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3. Derivatives

e scalar derivatives

e gradient and hessian
o differentiation rules
e Taylor approximation

e level sets and directional derivative
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Derivative definition

the derivative of f(x) (f : R — R) at a point z is

F(2) = %(z) _ E%M

e geometrically, f/(z) is the slope of the tangent line to the graph of f at the point z

f(x) J(x)

flzte)-fiz) lim £Ere)=f()
e—0 €

= slope of line = slope of tangent line

flz+e)

e when f’(x) is positive, f(x) increases as x does

e when f’(x) is negative, f(x) decreases as x increases
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Common derivatives

f(x) 1 (x)
c 0
x¢ txtt
e* (exp(x)) e*
log(x),x >0 1/x
log.(x),x >0,c>0 xlri(c)
sin(x) cos(x)
cos(x) —sin(x)

(we use log(-) = In(-) to denote the natural logarithm)
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Derivative rules
Linearity: for f(x) = ag(x) + Bh(x):

J'(x) = ag’(x) + Bh' (x)

Product rule: for f(x) = g(x)h(x):
J'(x) = g (x)h(x) + g(x) " (x)

Quotient rule: for f(x) = %:
g (x)h(x) —g(x)h"(x)

f'(x) = ABE

Chain rule: for f(x) = g(h(x)):

J'(x) = h'(x)g" (h(x))



Second derivative

the second derivative of f(x) at a point z is the derivative of the first derivative:

2 " o
f//(Z) = %(Z) = ll_)n'lo M
iy JErO -2+ f(z-€)
e—0 62

e second derivative conveys information about the curvature of the function

e when f”(x) > 0, then f’(x) is increasing, which suggests the slope of the
tangent line to f increases as x does yielding a concave-upwards shape

e if f”/(x) is negative, the function exhibits a concave-downwards curvature
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Gradient

e the partial derivative of f : R" — R at point z is, with respect to x; is

of . [z zic1zi T €62, 2) — f(2)
——(z) = lim
axi e—0 €

e quantifies the variation of f concerning x;, while other variables remain constant

the gradient of f : R" — R at point z is the n-vector
d
7= (2)
af
Vi) = 7w
o
7o (2)
[ is differentiable if its dom f is open and V f(x) exists for every x € dom f
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Examples

e gradient of the function f(x) = 5x1 + 8x2 + x1x2 —x% - 2x§ is
Vf(x) = (5 + X9 — 2)61, 8 +Xx1 — 4)62)
e gradient of f(x) = x% +e™* +sin(xg) is

2x1 —e M
cos(x2)

Vi) = [

e partial derivatives of
2 2 2
f(x) =[x =27+ +x;,

are g—‘;(x) = 2x;; hence

Vi) =(2x1,...,2x,) = 2x

gradient and hessian
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Jacobian

let f: R" — R™:

fl(x) fl(xl,...,xn)

Jx) =

], fi:R" >R

fm.(x) fm(xl’.--wxn)

the Jacobian or derivative matrix of f at z is the m X n matrix:

%(z) gz;;(z) %(z) V()T
DF(2) = ﬁ(z) axz<z> c (@] _ szs(Z)T
e Yo - ‘”‘m(@ Vin(2)"

ifm=1thenDf(z) =Vf(z)T

gradient and hessian
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Examples

e the Jacobian of

2
_ X1 +X2
f(x) B —X1 +X1X2
is
_ 1 2)62
Df(x) -1 +Xx2 X1 ]

e the derivative matrix or Jacobian of f(x) = Ax is

Df(x)=A

gradient and hessian
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Hessian

the Hessian of a function f : R” — R at z is the n X n matrix

2 62 g 62 J
_( ) axlgxg (Z) o r')xl gxn (Z)
o°f
V?f(z) — 0x26x1 (Z) W(Z) Bxgz?xn (Z)
1
anﬁxl( ?) 8xn0xz (Z) S reA €

e fis twice differentiable it V2 f (x) exists for all x € dom f (with open domain)
e the Hessian is a symmetric matrix V2 f(z) = V2 f(z)T since

9*f f
0x;0x;

(@) =7

(z) foralli,j=1,...,n

e Jacobian of the gradient of f : R" — R is its Hessian: DV f(x) = V2 f(x)
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Examples

e for f(x) = 5x1 + 8xg + x1x2 —x% - 2x§:

-2 1
w7

Vi) =

e for

5+x9—2x
8+x1—4_x

f(x) — e-x1+-x2_1 +ex1—xQ—1 +e—x1—1

the gradient is
Vf(x

and the Hessian is

Vif(x) =

e

gradient and hessian

ex1+X2—1 _ exl —xo—1

) B [ex1+xQ—1 +ex1—xQ—1 _ e—xl—l}

xX1+x9—-1 _ e

X1—x2—1

ex1+x2—1 +ex1—x2—1 +e—x1—1 e

e

x1+x2-1 _ ,x1—-x2-1

e
X1+x0—1 + eX1—X2—1

|
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Linear and quadratic functions

Linear and affine functions: for f(x) = ax + b:

Vf(x)=a
V2f(x)=0

Quadratic functions: for f(x) = x7Qx + rTx + 5, where Q = QT is symmetric:

Vf(x)=20x+r
Vif(x) =20

gradient and hessian
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Least-squares function

the least-squares function f(x) = ||Ax — b||? can be expressed as

f(x) = ||Ax = b||?
= (Ax - b)T(Ax - b)
= (xTAT-pT)(Ax - b)
=xTATAx — bTAx = xTATH + bTh
=xTATAx - 2bTAx + bTb

Ty + 5 with

this means that f is quadratic f(x) = xTQx +r
0=ATA, rT=-2b7A, s=b"b

hence,
Vi(x) =2ATAx - 2A4Tb, V2f(x) =24TA

gradient and hessian
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Sum and scalar multiplication

Sum of two functions: if f(x) = g(x) + h(x), then

Vf(x) = Vg(x) + Vh(x), V?f(x) = VZg(x) + V?h(x)

Scalar multiplication: if f(x) = ag(x), where « is a scalar, then

Vf(x) =aVg(x), V2f(x)=aV’g(x)

differentiation rules
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Product rule

Product rule: let f : R” — R be
f(x) =g()Th(x),
where g : R"” - R™and h : R" — R™, then

Vf(x)=Df(x)" = Dg(x)"h(x) + Dh(x)"g(x)

Product rule for second derivative
o if f(x)=g(x)h(x)whereg : R" > Randh:R" - R

e the Hessian is

V2 £ (x) = Vig(x)h(x) + VZh(x)g(x) + Vg(x)Vh(x) T+ VR(x)Vg(x)T
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Example: pure quadratic function

f(x) =xTAx  where A is not symmetric

e since f(x) = x7(0.5A +0.5AT)x, we know from before that V £ (x) = (A + AT)x
e we can also derive the gradient using the product rule
e express f as f(x) = g(x)Th(x) where g(x) = x and h(x) = Ax

e we have
Dg(x)=1 and Dh(x)=A

e applying the product rule we obtain:

Vf(x) = Dg(x)"h(x) + Dh(x)"g(x)
=Ax+ATx

= (A+ADx

differentiation rules 3.16



Example: nonlinear least squares

p
f) =1h@)? = Zlhj(x)z
=

e each term of the sum is the product of two identical function 4 (x)h; (x)

e so we can apply the product rule to each term find the gradient as:

Vfx) = fj 2Dhj(x)Thj(x) =2 fj 2Vh;(x)h;(x) = 2Dh(x)Th(x)
j=1 j=1

e the Hessian can also be found using the product rule and is given by:

p
Vi =23 (V) () Vh; ()T + by (1) V2 ()
=

=2Dh(x)TDh(x) +2 fj hj(x)V2h;(x)
Jj=1
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Chain rule

let f: R" — R be the composition

F(x) =g(h(x)) = g(h1(x),.... hp(x))

where g : R” — R and i : R" — RP are differentiable functions

Chain rule
Vf(x)=Df(x)" = Dh(x)"Vg(h(x))

Chain rule for second derivative
o let f:R" > be f(x) =g(h(x))withh: R" > Randg: R - R

e the Hessian is

V2 f(x) = g’ (h(x))VZh(x) + 8" (h(x)) VA(x)VA(x)T
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Example
we use the chain-rule to find the gradient of
. 212 . 2 2
f(x) = (sin(xq) +x3)° + (sin(xq) +x3) (x1 +x2)

e we can write f as f(x) = g(h(x)) where

sin(xq) +x§
X1+ X9

) =y +y1y3, h(x)= [

cos(xy) 2xo

2
e we have Vg(y) = [le +y2] and Dh(x) = 1 1

2y1y2

e hence,
Vf(x) = Dh(x)"Vg(h(x))
_ [cos(xl) 1] T [QSin(xl) +2x2 + (x1 +x2)2]

2x9 1 2(sin(xq) +x§)(x1 +x3)
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Example: nonlinear least-squares

consider again the function f(x) = ||h(x)||% = Zle hj(x)?

we have f(x) = g(h(x)) where g(y) = [yl
using Vg(y) = 2y and the chain rule, we get

Vf(x) = Dh(x)"Vg(h(x)) = 2Dh(x)"h(x)

the Hessian can be found using the chain rule applied to each term

fi(x) = g(hj(x)) where g(y) =y’

with g’(y) = 2y and g”’ (y) = 2, we get

)4
V2f(x) = Z‘i 20 (x)V2h;(x) + 2Vh;(x)Vh; (x)T

J=

=2 ij h;(x)V2h;(x) = 2Dh(x) "D h(x)
Jj=1
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Composition with affine function

f(x) =g(Ax +b)

e fR" SR, g:R" >R
e Ais an m X n matrix

e b is an m vector

the gradient and Hessian are
Vi(x) = ATVg(Ax +b)

and
V2f(x) = ATVZg(Ax + b)A
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Example

use the composition with affine function property to find the gradient and Hessian of

f(x) - ex1+x2—1 +ex1—x2—1 +e—x1—1

we can express f as f(x) = g(Ax + b), where g(y) = e”* + e72 + 73, and

A=

the gradient and Hessian of g are

e)’l_
Ve(y) = |e”

eyS

differentiation rules

(11 -1
1 -1, b=|-1
-1 0 -1

et 0
. V() =0 e

o o
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hence

€X1+x2—1

Vf(-x) = ATVg(Ax + b) = 1 Lo~ eX1—x2—1

1 -1 0 —-x1-1

e
ex1+x271 + exlf)@fl _ e,xl,l
= eX1tx2—1 _ ox1-x2-1
and
V2f(x) = ATV?g(Ax +b)A
ex1+x2—1
e

— 0 _1

ex1+xQ—1+exl—xz—1 +e X1™ 1 x1+x2 1 oX1—X2— 1
= eX1txa=1 _ ,x1-xz-1 eX1tx2—1 4 px1-x2-1
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Example

f(x) =log i exp(aiTx + b;)
i=1

where aq,...,a,, € R"and by,...,b,, € R

e this is the composition of the affine function Ax + b and the function:

g(y) = log (i exp yi)

where A € R™*" is a matrix whose rows are alT, e, a,{l
e differentiating g(y) gives:
€Xp Y1
Ve = = |
ST DI e
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using the composition rule for gradients, we find:
1
Vikx)=—=A"z
/@)= 15
where z; = exp(alx +b;) fori=1,...,m
for the Hessian, taking the partial derivatives of g(y) yields:

m
exp(yi) D e exp yi—exp(y;)?

m l = .

9%s  _ (Qrmy expyi)? '

Oxi0xj | _explyn) exp(yy) i#]
(Zizl exp y;)?

or in matrix form:

V3g(y) = diag(Vg(y)) - Vg(»)Vg(») ™

applying the composition formula, the Hessian of f(x) becomes:

1A

1.
Vif(x)=AT Edlag(z) BGESE 2z

where z; = exp(alx + b;) fori=1,...,m

differentiation rules
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First-order Taylor (affine) approximation

first-order Taylor approximation of f : R — R, near point z:

O (2) (k= 20)
Xn

fx) =f(z)+§—)£(z) (X1 —z1) + - + >

=f(2)+Vf(2)T(x-2)

first-order Taylor approximation of differentiable f : R — R™ around z:
f(x)=f@)+Df(2)(x-2)

f(x) is very close to f (x) when x; are all near z;

e sometimes written f(x; z), to indicate that z where the approximation appear

f is an affine function of x (often called linear approximation of f near z)

useful in deriving and analyzing algorithms (we will see later)

Taylor approximation 3.26



Illustration with one variable

Far

Z

f@) =f@+f (2)(x-2)
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Example for scalar valued functions

f(x1,x2) = x1 = 3xp + VP07

e gradient:

Vi) =

_3 + 82x1+x2—1

1+ 262x1+x2—1 ]

e Taylor approximation around z = 0:

fx) = £(0)+V£(0)(x-0)

e+ (1+2e Hxy +(-3+e HHxy

Taylor approximation
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Example for vector valued functions

| Ailx)

i) = fa(x)

2
)Cl — X2

[ 62x1+x2 -x1

e derivative matrix
282x1+x2 -1 82x1+x2 ]

Dfte) = [ 2x, -1

e first order approximation of f around z = 0:

s A ] |1
f&) = [ fo(x) } - [ 0

Taylor approximation
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Second-order approximation

for f : R™ — R, the second-order Taylor approximation of f near z is given by:

f@) = f(0) = f()+ V() T(x—2) + (1/2)(x = 2) V2 f(2) (x - 2)

e for n = 1 reduces to

R N f”2(z)

J@) = f(x) =f2)+f(2)(x-2) (x~2)?

e a quadratic function of x; hence, called also quadratic approximation

o useful in deriving and analyzing algorithms (we will see later)

Taylor approximation
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Gradient and level sets

e gradient V f(x¢) is orthogonal to the level sets f(x) =y aty = f(xg)
e to see this,, consider a curve within S,, parametrized by r : R — R"

e for r(ty) = xg and Dr(ty) =r’ # 0, r’ is the tangent vector to the curve at xq

e the derivative of the function A(t) = f(r(t)) = 7y yields
0= h'(to) = Vf(r(t0))'Dr(to) = V f (x0) '+’

e this implies V f(x() is perpendicular to r’
X2

/ ~
N

Vf(xo) TS
' ) =y

\
\
\
7

X1
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Directional derivative
let f : R™ — R and consider the function 2(a@) = f(x + av) restricted to a line
e using the chain rule (composition with affine function), we have
W (@) = oV f(x+av)

e for @ = 0, this value is

S+ av) - f(x)

f'(x50) = B (0) = lim -
and called the directional derivative of f in the direction of v
e when V£ (x)Tv > 0, we have f(x + av) > f(x) for sufficiently small positive o
e when V£ (x)Tv < 0, we have f(x +av) < f(x)
e using Cauchy-Schwarz,
Vi) o < VAol

making the directional derivative maximized when v = V f (x)
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Example

V f(x) is a vector pointing to the direction where f increases the fastest at x

level sets and directional derivative
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References and further readings

Learning. John Wiley & Sons, 2023. (Ch. 5)

e S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. (Appendix
A4)

e S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares. Cambridge University Press, 2018. (Appendix C.1)

L. Vandenberghe, EE133A Lecture Notes, UCLA.
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