3. Derivatives

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Derivative definition

the derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ at the number z is defined as

$$
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\epsilon \rightarrow 0} \frac{f(z+\epsilon)-f(z)}{\epsilon}
$$

- when $f^{\prime}(x)$ is positive, the function $f(x)$ increases as x does
- $f^{\prime}(x)$ is negative, $f(x)$ decreases as x increases

Common derivatives

$f(x)$	$f^{\prime}(x)$
c	0
x^{ℓ}	$\ell x^{\ell-1}$
e^{x}	e^{x}
$\log (x), x>0$	$\frac{1}{x}$
$\log _{c}(x), x>0, c>0$	$\frac{1}{x \ln (c)}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$

(we use $\log ()=.\ln ($.$) to denote the natural logarithm)$

Derivative rules

- Linearity: for $f(x)=\alpha g(x)+\beta h(x)$:

$$
f^{\prime}(x)=\alpha g^{\prime}(x)+\beta h^{\prime}(x)
$$

- Product rule: for $f(x)=g(x) h(x)$:

$$
f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)
$$

- Quotient rule: for $f(x)=\frac{g(x)}{h(x)}$:

$$
f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}}
$$

- Chain rule: for $f(x)=g(h(x))$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$:

$$
f^{\prime}(x)=h^{\prime}(x) g^{\prime}(h(x))
$$

Second derivative

the second derivative of f at a point z is the derivative of the first derivative:

$$
f^{\prime \prime}(z)=\frac{d^{2} f}{d z^{2}}=\lim _{\epsilon \rightarrow 0} \frac{f^{\prime}(z+\epsilon)-f^{\prime}(z)}{\epsilon}
$$

the second derivative conveys information about the curvature of the function

- when $f^{\prime \prime}(x)>0$, then $f^{\prime}(x)$ is increasing, which suggests the slope of the tangent line to f increases as x does yielding a concave-upwards shape
- if $f^{\prime \prime}(x)$ is negative, the function exhibits a concave-downwards curvature

Outline

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Gradient

the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}($ at $\boldsymbol{z})$ is

$$
\nabla f(\boldsymbol{z})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(\boldsymbol{z}) \\
\frac{\partial f}{\partial x_{2}}(\boldsymbol{z}) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(\boldsymbol{z})
\end{array}\right]
$$

- entries $\frac{\partial f}{\partial x_{i}}(\boldsymbol{z})$ are partial derivative of f at point \boldsymbol{z}, with respect to x_{i} :

$$
\frac{\partial f}{\partial x_{i}}(\boldsymbol{z})=\lim _{\epsilon \rightarrow 0} \frac{f\left(z_{1}, \ldots, z_{i-1}, z_{i}+\epsilon, z_{i+1}, \ldots, z_{n}\right)-f(\boldsymbol{z})}{\epsilon}
$$

- the gradient $\nabla f(\boldsymbol{z})$ is a vector that is pointing to the direction where f increases the fastest at \boldsymbol{z}

Example 3.1

a) partial derivatives of $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ are $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})=2 x_{i}$; hence

$$
\nabla f(\boldsymbol{x})=\left(2 x_{1}, \ldots, 2 x_{n}\right)=2 \boldsymbol{x}
$$

b) gradient of the function $f(\boldsymbol{x})=5 x_{1}+8 x_{2}+x_{1} x_{2}-x_{1}^{2}-2 x_{2}^{2}$ is

$$
\nabla f(\boldsymbol{x})=\left(5+x_{2}-2 x_{1}, 8+x_{1}-4 x_{2}\right)
$$

c) gradient of $f(x)=x_{1}^{2}+e^{-x_{1}}+\sin \left(x_{2}\right)$ is

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
2 x_{1}-e^{-x_{1}} \\
\cos \left(x_{2}\right)
\end{array}\right]
$$

Hessian

the Hessian of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at z is is defined as

$$
\nabla^{2} f(\boldsymbol{z})=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\boldsymbol{z}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\boldsymbol{z}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\boldsymbol{z}) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\boldsymbol{z}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\boldsymbol{z}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\boldsymbol{z}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\boldsymbol{z}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\boldsymbol{z}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\boldsymbol{z})
\end{array}\right]
$$

- we say that f is twice differentiable if $\nabla^{2} f(\boldsymbol{x})$ exists for all $\boldsymbol{x} \in \mathbb{R}^{n}$
- the Hessian is a symmetric matrix $\nabla^{2} f(\boldsymbol{z})=\nabla^{2} f(\boldsymbol{z})^{T}$ since

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{z})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\boldsymbol{z}), \quad \text { for all } i, j=1, \ldots, n
$$

Example 3.2

a) for $f(\boldsymbol{x})=5 x_{1}+8 x_{2}+x_{1} x_{2}-x_{1}^{2}-2 x_{2}^{2}$:

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{l}
5+x_{2}-2 x_{1} \\
8+x_{1}-4 x_{2}
\end{array}\right], \quad \nabla^{2} f(\boldsymbol{x})=\left[\begin{array}{cc}
-2 & 1 \\
1 & -4
\end{array}\right]
$$

b) for

$$
f(\boldsymbol{x})=e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}+e^{-x_{1}-1}
$$

the gradient is

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}-e^{-x_{1}-1} \\
e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1}
\end{array}\right]
$$

and the Hessian is

$$
\nabla^{2} f(\boldsymbol{x})=\left[\begin{array}{cc}
e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}+e^{-x_{1}-1} & e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1} \\
e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1} & e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}
\end{array}\right]
$$

Linear and quadratic functions

Linear and affine functions: for $f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$:

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =\boldsymbol{a} \\
\nabla^{2} f(\boldsymbol{x}) & =0
\end{aligned}
$$

Quadratic functions: for $f(\boldsymbol{x})=\boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}+c$, where $Q=Q^{T}$ is symmetric:

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =2 Q \boldsymbol{x}+\boldsymbol{r} \\
\nabla^{2} f(\boldsymbol{x}) & =2 Q
\end{aligned}
$$

Least-squares function

the least-squares function $f(\boldsymbol{x})=\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$ can be expressed as

$$
\begin{aligned}
f(\boldsymbol{x}) & =\|A \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
& =(A \boldsymbol{x}-\boldsymbol{b})^{T}(A \boldsymbol{x}-\boldsymbol{b}) \\
& =\left(\boldsymbol{x}^{T} A^{T}-\boldsymbol{b}^{T}\right)(A \boldsymbol{x}-\boldsymbol{b}) \\
& =\boldsymbol{x}^{T} A^{T} A \boldsymbol{x}-\boldsymbol{b}^{T} A \boldsymbol{x}-\boldsymbol{x}^{T} A^{T} \boldsymbol{b}+\boldsymbol{b}^{T} \boldsymbol{b} \\
& =\boldsymbol{x}^{T} A^{T} A \boldsymbol{x}-2 \boldsymbol{b}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{b}
\end{aligned}
$$

this means that f is quadratic $f(\boldsymbol{x})=\boldsymbol{x}^{T} Q \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}+c$ with

$$
Q=A^{T} A, \quad \boldsymbol{r}^{T}=-2 \boldsymbol{b}^{T} A, \quad c=\boldsymbol{b}^{T} \boldsymbol{b}
$$

hence,

$$
\nabla f(\boldsymbol{x})=2 A^{T} A \boldsymbol{x}-2 A^{T} \boldsymbol{b}, \quad \nabla^{2} f(\boldsymbol{x})=2 A^{T} A
$$

Outline

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Composition with affine function

$$
f(\boldsymbol{x})=g(A \boldsymbol{x}+\boldsymbol{b})
$$

- $f: \mathbb{R}^{n} \rightarrow, g: \mathbb{R}^{m} \rightarrow \mathbb{R}$
- A is an $m \times n$ matrix
- \boldsymbol{b} is an m vector
the gradient and Hessian are

$$
\nabla f(\boldsymbol{x})=A^{T} \nabla g(A \boldsymbol{x}+\boldsymbol{b})
$$

and

$$
\nabla^{2} f(\boldsymbol{x})=A^{T} \nabla^{2} g(A \boldsymbol{x}+\boldsymbol{b}) A
$$

Example 3.3

use the composition with affine function property to find the gradient and Hessian of

$$
f(\boldsymbol{x})=e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}+e^{-x_{1}-1}
$$

we can express f as $f(\boldsymbol{x})=g(A \boldsymbol{x}+\boldsymbol{b})$, where $g(\boldsymbol{y})=e^{y_{1}}+e^{y_{2}}+e^{y_{3}}$, and

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & 0
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

the gradient and Hessian of g are

$$
\nabla g(\boldsymbol{y})=\left[\begin{array}{c}
e^{y_{1}} \\
e^{y_{2}} \\
e^{y_{3}}
\end{array}\right], \quad \nabla^{2} g(\boldsymbol{y})=\left[\begin{array}{ccc}
e^{y_{1}} & 0 & 0 \\
0 & e^{y_{2}} & 0 \\
0 & 0 & e^{y_{3}}
\end{array}\right]
$$

hence

$$
\begin{aligned}
\nabla f(\boldsymbol{x})=A^{T} \nabla g(A \boldsymbol{x}+\boldsymbol{b}) & =\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
e^{x_{1}+x_{2}-1} \\
e^{x_{1}-x_{2}-1} \\
e^{-x_{1}-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}-e^{-x_{1}-1} \\
e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla^{2} f(\boldsymbol{x}) & =A^{T} \nabla^{2} g(A \boldsymbol{x}+\boldsymbol{b}) A \\
& =\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{x_{1}+x_{2}-1} & 0 & 0 \\
0 & e^{x_{1}-x_{2}-1} & 0 \\
0 & 0 & e^{-x_{1}-1}
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}+e^{-x_{1}-1} & e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1} \\
e^{x_{1}+x_{2}-1}-e^{x_{1}-x_{2}-1} & e^{x_{1}+x_{2}-1}+e^{x_{1}-x_{2}-1}
\end{array}\right]
\end{aligned}
$$

Jacobian

let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
f(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{m}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{m}\right)
\end{array}\right]
$$

where f_{i} is a scalar-valued function of \boldsymbol{x}
the Jacobian or derivative matrix of f at \boldsymbol{z} is the $m \times n$ matrix:

$$
D f(\boldsymbol{z})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{z}) & \frac{\partial f_{1}}{\partial x_{2}}(\boldsymbol{z}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\boldsymbol{z}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\boldsymbol{z}) & \frac{\partial f_{2}}{\partial x_{2}}(\boldsymbol{z}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\boldsymbol{z}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\boldsymbol{z}) & \frac{\partial f_{m}}{\partial x_{2}}(\boldsymbol{z}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\boldsymbol{z})
\end{array}\right]=\left[\begin{array}{c}
\nabla f_{1}(\boldsymbol{z})^{T} \\
\nabla f_{2}(\boldsymbol{z})^{T} \\
\vdots \\
\nabla f_{m}(\boldsymbol{z})^{T}
\end{array}\right]
$$

- if $m=1$, then $D f(\boldsymbol{z})=\nabla f(\boldsymbol{z})^{T}$
- Jacobian of the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is its Hessian

Example 3.4

a) the Jacobian of

$$
f(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}+x_{2}^{2} \\
-x_{1}+x_{1} x_{2}
\end{array}\right]
$$

is

$$
D f(\boldsymbol{x})=\left[\begin{array}{cc}
1 & 2 x_{2} \\
-1+x_{2} & x_{1}
\end{array}\right]
$$

b) the derivative matrix or Jacobian of $f(\boldsymbol{x})=A \boldsymbol{x}$ is

$$
D f(\boldsymbol{x})=A
$$

Rules

Sum of two functions: if $f(\boldsymbol{x})=f_{1}(\boldsymbol{x})+f_{2}(\boldsymbol{x})$, then

$$
\nabla f(\boldsymbol{x})=\nabla f_{1}(\boldsymbol{x})+\nabla f_{2}(\boldsymbol{x}), \quad \nabla^{2} f(\boldsymbol{x})=\nabla^{2} f_{1}(\boldsymbol{x})+\nabla^{2} f_{2}(\boldsymbol{x})
$$

Scalar multiplication: if $f(\boldsymbol{x})=\alpha g(\boldsymbol{x})$, where α is a scalar, then

$$
\nabla f(\boldsymbol{x})=\alpha \nabla g(\boldsymbol{x}), \quad \nabla^{2} f(\boldsymbol{x})=\alpha \nabla^{2} g(\boldsymbol{x})
$$

Multivariable product rule: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be

$$
f(\boldsymbol{x})=g(\boldsymbol{x})^{T} h(\boldsymbol{x}),
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then

$$
\nabla f(\boldsymbol{x})=D f(\boldsymbol{x})^{T}=D g(\boldsymbol{x})^{T} h(\boldsymbol{x})+D h(\boldsymbol{x})^{T} g(\boldsymbol{x})
$$

Multivariable chain rule: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the composition

$$
f(\boldsymbol{x})=g(h(\boldsymbol{x}))=g\left(h_{1}(\boldsymbol{x}), \ldots, h_{p}(\boldsymbol{x})\right)
$$

where $g: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are differentiable functions

- using the chain rule, the partial derivatives of f are

$$
\begin{aligned}
& \quad \frac{\partial f}{\partial x_{j}}(\boldsymbol{x})=\frac{\partial h_{1}}{\partial x_{j}}(\boldsymbol{x}) \frac{\partial g}{\partial y_{1}}(h(\boldsymbol{x}))+\cdots+\frac{\partial h_{p}}{\partial x_{j}}(\boldsymbol{x}) \frac{\partial g}{\partial y_{p}}(h(\boldsymbol{x})) \\
& \text { for } j=1, \ldots, n
\end{aligned}
$$

- the gradient can be compactly represented as the vector-matrix product:

$$
\nabla f(\boldsymbol{x})=D f(\boldsymbol{x})^{T}=D h(\boldsymbol{x})^{T} \nabla g(h(\boldsymbol{x}))
$$

Example 3.5

a) use the chain-rule to find the gradient of

$$
f(\boldsymbol{x})=\left(\sin \left(x_{1}\right)+x_{2}^{2}\right)^{2}+\left(\sin \left(x_{1}\right)+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)^{2}
$$

- we can write f as $f(\boldsymbol{x})=g(h(\boldsymbol{x}))$ where

$$
g(\boldsymbol{y})=y_{1}^{2}+y_{1} y_{2}^{2}, \quad h(\boldsymbol{x})=\left[\begin{array}{c}
\sin \left(x_{1}\right)+x_{2}^{2} \\
x_{1}+x_{2}
\end{array}\right]
$$

- the gradient of g is $\nabla g(\boldsymbol{y})=\left[\begin{array}{c}2 y_{1}+y_{2}^{2} \\ 2 y_{1} y_{2}\end{array}\right]$ and the derivative of h is

$$
\operatorname{Dh}(\boldsymbol{x})=\left[\begin{array}{cc}
\cos \left(x_{1}\right) & 2 x_{2} \\
1 & 1
\end{array}\right]
$$

- hence,

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =D h(\boldsymbol{x})^{T} \nabla g(h(\boldsymbol{x})) \\
& =\left[\begin{array}{cc}
\cos \left(x_{1}\right) & 1 \\
2 x_{2} & 1
\end{array}\right]^{T}\left[\begin{array}{c}
2 \sin \left(x_{1}\right)+2 x_{2}^{2}+\left(x_{1}+x_{2}\right)^{2} \\
2\left(\sin \left(x_{1}\right)+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)
\end{array}\right]
\end{aligned}
$$

b) nonlinear least-squares function:

$$
f(\boldsymbol{x})=\|h(\boldsymbol{x})\|^{2}=\sum_{j=1}^{p} h_{j}(\boldsymbol{x})^{2}
$$

we have $f(\boldsymbol{x})=g(h(\boldsymbol{x}))$ where $g(\boldsymbol{y})=\|\boldsymbol{y}\|^{2}$
using $\nabla g(\boldsymbol{y})=2 \boldsymbol{y}$ and the chain rule, we get

$$
\nabla f(\boldsymbol{x})=\operatorname{Dh}(\boldsymbol{x})^{T} \nabla g(h(\boldsymbol{x}))=2 D h(\boldsymbol{x})^{T} h(\boldsymbol{x})
$$

References and further readings

- L. Vandenberghe. EE133A Lecture Notes, UCLA. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)
- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013, chapters 2,3.
- Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018, chapters 3,5,8.
- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, appendices A.1, A.5, C.5.

