10 ≤ 0

x1 + x2 − 2 = 0
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Domain and implicit constraints

the domain of the optimization problem is the set of points for which the
objective and all constraint functions are defined

D = dom f ∩
m⋂
i=1

dom gi ∩
p⋂

j=1

domhj

• the standard from problem (4.1) has an implicit constraint x ∈ D

• explicit constraints: g1(x) ≤ 0, . . . , gm(x) ≤ 0, h1(x) = 0, . . . , hp(x) = 0

• for example, the problem

minimize − log x1 + log(x2 − x1)

is an unconstrained problem with implicit constraints x1 > 0, x2 − x1 > 0
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Optimal value

Feasible points
• a point x̂ is a feasible point if x̂ ∈ D and it satisfies the constraints,
h(x̂) = 0 and g(x̂) ≤ 0; otherwise, it is called infeasible point

• the problem is said to be feasible if there exists at least one feasible point;
otherwise, it is said to be infeasible

Optimal value: the optimal value of the minimization problem (4.2) , denoted
by p⋆, is the greatest α such that α ≤ f(x) for all feasible x

• for maximization problems, it is the smallest α such that α ≥ f(x)

• if there exists an optimal point x⋆, we say the optimal value is attained or
achieved and the problem is solvable; in this case, we have p⋆ = f(x⋆)

• a minimization problem is unbounded below if p⋆ = −∞; if a minimization
problem is infeasible, then we let p⋆ = +∞

• a maximization problem is unbounded above if p⋆ = ∞; if a maximization
problem is infeasible, then we let p⋆ = −∞

SA — ENGR507terminology 4.8



Example 4.2

• consider the unconstrained problem

minimize (x1 − 1)2 + (x2 − 1)2 = ∥x− 1∥2

the optimal value is p⋆ = 0 attained at the optimal point x⋆ = (1, 1) = 1

• the problem
minimize x1 + x2
subject to −x1 ≤ 10

x2 ≥ 0

has solution x⋆ = (−10, 0) and p⋆ = −10
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• the problem
minimize x21 − x22

is unbounded below since f(x) → −∞ = p⋆ as |x2| → ∞

• consider minimizing f(x) = e−x; for this problem p⋆ = 0, but the optimal
value is not attained since it only holds as x→ ∞

• consider minimizing f(x) = 1/x with domain dom f = {x | x > 0}; for
this problem p⋆ = 0 but is not attained by any feasible x

• the problem
minimize x21 + x22
subject to x1 + x2 ≤ 1

x1 + x2 ≥ 2

is an infeasible minimization problem; hence, p⋆ = ∞
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Set-constrained problems

minimize
x∈X

f(x)

• describes the optimization problem of finding an x = (x1, . . . , xn) that
minimizes f(x) among all points in the constraint set X ⊂ Rn

• for problem (4.1), the constraint set is described by functional constraints

X = {x | gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , p, j = 1, . . . ,m}

• this is not always the case, for example consider the integer set

X = {1, 2, 3} ⊂ R
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Simple problems solution

• general optimization problems require sophisticated methods to solve
them that utilize derivatives, linear equations, nonlinear operators,...etc

• that said, there are some simple optimization problems that can be solved
by inspection or using some basic inequalities such as Cauchy-Schwarz

Example
minimize ∥x− 1∥
subject to −1 ≤ x ≤ 0

• we seek to find a feasible x that is closest in distance to 1

• hence
x⋆ = 0 and p⋆ = ∥ − 1∥ =

√
n
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Another example:
minimize x1 + x2
subject to x21 + x22 ≤ 1

• using Cauchy-Schwarz, we can lower bound the objective by

x1 + x2 = 1Tx ≥ −∥1∥∥x∥ ≥ −
√
2

for all x21 + x22 ≤ 1

• the minimum value is attained at x = (−1/
√
2,−1/

√
2), which is feasible

• hence, the optimal point is x = (−1/
√
2,−1/

√
2)
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Equivalent optimization problems

two optimization problems are said to be equivalent if from a solution of one,
we can find a solution of the other, and vice versa

• for example, maximization problems are equivalent to minimization
problems (as shown before)

• many optimization problems can be transformed into equivalent
optimization problems that are easier to solve

• it is often useful to look for such equivalence to simplify the task of solving
such problems
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Scaling optimization problems

minimize αf(x)
subject to βigi(x) ≤ 0, i = 1, . . . ,m

γjhj(x) = 0, j = 1, . . . , p
(4.4)

where α > 0, βi > 0 and γj ̸= 0

• this problem is just a scaled version of (4.1)

• the feasible sets problems (4.4) and (4.1) are identical

• a point x is optimal for the original problem (4.1) if and only if it is optimal
for the scaled problem (4.4)

• hence, the two problems are equivalent
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Slack variables

note that
gi(x) ≤ 0 if and only if gi(x) + si = 0

for some si ≥ 0

hence, problem (4.1) is equivalent to

minimize f(x)
subject to si ≥ 0, i = 1, . . . ,m

gi(x) + si = 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , p

(4.5)

• the variables are x ∈ Rn and s ∈ Rm

• the new variable si is called the slack variable associated with the
inequality constraint gi(x) ≤ 0
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Monotone transformations

minimize ϕ(f(x))
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(4.6)

• ϕ : R → R is a continuous and monotone increasing function (i.e.,
ϕ(a) > ϕ(b) for all a > b) over the feasible set X

• note that ϕ is one-to-one and its inverse ϕ−1 is well defined

• problem (4.6) is equivalent to (4.1)

Constraint transformation: functions ψi : R → R and φj : R → R can be
used to transform the constraints into equivalent ones if

• ψi(gi(x)) ≤ 0 if and only if gi(x) ≤ 0

• φj(hj(x)) = 0 if and only if hj(x) = 0
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Example 4.3

minimize ∥x∥
subject to g(x) ≤ 0

the norm is always nonnegative and the square function ϕ(·) = (·)2 is
monotone increasing over nonnegative numbers, hence, we can transform
the problem into

minimize ∥x∥2

subject to g(x) ≤ 0

• the two problems are equivalent since the optimal points are the same

• unlike the original problem the new objective function is differentiable,
which simplifies the problem
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Change of variables

suppose that F : X → Y is a one-to-one function, i.e., for every y ∈ Y , there
exists a unique x ∈ X such that

y = F (x) ⇐⇒ x = F−1(y)

in this case, problem (4.1) is equivalent to

minimize f
(
F−1(y)

)
subject to gi

(
F−1(y)

)
≤ 0, i = 1, . . . ,m

hj
(
F−1(y)

)
= 0, j = 1, . . . , p

SA — ENGR507problem transformations 4.19



Example 4.4

minimize x1x2x
2
3

subject to x1x2 ≤ 2
x1, x2, x3 > 0

since log(·) is strictly increasing (for non-negative argument), we can use
monotone transformations log(x1x2x

2
3) and log(x1x2) ≤ log(2) and the

change of variable zi = log xi to transform the problem into

minimize z1 + z2 + 2z3
subject to z1 + z2 ≤ log 2

the above problem is linear, which is easier to solve than the original
nonlinear formulation
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Example 4.5

minimize x1x2 − x23
subject to x1 + x2 + x3 ≤ 20

x2 ≥ 10

if we let y1 = (x1 + x2)/2 and y2 = (x1 − x2)/2 then

x1 = y1 + y2, x2 = y1 − y2

using the above change of variables, we can transform the problem into

minimize y21 − y22 − x23
subject to 2y1 + x3 ≤ 20

y1 − y2 ≥ 10

notice that the objective is now separable in the new variables; for separable
problems, there exist efficient specialized optimization methods
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Eliminating equality constraints

let the function ϕ : Rk → Rn be defined such that x satisfies h(x) = 0 if and
only if there is some z such that x = ϕ(z), then problem (4.1) is equivalent to

minimize f(ϕ(z))
subject to gi(ϕ(z)) ≤ 0, i = 1, . . . ,m

(4.7)

• if z is optimal for the transformed problem, then x = ϕ(z) is optimal for
the original problem

• conversely, if x is optimal for the original problem, then (since x is feasible)
then any z such that x = ϕ(z) is optimal for the transformed problem
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Example 4.6

minimize x1 + x2 + x23
subject to x1 − x2x3 = 1

we can use x1 = 1 + x2x3 to remove the equality constraint and get the
equivalent problem

minimize 1 + x2x3 + x2 + x23

• in this case, we have ϕ(z1, z2) = (1 + z1z2, z1, z2)

• this problem is unconstrained, which is easier to solve than the original
problem
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Example 4.7

minimize x1 + 4x2 + x3
subject to 2x1 − 2x2 + x3 = 4

x1 − x3 = 1
x2 ≥ 0, x3 ≥ 0

using the equality constraints, we have x1 = 1 + x3 and

2x1 − 2x2 + x3 = 2(1 + x3)− 2x2 + x3 = 4 ⇒ x2 = 3
2x3 − 1

hence, the problem can be simplified to

minimize 8x3 + 3
subject to x3 ≥ 2/3

with solution x3 = 2/3; putting things together the solution to the original
problem is x⋆ = (5/3, 0, 2/3)
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Removing linear constraints

h(x) = Ax− b = 0

where A ∈ Rp×n and b ∈ Rp; assume that the first p columns of A are
linearly independent so that

A = [B D]

• B is an invertible p× p matrix and D is an p× (n− p) matrix
• recall that the solutions of Ax = b can parametrized by

x = x̂+ Fz

for any arbitrary z ∈ R(n−p) where

x̂ =

[
B−1b
0

]
, F =

[
−B−1D

I

]
the columns of the matrix F form a basis for the nullspace of A
(range(F ) = null(A))
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substituting x = x̂+ Fz into the original problem gives

minimize f(x̂+ Fz)
subject to gi(x̂+ Fz) ≤ 0, i = 1, . . . ,m

with variable z

Adding equality constraints: sometimes it is useful to introduce equality
constraints; for example, consider

minimize f(Ax+ b)

where A ∈ Rm×n and b ∈ Rm; the above problem is equivalent to

minimize f(z) s.t. z = Ax+ b

with variables x ∈ Rn and z ∈ Rm
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Example 4.8

minimize f(x1, . . . , xn)
subject to x1 + · · ·+ xn = b

we can eliminate any xi, we choose xn:

xn = b− x1 − · · · − xn−1

the above corresponds to the choice

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

the transformed problem is

minimize f(x1, x2, . . . , b− x1 − · · · − xn−1)
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Optimizing over some variables

it holds that (with abuse of inf notation):

min
x,y

f(x,y) = min
x
f̃(x)

where f̃(x) = miny f(x,y)

Example:

minimize xT
1Q11x1 + 2xT

1Q12x2 + xT
2Q22x2

subject to gi(x1) ≤ 0, i = 1, . . . ,m,

where Q11 and Q22 are symmetric; we can analytically minimize over x2:

min
x2

(
xT
1Q11x1 + 2xT

1Q12x2 + xT
2Q22x2

)
= xT

1

(
Q11 −Q12Q

−1
22 Q

T
12

)
x1

thus, the original problem is equivalent to

minimize xT
1

(
Q11 −Q12Q

−1
22 Q

T
12

)
x1

subject to gi(x1) ≤ 0, i = 1, . . . ,m
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Optimization methods

after constructing the mathematical model, a suitable solution method is
applied to find the best decision

• an optimization algorithm is a set of calculations and rules that are followed
to find a solution or an approximate solution to an optimization problem

• a solution method for a class of optimization problems is an algorithm that
computes a solution of the problem (to some given accuracy), given a
particular problem from the class, i.e., an instance of the problem
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Iterative algorithms

an iterative algorithm F uses the current estimate x(k) at time k and the
functions f(x), gi(x), hj(x) to generate a new estimate x(k+1) that better
estimates the solution: x(k+1) = F (x(k))

• moving from x(k) to x(k+1) is called an iteration of the algorithm

• the algorithm stops when a good estimate of a solution is reached or until
convergence where x(T ) = x(T+1) from some T ≥ 0

Algorithm General iterative algorithm

given a starting point x(0), a solution accuracy scalar ϵ, and error criteria

for k ≥ 1

1. determine a search direction d(k)

2. determine a step-size αk that leads to an improved estimate

x(k+1) = x(k) + αkd
(k)

3. if error criteria is met (e.g., ∥x(k+1) − x(k)∥ ≤ ϵ or |f(x(k+1))− f(x(k))| ≤ ϵ), stop and
output x(k+1)
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Local minimum point

minimize
x∈X

f(x)

a point xo ∈ X is a local minimizer or local minimum point (locally optimal) if
there exists a scalar r > 0 such that:

f(xo) ≤ f(x) for all x ∈ X and ∥x− xo∥ ≤ r

• if f(xo) < f(x), then the point xo is called a strict local minimizer

• a point x⋆ ∈ X is a global minimizer or global minimum point (optimal) if
f(x⋆) ≤ f(x) for all x ∈ X

• the term ‘globally optimal’ is sometimes used for ‘optimal’ to distinguish
between ‘locally optimal’ and ‘optimal’
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f(x)

x
strict local minimizer strict global minimizer local minimizers

unconstrained case X = Rn

X

x

f(x)

local minimizers

strict global minimizer

strict local minimizer

constrained case x ∈ X
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Local maximum point

maximize
x∈X

f(x)

for maximization problems, a point xo ∈ X is called a local maximizer or local
maximum point if (locally optimal) there exists a scalar r > 0 such that

f(xo) ≥ f(x) for all x ∈ X and ∥x− xo∥ ≤ r

• if f(xo) > f(x), then the point xo is said to be a strict local maximizer

• a point x⋆ ∈ X is a global maximizer if f(x⋆) ≥ f(x) for all x ∈ X

• a point is a local (global) maximum point of f if it is a local (global)
minimum point of −f
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Example 4.9

• (x− 2)2: optimal value of min f(x) = 0; global minimizer x⋆ = 2
• ex + e−x − 3x2: optimal value −7.02; two global minima: x⋆ = ±2.84
• ex + e−x − 3x2 + x optimal value of −9.9; global minimizer x⋆ = −2.92;

local minimizer located at x = 2.74
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Nonlinear optimization methods

Local optimization methods

• find a locally optimal solution
• fast, can handle large-scale problems, and are widely applicable
• local optimization can be used to improve the performance of an

engineering design obtained by manual, or other, design methods

Global optimization methods

• true global solution of the optimization problem is found
• difficult to find in general; even small problems, with a few tens of

variables, can take a very long time (e.g., hours or days) to solve
• many global optimization methods seek the global optimum by finding

local solutions to a sequence of approximate subproblems
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Efficiently solvable problem classes

(linear) Least squares

minimize
m∑
i=1

 n∑
j=1

aijxj − bi

2

where the coefficients aij , bi are given constants

• reliable and efficient algorithms and software

• least-squares problems are easy to recognize

• many applications can be formulated as least-squares problems such as
data-fitting and linear estimation
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Linear program (optimization)

minimize
∑n

j=1 cjxj
subject to

∑n
j=1 aijxj ≤ bi, i = 1, . . . ,m∑n
j=1 gijxj = hi, i = 1, . . . , p,

where the coefficients cj , aij , gij , hi, bi are predefined constants

• there exist robust and efficient algorithms and software for solving LPs
• LPs isn’t as immediately recognizable as that of least-squares problems
• common techniques are available to transform various problems into the

format of linear programs
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Convex optimization

minimize f(x) = g0(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m,∑n

j=1 aijxj = bi, i = 1, . . . , p

where the coefficients aij , bi are known

• the objective and constraints functions are convex:

gi(θx+ (1− θ)y) ≤ θgi(x) + (1− θ)gi(y), 0 ≤ θ ≤ 1

• problems with nonconvex objective or constraints are commonly referred
to as nonconvex optimization problems
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convex optimization

• include least-squares problems and linear programs as special cases
• has tons of applications
• reliable and efficient algorithms
• difficult to recognize
• many tricks can be used to transform nonconvex problems into convex

form
• basis for several heuristics for solving nonconvex problems
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Dynamical system

a nonlinear dynamical system has the form

xk+1 = h(xk,uk), k = 0, 1, . . . ,K

• xk ∈ Rn is the state vector at instant k

• uk ∈ Rm is the input or control at instant k

• the function h : Rn+m → Rn describes what is the next state as a function
of the current state and input (evolution of the system)

• examples: vehicle dynamics, robots, chemical plants evolution...

• in optimal control, the goal is to choose the inputs u0,u1 . . . ,uK−1 to
achieve some goal for the state and input trajectories
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Optimal control problem

in many practical problems, the initial state x0 = xinitial is known and we
want to reach a desired final state xK+1 = xfinal while minimizing some
objective:

minimize
∑K

k=0 f(xk,uk)
subject to x1 = h(xinitial,u0)

xk+1 = h(xk,uk), k = 1, . . . ,K − 1
xfinal = h(xK ,uK)
gk(xk,uk) ≤ 0, k = 0, . . . ,K

• variables u0, . . . ,uK and x1, . . . ,xK

• f : Rn+m → R represents a certain cost (e.g., fuel consumption, time)

• gk : Rn+m → R are some constraints functions
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Car control example

dp1
dt

(t) = s(t) cos θ(t)

dp2
dt

(t) = s(t) sin θ(t)

dθ

dt
(t) = (s(t)/L) tanϕ(t)

• wheelbase (length) L
• position p = (p1, p2); orientation (angle) θ
• steering angle ϕ, and speed s
• we can control the speed s and the steering angle ϕ

Goal: move the car over some time period from a given initial position and
orientation to a specified final position and orientation while ensuring that the
input is small with little variations
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Discretized car dynamics

p1(t+ τ) ≈ p1(t) + τs(t) cos θ(t)

p2(t+ τ) ≈ p2(t) + τs(t) sin θ(t

θ(t+ τ) ≈ θ(t) + τ(s(t)/L) tanϕ(t)

• τ is a small time interval
• letting the state and input vectors be xk = (p1(kτ), p2(kτ), θ(kτ)) and
uk = (s(kτ), ϕ(kτ)), we have

xk+1 = h (xk,uk)

with

h (xk,uk) = xk + τ (uk)1

 cos (xk)3
sin (xk)3

(tan (uk)2) /L
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Problem formulation

minimize
∑K

k=0 ∥uk∥2 + ρ
∑K−1

k=0 ∥uk+1 − uk∥2
subject to x1 = h (0,u0)

xk+1 = h (xk,uk) , k = 1, . . . ,K − 1
xfinal = h (xK ,uK)

• variables u0, . . . ,uN , and x1, . . . ,xN

• the initial state is assumed to be zero

• the objective ensures the input is small with little variation

• ρ > 0 is an input variation trade-off parameter
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solution trajectories with different final states for L = 0.1, K = 49, τ = 0.1, ρ = 10;
the outline of the car shows the position (p1(kτ); p2(kτ)), orientation θ(kτ), and the
steering angle ϕ(kτ) at time kh
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• Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge
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• Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra:
Vectors, Matrices, and Least Squares, Cambridge University Press, 2018 (ch 19.4,
car control example).
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