4. Nonlinear equations

- nonlinear equations
- iterative methods
- bisection method
- Newton method

Set of nonlinear equations

consider *n* nonlinear equations in *n* variables x_1, x_2, \ldots, x_n :

$$h_i(x_1,...,x_n) = 0, \quad i = 1,...,n$$

in vector notation: h(x) = 0 with

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad h(x) = \begin{bmatrix} h_1(x_1, \dots, x_n) \\ h_2(x_1, \dots, x_n) \\ \vdots \\ h_n(x_1, \dots, x_n) \end{bmatrix}$$

• $h_i : \mathbb{R}^n \to \mathbb{R}$

- $h_i(x)$ is *i*th *residual*; h(x) is residual vector
- the root or zero is any solution of the above equation
- may have unique solution, no solution, or infinitely many solutions

Example: nonlinear resistive circuit

$$g(x) - \frac{E - x}{R} = 0$$

a nonlinear equation in the variable x, with three solutions

nonlinear equations

SA - ENGR507

Outline

- nonlinear equations
- iterative methods
- bisection method
- Newton method

Iterative methods

- · nonlinear equations are much difficult to solve compared to linear equations
- obtaining a solution by finite-step algorithm is not feasible
- iterative algorithms start with *initial* or *starting point*, $x^{(0)}$ and compute estimates

 $x^{(1)}, x^{(2)}, \dots, x^{(k)}, \dots$

- moving from $x^{(k)}$ to $x^{(k+1)}$ is called an *iteration* of the algorithm
- ideally converge to a root of the target function

$$x^{(k)} \to x^{\star}$$
 as $k \to \infty$

where $h(x^{\star}) = 0$

Stopping iterative methods

- *function value:* stop when $||h(x^{(k)})|| < \epsilon$
- absolute error: stop when $||x^{(k)} x^{(k-1)}|| < \epsilon$
- relative error: stop when $||x^{(k)} x^{(k-1)}|| / ||x^{(k)}|| < \epsilon$
- stop when $k = k_{max}$ where k_{max} is a predetermined integer

here, ϵ is a tolerance level constant determined by the user

Convergence rates

assume the sequence $x^{(k)}$ converges to a limit x^{\star}

Linear convergence: if there exists a constant $c \in (0, 1)$ such that

 $||x^{(k)} - x^{\star}|| \le c ||x^{(k-1)} - x^{\star}||$ for sufficiently large k

example: $x^{(k)} = 1 + (1/2)^k$ linearly converges to $x^* = 1$,

$$|x^{(k+1)} - x^{\star}| = (1/2)^{k+1} = \frac{1}{2}|x^{(k)} - x^{\star}|$$

satisfies the definition with c = 1/2

R-linear convergence: if a positive constant M and a value $c \in (0, 1)$ exist such that

 $||x^{(k)} - x^{\star}|| \le Mc^k$ for sufficiently large k

linear convergence implies *R*-linear convergence (reverse is not necessarily true)

iterative methods

Superlinear convergence: if a sequence $c_k > 0$ with $c_k \rightarrow 0$ exists such that

$$||x^{(k)} - x^{\star}|| \le c_k ||x^{(k-1)} - x^{\star}||$$
 for large k

example: $x^{(k)} = 1 + (1/(k+1))^k$ has superlinear convergence to $x^{\star} = 1$, as

$$|x^{(k)} - x^{\star}| = \frac{1}{(k+1)^k} = \frac{k^{k-1}}{(k+1)^k} \frac{1}{k^{k-1}} = \frac{k^{k-1}}{(k+1)^k} |x^{(k-1)} - x^{\star}|$$

satisfies the definition with $c_k = k^{k-1}/(k+1)^k$, which approaches zero

Quadratic convergence: if a constant c > 0 exists such that

$$||x^{(k)} - x^{\star}|| \le c ||x^{(k-1)} - x^{\star}||^2$$
 for large k

example: $x^{(k)} = 1 + (1/2)^{2^k}$ has quadratic convergence to $x^{\star} = 1$, as

$$|x^{(k+1)} - x^{\star}| = (1/2)^{2^{k+1}} = ((1/2)^{2^k})^2 = |x^{(k)} - x^{\star}|^2$$

satisfies the definition with c = 1

iterative methods

Outline

- nonlinear equations
- iterative methods
- bisection method
- Newton method

The bisection method

one equation in one variable

 $h(x) = 0, \quad x \in \mathbb{R}$

given: a, b with a < b, h(a)h(b) < 0, and tolerance ϵ

repeat

- 1. x = (a + b)/2
- 2. compute h(x); if h(x) = 0, return x
- 3. if h(x)h(a) < 0, b = x, else, a = x
- 4. stop if $b a \le \epsilon$
- condition h(a)h(b) < 0 ensures a root exists between a, b
- *a*, *b* can be chosen from graphing the function
- *h* is assumed to be continuous

Convergence

let $[a^{(k)}, b^{(k)}]$ be the interval after iteration k, then

$$b^{(k)} - a^{(k)} = (b - a)/2^k$$

• after k iterations, the midpoint $x^{(k)} = (b^{(k)} + a^{(k)})/2$ satisfies

$$|x^{(k)} - x^{\star}| \le b^{(k)} - a^{(k)} \le (1/2)^k (b - a)$$

thus, it is R-linearly convergent with c = 1/2 and M = b - a

- the exit condition $b^{(k)} - a^{(k)} \leq \epsilon$ will be satisfied if

$$\log_2\left(\frac{b-a}{2^k}\right) = \log_2(b-a) - k \le \log_2 \epsilon$$

the algorithm therefore terminates after

$$k \approx \left\lceil \log_2 \left(\frac{b-a}{\epsilon} \right) \right\rceil$$

iterations where $\lceil \alpha \rceil$ is the smallest integer greater than or equal to α

bisection method

MATLAB implementation

```
function [x,k] = bisect(h,a,b,tol)
% assuming h is a defined input function
% this function returns in x a value such that |x - root| < atol
% and in k the number of iterations required.
ha=h(a):hb=h(b):
if (a \ge b) | (ha + hb \ge 0) | (tol <= 0)
disp('something wrong with the input: quitting');
x = NaN; k=NaN;
return
end
k = ceil(log2(b-a) - log2(tol));
for i=1:k
x = (a+b)/2:
hx = h(x);
if abs(hx) < eps, k = i; return, end
if ha * hx < 0
b = x; hb = hx;
else
a = x: end
end
end
```

• for $h(x) = x^3 - 30x^2 + 2552$, starting from interval [0, 20] with a tolerance of 1×10^{-8} , the method converges to $x^* \approx 11.86150151$ after 31 iterations the associated MATLAB script is:

format long g
h = @(x) x^3 - 30*x^2 + 2552;
[x,k] = bisect(h,0,20,1.e-8)

• for $h(x) = 2.5 \sinh(x/4) - 1$, starting with interval [-10, 10] with a tolerance of 1×10^{-10} , the method converges to $x^* \approx 1.5601412791$ after 38 iterations

the associated MATLAB script is:

```
format long g
h =@(x) 2.5 * sinh (x/4) - 1;
[x,k] = bisect(h,-10,10,1.e-10)
```

Outline

- nonlinear equations
- iterative methods
- bisection method
- Newton method

Deriving Newton method

• linearize h (*i.e.*, make affine approximation) around current iterate $x^{(k)}$

$$\hat{h}(x;x^{(k)}) = h(x^{(k)}) + Dh(x^{(k)})(x - x^{(k)})$$

• take solution x of linearized equation $\hat{h}(x; x^{(k)}) = 0$ as the next iterate $x^{(k+1)}$:

Newton method for nonlinear equations

assume $h : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable

given a starting point $x^{(0)}$ and solution tolerance ϵ

repeat for k = 1, 2, ...

1. compute $Dh(x^{(k)})$ and $h(x^{(k)})$

2. if $||h(x^{(k)})|| < \epsilon$, stop and return $x^{(k)}$

- 3. solve for $v^{(k)}$ in $Dh(x^{(k)})v^{(k)} = -h(x^{(k)})$
- 4. update $x^{(k+1)} = x^{(k)} + v^{(k)}$
- $Dh(x^{(k)})$ is derivative (Jacobian) matrix of h at $x^{(k)}$ assumed to be nonsingular
- · also called Newton-Raphson algorithm
- for one equation in one variable, the update reduces to

$$x^{(k+1)} = x^{(k)} - \frac{h(x^{(k)})}{h'(x^{(k)})}$$

applying Newton's method on $h(x) = 2\cosh(\frac{x}{4}) - x$ gives

$$x^{(k+1)} = x^{(k)} - \frac{2\cosh(x^{(k)}/4) - x^{(k)}}{0.5\sinh(x^{(k)}/4) - 1}$$

where $\cosh(u) = (e^u + e^{-u})/2$ and $\sinh(u) = (e^u - e^{-u})/2$ with tolerance of 1×10^{-8} :

- starting from $x_0 = 4$, 4 iterations are needed to get $x_1^{\star} = 2.35755106$
- from $x_0 = 10$, 5 iterations are enough to reach $x_2^{\star} = 8.50719958$

$$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 0$$

the derivative is $h'(x) = 4/(e^x + e^{-x})^2$, so the Newton iteration is

$$x^{(k+1)} = x^{(k)} - \frac{1}{4}(e^{2x^{(k)}} - e^{-2x^{(k)}}), \quad k = 0, 1, \dots$$

- method converges rapidly from $x^{(0)} = 0.85$
- does not converge from $x^{(0)} = 1.15$

- starting point $x^{(0)} = -1$: converges to $x^{\star} = -1.62$
- starting point $x^{(0)} = -0.8$: converges to $x^{\star} = 1.62$
- starting point $x^{(0)} = -0.7$: converges to $x^{\star} = 0$

Newton method

$$h_1(x_1, x_2) = \log(x_1^2 + 2x_2^2 + 1) - 0.5 = 0$$

$$h_2(x_1, x_2) = x_2 - x_1^2 + 0.2 = 0$$

two equations in two variables; two solutions (0.70, 0.29), (-0.70, 0.29)

Newton method

Newton iteration

• evaluate g = h(x) and

$$H = Dh(x) = \begin{bmatrix} 2x_1/(x_1^2 + 2x_2^2 + 1) & 4x_2/(x_1^2 + 2x_2^2 + 1) \\ -2x_1 & 1 \end{bmatrix}$$

- solve Hv = -g (two linear equations in two variables)
- update x := x + v

Results

- $x^{(0)} = (1, 1)$: converges to $x^* = (0.70, 0.29)$ in about 4 iterations
- $x^{(0)} = (-1, 1)$: converges to $x^* = (-0.70, 0.29)$ in about 4 iterations
- $x^{(0)} = (1, -1)$ or $x^{(0)} = (-1, -1)$: does not converge

Observations

- Newton's method works well if started near a solution; may not work otherwise
- can converge to different solutions depending on the starting point
- does not necessarily find the solution closest to the starting point

Convergence of Newton's method

if $h(x^{\star}) = 0$ and $Dh(x^{\star})$ is nonsingular, and $x^{(0)}$ is sufficiently close to x^{\star} , then

$$x^{(k)} \to x^{\star}, \quad \|x^{(k+1)} - x^{\star}\| \le c \|x^{(k)} - x^{\star}\|^2$$

for some c > 0

- has quadratic convergence when started near a solution
- · explains fast convergence when started near solution

Secant method

- consider a single equation with one variable h(x) = 0
- the secant method modifies Newton's approach by estimating the derivative:

$$h'(x^{(k)}) \approx \frac{h(x^{(k)}) - h(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

• incorporating this into Newton's formula, we get the secant method equation:

$$x^{(k+1)} = x^{(k)} - \frac{h(x^{(k)})(x^{(k)} - x^{(k-1)})}{h(x^{(k)}) - h(x^{(k-1)})}, \quad k = 1, 2, \dots$$

Example: $h(x) = 2 \cosh(x/4) - x$, tolerance 10^{-8} , $x_0 = 10$

k	0	1	2	3	4	5	6
$h(x^{(k)})$	2.26	-4.76e - 1	-1.64e - 1	2.45e - 2	-9.93e - 4	-5.62e - 6	1.30e – 9

References and further readings

- E. K.P. Chong, Wu-S. Lu, and S. H. Zak, An Introduction to Optimization: With Applications to Machine Learning. John Wiley & Sons, 2023. (Ch. 7)
- U. M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics, 2011. (Ch. 3)
- L. Vandenberghe, *EE133A Lecture Notes*, UCLA.