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Linear independence

Linear independence:a set of vectors {a1, . . . ,ak} is linearly independent if
the equality

α1a1 + α2a2 + · · ·+ αkak = 0

is satisfied only when all coefficients αi are zero:

α1 = α2 = · · · = αk = 0

• a set of vectors is linearly dependent if it’s not linearly independent

• saying the vectors a1, . . . ,ak are linearly independent (or dependent)
refers to the set {a1, . . . ,ak} being so
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Example 2.1

• vectors a1 = (1, 2) and a2 = (2, 1) are linearly independent:

α1

[
1
2

]
+ α2

[
2
1

]
= 0

holds only if α1 = α2 = 0

• the unit vectors e1, e2, . . . , en are linearly independent:

0 = α1e1 + · · ·+ αnen = (α1, α2, . . . , αn)

only if α1 = · · · = αn = 0

• a1 = (1, 1, 0), a2 = (2, 2, 0) , and a3 = (0, 0, 1) are linearly dependent:

−2a1 + a2 + 0a3 = 0

• a1 = (0.2,−7, 8.6), a2 = (−0.1, 2,−1), and a3 = (0,−1, 2.2) are
linearly dependent:

a1 + 2a2 − 3a3 = 0
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Linear independence of matrix columns

for an m× n matrix A and an n-vector x, we have

Ax =
[
a1 a2 · · · an

] 
x1

x2

...
xn

 = x1a1 + · · ·+ xnan

aj denote the jth column of A

• the columns of a matrix A are linearly independent if

Ax = 0 holds only if x = 0

• they are linearly dependent if Ax = 0 for some x ̸= 0
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Supersets and subsets

Superset

• a superset of a linearly dependent set remains linearly dependent

• if the vectors a1, . . . ,ak are linearly dependent, then for any ak+1, the
vectors a1, . . . ,ak,ak+1 are linearly dependent as well

Subset

• a non-empty subset of a linearly independent set remains linearly
independent

• removing vectors from a collection of vectors preserves its linear
independence
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Independence-dimension inequality

let a1,a2, . . . ,ak be linearly independent vectors in Rn

• the number of vectors is less than the vectors dimension k ≤ n

• any collection of n+ 1 or more n-vectors is linearly dependent

a1

a2
a3

α1a1

α2a2a3
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Linear combination of independent vectors

suppose a vector x can be expressed as a linear combination of a1, . . . ,ak:

x = α1a1 + · · ·+ αkak

if the vectors a1, . . . ,ak are linearly independent, then the coefficients
α1, . . . , αk are unique

proof:

• assume that we can find β1, . . . , βk such that

x = β1a1 + · · ·+ βkak

subtracting the last two equations, we get:

0 = (α1 − β1)a1 + · · ·+ (αk − βk)ak

• since a1, . . . ,ak are linearly independent, we must have αi − βi = 0 and
thus αi = βi for all i = 1, . . . , k
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Orthonormal vectors

a set of vectors a1,a2, . . . ,ak is orthonormal if:

aTiaj =

{
1 if i = j

0 if i ̸= j

• a1,a2, . . . ,ak are orthogonal and ∥ai∥ = 1 for i = 1, . . . , k

• a vector of norm one is called normalized; dividing a vector by its norm is
called normalizing it

• orthonormal set of vectors are linearly independent
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Determinant of a matrix

the determinant of a square matrix for value of i (i = 1, 2, . . . , n) is

detA =

n∑
j=1

(−1)i+jaij(detAij)

• Aij is the ijth submatrix of A obtained by removing row i and column j
from A; for example

A =

1 2 3
4 5 6
7 8 9

 , A12 =

[
4 6
7 9

]
, A32 =

[
1 3
4 6

]
• detAij is called the ij minor of A

Determinant properties:
• detA = detAT

• detαA = αn detA for any scalar α
• detAB = detA× detB for square matrices A and B
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Example 2.2

• for a scalar matrix A = [a11], we have detA = a11
• for a 2× 2 matrix:

detA = det

[
a11 a12
a21 a22

]
= a11a22 − a21a12

• for the matrix

A =

1 2 3
4 5 6
7 8 9


we have for i = 1

A11 =

[
5 6
8 9

]
, A12 =

[
4 6
7 9

]
, A13 =

[
4 5
7 8

]
thus, the determinant is

detA = (−1)2a11(detA11) + (−1)3a12(detA12) + (−1)4a13(detA13)

= a11(detA11)− a12(detA12) + a13(detA13)

= 1(−3)− 2(−6) + 3(−3) = 0
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Inverse of a matrix

an n× n matrix A−1 is the inverse of matrix A if:

AA−1 = A−1A = I

• a matrix with an inverse is termed invertible or nonsingular

• only square matrices can be invertible

• invertibility implies detA ̸= 0

• an orthogonal matrix A ∈ Rn×n satisfies: ATA = I , meaning A−1 = AT
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Example 2.3

• the identity matrix I is invertible, with inverse I−1 = I since II = I

• any 2× 2 matrix A is invertible if and only if a11a22 ̸= a12a21, with inverse

A−1 =

[
a11 a12
a21 a22

]−1

=
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
• a diagonal matrix

D = diag(d1, . . . , dn) =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


is invertible if and only if di ̸= 0 for i = 1, . . . , n, and

D−1 = diag(1/d1, . . . , 1/dn)
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Inverse properties

• matrix transpose: if A is invertible, then its transpose AT is invertible:

(AT)−1 = (A−1)T

• matrix product: for invertible square matrices A and B of the same size:

(AB)−1 = B−1A−1

• negative matrix power: for an invertible square matrix A and integer p:

(Ap)−1 = (A−1)p

for any integer p
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Linear independence and matrix inverse

for a square invertible matrix A, the following are equivalent

• A is invertible

• the columns of A are linearly independent

• the rows of A are linearly independent

• the determinant is nonzero
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Subspace

a nonempty subset V of Rn is a subspace of Rn it’s closed under vector
addition and scalar multiplication, i.e.,

αv + βu ∈ V ∀ v,u ∈ V, ∀ α, β

• every subspace includes the zero vector 0

• examples:
■ {0} and Rn are subspaces

■ V =
{
(v1, v2) ∈ R2 | 2v1 = v2

}
is a subspace

■ V =
{
(v1, v2) ∈ R2 | v1 ≥ 0 and v2 ≥ 0

}
is not a subspace; for instance,

(1, 1) ∈ V but −1(1, 1) /∈ V
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Span

given a collection of vectors S = {v1,v2, . . . ,vk} in a subspace with each
vi ∈ V , span of S is the set of all possible linear combinations of its elements:

span(S) = span(v1, . . . ,vk) =

{
k∑

i=1

αivi | αi ∈ R

}

• the span of any set of vectors is a subspace

• if v can be expressed as a linear combination of v1,v2, . . . ,vk, then the
span remains unchanged upon its addition:

span(v1, . . . ,vk,v) = span(v1, . . . ,vk)
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Basis and dimension

Basis: for a subspace V ⊆ Rn, any set of k linearly independent vectors
{v1,v2, . . . ,vk} ⊂ V that spans V is termed a basis of the subspace V

• every vector x ∈ V has a unique representation:

x = α1v1 + α2v2 + · · ·+ αkvk

• coefficients α1, α2, . . . , αk are distinct and termed the coordinates of x
relative to the basis {v1,v2, . . . ,vk}

• any set of n linearly independent vectors v1,v2, . . . ,vn ∈ Rn defines a
basis of Rn

Dimension: The number of vectors in any basis of subspace V is constant;
this number is called the dimension of V , symbolized as dimV
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Example 2.4

• the n unit vectors e1, . . . , en are basis (called natural basis) for Rn; any
x ∈ Rn can be written as

x = x1e1 + · · ·+ xnen

and this expansion is unique

• the vectors

a1 =

[
1

−1

]
, a2 =

[
1
2

]
are a basis for R2 since they are 2 linearly independent vectors of size 2
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Matrix rank

the rank of a matrix A is the maximal number of linearly independent columns
of A, denoted by rankA

• rankA ≤ min{m,n}
• A has full rank if rankA = min{m,n}
• A has full column rank if rankA = n (linearly independent columns)

• A has full row rank if rankA = m (linearly independent rows)

Rank of matrix transpose

• the rank of a matrix A is equal to the rank of AT

• in other words, the maximum number of linearly independent columns of a
matrix is equal to the maximum number of linearly independent rows
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Example 2.5

find the rank of the matrix

A =

 3 0 2 2
−6 42 24 54
21 −21 0 −15


• the first two columns are linearly independent

• it holds that  2
24
0

 = 2/3

 3
−6
21

+ 2/3

 0
42

−21


and  2

54
−15

 = 2/3

 3
−6
21

+ 29/21

 0
42

−21


therefore, only two vectors are linearly independent, thus rankA = 2

SA — ENGR507matrix rank 2.20



Outline

• linear independence

• matrix inverse

• matrix rank

• linear equations

• eigenvalues and eigenvectors

• positive semidefinite matrices

• norms



System of linear equations

consider a set or system of m linear equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

• x1, . . . , xn are called variables
• aij are called coefficients
• bi are called right-hand-sides

Matrix vector representation

Ax = b

• the m× n matrix A is called the coefficient matrix
• the m-vector b is called the right-hand side
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System of linear equations

a system of linear equations is said to be

• overdetermined system if the number of equations is more than the
number of unknowns: m > n

• underdetermined system if the number of equations is less than the
number of unknowns: m < n

• square system if m = n

Solution

• any n vector x̂ satisfying Ax̂ = b called a solution of the linear equations
Ax = b

• a set of linear equations can have a unique solution, many solutions, or no
solutions
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Example 2.6

• the system of linear equations

x1 + x2 = 1, , x1 = −1, x1 − x2 = 0

is an overdetermined system; it can be described as Ax = b with

A =

1 1
1 0
1 −1

 , b =

 1
−1
0


this system has no solution

• the system of linear equations

x1 + x2 = 1, x2 + x3 = 2

can be written as Ax = b with

A =

[
1 1 0
0 1 1

]
, b =

[
1
2

]
,

which is an underdetermined system; this system has multiple solutions
such as x = (1, 0, 2) and x = (0, 1, 1)
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Range space

(suppose that A is an m× n matrix with columns a1, . . . ,an)

the range space of A is defined as the span of its column vectors (which is a
subspace of Rm):

range(A) = span(a1, . . . ,an)

= {x1a1 + · · ·+ xnan | x ∈ Rn}
= {Ax | x ∈ Rn}

• range of A is also called the column space or image of A

• range of AT is called the row space of A, which is a subspace of Rn
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Null space

the null space of A is a subspace of Rn defined as

null(A) = {x | Ax = 0}

• the null space is also called kernal of A

• the null space of a matrix is the set of vectors orthogonal to the rows of the
matrix

• the dimension of the null space of an m× n matrix A is

dim(null(A)) = n− rankA
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Existence of solution

the fundamental theorem of linear systems state that the system Ax = b has
a solution if and only if

rankA = rank[A b]

• this implies that b ∈ range(A)

• unique solution if and only if

rankA = rank[A b] = n

this implies that the solution is unique the columns are linearly
independent (null(A) = 0)

• infinitely many solutions for any b if and only if rankA = m < n (b is in
the range(A) and the null(A) is nonempty)

SA — ENGR507linear equations 2.26



Example 2.7

consider the matrix

A =

−3 −4
4 6
1 1

 ,

with rankA = n = 2

• for the system Ax = (1,−2, 0), rankA = rank[A b] = 2, and hence,
there exists a unique solution: x = (1,−1)

• for the system Ax = (1,−1, 0) rankA = 2 ̸= rank[A b] = 3, hence it
does not have a solution

• for the system ATx = (1, 2), we have rankAT = 2 < 3, and there are
multiple solutions, including

x1 = ( 13 ,
2
3 ,

38
9 ), x2 = (0, 1

2 ,−1)
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Example 2.8

the matrix

A =

[
1 1
3 3

]
is singular with null space

null(A) =

{
α

[
1
−1

]
| α ∈ R

}
,

and range space

range(A) =

{
β

[
1
3

]
| β ∈ R

}
.

for certain values of b, the equation Ax = b may or may not have solutions

• if b does not belong to the range of A, then no solution exists
• if b is a multiple of the column vector[

1
3

]
,

there are infinitely many solutions
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Example 2.9

consider four given measurements: (t1, b1), (t2, b2), (t3, b3), and (t4, b4):

(0, 4), (0.1,−0.9), (0.8, 10).

our objective is to approximate these data points using the function

v(t) = c0 + c1t+ c2t
2 + c3t

3

to satisfy v(ti) = bi where ci are parameters we want to find

this can be represented as the linear system Ax = b, where

A =


1 t1 t21 t31
1 t2 t22 t32
1 t3 t23 t33
1 t4 t24 t34

 , x =


c0
c1
c2
c3



SA — ENGR507linear equations 2.29



t = [0,0.1,0.8,1]’; b = [1,-0.9,10,9]’;

A = zeros(4,4); %

powers = 0:3;

for j=1:4

A(:,j) = t.^powers(j);

end

x = A \ b; % This solves the system Ax = b

tt = -0.1:.01:1.1;

pt = x(1) + x(2).*tt + x(3).*tt.^2 + x(4).*tt.^3;

plot(tt,pt); hold on

plot(t’,b’,’ro’,’LineWidth’,2); xlabel(’t’); ylabel(’v’)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
t

-2

0

2

4

6

8

10

12

v
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Particular solution

Ax = b

where A is an m× n matrix with m ≤ n; assume that

the matrix A has linearly independent rows, rankA = m

• there is at least one solution and there can be many solutions

• the matrix A also has m linearly independent columns

• without loss of generality, we assume that the columns of the matrix A are
reordered such that the first m columns are linearly independent
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Finding a solution

let us partition A and x as

A = [B D] x =

[
xB

xD

]
• B is an m×m invertible matrix (because the first m columns are linearly

independent)
• D is an m× (n−m) matrix
• xB is an m vector; xD is an n−m vector

we can then write

Ax = [B D]

[
xB

xD

]
= BxB +DxD = b
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Partitioned system

solving for xB , we have xB = B−1b−B−1DxD; thus

x =

[
B−1b
0

]
+

[
−B−1DxD

xD

]
is a solution to Ax = b for any arbitrary xD ∈ R(n−m)

the set of solutions can be written as

x = x̂+ FxD

where

x̂ =

[
B−1b
0

]
, F =

[
−B−1D

I

]
• the columns of the matrix F form a basis for the nullspace of A

• if we set xD = 0, then we get the solution x = (B−1b,0), which is called
a basic solution with respect to the basis B
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Example 2.10

let us find a particular solution to the system of equations Ax = b given by

[
2 3 −1 −1
4 1 1 −2

]
x1

x2

x3

x4

 =

[
1
3

]

we can select any two linearly independent columns of A as basis vectors to
find a particular solution
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• selecting the first and second columns, we have xB = (x1, x2),
xD = (x3, x4) and

B =

[
2 3
4 1

]
, D =

[
−1 −1
1 −2

]
hence,

xB =

[
x1

x2

]
= B−1b =

[
4
5

− 2
5

]
, B−1D =

[
2
5 − 1

2

− 3
5 0

]
thus, a particular solution is x = ( 45 ,−

1
5 , 0, 0) and the set of all solutions

can be written as

x =


4
5

− 1
5
0
0


︸ ︷︷ ︸

x̂

+


− 2

5
1
2

3
5 0
1 0
0 1


︸ ︷︷ ︸

F

[
x3

x4

]
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• if we select the first and third columns instead, then we have
xB = (x1, x3), xD = (x2, x4) and

B =

[
2 −1
4 1

]
, D =

[
3 −1
1 −2

]
in this case, we have

xB =

[
x1

x3

]
= B−1b =

[
2
3
1
3

]
, B−1D =

[
2
3 − 1

2

− 5
3 0

]

therefore, a particular solution is x = ( 23 , 0,
1
3 , 0) and the set of all

solutions can be written as

x =


2
3
0
1
3
0


︸︷︷︸

x̂

+


− 2

3
1
2

1 0
5
3 0
0 1


︸ ︷︷ ︸

F

[
x2

x4

]
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Eigenvalues and eigenvectors

a scalar λ (possibly complex) is an eigenvalue of an n× n matrix A if

Av = λv for some non-zero vector v ∈ Rn

• v is called an eigenvector of A (associated with eigenvalue λ)

• eigenvalues can be computed by solving the characteristic equation:

det(λI −A) = 0

• det(sI −A) is a polynomial of degree n known as the characteristic
polynomial

• the characteristic equation must have n roots (possibly nondistinct), which
are the eigenvalues of A
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Properties and similar matrices

given A ∈ Rn×n with eigenvalues λ1, . . . , λn:

• for a triangular A, eigenvalues are its diagonal entries

• eigenvalues of A+ cI are c+ λi

• eigenvalues of Ak are λk
i

• eigenvalues of A−1 are 1/λi

• eigenvalues of AT match those of A

• the trace of A is
∑n

i=1 λi and the determinant is
∏n

i=1 λi

• if A is real and symmetric, then its eigenvalues are real

Similarity:

• matrices A and B are similar if a nonsingular matrix T exists such that

T−1AT = B

• similar matrices share eigenvalues because det(λI −B) = det(λI −A)
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Diagonalization

if A has n distinct eigenvalues, λ1, . . . , λn, then there exists n linearly
independent eigenvectors v1, . . . ,vn, i.e.,

Avi = λivi, i = 1, . . . , n

it follows that the matrix A is similar to a diagonal matrix

A = V ΛV −1

where

Λ = diag(λ1, . . . , λn)

V =
[
v1 v2 · · · vn

]
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Symmetric eigenvalue decomposition

suppose that A ∈ Rn×n is symmetric, then A can be factored as

A = UΛUT

• U ∈ Rn×n is orthogonal (i.e., UTU = I)

• Λ = diag(λ1, . . . , λn) where λi denote the real eigenvalues of A

• the columns of U forms an orthonormal set of eigenvectors of U

• the above factorization is called symmetric eigenvalue decomposition or
spectral decomposition
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Singular value decomposition (SVD)

suppose that A ∈ Rm×n with rankA = r, then A can be factored as

A =
[
U Ū

] [Σ 0
0 0

] [
V T

V̄ T

]
= UΣV T

where
[
U Ū

]
∈ Rm×m and

[
V V̄

]
∈ Rn×n are orthogonal matrices and

Σ = diag(σ1, . . . , σr) with

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

U ∈ Rm×r, V ∈ Rn×r, Ū ∈ R(m−r)×m, V̄ ∈ Rn×(n−r)

• U satisfies UTU = I , V satisfies V TV = I

• the columns of U are called left singular vectors of A, the columns of V
are right singular vectors of A

• the numbers σi are the nonzero singular values of A
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the singular value decomposition can be written

A =

r∑
i=1

σiuiv
T
i

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right
singular vectors

Relation to ATA and AAT

ATA = V Σ2V T =
[
V V̄

] [Σ2 0
0 0

] [
V T

V̄ T

]
• this is the eigenvalue decomposition of ATA

• the nonzero eigenvalues of ATA are the squared singular values of A and
the associated eigenvectors of ATA are the right singular vectors of A

• similarly, the nonzero eigenvalues of AAT are the squared singular values
of A and the associated eigenvectors of are the left singular vectors of A
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Definiteness of symmetric matrices

a square and symmetric matrix A is positive definite if

xTAx > 0 ∀x ̸= 0

(for any nonzero vector x = (x1, . . . , xn)
T, we require

∑n
i,j=1 ai,jxixj > 0)

other notions of definiteness are defined as follows:

• Positive semidefinite if xTAx ≥ 0 for all x; we use the notation A ≥ 0 to
indicate that A is positive semidefinite

• Negative definite if −A is positive definite; we use the notation A < 0 to
indicate that A is negative definite

• Negative semidefinite if −A is positive semidefinite; we use the notation
A ≤ 0 to indicate that Q is negative semidefinite

• Indefinite if xTAx can take on both positive and negative values
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Example 2.11

a) the identity matrix I is positive-definite as xTIx = ∥x∥2 > 0 for all x ̸= 0;
conversely, −I is negative definite

b) for a diagonal matrix D = diag(d1, . . . , dn):
■ with di > 0: positive definite
■ with di ≥ 0: positive semidefinite
■ with both positive and negative di: indefinite

c) any matrix A = BTB is positive semidefinite:

xTBTBx = (Bx)T(Bx) = ∥Bx∥2 ≥ 0

If B has linearly independent columns, then A is positive definite since
Bx = 0 only when x = 0
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Principle submatrices

a principle submatrix of an n× n matrix A is the (n− k)× (n− k)
obtained by deleting k rows and the corresponding k columns of A

a leading principle submatrix of an n× n matrix A of order n− k, denoted
by Ak, is the matrix obtained by deleting the last k rows and columns of A

example: the principle submatrices of

A =

 3 −4 4
−4 6 5
4 5 7


are

3, 6, 7,

[
3 −4

−4 6

]
,

[
6 5
5 7

]
,

[
3 4
4 7

]
,

 3 −4 4
−4 6 5
4 5 7


and the leading principle submatrices are

A1 = 3, A2 =

[
3 −4

−4 6

]
, A3 =

 3 −4 4
−4 6 5
4 5 7
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Properties of symmetric matrices

Definiteness and eigenvalues

• a symmetric matrix is positive (negative) definite if and only if its
eigenvalues are positive (negative)

• a symmetric matrix is positive (negative) semidefinite if and only if its
eigenvalues are nonnegative (nonpositive)

• a symmetric matrix is indefinite if and only if it has some positive and
negative eigenvalues

Determinant positive definite test: we can test for positive definiteness
using Sylvester’s criterion

• a symmetric matrix is positive definite if and only if the determinants of all
leading principal sub-matrices are positive (detAk > 0)

• a symmetric matrix is positive semidefinite if and only if the determinants
of all principal sub-matrices are nonnegative
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Example 2.12

a) the matrix

A =

 3 −4 4
−4 6 5
4 5 7


is indefinite; this is because it is not positive semidefinite since
detA1 = 3 > 0 and detA3 = −317 < 0; it is also not negative
semidefinite since −A is not positive semidefinite

b) the matrix

A =

 2 −1 0
−1 2 −1
0 −1 2


is positive definite since the determinant of all leading principle
submatrices

detA1 = 2 > 1, detA2 = 3 > 0, detA3 = 4

are positive
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Outline

• linear independence

• matrix inverse

• matrix rank

• linear equations

• eigenvalues and eigenvectors

• positive semidefinite matrices

• norms



Vector norms

the function f : Rn → R is a norm if it satisfies the following properties:

1. positivity: f(x) ≥ 0, f(x) = 0 only if x = 0

2. homogeneity: f(αx) = |α|f(x), α ∈ R
3. triangle Inequality: f(x+ y) ≤ f(x) + f(y)

p-norm is defined as:

∥x∥p =

{
(|x1|p + · · ·+ |xn|p)1/p if 1 ≤ p < ∞
max(|x1|, . . . , |xn|) if p = ∞

• an example is the Euclidean norm or ℓ2-norm:

∥x∥2 =
√

x2
1 + · · ·+ x2

n, (Euclidean norm or ℓ2-norm)

• we use ∥.∥ = ∥.∥2 if there is no ambiguity
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Common vector norms

ℓ1-norm
∥x∥1 = |x1|+ · · ·+ |xn|

ℓ∞-norm
∥x∥∞ = max(|x1|, . . . , |xn|)

quadratic norms:

∥x∥P = (xTPx)1/2 = ∥P 1/2x∥2

where P > 0 is any positive-definite matrix and P 1/2 is the symmetric square
root of P , i.e., P 1/2P 1/2 = P
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Matrix norms

matrix norms ∥ · ∥ satisfies the properties of a norm:
1. ∥cA∥ = |c|∥A∥ for c ∈ R
2. ∥A+B∥ ≤ ∥A∥+ ∥B∥
3. ∥A∥ > 0 and ∥A∥ = 0 ⇐⇒ A = 0

Frobenius norm:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij

sum-absolute-value norm:

∥A∥sav =

n∑
j=1

|aij |

maximum-absolute-value norm:

∥A∥mav = max{|aij | | i = 1, . . . ,m, j = 1, . . . , n}
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Induced norms

Induced p-norms: the matrix p-norm is

∥A∥p = max
x̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p

• spectral norm or ℓ2 norm of A

∥A∥2 = σmax(A) =
√
λmax(ATA)

where σmax(A) is the maximum singular value of A
• max-row-sum norm: ∥A∥∞ = maxi=1,...,m

∑n
j=1 |aij |

• max-column-sum norm: ∥A∥1 = maxj=1,...,n

∑m
i=1 |aij |

the induced-norms satisfy the sub-multiplicative property

∥AB∥p ≤ ∥A∥p∥B∥p

the Frobenius is not an induced norm but it satisfies the sub-multiplicative
property
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