
3. Derivatives

• scalar derivatives

• gradient and hessian

• multi-variable differentiation rules
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Derivative definition

the derivative of f : R → R at the number z is defined as

f ′(z) =
df

dz
= lim

ϵ→0

f(z + ϵ)− f(z)

ϵ

= slope of line

f(x)

x

f(x)

x

f(z + ϵ)

f(z)

f(z+ϵ)−f(z)
ϵ lim

ϵ→∞
f(z+ϵ)−f(z)

ϵ

f(z)

zz + ϵz

= slope of line

• when f ′(x) is positive, the function f(x) increases as x does

• f ′(x) is negative, f(x) decreases as x increases
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Common derivatives

f(x) f ′(x)

c 0

xℓ ℓxℓ−1

ex ex

log(x), x > 0 1
x

logc(x), x > 0, c > 0 1
xln(c)

sin(x) cos(x)

cos(x) −sin(x)

(we use log(.) = ln(.) to denote the natural logarithm)
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Derivative rules

• Linearity: for f(x) = αg(x) + βh(x):

f ′(x) = αg′(x) + βh′(x)

• Product rule: for f(x) = g(x)h(x):

f ′(x) = g′(x)h(x) + g(x)h′(x)

• Quotient rule: for f(x) = g(x)
h(x) :

f ′(x) =
g′(x)h(x)− g(x)h′(x)

h(x)2

• Chain rule: for f(x) = g(h(x)) where g : R → R and h : R → R:

f ′(x) = h′(x)g′
(
h(x)

)
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Second derivative

the second derivative of f at a point z is the derivative of the first derivative:

f ′′(z) =
d2f

dz2
= lim

ϵ→0

f ′(z + ϵ)− f ′(z)

ϵ
,

the second derivative conveys information about the curvature of the function

• when f ′′(x) > 0, then f ′(x) is increasing, which suggests the slope of the
tangent line to f increases as x does yielding a concave-upwards shape

• if f ′′(x) is negative, the function exhibits a concave-downwards curvature
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Gradient

the gradient of f : Rn → R (at z) is

∇f(z) =


∂f
∂x1

(z)

∂f
∂x2

(z)
...

∂f
∂xn

(z)


• entries ∂f

∂xi
(z) are partial derivative of f at point z, with respect to xi:

∂f

∂xi
(z) = lim

ϵ→0

f(z1, . . . , zi−1, zi + ϵ, zi+1, . . . , zn)− f(z)

ϵ

• the gradient ∇f(z) is a vector that is pointing to the direction where f
increases the fastest at z
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Example 3.1

a) partial derivatives of f(x) = ∥x∥2 = x2
1 + · · ·+ x2

n are ∂f
∂xi

(x) = 2xi;
hence

∇f(x) = (2x1, . . . , 2xn) = 2x

b) gradient of the function f(x) = 5x1 + 8x2 + x1x2 − x2
1 − 2x2

2 is

∇f(x) = (5 + x2 − 2x1, 8 + x1 − 4x2)

c) gradient of f(x) = x2
1 + e−x1 + sin(x2) is

∇f(x) =

[
2x1 − e−x1

cos(x2)

]
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Hessian

the Hessian of a function f : Rn → R at z is is defined as

∇2f(z) =


∂2f
∂x2

1
(z) ∂2f

∂x1∂x2
(z) · · · ∂2f

∂x1∂xn
(z)

∂2f
∂x2∂x1

(z) ∂2f
∂x2

2
(z) · · · ∂2f

∂x2∂xn
(z)

...
...

. . .
...

∂2f
∂xn∂x1

(z) ∂2f
∂xn∂x2

(z) · · · ∂2f
∂x2

n
(z)


• we say that f is twice differentiable if ∇2f(x) exists for all x ∈ Rn

• the Hessian is a symmetric matrix ∇2f(z) = ∇2f(z)T since

∂2f

∂xi∂xj
(z) =

∂2f

∂xj∂xi
(z), for all i, j = 1, . . . , n
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Example 3.2

a) for f(x) = 5x1 + 8x2 + x1x2 − x2
1 − 2x2

2:

∇f(x) =

[
5 + x2 − 2x1

8 + x1 − 4x2

]
, ∇2f(x) =

[
−2 1
1 −4

]
b) for

f(x) = ex1+x2−1 + ex1−x2−1 + e−x1−1

the gradient is

∇f(x) =

[
ex1+x2−1 + ex1−x2−1 − e−x1−1

ex1+x2−1 − ex1−x2−1

]
and the Hessian is

∇2f(x) =

[
ex1+x2−1 + ex1−x2−1 + e−x1−1 ex1+x2−1 − ex1−x2−1

ex1+x2−1 − ex1−x2−1 ex1+x2−1 + ex1−x2−1

]
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Linear and quadratic functions

Linear and affine functions: for f(x) = aTx+ b:

∇f(x) = a

∇2f(x) = 0

Quadratic functions: for f(x) = xTQx+ rTx+ c, where Q = QT is
symmetric:

∇f(x) = 2Qx+ r

∇2f(x) = 2Q
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Least-squares function

the least-squares function f(x) = ∥Ax− b∥2 can be expressed as

f(x) = ∥Ax− b∥2

= (Ax− b)T(Ax− b)

= (xTAT − bT)(Ax− b)

= xTATAx− bTAx− xTATb+ bTb

= xTATAx− 2bTAx+ bTb

this means that f is quadratic f(x) = xTQx+ rTx+ c with

Q = ATA, rT = −2bTA, c = bTb

hence,
∇f(x) = 2ATAx− 2ATb, ∇2f(x) = 2ATA
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Composition with affine function

f(x) = g(Ax+ b)

• f : Rn →, g : Rm → R
• A is an m× n matrix

• b is an m vector

the gradient and Hessian are

∇f(x) = AT∇g(Ax+ b)

and
∇2f(x) = AT∇2g(Ax+ b)A
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Example 3.3

use the composition with affine function property to find the gradient and
Hessian of

f(x) = ex1+x2−1 + ex1−x2−1 + e−x1−1

we can express f as f(x) = g(Ax+ b), where g(y) = ey1 + ey2 + ey3 , and

A =

 1 1
1 −1

−1 0

 , b =

−1
−1
−1


the gradient and Hessian of g are

∇g(y) =

ey1

ey2

ey3

 , ∇2g(y) =

ey1 0 0
0 ey2 0
0 0 ey3
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hence

∇f(x) = AT∇g(Ax+ b) =

[
1 1 −1
1 −1 0

]ex1+x2−1

ex1−x2−1

e−x1−1


=

[
ex1+x2−1 + ex1−x2−1 − e−x1−1

ex1+x2−1 − ex1−x2−1

]
and

∇2f(x) = AT∇2g(Ax+ b)A

=

[
1 1 −1
1 −1 0

]ex1+x2−1 0 0
0 ex1−x2−1 0
0 0 e−x1−1

 1 1
1 −1

−1 0


=

[
ex1+x2−1 + ex1−x2−1 + e−x1−1 ex1+x2−1 − ex1−x2−1

ex1+x2−1 − ex1−x2−1 ex1+x2−1 + ex1−x2−1

]
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Jacobian

let f : Rn → Rm:

f(x) =

 f1(x)
...

fm(x)

 =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xm)


where fi is a scalar-valued function of x

the Jacobian or derivative matrix of f at z is the m× n matrix:

Df(z) =


∂f1
∂x1

(z) ∂f1
∂x2

(z) · · · ∂f1
∂xn

(z)
∂f2
∂x1

(z) ∂f2
∂x2

(z) · · · ∂f2
∂xn

(z)
...

...
. . .

...
∂fm
∂x1

(z) ∂fm
∂x2

(z) · · · ∂fm
∂xn

(z)

 =


∇f1(z)

T

∇f2(z)
T

...
∇fm(z)T


• if m = 1, then Df(z) = ∇f(z)T

• Jacobian of the gradient of f : Rn → R is its Hessian
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Example 3.4

a) the Jacobian of

f(x) =

[
x1 + x2

2

−x1 + x1x2

]
is

Df(x) =

[
1 2x2

−1 + x2 x1

]
b) the derivative matrix or Jacobian of f(x) = Ax is

Df(x) = A
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Rules

Sum of two functions: if f(x) = f1(x) + f2(x), then

∇f(x) = ∇f1(x) +∇f2(x), ∇2f(x) = ∇2f1(x) +∇2f2(x)

Scalar multiplication: if f(x) = αg(x), where α is a scalar, then

∇f(x) = α∇g(x), ∇2f(x) = α∇2g(x)

Multivariable product rule: let f : Rn → R be

f(x) = g(x)Th(x),

where g : Rn → Rm and h : Rn → Rm, then

∇f(x) = Df(x)T = Dg(x)Th(x) +Dh(x)Tg(x)
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Multivariable chain rule: let f : Rn → R be the composition

f(x) = g(h(x)) = g(h1(x), . . . , hp(x))

where g : Rp → R and h : Rn → Rp are differentiable functions

• using the chain rule, the partial derivatives of f are

∂f

∂xj
(x) =

∂h1

∂xj
(x)

∂g

∂y1

(
h(x)

)
+ · · ·+ ∂hp

∂xj
(x)

∂g

∂yp

(
h(x)

)
for j = 1, . . . , n

• the gradient can be compactly represented as the vector-matrix product:

∇f(x) = Df(x)T = Dh(x)T∇g
(
h(x)

)
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Example 3.5

a) use the chain-rule to find the gradient of

f(x) =
(
sin(x1) + x2

2

)2
+
(
sin(x1) + x2

2

)
(x1 + x2)

2

■ we can write f as f(x) = g(h(x)) where

g(y) = y2
1 + y1y

2
2 , h(x) =

[
sin(x1) + x2

2

x1 + x2

]

■ the gradient of g is ∇g(y) =

[
2y1 + y2

2

2y1y2

]
and the derivative of h is

Dh(x) =

[
cos(x1) 2x2

1 1

]
■ hence,

∇f(x) = Dh(x)T∇g
(
h(x)

)
=

[
cos(x1) 1
2x2 1

]T [
2sin(x1) + 2x2

2 + (x1 + x2)
2

2(sin(x1) + x2
2)(x1 + x2)

]
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b) nonlinear least-squares function:

f(x) = ∥h(x)∥2 =

p∑
j=1

hj(x)
2

we have f(x) = g(h(x)) where g(y) = ∥y∥2

using ∇g(y) = 2y and the chain rule, we get

∇f(x) = Dh(x)T∇g
(
h(x)

)
= 2Dh(x)Th(x)
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