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Derivative definition

the derivative of 𝑓 (𝑥) ( 𝑓 : R → R) at a point 𝑧 is

𝑓 ′ (𝑧) = 𝑑𝑓

𝑑𝑥
(𝑧) = lim

𝜖→0

𝑓 (𝑧 + 𝜖) − 𝑓 (𝑧)
𝜖

• geometrically, 𝑓 ′ (𝑧) is the slope of the tangent line to the graph of 𝑓 at the point 𝑧

= slope of tangent line

𝑓 (𝑥 )

𝑥

𝑓 (𝑥 )

𝑥

𝑓 (𝑧 + 𝜖 )

𝑓 (𝑧)

𝑓 (𝑧+𝜖 )− 𝑓 (𝑧)
𝜖 lim

𝜖→0

𝑓 (𝑧+𝜖 )− 𝑓 (𝑧)
𝜖

𝑓 (𝑧)

𝑧𝑧 + 𝜖𝑧

= slope of line

• when 𝑓 ′ (𝑥) is positive, 𝑓 (𝑥) increases as 𝑥 does

• when 𝑓 ′ (𝑥) is negative, 𝑓 (𝑥) decreases as 𝑥 increases
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Common derivatives

𝑓 (𝑥) 𝑓 ′ (𝑥)
𝑐 0

𝑥ℓ ℓ𝑥ℓ−1

𝑒𝑥 (exp(𝑥)) 𝑒𝑥

log(𝑥), 𝑥 > 0 1/𝑥

log𝑐 (𝑥), 𝑥 > 0, 𝑐 > 0
1

𝑥 ln(𝑐)
sin(𝑥) cos(𝑥)
cos(𝑥) − sin(𝑥)

(we use log(·) = ln(·) to denote the natural logarithm)
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Derivative rules

Linearity: for 𝑓 (𝑥) = 𝛼𝑔(𝑥) + 𝛽ℎ(𝑥):

𝑓 ′ (𝑥) = 𝛼𝑔′ (𝑥) + 𝛽ℎ′ (𝑥)

Product rule: for 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥):

𝑓 ′ (𝑥) = 𝑔′ (𝑥)ℎ(𝑥) + 𝑔(𝑥)ℎ′ (𝑥)

Quotient rule: for 𝑓 (𝑥) = 𝑔 (𝑥 )
ℎ (𝑥 ) :

𝑓 ′ (𝑥) = 𝑔′ (𝑥)ℎ(𝑥) − 𝑔(𝑥)ℎ′ (𝑥)
ℎ(𝑥)2

Chain rule: for 𝑓 (𝑥) = 𝑔(ℎ(𝑥)):

𝑓 ′ (𝑥) = ℎ′ (𝑥)𝑔′ (ℎ(𝑥))
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Second derivative

the second derivative of 𝑓 (𝑥) at a point 𝑧 is the derivative of the first derivative:

𝑓 ′′ (𝑧) = 𝑑2 𝑓

𝑑𝑥2
(𝑧) = lim

𝜖→0

𝑓 ′ (𝑧 + 𝜖) − 𝑓 ′ (𝑧)
𝜖

= lim
𝜖→0

𝑓 (𝑧 + 𝜖) − 2 𝑓 (𝑧) + 𝑓 (𝑧 − 𝜖)
𝜖2

• second derivative conveys information about the curvature of the function

• when 𝑓 ′′ (𝑥) > 0, then 𝑓 ′ (𝑥) is increasing, which suggests the slope of the
tangent line to 𝑓 increases as 𝑥 does yielding a concave-upwards shape

• if 𝑓 ′′ (𝑥) is negative, the function exhibits a concave-downwards curvature
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Outline
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• level sets and directional derivative



Gradient

• the partial derivative of 𝑓 : R𝑛 → R at point 𝑧 is, with respect to 𝑥𝑖 is

𝜕 𝑓

𝜕𝑥𝑖
(𝑧) = lim

𝜖→0

𝑓 (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖 + 𝜖, 𝑧𝑖+1, . . . , 𝑧𝑛) − 𝑓 (𝑧)
𝜖

• quantifies the variation of 𝑓 concerning 𝑥𝑖 , while other variables remain constant

the gradient of 𝑓 : R𝑛 → R at point 𝑧 is the 𝑛-vector

∇ 𝑓 (𝑧) =



𝜕 𝑓

𝜕𝑥1
(𝑧)

𝜕 𝑓

𝜕𝑥2
(𝑧)
...

𝜕 𝑓

𝜕𝑥𝑛
(𝑧)


𝑓 is differentiable if its dom 𝑓 is open and ∇ 𝑓 (𝑥) exists for every 𝑥 ∈ dom 𝑓
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Examples

• gradient of the function 𝑓 (𝑥) = 5𝑥1 + 8𝑥2 + 𝑥1𝑥2 − 𝑥21 − 2𝑥22 is

∇ 𝑓 (𝑥) = (5 + 𝑥2 − 2𝑥1, 8 + 𝑥1 − 4𝑥2)

• gradient of 𝑓 (𝑥) = 𝑥21 + 𝑒−𝑥1 + sin(𝑥2) is

∇ 𝑓 (𝑥) =
[
2𝑥1 − 𝑒−𝑥1

cos(𝑥2)

]
• partial derivatives of

𝑓 (𝑥) = ∥𝑥∥2 = 𝑥21 + ··· + 𝑥2𝑛

are 𝜕 𝑓

𝜕𝑥𝑖
(𝑥) = 2𝑥𝑖 ; hence

∇ 𝑓 (𝑥) = (2𝑥1, . . . , 2𝑥𝑛) = 2𝑥
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Jacobian

let 𝑓 : R𝑛 → R𝑚:

𝑓 (𝑥) =

𝑓1 (𝑥)
...

𝑓𝑚 (𝑥)

 =

𝑓1 (𝑥1, . . . , 𝑥𝑛)

...

𝑓𝑚 (𝑥1, . . . , 𝑥𝑛)

 , 𝑓𝑖 : R
𝑛 → R

the Jacobian or derivative matrix of 𝑓 at 𝑧 is the 𝑚 × 𝑛 matrix:

𝐷 𝑓 (𝑧) =


𝜕 𝑓1
𝜕𝑥1

(𝑧) 𝜕 𝑓1
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓1
𝜕𝑥𝑛

(𝑧)
𝜕 𝑓2
𝜕𝑥1

(𝑧) 𝜕 𝑓2
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓2
𝜕𝑥𝑛

(𝑧)
... ... . . . ...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑧) 𝜕 𝑓𝑚
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑧)


=


∇ 𝑓1 (𝑧)T
∇ 𝑓2 (𝑧)T

...

∇ 𝑓𝑚 (𝑧)T


if 𝑚 = 1, then 𝐷 𝑓 (𝑧) = ∇ 𝑓 (𝑧)T
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Examples

• the Jacobian of

𝑓 (𝑥) =
[

𝑥1 + 𝑥22
−𝑥1 + 𝑥1𝑥2

]
is

𝐷 𝑓 (𝑥) =
[

1 2𝑥2
−1 + 𝑥2 𝑥1

]
• the derivative matrix or Jacobian of 𝑓 (𝑥) = 𝐴𝑥 is

𝐷 𝑓 (𝑥) = 𝐴
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Hessian

the Hessian of a function 𝑓 : R𝑛 → R at 𝑧 is the 𝑛 × 𝑛 matrix

∇2 𝑓 (𝑧) =



𝜕2 𝑓

𝜕𝑥2
1

(𝑧) 𝜕2 𝑓

𝜕𝑥1𝜕𝑥2
(𝑧) ··· 𝜕2 𝑓

𝜕𝑥1𝜕𝑥𝑛
(𝑧)

𝜕2 𝑓

𝜕𝑥2𝜕𝑥1
(𝑧) 𝜕2 𝑓

𝜕𝑥2
2

(𝑧) ··· 𝜕2 𝑓

𝜕𝑥2𝜕𝑥𝑛
(𝑧)

... ... . . . ...
𝜕2 𝑓

𝜕𝑥𝑛𝜕𝑥1
(𝑧) 𝜕2 𝑓

𝜕𝑥𝑛𝜕𝑥2
(𝑧) ··· 𝜕2 𝑓

𝜕𝑥2
𝑛
(𝑧)


• 𝑓 is twice differentiable if ∇2 𝑓 (𝑥) exists for all 𝑥 ∈ dom 𝑓 (with open domain)

• the Hessian is a symmetric matrix ∇2 𝑓 (𝑧) = ∇2 𝑓 (𝑧)T since

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑧) = 𝜕2 𝑓

𝜕𝑥 𝑗𝜕𝑥𝑖
(𝑧), for all 𝑖, 𝑗 = 1, . . . , 𝑛

• Jacobian of the gradient of 𝑓 : R𝑛 → R is its Hessian: 𝐷∇ 𝑓 (𝑥) = ∇2 𝑓 (𝑥)
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Examples

• for 𝑓 (𝑥) = 5𝑥1 + 8𝑥2 + 𝑥1𝑥2 − 𝑥21 − 2𝑥22:

∇ 𝑓 (𝑥) =
[
5 + 𝑥2 − 2𝑥1
8 + 𝑥1 − 4𝑥2

]
, ∇2 𝑓 (𝑥) =

[
−2 1
1 −4

]
• for

𝑓 (𝑥) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

the gradient is

∇ 𝑓 (𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 − 𝑒−𝑥1−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

]
and the Hessian is

∇2 𝑓 (𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1 𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1

]
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Linear and quadratic functions

Linear and affine functions: for 𝑓 (𝑥) = 𝑎T𝑥 + 𝑏:

∇ 𝑓 (𝑥) = 𝑎

∇2 𝑓 (𝑥) = 0

Quadratic functions: for 𝑓 (𝑥) = 𝑥T𝑄𝑥 + 𝑟T𝑥 + 𝑠, where 𝑄 = 𝑄T is symmetric:

∇ 𝑓 (𝑥) = 2𝑄𝑥 + 𝑟

∇2 𝑓 (𝑥) = 2𝑄
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Least-squares function

the least-squares function 𝑓 (𝑥) = ∥𝐴𝑥 − 𝑏∥2 can be expressed as

𝑓 (𝑥) = ∥𝐴𝑥 − 𝑏∥2

= (𝐴𝑥 − 𝑏)T (𝐴𝑥 − 𝑏)
= (𝑥T𝐴T − 𝑏T) (𝐴𝑥 − 𝑏)
= 𝑥T𝐴T𝐴𝑥 − 𝑏T𝐴𝑥 − 𝑥T𝐴T𝑏 + 𝑏T𝑏

= 𝑥T𝐴T𝐴𝑥 − 2𝑏T𝐴𝑥 + 𝑏T𝑏

this means that 𝑓 is quadratic 𝑓 (𝑥) = 𝑥T𝑄𝑥 + 𝑟T𝑥 + 𝑠 with

𝑄 = 𝐴T𝐴, 𝑟T = −2𝑏T𝐴, 𝑠 = 𝑏T𝑏

hence,
∇ 𝑓 (𝑥) = 2𝐴T𝐴𝑥 − 2𝐴T𝑏, ∇2 𝑓 (𝑥) = 2𝐴T𝐴
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Outline
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Sum and scalar multiplication

Sum of two functions: if 𝑓 (𝑥) = 𝑔(𝑥) + ℎ(𝑥), then

∇ 𝑓 (𝑥) = ∇𝑔(𝑥) + ∇ℎ(𝑥), ∇2 𝑓 (𝑥) = ∇2𝑔(𝑥) + ∇2ℎ(𝑥)

Scalar multiplication: if 𝑓 (𝑥) = 𝛼𝑔(𝑥), where 𝛼 is a scalar, then

∇ 𝑓 (𝑥) = 𝛼∇𝑔(𝑥), ∇2 𝑓 (𝑥) = 𝛼∇2𝑔(𝑥)
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Product rule

Product rule: let 𝑓 : R𝑛 → R be

𝑓 (𝑥) = 𝑔(𝑥)Tℎ(𝑥),

where 𝑔 : R𝑛 → R𝑚 and ℎ : R𝑛 → R𝑚, then

∇ 𝑓 (𝑥) = 𝐷 𝑓 (𝑥)T = 𝐷𝑔(𝑥)Tℎ(𝑥) + 𝐷ℎ(𝑥)T𝑔(𝑥)

Product rule for second derivative

• if 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) where 𝑔 : R𝑛 → R and ℎ : R𝑛 → R

• the Hessian is

∇2 𝑓 (𝑥) = ∇2𝑔(𝑥)ℎ(𝑥) + ∇2ℎ(𝑥)𝑔(𝑥) + ∇𝑔(𝑥)∇ℎ(𝑥)T + ∇ℎ(𝑥)∇𝑔(𝑥)T
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Example: pure quadratic function

𝑓 (𝑥) = 𝑥T𝐴𝑥 where 𝐴 is not symmetric

• since 𝑓 (𝑥) = 𝑥T (0.5𝐴 + 0.5𝐴T)𝑥, we know from before that ∇ 𝑓 (𝑥) = (𝐴 + 𝐴T)𝑥

• we can also derive the gradient using the product rule

• express 𝑓 as 𝑓 (𝑥) = 𝑔(𝑥)Tℎ(𝑥) where 𝑔(𝑥) = 𝑥 and ℎ(𝑥) = 𝐴𝑥

• we have
𝐷𝑔(𝑥) = 𝐼 and 𝐷ℎ(𝑥) = 𝐴

• applying the product rule we obtain:

∇ 𝑓 (𝑥) = 𝐷𝑔(𝑥)Tℎ(𝑥) + 𝐷ℎ(𝑥)T𝑔(𝑥)
= 𝐴𝑥 + 𝐴T𝑥

= (𝐴 + 𝐴T)𝑥

SA — ENGR507differentiation rules 3.16



Example: nonlinear least squares

𝑓 (𝑥) = ∥ℎ(𝑥)∥2 =

𝑝∑
𝑗=1

ℎ 𝑗 (𝑥)2

• each term of the sum is the product of two identical function ℎ 𝑗 (𝑥)ℎ 𝑗 (𝑥)

• so we can apply the product rule to each term find the gradient as:

∇ 𝑓 (𝑥) =
𝑝∑
𝑗=1

2𝐷ℎ 𝑗 (𝑥)Tℎ 𝑗 (𝑥) = 2
𝑝∑
𝑗=1

2∇ℎ 𝑗 (𝑥)ℎ 𝑗 (𝑥) = 2𝐷ℎ(𝑥)Tℎ(𝑥)

• the Hessian can also be found using the product rule and is given by:

∇2 𝑓 (𝑥) = 2
𝑝∑
𝑗=1

(
∇ℎ 𝑗 (𝑥)∇ℎ 𝑗 (𝑥)T + ℎ 𝑗 (𝑥)∇2ℎ 𝑗 (𝑥)

)
= 2𝐷ℎ(𝑥)T𝐷ℎ(𝑥) + 2

𝑝∑
𝑗=1

ℎ 𝑗 (𝑥)∇2ℎ 𝑗 (𝑥)
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Chain rule

let 𝑓 : R𝑛 → R be the composition

𝑓 (𝑥) = 𝑔(ℎ(𝑥)) = 𝑔(ℎ1 (𝑥), . . . , ℎ𝑝 (𝑥))

where 𝑔 : R𝑝 → R and ℎ : R𝑛 → R𝑝 are differentiable functions

Chain rule
∇ 𝑓 (𝑥) = 𝐷 𝑓 (𝑥)T = 𝐷ℎ(𝑥)T∇𝑔

(
ℎ(𝑥)

)
Chain rule for second derivative

• let 𝑓 : R𝑛 → be 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) with ℎ : R𝑛 → R and 𝑔 : R → R

• the Hessian is

∇2 𝑓 (𝑥) = 𝑔′ (ℎ(𝑥))∇2ℎ(𝑥) + 𝑔′′ (ℎ(𝑥))∇ℎ(𝑥)∇ℎ(𝑥)T
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Example

we use the chain-rule to find the gradient of

𝑓 (𝑥) =
(
sin(𝑥1) + 𝑥22

)2 + (
sin(𝑥1) + 𝑥22

)
(𝑥1 + 𝑥2)2

• we can write 𝑓 as 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) where

𝑔(𝑦) = 𝑦21 + 𝑦1𝑦
2
2, ℎ(𝑥) =

[
sin(𝑥1) + 𝑥22

𝑥1 + 𝑥2

]
• we have ∇𝑔(𝑦) =

[
2𝑦1 + 𝑦22
2𝑦1𝑦2

]
and 𝐷ℎ(𝑥) =

[
cos(𝑥1) 2𝑥2

1 1

]
• hence,

∇ 𝑓 (𝑥) = 𝐷ℎ(𝑥)T∇𝑔
(
ℎ(𝑥)

)
=

[
cos(𝑥1) 1
2𝑥2 1

]T [
2sin(𝑥1) + 2𝑥22 + (𝑥1 + 𝑥2)2
2(sin(𝑥1) + 𝑥22) (𝑥1 + 𝑥2)

]
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Example: nonlinear least-squares

consider again the function 𝑓 (𝑥) = ∥ℎ(𝑥)∥2 =
∑𝑝

𝑗=1 ℎ 𝑗 (𝑥)2

• we have 𝑓 (𝑥) = 𝑔(ℎ(𝑥)) where 𝑔(𝑦) = ∥𝑦∥2

• using ∇𝑔(𝑦) = 2𝑦 and the chain rule, we get

∇ 𝑓 (𝑥) = 𝐷ℎ(𝑥)T∇𝑔(ℎ(𝑥)) = 2𝐷ℎ(𝑥)Tℎ(𝑥)

• the Hessian can be found using the chain rule applied to each term

𝑓 𝑗 (𝑥) = 𝑔(ℎ 𝑗 (𝑥)) where 𝑔(𝑦) = 𝑦2

• with 𝑔′ (𝑦) = 2𝑦 and 𝑔′′ (𝑦) = 2, we get

∇2 𝑓 (𝑥) =
𝑝∑
𝑗=1

2ℎ 𝑗 (𝑥)∇2ℎ 𝑗 (𝑥) + 2∇ℎ 𝑗 (𝑥)∇ℎ 𝑗 (𝑥)T

= 2
𝑝∑
𝑗=1

ℎ 𝑗 (𝑥)∇2ℎ 𝑗 (𝑥) = 2𝐷ℎ(𝑥)T𝐷ℎ(𝑥)
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Composition with affine function

𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏)

• 𝑓 : R𝑛 → R, 𝑔 : R𝑚 → R

• 𝐴 is an 𝑚 × 𝑛 matrix

• 𝑏 is an 𝑚 vector

the gradient and Hessian are

∇ 𝑓 (𝑥) = 𝐴T∇𝑔(𝐴𝑥 + 𝑏)

and
∇2 𝑓 (𝑥) = 𝐴T∇2𝑔(𝐴𝑥 + 𝑏)𝐴
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Example

use the composition with affine function property to find the gradient and Hessian of

𝑓 (𝑥) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

we can express 𝑓 as 𝑓 (𝑥) = 𝑔(𝐴𝑥 + 𝑏), where 𝑔(𝑦) = 𝑒𝑦1 + 𝑒𝑦2 + 𝑒𝑦3 , and

𝐴 =


1 1
1 −1

−1 0

 , 𝑏 =


−1
−1
−1


the gradient and Hessian of 𝑔 are

∇𝑔(𝑦) =

𝑒𝑦1

𝑒𝑦2

𝑒𝑦3

 , ∇2𝑔(𝑦) =

𝑒𝑦1 0 0
0 𝑒𝑦2 0
0 0 𝑒𝑦3


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hence

∇ 𝑓 (𝑥) = 𝐴T∇𝑔(𝐴𝑥 + 𝑏) =
[
1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1

𝑒𝑥1−𝑥2−1

𝑒−𝑥1−1


=

[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 − 𝑒−𝑥1−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

]
and

∇2 𝑓 (𝑥) = 𝐴T∇2𝑔(𝐴𝑥 + 𝑏)𝐴

=

[
1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1 0 0

0 𝑒𝑥1−𝑥2−1 0
0 0 𝑒−𝑥1−1



1 1
1 −1

−1 0


=

[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1 𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1

]

SA — ENGR507differentiation rules 3.23



Example

𝑓 (𝑥) = log
𝑚∑
𝑖=1

exp(𝑎T𝑖 𝑥 + 𝑏𝑖)

where 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛 and 𝑏1, . . . , 𝑏𝑚 ∈ R

• this is the composition of the affine function 𝐴𝑥 + 𝑏 and the function:

𝑔(𝑦) = log

(
𝑚∑
𝑖=1

exp 𝑦𝑖

)
where 𝐴 ∈ R𝑚×𝑛 is a matrix whose rows are 𝑎T1, . . . , 𝑎

T
𝑚

• differentiating 𝑔(𝑦) gives:

∇𝑔(𝑦) = 1∑𝑚

𝑖=1 exp 𝑦𝑖


exp 𝑦1

...

exp 𝑦𝑚


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• using the composition rule for gradients, we find:

∇ 𝑓 (𝑥) = 1

1T𝑧
𝐴T𝑧

where 𝑧𝑖 = exp(𝑎T
𝑖
𝑥 + 𝑏𝑖) for 𝑖 = 1, . . . , 𝑚

• for the Hessian, taking the partial derivatives of 𝑔(𝑦) yields:

𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥 𝑗

=


exp(𝑦𝑖 )

∑𝑚

𝑖=1
exp 𝑦𝑖−exp(𝑦𝑖 )2

(
∑𝑚

𝑖=1
exp 𝑦𝑖 )2

𝑖 = 𝑗

− exp(𝑦𝑖 ) exp(𝑦 𝑗 )
(
∑𝑚

𝑖=1
exp 𝑦𝑖 )2

𝑖 ≠ 𝑗

or in matrix form:

∇2𝑔(𝑦) = diag(∇𝑔(𝑦)) − ∇𝑔(𝑦)∇𝑔(𝑦)T

• applying the composition formula, the Hessian of 𝑓 (𝑥) becomes:

∇2 𝑓 (𝑥) = 𝐴T
(
1

1T𝑧
diag(𝑧) − 1

(1T𝑧)2
𝑧𝑧T

)
𝐴

where 𝑧𝑖 = exp(𝑎T
𝑖
𝑥 + 𝑏𝑖) for 𝑖 = 1, . . . , 𝑚
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First-order Taylor (affine) approximation

first-order Taylor approximation of 𝑓 : R𝑛 → R, near point 𝑧:

𝑓 (𝑥) = 𝑓 (𝑧) + 𝜕 𝑓

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + ··· + 𝜕 𝑓

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛)

= 𝑓 (𝑧) + ∇ 𝑓 (𝑧)T (𝑥 − 𝑧)

first-order Taylor approximation of differentiable 𝑓 : R𝑛 → R𝑚 around 𝑧:

𝑓 (𝑥) = 𝑓 (𝑧) + 𝐷 𝑓 (𝑧) (𝑥 − 𝑧)

• 𝑓 (𝑥) is very close to 𝑓 (𝑥) when 𝑥𝑖 are all near 𝑧𝑖

• sometimes written 𝑓 (𝑥; 𝑧), to indicate that 𝑧 where the approximation appear

• 𝑓 is an affine function of 𝑥 (often called linear approximation of 𝑓 near 𝑧)

• useful in deriving and analyzing algorithms (we will see later)
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Illustration with one variable

𝑧

𝑓 (𝑥)

𝑓

𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′ (𝑧) (𝑥 − 𝑧)
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Example for scalar valued functions

𝑓 (𝑥1, 𝑥2) = 𝑥1 − 3𝑥2 + 𝑒2𝑥1+𝑥2−1

• gradient:

∇ 𝑓 (𝑥) =
[
1 + 2𝑒2𝑥1+𝑥2−1

−3 + 𝑒2𝑥1+𝑥2−1

]
• Taylor approximation around 𝑧 = 0:

𝑓 (𝑥) = 𝑓 (0) + ∇ 𝑓 (0)T (𝑥 − 0)
= 𝑒−1 + (1 + 2𝑒−1)𝑥1 + (−3 + 𝑒−1)𝑥2
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Example for vector valued functions

𝑓 (𝑥) =
[

𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
𝑒2𝑥1+𝑥2 − 𝑥1
𝑥21 − 𝑥2

]

• derivative matrix

𝐷 𝑓 (𝑥) =
[
2𝑒2𝑥1+𝑥2 − 1 𝑒2𝑥1+𝑥2

2𝑥1 −1

]
• first order approximation of 𝑓 around 𝑧 = 0:

𝑓 (𝑥) =
[

𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
1
0

]
+
[
1 1
0 −1

] [
𝑥1
𝑥2

]
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Second-order approximation

for 𝑓 : R𝑛 → R, the second-order Taylor approximation of 𝑓 near 𝑧 is given by:

𝑓 (𝑥) ≈ 𝑓 (𝑥) = 𝑓 (𝑧) + ∇ 𝑓 (𝑧)T (𝑥 − 𝑧) + (1/2) (𝑥 − 𝑧)T∇2 𝑓 (𝑧) (𝑥 − 𝑧)

• for 𝑛 = 1 reduces to

𝑓 (𝑥) ≈ 𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′ (𝑧) (𝑥 − 𝑧) + 𝑓 ′′ (𝑧)
2

(𝑥 − 𝑧)2

• a quadratic function of 𝑥; hence, called also quadratic approximation

• useful in deriving and analyzing algorithms (we will see later)
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Gradient and level sets

• gradient ∇ 𝑓 (𝑥0) is orthogonal to the level sets 𝑓 (𝑥) = 𝛾 at 𝛾 = 𝑓 (𝑥0)

• to see this,, consider a curve within S𝛾 parametrized by 𝑟 : R → R𝑛

• for 𝑟 (𝑡0) = 𝑥0 and 𝐷𝑟 (𝑡0) = 𝑟 ′ ≠ 0, 𝑟 ′ is the tangent vector to the curve at 𝑥0

• the derivative of the function ℎ(𝑡) = 𝑓 (𝑟 (𝑡)) = 𝛾 yields

0 = ℎ′ (𝑡0) = ∇ 𝑓 (𝑟 (𝑡0))T𝐷𝑟 (𝑡0) = ∇ 𝑓 (𝑥0)T𝑟 ′

• this implies ∇ 𝑓 (𝑥0) is perpendicular to 𝑟 ′

𝑥1

𝑥2

𝑥0 𝑓 (𝑥) = 𝛾

∇ 𝑓 (𝑥0)
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Directional derivative

let 𝑓 : R𝑛 → R and consider the function ℎ(𝛼) = 𝑓 (𝑥 + 𝛼𝑣) restricted to a line

• using the chain rule (composition with affine function), we have

ℎ′ (𝛼) = 𝑣T∇ 𝑓 (𝑥 + 𝛼𝑣)

• for 𝛼 = 0, this value is

𝑓 ′ (𝑥; 𝑣) = ℎ′ (0) = lim
𝛼→0

𝑓 (𝑥 + 𝛼𝑣) − 𝑓 (𝑥)
𝛼

and called the directional derivative of 𝑓 in the direction of 𝑣

• when ∇ 𝑓 (𝑥)T𝑣 > 0, we have 𝑓 (𝑥 + 𝛼𝑣) > 𝑓 (𝑥) for sufficiently small positive 𝛼

• when ∇ 𝑓 (𝑥)T𝑣 < 0, we have 𝑓 (𝑥 + 𝛼𝑣) < 𝑓 (𝑥)

• using Cauchy-Schwarz,

∇ 𝑓 (𝑥)T𝑣 ≤ ∥∇ 𝑓 (𝑥)∥∥𝑣∥

making the directional derivative maximized when 𝑣 = ∇ 𝑓 (𝑥)
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Example

∇ 𝑓 (𝑥) is a vector pointing to the direction where 𝑓 increases the fastest at 𝑥
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