2. Linear algebra background

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Linear independence

Linear independence: a set of vectors $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}$ is linearly independent if the equality

$$
\alpha_{1} \boldsymbol{a}_{1}+\alpha_{2} \boldsymbol{a}_{2}+\cdots+\alpha_{k} \boldsymbol{a}_{k}=\mathbf{0}
$$

is satisfied only when all coefficients α_{i} are zero:

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0
$$

- a set of vectors is linearly dependent if it's not linearly independent
- saying the vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ are linearly independent (or dependent) refers to the set $\left\{a_{1}, \ldots, a_{k}\right\}$ being so

Example 2.1

- vectors $\boldsymbol{a}_{1}=(1,2)$ and $\boldsymbol{a}_{2}=(2,1)$ are linearly independent:

$$
\alpha_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\mathbf{0}
$$

holds only if $\alpha_{1}=\alpha_{2}=0$

- the unit vectors $e_{1}, e_{2}, \ldots, e_{n}$ are linearly independent:

$$
\mathbf{0}=\alpha_{1} \boldsymbol{e}_{1}+\cdots+\alpha_{n} \boldsymbol{e}_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

only if $\alpha_{1}=\cdots=\alpha_{n}=0$

- $\boldsymbol{a}_{1}=(1,1,0), \boldsymbol{a}_{2}=(2,2,0)$, and $\boldsymbol{a}_{3}=(0,0,1)$ are linearly dependent:

$$
-2 \boldsymbol{a}_{1}+\boldsymbol{a}_{2}+0 \boldsymbol{a}_{3}=\mathbf{0}
$$

- $\boldsymbol{a}_{1}=(0.2,-7,8.6), \boldsymbol{a}_{2}=(-0.1,2,-1)$, and $\boldsymbol{a}_{3}=(0,-1,2.2)$ are linearly dependent:

$$
\boldsymbol{a}_{1}+2 \boldsymbol{a}_{2}-3 \boldsymbol{a}_{3}=\mathbf{0}
$$

Linear independence of matrix columns

for an $m \times n$ matrix A and an n-vector \boldsymbol{x}, we have

$$
A \boldsymbol{x}=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}
$$

\boldsymbol{a}_{j} denote the j th column of A

- the columns of a matrix A are linearly independent if

$$
A \boldsymbol{x}=\mathbf{0} \text { holds only if } \boldsymbol{x}=\mathbf{0}
$$

- they are linearly dependent if $A \boldsymbol{x}=\mathbf{0}$ for some $\boldsymbol{x} \neq \mathbf{0}$

Supersets and subsets

Superset

- a superset of a linearly dependent set remains linearly dependent
- if the vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ are linearly dependent, then for any a_{k+1}, the vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}, \boldsymbol{a}_{k+1}$ are linearly dependent as well

Subset

- a non-empty subset of a linearly independent set remains linearly independent
- removing vectors from a collection of vectors preserves its linear independence

Independence-dimension inequality

let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ be linearly independent vectors in \mathbb{R}^{n}

- the number of vectors is less than the vectors dimension $k \leq n$
- any collection of $n+1$ or more n-vectors is linearly dependent

Linear combination of independent vectors

suppose a vector \boldsymbol{x} can be expressed as a linear combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$:

$$
\boldsymbol{x}=\alpha_{1} \boldsymbol{a}_{1}+\cdots+\alpha_{k} \boldsymbol{a}_{k}
$$

if the vectors a_{1}, \ldots, a_{k} are linearly independent, then the coefficients
$\alpha_{1}, \ldots, \alpha_{k}$ are unique
proof:

- assume that we can find $\beta_{1}, \ldots, \beta_{k}$ such that

$$
\boldsymbol{x}=\beta_{1} \boldsymbol{a}_{1}+\cdots+\beta_{k} \boldsymbol{a}_{k}
$$

subtracting the last two equations, we get:

$$
0=\left(\alpha_{1}-\beta_{1}\right) \boldsymbol{a}_{1}+\cdots+\left(\alpha_{k}-\beta_{k}\right) \boldsymbol{a}_{k}
$$

- since $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ are linearly independent, we must have $\alpha_{i}-\beta_{i}=0$ and thus $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, k$

Orthonormal vectors

a set of vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ is orthonormal if:

$$
\boldsymbol{a}_{i}^{T} \boldsymbol{a}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ are orthogonal and $\left\|\boldsymbol{a}_{i}\right\|=1$ for $i=1, \ldots, k$
- a vector of norm one is called normalized; dividing a vector by its norm is called normalizing it
- orthonormal set of vectors are linearly independent

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Determinant of a matrix

the determinant of a square matrix for value of $i(i=1,2, \ldots, n)$ is

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left(\operatorname{det} A_{i j}\right)
$$

- $A_{i j}$ is the $i j$ th submatrix of A obtained by removing row i and column j from A; for example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad A_{12}=\left[\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right], \quad A_{32}=\left[\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right]
$$

- $\operatorname{det} A_{i j}$ is called the $i j$ minor of A

Determinant properties:

- $\operatorname{det} A=\operatorname{det} A^{T}$
- $\operatorname{det} \alpha A=\alpha^{n} \operatorname{det} A$ for any scalar α
- $\operatorname{det} A B=\operatorname{det} A \times \operatorname{det} B$ for square matrices A and B

Example 2.2

- for a scalar matrix $A=\left[a_{11}\right]$, we have $\operatorname{det} A=a_{11}$
- for a 2×2 matrix:

$$
\operatorname{det} A=\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}
$$

- for the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

we have for $i=1$

$$
A_{11}=\left[\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right], \quad A_{12}=\left[\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right], \quad A_{13}=\left[\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right]
$$

thus, the determinant is

$$
\begin{aligned}
\operatorname{det} A & =(-1)^{2} a_{11}\left(\operatorname{det} A_{11}\right)+(-1)^{3} a_{12}\left(\operatorname{det} A_{12}\right)+(-1)^{4} a_{13}\left(\operatorname{det} A_{13}\right) \\
& =a_{11}\left(\operatorname{det} A_{11}\right)-a_{12}\left(\operatorname{det} A_{12}\right)+a_{13}\left(\operatorname{det} A_{13}\right) \\
& =1(-3)-2(-6)+3(-3)=0
\end{aligned}
$$

Inverse of a matrix

an $n \times n$ matrix A^{-1} is the inverse of matrix A if:

$$
A A^{-1}=A^{-1} A=I
$$

- a matrix with an inverse is termed invertible or nonsingular
- only square matrices can be invertible
- invertibility implies $\operatorname{det} A \neq 0$
- an orthogonal matrix $A \in \mathbb{R}^{n \times n}$ satisfies: $A^{T} A=I$, meaning $A^{-1}=A^{T}$

Example 2.3

- the identity matrix I is invertible, with inverse $I^{-1}=I$ since $I I=I$
- any 2×2 matrix A is invertible if and only if $a_{11} a_{22} \neq a_{12} a_{21}$, with inverse

$$
A^{-1}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

- a diagonal matrix

$$
D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]
$$

is invertible if and only if $d_{i} \neq 0$ for $i=1, \ldots, n$, and

$$
D^{-1}=\operatorname{diag}\left(1 / d_{1}, \ldots, 1 / d_{n}\right)
$$

Inverse properties

- matrix transpose: if A is invertible, then its transpose A^{T} is invertible:

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

- matrix product: for invertible square matrices A and B of the same size:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- negative matrix power: for an invertible square matrix A and integer p :

$$
\left(A^{p}\right)^{-1}=\left(A^{-1}\right)^{p}
$$

for any integer p

Linear independence and matrix inverse

for a square invertible matrix A, the following are equivalent

- A is invertible
- the columns of A are linearly independent
- the rows of A are linearly independent
- the determinant is nonzero

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Subspace

a nonempty subset \mathcal{V} of \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} it's closed under vector addition and scalar multiplication, i.e.,

$$
\alpha \boldsymbol{v}+\beta \boldsymbol{u} \in \mathcal{V} \quad \forall \boldsymbol{v}, \boldsymbol{u} \in \mathcal{V}, \forall \alpha, \beta
$$

- every subspace includes the zero vector $\mathbf{0}$
- examples:
- $\{0\}$ and \mathbb{R}^{n} are subspaces
- $\mathcal{V}=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid 2 v_{1}=v_{2}\right\}$ is a subspace
- $\mathcal{V}=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1} \geq 0\right.$ and $\left.v_{2} \geq 0\right\}$ is not a subspace; for instance, $(1,1) \in \mathcal{V}$ but $-1(1,1) \notin \mathcal{V}$

Span

given a collection of vectors $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ in a subspace with each $\boldsymbol{v}_{i} \in \mathcal{V}$, span of S is the set of all possible linear combinations of its elements:

$$
\operatorname{span}(S)=\operatorname{span}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)=\left\{\sum_{i=1}^{k} \alpha_{i} \boldsymbol{v}_{i} \mid \alpha_{i} \in \mathbb{R}\right\}
$$

- the span of any set of vectors is a subspace
- if \boldsymbol{v} can be expressed as a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$, then the span remains unchanged upon its addition:

$$
\operatorname{span}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}, \boldsymbol{v}\right)=\operatorname{span}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)
$$

Basis and dimension

Basis: for a subspace $\mathcal{V} \subseteq \mathbb{R}^{n}$, any set of k linearly independent vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\} \subset \mathcal{V}$ that spans \mathcal{V} is termed a basis of the subspace \mathcal{V}

- every vector $\boldsymbol{x} \in \mathcal{V}$ has a unique representation:

$$
\boldsymbol{x}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\cdots+\alpha_{k} \boldsymbol{v}_{k}
$$

- coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct and termed the coordinates of \boldsymbol{x} relative to the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$
- any set of n linearly independent vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n}$ defines a basis of \mathbb{R}^{n}

Dimension: The number of vectors in any basis of subspace \mathcal{V} is constant; this number is called the dimension of \mathcal{V}, symbolized as $\operatorname{dim} \mathcal{V}$

Example 2.4

- the n unit vectors e_{1}, \ldots, e_{n} are basis (called natural basis) for \mathbb{R}^{n}; any $\boldsymbol{x} \in \mathbb{R}^{n}$ can be written as

$$
\boldsymbol{x}=x_{1} \boldsymbol{e}_{1}+\cdots+x_{n} \boldsymbol{e}_{n}
$$

and this expansion is unique

- the vectors

$$
\boldsymbol{a}_{1}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

are a basis for \mathbb{R}^{2} since they are 2 linearly independent vectors of size 2

Matrix rank

the rank of a matrix A is the maximal number of linearly independent columns of A, denoted by $\operatorname{rank} A$

- $\operatorname{rank} A \leq \min \{m, n\}$
- A has full rank if $\operatorname{rank} A=\min \{m, n\}$
- A has full column rank if rank $A=n$ (linearly independent columns)
- A has full row rank if rank $A=m$ (linearly independent rows)

Rank of matrix transpose

- the rank of a matrix A is equal to the rank of A^{T}
- in other words, the maximum number of linearly independent columns of a matrix is equal to the maximum number of linearly independent rows

Example 2.5

find the rank of the matrix

$$
A=\left[\begin{array}{rccc}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{array}\right]
$$

- the first two columns are linearly independent
- it holds that

$$
\left[\begin{array}{c}
2 \\
24 \\
0
\end{array}\right]=2 / 3\left[\begin{array}{r}
3 \\
-6 \\
21
\end{array}\right]+2 / 3\left[\begin{array}{c}
0 \\
42 \\
-21
\end{array}\right]
$$

and

$$
\left[\begin{array}{r}
2 \\
54 \\
-15
\end{array}\right]=2 / 3\left[\begin{array}{r}
3 \\
-6 \\
21
\end{array}\right]+29 / 21\left[\begin{array}{c}
0 \\
42 \\
-21
\end{array}\right]
$$

therefore, only two vectors are linearly independent, thus $\operatorname{rank} A=2$

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

System of linear equations

consider a set or system of m linear equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

- x_{1}, \ldots, x_{n} are called variables
- $a_{i j}$ are called coefficients
- b_{i} are called right-hand-sides

Matrix vector representation

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

- the $m \times n$ matrix A is called the coefficient matrix
- the m-vector \boldsymbol{b} is called the right-hand side

System of linear equations

a system of linear equations is said to be

- overdetermined system if the number of equations is more than the number of unknowns: $m>n$
- underdetermined system if the number of equations is less than the number of unknowns: $m<n$
- square system if $m=n$

Solution

- any n vector $\hat{\boldsymbol{x}}$ satisfying $A \hat{\boldsymbol{x}}=\boldsymbol{b}$ called a solution of the linear equations $A \boldsymbol{x}=\boldsymbol{b}$
- a set of linear equations can have a unique solution, many solutions, or no solutions

Example 2.6

- the system of linear equations

$$
x_{1}+x_{2}=1, \quad, x_{1}=-1, \quad x_{1}-x_{2}=0
$$

is an overdetermined system; it can be described as $A \boldsymbol{x}=\boldsymbol{b}$ with

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

this system has no solution

- the system of linear equations

$$
x_{1}+x_{2}=1, \quad x_{2}+x_{3}=2
$$

can be written as $A \boldsymbol{x}=\boldsymbol{b}$ with

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

which is an underdetermined system; this system has multiple solutions such as $\boldsymbol{x}=(1,0,2)$ and $\boldsymbol{x}=(0,1,1)$

Range space

(suppose that A is an $m \times n$ matrix with columns $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$)
the range space of A is defined as the span of its column vectors (which is a subspace of \mathbb{R}^{m}):

$$
\begin{aligned}
\operatorname{range}(A) & =\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right) \\
& =\left\{x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n} \mid \boldsymbol{x} \in \mathbb{R}^{n}\right\} \\
& =\left\{A \boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

- range of A is also called the column space or image of A
- range of A^{T} is called the row space of A, which is a subspace of \mathbb{R}^{n}

Null space

the null space of A is a subspace of \mathbb{R}^{n} defined as

$$
\operatorname{null}(A)=\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}\}
$$

- the null space is also called kernal of A
- the null space of a matrix is the set of vectors orthogonal to the rows of the matrix
- the dimension of the null space of an $m \times n$ matrix A is

$$
\operatorname{dim}(\operatorname{null}(A))=n-\operatorname{rank} A
$$

Existence of solution

the fundamental theorem of linear systems state that the system $A \boldsymbol{x}=\boldsymbol{b}$ has a solution if and only if

$$
\operatorname{rank} A=\operatorname{rank}[A \boldsymbol{b}]
$$

- this implies that $\boldsymbol{b} \in \operatorname{range}(A)$
- unique solution if and only if

$$
\operatorname{rank} A=\operatorname{rank}[A \boldsymbol{b}]=n
$$

this implies that the solution is unique the columns are linearly independent $(\operatorname{null}(A)=0)$

- infinitely many solutions for any \boldsymbol{b} if and only if $\operatorname{rank} A=m<n$ (\boldsymbol{b} is in the $\operatorname{range}(A)$ and the $\operatorname{null}(A)$ is nonempty)

Example 2.7

consider the matrix

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right]
$$

with $\operatorname{rank} A=n=2$

- for the system $A \boldsymbol{x}=(1,-2,0), \operatorname{rank} A=\operatorname{rank}[A \boldsymbol{b}]=2$, and hence, there exists a unique solution: $\boldsymbol{x}=(1,-1)$
- for the system $A \boldsymbol{x}=(1,-1,0) \operatorname{rank} A=2 \neq \operatorname{rank}[A \boldsymbol{b}]=3$, hence it does not have a solution
- for the system $A^{T} \boldsymbol{x}=(1,2)$, we have rank $A^{T}=2<3$, and there are multiple solutions, including

$$
\boldsymbol{x}_{1}=\left(\frac{1}{3}, \frac{2}{3}, \frac{38}{9}\right), \quad \boldsymbol{x}_{2}=\left(0, \frac{1}{2},-1\right)
$$

Example 2.8

the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

is singular with null space

$$
\operatorname{null}(A)=\left\{\left.\alpha\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

and range space

$$
\operatorname{range}(A)=\left\{\left.\beta\left[\begin{array}{l}
1 \\
3
\end{array}\right] \right\rvert\, \beta \in \mathbb{R}\right\}
$$

for certain values of \boldsymbol{b}, the equation $A \boldsymbol{x}=\boldsymbol{b}$ may or may not have solutions

- if \boldsymbol{b} does not belong to the range of A, then no solution exists
- if \boldsymbol{b} is a multiple of the column vector

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

there are infinitely many solutions

Example 2.9

consider four given measurements: $\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right),\left(t_{3}, b_{3}\right)$, and $\left(t_{4}, b_{4}\right)$:

$$
(0,4),(0.1,-0.9),(0.8,10)
$$

our objective is to approximate these data points using the function

$$
v(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}
$$

to satisfy $v\left(t_{i}\right)=b_{i}$ where c_{i} are parameters we want to find this can be represented as the linear system $A \boldsymbol{x}=\boldsymbol{b}$, where

$$
A=\left[\begin{array}{cccc}
1 & t_{1} & t_{1}^{2} & t_{1}^{3} \\
1 & t_{2} & t_{2}^{2} & t_{2}^{3} \\
1 & t_{3} & t_{3}^{2} & t_{3}^{3} \\
1 & t_{4} & t_{4}^{2} & t_{4}^{3}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

```
\(\mathrm{t}=[0,0.1,0.8,1]^{\prime} ; \mathrm{b}=[1,-0.9,10,9]^{\prime} ;\)
A \(=\) zeros (4,4); \%
powers = 0:3;
for \(\mathrm{j}=1: 4\)
A(:,\(j\) ) = t.^powers(j);
end
\(\mathrm{x}=\mathrm{A} \backslash \mathrm{b} ; \%\) This solves the system \(\mathrm{Ax}=\mathrm{b}\)
tt = -0.1:.01:1.1;
pt \(=x(1)+x(2) . * t t+x(3) . * t t . \wedge 2+x(4) . * t t . \wedge 3 ;\)
plot(tt,pt); hold on
plot(t',b','ro','LineWidth',2); xlabel('t'); ylabel('v')
```


Particular solution

$$
A x=\boldsymbol{b}
$$

where A is an $m \times n$ matrix with $m \leq n$; assume that the matrix A has linearly independent rows, $\operatorname{rank} A=m$

- there is at least one solution and there can be many solutions
- the matrix A also has m linearly independent columns
- without loss of generality, we assume that the columns of the matrix A are reordered such that the first m columns are linearly independent

Finding a solution

let us partition A and x as

$$
A=\left[\begin{array}{ll}
B & D
\end{array}\right] \quad \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{D}
\end{array}\right]
$$

- B is an $m \times m$ invertible matrix (because the first m columns are linearly independent)
- D is an $m \times(n-m)$ matrix
- \boldsymbol{x}_{B} is an m vector; \boldsymbol{x}_{D} is an $n-m$ vector
we can then write

$$
A \boldsymbol{x}=\left[\begin{array}{ll}
B & D
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{D}
\end{array}\right]=B \boldsymbol{x}_{B}+D \boldsymbol{x}_{D}=\boldsymbol{b}
$$

Partitioned system

solving for \boldsymbol{x}_{B}, we have $\boldsymbol{x}_{B}=B^{-1} \boldsymbol{b}-B^{-1} D \boldsymbol{x}_{D}$; thus

$$
\boldsymbol{x}=\left[\begin{array}{c}
B^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
-B^{-1} D \boldsymbol{x}_{D} \\
\boldsymbol{x}_{D}
\end{array}\right]
$$

is a solution to $A \boldsymbol{x}=\boldsymbol{b}$ for any arbitrary $\boldsymbol{x}_{D} \in \mathbb{R}^{(n-m)}$
the set of solutions can be written as

$$
\boldsymbol{x}=\hat{\boldsymbol{x}}+F \boldsymbol{x}_{D}
$$

where

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
B^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right], \quad F=\left[\begin{array}{c}
-B^{-1} D \\
I
\end{array}\right]
$$

- the columns of the matrix F form a basis for the nullspace of A
- if we set $\boldsymbol{x}_{D}=\mathbf{0}$, then we get the solution $\boldsymbol{x}=\left(B^{-1} \boldsymbol{b}, \mathbf{0}\right)$, which is called a basic solution with respect to the basis B

Example 2.10

let us find a particular solution to the system of equations $A \boldsymbol{x}=\boldsymbol{b}$ given by

$$
\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
4 & 1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

we can select any two linearly independent columns of A as basis vectors to find a particular solution

- selecting the first and second columns, we have $\boldsymbol{x}_{B}=\left(x_{1}, x_{2}\right)$,
$\boldsymbol{x}_{D}=\left(x_{3}, x_{4}\right)$ and

$$
B=\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
-1 & -1 \\
1 & -2
\end{array}\right]
$$

hence,

$$
\boldsymbol{x}_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=B^{-1} \boldsymbol{b}=\left[\begin{array}{r}
\frac{4}{5} \\
-\frac{2}{5}
\end{array}\right], \quad B^{-1} D=\left[\begin{array}{rr}
\frac{2}{5} & -\frac{1}{2} \\
-\frac{3}{5} & 0
\end{array}\right]
$$

thus, a particular solution is $\boldsymbol{x}=\left(\frac{4}{5},-\frac{1}{5}, 0,0\right)$ and the set of all solutions can be written as

$$
\boldsymbol{x}=\underbrace{\left[\begin{array}{r}
\frac{4}{5} \\
-\frac{1}{5} \\
0 \\
0
\end{array}\right]}_{\hat{\boldsymbol{x}}}+\underbrace{\left[\begin{array}{rr}
-\frac{2}{5} & \frac{1}{2} \\
\frac{3}{5} & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}_{F}\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
$$

- if we select the first and third columns instead, then we have $\boldsymbol{x}_{B}=\left(x_{1}, x_{3}\right), \boldsymbol{x}_{D}=\left(x_{2}, x_{4}\right)$ and

$$
B=\left[\begin{array}{cc}
2 & -1 \\
4 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right]
$$

in this case, we have

$$
\boldsymbol{x}_{B}=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=B^{-1} \boldsymbol{b}=\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right], \quad B^{-1} D=\left[\begin{array}{rr}
\frac{2}{3} & -\frac{1}{2} \\
-\frac{5}{3} & 0
\end{array}\right]
$$

therefore, a particular solution is $\boldsymbol{x}=\left(\frac{2}{3}, 0, \frac{1}{3}, 0\right)$ and the set of all solutions can be written as

$$
\boldsymbol{x}=\underbrace{\left[\begin{array}{c}
\frac{2}{3} \\
0 \\
0 \\
\frac{1}{3} \\
0
\end{array}\right]}_{\hat{\boldsymbol{x}}}+\underbrace{\left[\begin{array}{rr}
-\frac{2}{3} & \frac{1}{2} \\
1 & 0 \\
\frac{5}{3} & 0 \\
0 & 1
\end{array}\right]}_{F}\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right]
$$

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Eigenvalues and eigenvectors

a scalar λ (possibly complex) is an eigenvalue of an $n \times n$ matrix A if

$$
A \boldsymbol{v}=\lambda \boldsymbol{v} \quad \text { for some non-zero vector } \boldsymbol{v} \in \mathbb{R}^{n}
$$

- v is called an eigenvector of A (associated with eigenvalue λ)
- eigenvalues can be computed by solving the characteristic equation:

$$
\operatorname{det}(\lambda I-A)=0
$$

- $\operatorname{det}(s I-A)$ is a polynomial of degree n known as the characteristic polynomial
- the characteristic equation must have n roots (possibly nondistinct), which are the eigenvalues of A

Properties and similar matrices

given $A \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$:

- for a triangular A, eigenvalues are its diagonal entries
- eigenvalues of $A+c I$ are $c+\lambda_{i}$
- eigenvalues of A^{k} are λ_{i}^{k}
- eigenvalues of A^{-1} are $1 / \lambda_{i}$
- eigenvalues of A^{T} match those of A
- the trace of A is $\sum_{i=1}^{n} \lambda_{i}$ and the determinant is $\prod_{i=1}^{n} \lambda_{i}$
- if A is real and symmetric, then its eigenvalues are real

Similarity:

- matrices A and B are similar if a nonsingular matrix T exists such that

$$
T^{-1} A T=B
$$

- similar matrices share eigenvalues because $\operatorname{det}(\lambda I-B)=\operatorname{det}(\lambda I-A)$

Diagonalization

if A has n distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{n}$, then there exists n linearly independent eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, i.e.,

$$
A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}, \quad i=1, \ldots, n
$$

it follows that the matrix A is similar to a diagonal matrix

$$
A=V \Lambda V^{-1}
$$

where

$$
\begin{aligned}
\Lambda & =\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
V & =\left[\boldsymbol{v}_{1} \boldsymbol{v}_{2} \cdots \boldsymbol{v}_{n}\right]
\end{aligned}
$$

Symmetric eigenvalue decomposition

suppose that $A \in \mathbb{R}^{n \times n}$ is symmetric, then A can be factored as

$$
A=U \Lambda U^{T}
$$

- $U \in \mathbb{R}^{n \times n}$ is orthogonal (i.e., $U^{T} U=I$)
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where λ_{i} denote the real eigenvalues of A
- the columns of U forms an orthonormal set of eigenvectors of U
- the above factorization is called symmetric eigenvalue decomposition or spectral decomposition

Singular value decomposition (SVD)

suppose that $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank} A=r$, then A can be factored as

$$
A=\left[\begin{array}{ll}
U & \bar{U}
\end{array}\right]\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V^{T} \\
\bar{V}^{T}
\end{array}\right]=U \Sigma V^{T}
$$

where $\left[\begin{array}{ll}U & \bar{U}\end{array}\right] \in \mathbb{R}^{m \times m}$ and $\left[\begin{array}{ll}V & \bar{V}\end{array}\right] \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with

$$
\begin{gathered}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 \\
U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}, \bar{U} \in \mathbb{R}^{(m-r) \times m}, \bar{V} \in \mathbb{R}^{n \times(n-r)}
\end{gathered}
$$

- U satisfies $U^{T} U=I, V$ satisfies $V^{T} V=I$
- the columns of U are called left singular vectors of A, the columns of V are right singular vectors of A
- the numbers σ_{i} are the nonzero singular values of A
the singular value decomposition can be written

$$
A=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

where $\boldsymbol{u}_{i} \in \mathbb{R}^{m}$ are the left singular vectors, and $\boldsymbol{v}_{i} \in \mathbb{R}^{n}$ are the right singular vectors

Relation to $A^{T} A$ and $A A^{T}$

$$
A^{T} A=V \Sigma^{2} V^{T}=\left[\begin{array}{ll}
V & \bar{V}
\end{array}\right]\left[\begin{array}{cc}
\Sigma^{2} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V^{T} \\
\bar{V}^{T}
\end{array}\right]
$$

- this is the eigenvalue decomposition of $A^{T} A$
- the nonzero eigenvalues of $A^{T} A$ are the squared singular values of A and the associated eigenvectors of $A^{T} A$ are the right singular vectors of A
- similarly, the nonzero eigenvalues of $A A^{T}$ are the squared singular values of A and the associated eigenvectors of are the left singular vectors of A

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Definiteness of symmetric matrices

a square and symmetric matrix A is positive definite if

$$
\boldsymbol{x}^{T} A \boldsymbol{x}>0 \quad \forall \boldsymbol{x} \neq \mathbf{0}
$$

(for any nonzero vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$, we require $\sum_{i, j=1}^{n} a_{i, j} x_{i} x_{j}>0$)
other notions of definiteness are defined as follows:

- Positive semidefinite if $\boldsymbol{x}^{T} A \boldsymbol{x} \geq 0$ for all \boldsymbol{x}; we use the notation $A \geq 0$ to indicate that A is positive semidefinite
- Negative definite if $-A$ is positive definite; we use the notation $A<0$ to indicate that A is negative definite
- Negative semidefinite if $-A$ is positive semidefinite; we use the notation $A \leq 0$ to indicate that Q is negative semidefinite
- Indefinite if $\boldsymbol{x}^{T} A \boldsymbol{x}$ can take on both positive and negative values

Example 2.11

a) the identity matrix I is positive-definite as $\boldsymbol{x}^{T} I \boldsymbol{x}=\|\boldsymbol{x}\|^{2}>0$ for all $\boldsymbol{x} \neq 0$; conversely, $-I$ is negative definite
b) for a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$:

- with $d_{i}>0$: positive definite
- with $d_{i} \geq 0$: positive semidefinite
- with both positive and negative d_{i} : indefinite
c) any matrix $A=B^{T} B$ is positive semidefinite:

$$
\boldsymbol{x}^{T} B^{T} B \boldsymbol{x}=(B \boldsymbol{x})^{T}(B \boldsymbol{x})=\|B \boldsymbol{x}\|^{2} \geq 0
$$

If B has linearly independent columns, then A is positive definite since $B \boldsymbol{x}=\mathbf{0}$ only when $\boldsymbol{x}=\mathbf{0}$

Principle submatrices

a principle submatrix of an $n \times n$ matrix A is the $(n-k) \times(n-k)$ obtained by deleting k rows and the corresponding k columns of A
a leading principle submatrix of an $n \times n$ matrix A of order $n-k$, denoted by A_{k}, is the matrix obtained by deleting the last k rows and columns of A
example: the principle submatrices of

$$
A=\left[\begin{array}{rrr}
3 & -4 & 4 \\
-4 & 6 & 5 \\
4 & 5 & 7
\end{array}\right]
$$

are

$$
3,6,7,\left[\begin{array}{rr}
3 & -4 \\
-4 & 6
\end{array}\right],\left[\begin{array}{ll}
6 & 5 \\
5 & 7
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
4 & 7
\end{array}\right],\left[\begin{array}{rrr}
3 & -4 & 4 \\
-4 & 6 & 5 \\
4 & 5 & 7
\end{array}\right]
$$

and the leading principle submatrices are

$$
A_{1}=3, \quad A_{2}=\left[\begin{array}{rr}
3 & -4 \\
-4 & 6
\end{array}\right], \quad A_{3}=\left[\begin{array}{rrr}
3 & -4 & 4 \\
-4 & 6 & 5 \\
4 & 5 & 7
\end{array}\right]
$$

Properties of symmetric matrices

Definiteness and eigenvalues

- a symmetric matrix is positive (negative) definite if and only if its eigenvalues are positive (negative)
- a symmetric matrix is positive (negative) semidefinite if and only if its eigenvalues are nonnegative (nonpositive)
- a symmetric matrix is indefinite if and only if it has some positive and negative eigenvalues

Determinant positive definite test: we can test for positive definiteness using Sylvester's criterion

- a symmetric matrix is positive definite if and only if the determinants of all leading principal sub-matrices are positive ($\operatorname{det} A_{k}>0$)
- a symmetric matrix is positive semidefinite if and only if the determinants of all principal sub-matrices are nonnegative

Example 2.12

a) the matrix

$$
A=\left[\begin{array}{rrr}
3 & -4 & 4 \\
-4 & 6 & 5 \\
4 & 5 & 7
\end{array}\right]
$$

is indefinite; this is because it is not positive semidefinite since $\operatorname{det} A_{1}=3>0$ and $\operatorname{det} A_{3}=-317<0$; it is also not negative semidefinite since $-A$ is not positive semidefinite
b) the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

is positive definite since the determinant of all leading principle submatrices

$$
\operatorname{det} A_{1}=2>1, \quad \operatorname{det} A_{2}=3>0, \quad \operatorname{det} A_{3}=4
$$

are positive

Outline

- linear independence
- matrix inverse
- matrix rank
- linear equations
- eigenvalues and eigenvectors
- positive semidefinite matrices
- norms

Vector norms

the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a norm if it satisfies the following properties:

1. positivity: $f(\boldsymbol{x}) \geq 0, f(\boldsymbol{x})=0$ only if $\boldsymbol{x}=0$
2. homogeneity: $f(\alpha \boldsymbol{x})=|\alpha| f(\boldsymbol{x}), \alpha \in \mathbb{R}$
3. triangle Inequality: $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$
p-norm is defined as:

$$
\|\boldsymbol{x}\|_{p}= \begin{cases}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p} & \text { if } 1 \leq p<\infty \\ \max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right) & \text { if } p=\infty\end{cases}
$$

- an example is the Euclidean norm or ℓ_{2}-norm:

$$
\|\boldsymbol{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}, \quad\left(\text { Euclidean norm or } \ell_{2} \text {-norm }\right)
$$

- we use $\|\cdot\|=\|\cdot\|_{2}$ if there is no ambiguity

Common vector norms

ℓ_{1}-norm

$$
\|\boldsymbol{x}\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|
$$

ℓ_{∞}-norm

$$
\|\boldsymbol{x}\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)
$$

quadratic norms:

$$
\|\boldsymbol{x}\|_{P}=\left(\boldsymbol{x}^{T} P \boldsymbol{x}\right)^{1 / 2}=\left\|P^{1 / 2} \boldsymbol{x}\right\|_{2}
$$

where $P>0$ is any positive-definite matrix and $P^{1 / 2}$ is the symmetric square root of P, i.e., $P^{1 / 2} P^{1 / 2}=P$

Matrix norms

matrix norms $\|\cdot\|$ satisfies the properties of a norm:

1. $\|c A\|=|c|\|A\|$ for $c \in \mathbb{R}$
2. $\|A+B\| \leq\|A\|+\|B\|$
3. $\|A\|>0$ and $\|A\|=0 \Longleftrightarrow A=0$

Frobenius norm:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}
$$

sum-absolute-value norm:

$$
\|A\|_{\text {sav }}=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

maximum-absolute-value norm:

$$
\|A\|_{\operatorname{mav}}=\max \left\{\left|a_{i j}\right| \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

Induced norms

Induced p-norms: the matrix p-norm is

$$
\|A\|_{p}=\max _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|A \boldsymbol{x}\|_{p}}{\|\boldsymbol{x}\|_{p}}=\max _{\|\boldsymbol{x}\|_{p}=1}\|A \boldsymbol{x}\|_{p}
$$

- spectral norm or ℓ_{2} norm of A

$$
\|A\|_{2}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

where $\sigma_{\max }(A)$ is the maximum singular value of A

- max-row-sum norm: $\|A\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|$
- max-column-sum norm: $\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i j}\right|$
the induced-norms satisfy the sub-multiplicative property

$$
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}
$$

the Frobenius is not an induced norm but it satisfies the sub-multiplicative property

References and further readings

- Edwin KP Chong and Stanislaw H Zak. An Introduction to Optimization, John Wiley \& Sons, 2013, chapters 2,3.
- Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018, chapters 3,5,8.
- Stephen Boyd and Lieven Vandenberghe. Convex Optimization, Cambridge University Press, 2004, appendices A.1, A.5, C.5.

