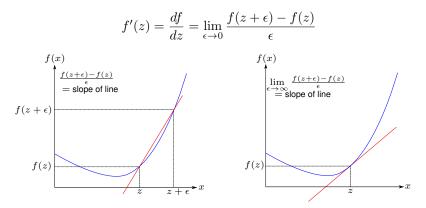
3. Derivatives

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Derivative definition

the *derivative* of $f : \mathbb{R} \to \mathbb{R}$ at the number z is defined as



- when f'(x) is positive, the function f(x) increases as x does
- f'(x) is negative, f(x) decreases as x increases

scalar derivatives

Common derivatives

f(x)	f'(x)
c	0
x^ℓ	$\ell x^{\ell-1}$
e^x	e^x
$\log(x), x > 0$	$\frac{1}{x}$
$\log_c(x), x>0, c>0$	$\frac{1}{x \ln(c)}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$

(we use $\log(.) = \ln(.)$ to denote the natural logarithm)

Derivative rules

• Linearity: for $f(x) = \alpha g(x) + \beta h(x)$:

$$f'(x) = \alpha g'(x) + \beta h'(x)$$

• Product rule: for f(x) = g(x)h(x):

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$

• Quotient rule: for $f(x) = \frac{g(x)}{h(x)}$:

$$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

• Chain rule: for f(x) = g(h(x)) where $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f'(x) = h'(x)g'(h(x))$$

Second derivative

the second derivative of f at a point z is the derivative of the first derivative:

$$f''(z) = \frac{d^2 f}{dz^2} = \lim_{\epsilon \to 0} \frac{f'(z+\epsilon) - f'(z)}{\epsilon},$$

the second derivative conveys information about the curvature of the function

- when f''(x) > 0, then f'(x) is increasing, which suggests the slope of the tangent line to f increases as x does yielding a concave-upwards shape
- if f''(x) is negative, the function exhibits a concave-downwards curvature

Outline

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Gradient

the *gradient* of $f : \mathbb{R}^n \to \mathbb{R}$ (at z) is

$$abla f(oldsymbol{z}) = egin{bmatrix} rac{\partial f}{\partial x_1}(oldsymbol{z}) \ rac{\partial f}{\partial x_2}(oldsymbol{z}) \ dots \ rac{\partial f}{\partial x_n}(oldsymbol{z}) \end{bmatrix}$$

• entries $\frac{\partial f}{\partial x_i}(z)$ are *partial derivative* of f at point z, with respect to x_i :

$$\frac{\partial f}{\partial x_i}(\boldsymbol{z}) = \lim_{\epsilon \to 0} \frac{f(z_1, \dots, z_{i-1}, z_i + \epsilon, z_{i+1}, \dots, z_n) - f(\boldsymbol{z})}{\epsilon}$$

 the gradient ∇f(z) is a vector that is pointing to the direction where f increases the fastest at z

a) partial derivatives of $f(x) = ||x||^2 = x_1^2 + \cdots + x_n^2$ are $\frac{\partial f}{\partial x_i}(x) = 2x_i$; hence

$$\nabla f(\boldsymbol{x}) = (2x_1, \dots, 2x_n) = 2\boldsymbol{x}$$

b) gradient of the function $f(\boldsymbol{x}) = 5x_1 + 8x_2 + x_1x_2 - x_1^2 - 2x_2^2$ is

$$\nabla f(\boldsymbol{x}) = (5 + x_2 - 2x_1, 8 + x_1 - 4x_2)$$

c) gradient of $f(x) = x_1^2 + e^{-x_1} + \sin(x_2)$ is

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} 2x_1 - e^{-x_1} \\ \cos(x_2) \end{bmatrix}$$

Hessian

the Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$ at \boldsymbol{z} is is defined as

$$\nabla^2 f(\boldsymbol{z}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\boldsymbol{z}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\boldsymbol{z}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\boldsymbol{z}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\boldsymbol{z}) & \frac{\partial^2 f}{\partial x_2^2}(\boldsymbol{z}) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\boldsymbol{z}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\boldsymbol{z}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\boldsymbol{z}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\boldsymbol{z}) \end{bmatrix}$$

- we say that f is *twice differentiable* if $abla^2 f({m x})$ exists for all ${m x} \in \mathbb{R}^n$
- the Hessian is a symmetric matrix $\nabla^2 f(\boldsymbol{z}) = \nabla^2 f(\boldsymbol{z})^T$ since

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{z}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{z}), \quad \text{for all } i, j = 1, \dots, n$$

a) for
$$f(\mathbf{x}) = 5x_1 + 8x_2 + x_1x_2 - x_1^2 - 2x_2^2$$
:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 5 + x_2 - 2x_1 \\ 8 + x_1 - 4x_2 \end{bmatrix}, \quad \nabla^2 f(\mathbf{x}) = \begin{bmatrix} -2 & 1 \\ 1 & -4 \end{bmatrix}$$

b) for

$$f(\mathbf{x}) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

the gradient is

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} - e^{-x_1 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \end{bmatrix}$$

and the Hessian is

$$\nabla^2 f(\boldsymbol{x}) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1} & e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} & e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} \end{bmatrix}$$

gradient and hessian

Linear and quadratic functions

Linear and affine functions: for $f(x) = a^T x + b$:

$$\nabla f(\boldsymbol{x}) = \boldsymbol{a}$$
$$\nabla^2 f(\boldsymbol{x}) = 0$$

Quadratic functions: for $f(x) = x^T Q x + r^T x + c$, where $Q = Q^T$ is symmetric:

$$\nabla f(\boldsymbol{x}) = 2Q\boldsymbol{x} + \boldsymbol{r}$$
$$\nabla^2 f(\boldsymbol{x}) = 2Q$$

Least-squares function

the least-squares function $f({\boldsymbol x}) = \|A{\boldsymbol x} - {\boldsymbol b}\|^2$ can be expressed as

$$f(\boldsymbol{x}) = \|A\boldsymbol{x} - \boldsymbol{b}\|^2$$

= $(A\boldsymbol{x} - \boldsymbol{b})^T (A\boldsymbol{x} - \boldsymbol{b})$
= $(\boldsymbol{x}^T A^T - \boldsymbol{b}^T) (A\boldsymbol{x} - \boldsymbol{b})$
= $\boldsymbol{x}^T A^T A \boldsymbol{x} - \boldsymbol{b}^T A \boldsymbol{x} - \boldsymbol{x}^T A^T \boldsymbol{b} + \boldsymbol{b}^T \boldsymbol{b}$
= $\boldsymbol{x}^T A^T A \boldsymbol{x} - 2\boldsymbol{b}^T A \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{b}$

this means that f is quadratic $f(\boldsymbol{x}) = \boldsymbol{x}^T Q \boldsymbol{x} + \boldsymbol{r}^T \boldsymbol{x} + c$ with

$$Q = A^T A, \quad \boldsymbol{r}^T = -2\boldsymbol{b}^T A, \quad c = \boldsymbol{b}^T \boldsymbol{b}$$

hence,

$$\nabla f(\boldsymbol{x}) = 2A^{T}A\boldsymbol{x} - 2A^{T}\boldsymbol{b}, \quad \nabla^{2}f(\boldsymbol{x}) = 2A^{T}A$$

gradient and hessian

Outline

- scalar derivatives
- gradient and hessian
- multi-variable differentiation rules

Composition with affine function

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} + \boldsymbol{b})$$

- $\bullet \ f: \mathbb{R}^n \to, g: \mathbb{R}^m \to \mathbb{R}$
- A is an $m \times n$ matrix
- **b** is an m vector

the gradient and Hessian are

$$\nabla f(\boldsymbol{x}) = A^T \nabla g(A\boldsymbol{x} + \boldsymbol{b})$$

and

$$\nabla^2 f(\boldsymbol{x}) = A^T \nabla^2 g(A \boldsymbol{x} + \boldsymbol{b}) A$$

multi-variable differentiation rules

use the composition with affine function property to find the gradient and Hessian of

$$f(\boldsymbol{x}) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

we can express f as $f({\pmb x})=g(A{\pmb x}+{\pmb b}),$ where $g({\pmb y})=e^{y_1}+e^{y_2}+e^{y_3},$ and

$$A = \begin{bmatrix} 1 & 1\\ 1 & -1\\ -1 & 0 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -1\\ -1\\ -1\\ -1 \end{bmatrix}$$

the gradient and Hessian of g are

$$\nabla g(\boldsymbol{y}) = \begin{bmatrix} e^{y_1} \\ e^{y_2} \\ e^{y_3} \end{bmatrix}, \quad \nabla^2 g(\boldsymbol{y}) = \begin{bmatrix} e^{y_1} & 0 & 0 \\ 0 & e^{y_2} & 0 \\ 0 & 0 & e^{y_3} \end{bmatrix}$$

hence

$$\nabla f(\boldsymbol{x}) = A^{T} \nabla g(A\boldsymbol{x} + \boldsymbol{b}) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_{1} + x_{2} - 1} \\ e^{x_{1} - x_{2} - 1} \\ e^{-x_{1} - 1} \end{bmatrix}$$
$$= \begin{bmatrix} e^{x_{1} + x_{2} - 1} + e^{x_{1} - x_{2} - 1} \\ e^{x_{1} + x_{2} - 1} - e^{x_{1} - x_{2} - 1} \end{bmatrix}$$

and

$$\begin{split} \nabla^2 f(\boldsymbol{x}) &= A^T \nabla^2 g(A \boldsymbol{x} + \boldsymbol{b}) A \\ &= \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1} & e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} & e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} \end{bmatrix} \end{split}$$

multi-variable differentiation rules

Jacobian

let $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(\boldsymbol{x}) = \begin{bmatrix} f_1(\boldsymbol{x}) \\ \vdots \\ f_m(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_m) \end{bmatrix}$$

where f_i is a scalar-valued function of $m{x}$

the **Jacobian** or **derivative matrix** of f at \boldsymbol{z} is the $m \times n$ matrix:

$$Df(\boldsymbol{z}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{z}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{z}) & \cdots & \frac{\partial f_1}{\partial x_n}(\boldsymbol{z}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{z}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{z}) & \cdots & \frac{\partial f_2}{\partial x_n}(\boldsymbol{z}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\boldsymbol{z}) & \frac{\partial f_m}{\partial x_2}(\boldsymbol{z}) & \cdots & \frac{\partial f_m}{\partial x_n}(\boldsymbol{z}) \end{bmatrix} = \begin{bmatrix} \nabla f_1(\boldsymbol{z})^T \\ \nabla f_2(\boldsymbol{z})^T \\ \vdots \\ \nabla f_m(\boldsymbol{z})^T \end{bmatrix}$$

• if
$$m = 1$$
, then $Df(\boldsymbol{z}) = \nabla f(\boldsymbol{z})^T$

- Jacobian of the gradient of $f:\mathbb{R}^n\to\mathbb{R}$ is its Hessian

- a) the Jacobian of $f(\bm{x}) = \begin{bmatrix} x_1 + x_2^2 \\ -x_1 + x_1 x_2 \end{bmatrix}$ is $Df(\bm{x}) = \begin{bmatrix} 1 & 2x_2 \\ -1 + x_2 & x_1 \end{bmatrix}$
- b) the derivative matrix or Jacobian of $f(\boldsymbol{x}) = A \boldsymbol{x}$ is

 $Df(\boldsymbol{x}) = A$

Rules

Sum of two functions: if $f(x) = f_1(x) + f_2(x)$, then

$$abla f(\boldsymbol{x}) =
abla f_1(\boldsymbol{x}) +
abla f_2(\boldsymbol{x}), \quad
abla^2 f(\boldsymbol{x}) =
abla^2 f_1(\boldsymbol{x}) +
abla^2 f_2(\boldsymbol{x})$$

Scalar multiplication: if $f(x) = \alpha g(x)$, where α is a scalar, then

$$abla f(\boldsymbol{x}) = \alpha \nabla g(\boldsymbol{x}), \quad \nabla^2 f(\boldsymbol{x}) = \alpha \nabla^2 g(\boldsymbol{x})$$

Multivariable product rule: let $f : \mathbb{R}^n \to \mathbb{R}$ be

$$f(\boldsymbol{x}) = g(\boldsymbol{x})^T h(\boldsymbol{x}),$$

where $g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^m$, then

$$abla f(\boldsymbol{x}) = Df(\boldsymbol{x})^T = Dg(\boldsymbol{x})^T h(\boldsymbol{x}) + Dh(\boldsymbol{x})^T g(\boldsymbol{x})$$

multi-variable differentiation rules

Multivariable chain rule: let $f : \mathbb{R}^n \to \mathbb{R}$ be the composition

$$f(\boldsymbol{x}) = g(h(\boldsymbol{x})) = g(h_1(\boldsymbol{x}), \dots, h_p(\boldsymbol{x}))$$

where $g: \mathbb{R}^p \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^p$ are differentiable functions

• using the chain rule, the partial derivatives of *f* are

$$\frac{\partial f}{\partial x_j}(\boldsymbol{x}) = \frac{\partial h_1}{\partial x_j}(\boldsymbol{x}) \frac{\partial g}{\partial y_1}(h(\boldsymbol{x})) + \dots + \frac{\partial h_p}{\partial x_j}(\boldsymbol{x}) \frac{\partial g}{\partial y_p}(h(\boldsymbol{x}))$$
for $j = 1, \dots, n$

• the gradient can be compactly represented as the vector-matrix product:

$$\nabla f(\boldsymbol{x}) = Df(\boldsymbol{x})^T = Dh(\boldsymbol{x})^T \nabla g(h(\boldsymbol{x}))$$

a) use the chain-rule to find the gradient of

$$f(\mathbf{x}) = \left(\sin(x_1) + x_2^2\right)^2 + \left(\sin(x_1) + x_2^2\right)(x_1 + x_2)^2$$

 ${\scriptstyle \bullet }$ we can write f as $f({\boldsymbol x})=g(h({\boldsymbol x}))$ where

$$g(\mathbf{y}) = y_1^2 + y_1 y_2^2, \quad h(\mathbf{x}) = \begin{bmatrix} \sin(x_1) + x_2^2 \\ x_1 + x_2 \end{bmatrix}$$

- the gradient of g is $\nabla g(y) = \begin{bmatrix} 2y_1 + y_2^2 \\ 2y_1y_2 \end{bmatrix}$ and the derivative of h is $Dh(x) = \begin{bmatrix} \cos(x_1) & 2x_2 \\ 1 & 1 \end{bmatrix}$
- hence,

$$\nabla f(\boldsymbol{x}) = Dh(\boldsymbol{x})^T \nabla g(h(\boldsymbol{x}))$$

= $\begin{bmatrix} \cos(x_1) & 1\\ 2x_2 & 1 \end{bmatrix}^T \begin{bmatrix} 2\sin(x_1) + 2x_2^2 + (x_1 + x_2)^2\\ 2(\sin(x_1) + x_2^2)(x_1 + x_2) \end{bmatrix}$

b) nonlinear least-squares function:

$$f(x) = \|h(x)\|^2 = \sum_{j=1}^p h_j(x)^2$$

we have $f({\boldsymbol x}) = g(h({\boldsymbol x}))$ where $g({\boldsymbol y}) = \|{\boldsymbol y}\|^2$

using $\nabla g(\boldsymbol{y}) = 2\boldsymbol{y}$ and the chain rule, we get

$$abla f(oldsymbol{x}) = Dh(oldsymbol{x})^T
abla g(h(oldsymbol{x})) = 2Dh(oldsymbol{x})^T h(oldsymbol{x})$$

References and further readings

- L. Vandenberghe. *EE133A Lecture Notes*, UCLA. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)
- Edwin KP Chong and Stanislaw H Zak. *An Introduction to Optimization,* John Wiley & Sons, 2013, chapters 2,3.
- Stephen Boyd and Lieven Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018, chapters 3,5,8.
- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*, Cambridge University Press, 2004, appendices A.1, A.5, C.5.