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Vector

a (column) vector is an ordered list of numbers arranged in a vertical array, written as:

ai

as
a=|" or a=(ay,as,...,an)

Aan

e q; is the ith entry (element, coefficient, component) of vector a
e i is the index of the ith entry a;

e number of entries n is the size (length, dimension) of the vector
e a vector of size n is called an n-vector

the transpose of an n-vector a is a row vector arranged in a horizontal array:

a= a1 az -+ an]

e (-)Tis transpose operation
e (aT)T = a (transpose of row vector is a column vector)
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Notes and conventions

all vectors are column vectors unless otherwise stated

— for row vector we use the transpose notation (e.g., aT)

R™ is set of n-vectors with real entries

e a € R" means a is n-vector with real entries

two n-vectors a and b are equal, denoted as a = b, if a; = b; for all
e ; can refer to an ith vector in a collection of vectors
— in this case, we use (ai)j to denote the jth entry of vector a;

— example: if ag = (-1, 2, -5), then (a2)3 = -5

Conventions
e parentheses are also used instead of rectangular brackets to represent a vector
e other notations exist to distinguish vectors from numbers (e.g., a, a, a)

e conventions vary; be prepared to distinguish scalars from vectors

vectors



Examples of vectors

Location and displacement
e |ocation (position): coordinates of a point in 2-D (plane) or 3-D space

e displacement: vector represents the change in position from one point to another
(shown as an arrow in plane or 3-D space)

A
X2 X = (x1,x2)

X2 A

X1 X1
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Examples of vectors

Time series or signal: entries are values of some quantity at n different times
e hourly temperature over a period of n hours

e audio signal: entries give the acoustic pressure values at equally spaced times

Feature vector: entries are quantities that relate to a single object
e example: age, height, weight, blood pressure, gender, etc., of patients
e entries are called the features or attributes

Portfolio: entries can represent stock portfolio (e.g., investment in n assets)
e ith entry is the number of shares of asset i held (or invested in asset )

e entries can be the no. of shares, dollar values, fractions of total dollar amount

e shares you owe another party (short positions) are represented by negative values
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Special vectors

Zero vector and ones vector
0=(0,0,...,0), 1=(1,1,...,1)

size follows from context (if not, we add a subscript and write 0,,, 1)

Unit vectors

e there are n unit vectors of size n, denoted by €1, €2, ...,¢e,
1 j=i
e:): =
(ei); {0 I

e the ith unit vector is zero except its ith entry which is 1

e example: forn = 3,

1 0 0
e = 0 , €2 = 1 , €3 = 0
0 0 1

e the size of ¢; follows from context (or should be specified explicitly)
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Block vectors, subvectors

Stacking

e vectors can be stacked (concatenated) to create larger vectors

e stacking vectors b, ¢, d of size m, n, p gives an (m + n + p)-vector

b
a=|c |=(b,c,d)=(b1,....bm,C1,...,cn,d1,....dp)
d

e we call b, ¢, and d as subvectors or slices of a
e example:ifa=1,b=(2,-1),c=(4,2,7),then (a,b,c) = (1,2,-1,4,2,7)

Subvectors slicing
e colon (:) notation is used to define subvectors (slices) of a vector
e for vector a, we define a,.; = (a,, ..., ay)

e example: ifa = (1,-1,2,0,3), then as.4 = (-1,2,0)
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Addition and subtraction

for n-vectors a and b,

ai; + by ay— by
as+b as—-b
a+b= 2' 2 , a—-b= 2 2
a, + b, an — by
Example
0 1 1
T+ 2|=]9
3 0 3

Properties: for vectors a, b of equal size

e commutative: a+b =b+a

e associative: a+ (b+c¢) = (a+b) +c¢

vector operations



Geometric interpretation: displacements addition

e if a and b are displacements, a + b is the net displacement

a
b X :
% b b+a
a
e position displacements
b
+a

vector operations



Scalar-vector multiplication

for scalar 8 and n-vector a, example:
a Bay
as Bas L 2
Bl  |= ) (-2)| 9 |=| -18
i : 6 -12
an Ban

Properties: for vectors a, b of equal size, scalars 3, y

commutative: Sa = af8

associative: (By)a = B(ya), we write as Sya

distributive with scalar addition: (8 + y)a = Ba + ya

distributive with vector addition: B(a + b) = Ba + b

vector operations



Linear combination

a linear combination of vectors a1, . . ., ay is a sum of scalar-vector products
Biay + Baas + -+ + Brag

e scalars 31, . . ., Bk are the coefficients of the linear combination

e example: any n-vector b can be written as

b=b1€1+"'+bnen

Special linear combinations
e affine combination: when 1 +---+ B =1

e convex combination or weighted average: when 81 +---+ B =1land §; > 0

vector operations
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vector operations

Example: combination of displacements

b =-0.5a1 + 1.5a9

a

ai
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Line segment

any point on the line passing through distinct a and b can be written as

c=0a+(1-6)b

e @ is ascalar
e for 0 < 6 < 1, point ¢ lie on the segment between a and b

6>1

o:fa+(1-0)b 9<0

vector operations
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Inner product

the (Euclidean) inner product (or dot product) of two n-vectors a, b is

ClTb = a1b1 + a2b2 + -+ anbn

e ascalar

e other notation exists: {a, b), {a | b),a - b

e example:
-117 1
2 0 [=EDM)+(2)(0)+(2)(=3) =-T7
2 -3

inner product and norm
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Properties of inner product

for vectors a, b, c of equal size, scalar y

e nonnegativity: a’a > 0, and a’a = 0ifand only if a = 0
e commutative: a’b = bTa

e associative with scalar multiplication: (ya)Tb = y(a’b)

e distributive with vector addition: (a + b)Tc = aTc + bTc

Useful combination: for vectors a, b, ¢, d

(a+b)(c+d)=aTc+atd+bTc+bTd

Block vectors: if vectors a, b are block vectors, and corresponding blocks
a;, b; € R have the same sizes (they conform),

[ ] —a1b1+ +akbk
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Simple examples

Inner product with unit vector

Differencing

Sum and average

1Ta=a;+as+ - +ay

a,+as+---+ay
an(Cl) = =

inner product and norm



Inner product examples

Polynomial evaluation

e n-vector c represents the coefficients of a polynomial p of degree n — 1 or less:
p(X)=cr+cox+ - +cp1x" a7t

e tisnumber, andletz = (1,1,#2,...,* 1) be the n-vector of powers of ¢

e ¢’z = p(t) is the value of the polynomial p at the point ¢

Price quantity (cost)
e vectors of prices p and quantities g of n goods

e pTg=piqi +paga+ - + pnq, is the total cost

Portfolio value

e s is an n-vector of holdings in shares of a portfolio of n assets
e p is an n-vector for the prices of the assets

° st is the total (or net) value of the portfolio

inner product and norm 1.17



Euclidean norm

Euclidean norm of vector a € R":

lall = \Ja? + a3+ -+ + a3 = VaTa

e reduces to absolute value |a| = max{a, —a} whenn = 1
e measures the magnitude of a

e examples

S E

inner product and norm
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Properties

Positive definiteness

lla]l >0 foralla, |la]l=0 onlyifa=0

Homogeneity

l|Ball = |Bl|lall for all vectors a and scalars 8

Triangle inequality

lla + b]| < ||lal| + ||b]| for all vectors a and b of equal length

e any real function that satisfies these properties is called a (general) norm
(we will see other norms)

e Euclidean norm is often written as ||a||- to distinguish from other norms

inner product and norm 1.19



Norm of block vector and norm of sum

Norm of block vector: for vectors a, b, c,

a
b |[ = Vllall + 1612 + llc|l?

c

Norm of sum: for vectors a, b,

lla + bl = Vllal|? + 2aTb + ||b||

inner product and norm 1.20



Cauchy-Schwarz inequality

la’p| < ||allllb]l foralla,b € R"
moreover, equality |a 7| = ||a||||b|| holds if:

e a=00rb=0;inthiscase a’d =0 = ||a||||b||

e b =ya for some y > 0; in this case
0 <a'd=ylal?= lallb]
e b = —ya for some y > 0; in this case

0>a’b=—ylal® = -|lall||5|

inner product and norm 1.21



Proof of Cauchy-Schwarz inequality

1. trivialifa=0o0rb =0

2. assume |la|| = ||| = 1; we show that -1 < aTb < 1
0 < lla-b|? 0 < |la+b|?
=(a-b)T(a-b) =(a+b)T(a+b)
= llall* = 2a”b + ||b]|? = llall? +2a"b + |b]?
=2(1-a%b) =2(1+a’b)
with equality only if a = b with equality only if a = —b

3. for general nonzero a, b, apply case 2 to the unit-norm vectors
1 1
Tal® ol

lall 12l

inner product and norm 1.22



Euclidean distance
Euclidean distance between two vectors a and b,
dist(a, b) = ||la — b||

e agrees with ordinary distance forn = 1,2, 3

b
dist(a, b) = V3 dist(p,q) =2
q p

a

e when the distance between two vectors is small, we say they are ‘close’ or
‘nearby’, and when the distance is large, we say they are ‘far’

inner product and norm
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Angle between vectors

the angle between nonzero real vectors a, b is defined as

a’b
0 = /(a, b) = arccos ( )
llallllo|l

this is the unique value of 8 € [0, 7] that satisfies a’b = ||al|||b]| cos 6

e coincides with ordinary angle between vectors in 2-D and 3-D

symmetric: Z(a,b) = £(b,a)

unaffected by positive scaling: Z(Ba, yb) = Z(a, b) for 8,y > 0

inner product and norm
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Classification of angles

6=0 a™b = ||a||||b||  vectors are aligned or parallel
0<06<m/2 a’h >0 vectors make an acute angle
0=m/2 a’™h =0 vectors are orthogonal (a L b)
nf2<0<nm a™ <0 vectors make an obtuse angle
O=m ah = —|jal|||b||  vectors are anti-aligned or opposed

-
RN

inner product and norm 1.25



Orthonormal vectors

set of vectors a1, as, . . ., ay is orthonormal if:
1 ifi=j
afaj=4 ""77
0 ifi#]

e vectors are mutually orthogonal and have unit norm
e vector of norm one is called normalized

e process of dividing a vector by its norm is known as normalizing

Examples
e standard unit vectors e, . . ., e, are orthonormal
e vectors
0 1 1 1 1

of, — |11, —|[-1
1 V2 | V2| ¢
are orthonormal

inner product and norm
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Matrices

a matrix is an ordered rectangular array of numbers, written as

ailp diz2 - Qip

azy a4z -t d2p
A=

am1 Am2 - Amn

e scalars in array are the entries (elements, coefficients, components)
e a;jisthe i, jth entry of A (i is row index, j is column index)

e size (dimensions) of the matrix is m X n = (#rows) X (#columns)

Example
0 1 -23 0.1
A=]113 4 -01 O
4.1 -1 0 1.7

® do3 = -0.1
e a3 X 4 matrix

matrices
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Notes and conventions

Notes

e a matrix of size m X n is called an m X n-matrix

o R™*" jg set of m X n matrices with real entries

e we use a; ; wheni or j are more than one digit

e two matrices with same size are equal if corresponding entries are all equal
e sometimes Ay is a matrix; in this case, we use (Ag);; to denote its 7, j entry
Conventions

e matrices are typically denoted by capital letters

e parentheses are also used instead of rectangular brackets to represent a matrix
e sometimes A;; is used to denote the i, jth entry of A

e some authors use bold capital letter for matrices (e.g., A, A)

e be prepared to figure out whether a symbol represents a matrix, vector, or a scalar
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Matrix examples

Images
e m X n matrix denote a monochrome (black and white) image

e x;;is i, j pixel value in a monochrome image

Multiple asset returns
e T X n matrix R gives the returns of n assets over T periods
e r;jisreturn of asset j in period i

e jth column of R is a T-vector that is the return time series for asset j

Feature matrix
e X =[xy --- xy]isn X N feature matrix
e column x; is feature n-vector for object or example j

e x;; is value of feature i for example j

matrices
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Matrix shapes

Scalar: a 1 X 1 matrix is a scalar

Row and column vectors
e a1 X n matrix is called a row vector

e an n X 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an m X n matrix is
e tall, skinny, or thinifm > n
e wideorfatifm <n

e squareifm=n

matrices 1.30



Transpose of a matrix

transpose of an m X n matrix A is the n X m matrix:

ailp dz1 0 dml

a2 dz -t Adm2
AT =

Ain d2n  *° Amp

o (AD)ij =ayi
° (AT)T:A
e example:

matrices
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Columns and rows

an m X n matrix can be viewed as a matrix with row/column vectors

Columns representation

aij
A=laias - a,], aj=| :
Amj
each a; is an m-vector (the jth column of A)
Rows representation
b{
bT
A= .2 ) b= lai - ain]
by,

each bl.T is a 1 X n row vector (the ith row of A)

matrices



Block matrix and submatrices

e a block matrix is a rectangular array of matrices

e entries in the array are the blocks or submatrices of the block matrix

ln ]

e submatrices can be referred to by their block row and column (C'is 1, 2 block of A)

Example: a 2 X 2 block matrix

e dimensions of the blocks must be compatible

e if the blocks are

matrices 1.33



Slice of matrix

Apr Ap,r+l e Aps
A _ Ap+l,r Ap+l,r+l o Ap+l,s
piq.r:s —
Agr Ag,r+1 e Aags

e an(g—p+1)x(s—r+1) matrix
e obtained by extracting from A entries in rows p to ¢ and columns r to s
o from last page example, we have
4 7
Ag.33.4 =
2:3,3:4 [6 0]

matrices 1.34



Transpose of block matrix

the transpose of a block matrix (shown for a 2 X 2 block matrix)
A B [ AT cT
c b | | BT DT

e A,B,C, and D are matrices with compatible sizes
e concept holds for any number of blocks

matrices 1.35



Special matrices

Zero matrix
e matrix with a;; = O for all i, j

e notation: 0 or 0, (if dimension is not clear from context)

Identity matrix

e square matrix with a;; = 1ifi = janda;; =0ifi # j
e notation: I or I, (if dimension is not clear from context)
e columns of I, are unit vectors eq, eo, . . ., e,; for example,

I3 = = [e1 ez e3]

OO =
o = O
= o O

matrices 1.36



Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

e square witha;; = Ofori # j

e represented as A = diag(ay, . .., a,) where a; are diagonal entries
02 0 0
diag(0.2,-3,1.2) = 0 -3 0
0 0 1.2

4 0 0 4 0 O
3 -1 01, 0 -1 0
-1 5 =2 -1 0 -2

Upper triangular matrix: square with a;; = 0 fori > j
(a triangular matrix is unit upper/lower triangular if a;; = 1 for all i)

matrices
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Symmetric matrices

a square matrix is symmetric if

A=AT

[ ] aij = aji

e examples:
3 7 -2
7 -1 5

matrices
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Matrix addition

sum of two m X n matrices A and B

a1 +bi1 app+biz - ap+bi,

as1 +ba1  asxp+byy - as, +bo
A+B= " "

am1 + bml amo + bm2 Amn + bmn

Properties
e commutativity: A+ B=B+ A

e associativity: (A+B)+C=A+ (B+C)
e addition with zero matrix: A+0=0+A=A

e transpose of sum: (A + B)T = AT+ BT

matrix operations 1.39



Scalar-matrix multiplication

scalar-matrix product of m X n matrix A with scalar 8

Bair  Paiz - Pan
BA = Baz1  Pasa - Paz,

,Baml ,Bam2 ﬂamn

Properties: for matrices A, B, scalars 3,y

e associativity: (8y)A = B(vA)

o distributivity: (B +y)A =BA+yAandy(A+B)=yA+YyB
e transposition: (BA)T = BAT

matrix operations



Matrix-vector product

product of m X n matrix A with n-vector x

a11X1 +d19X9 + - + d1pXn blTx
as1X1 + agseXxo + -+ + dopXy ng
Ax = =
T
Am1X1 + AmoXo + - + AmnXp bx

e blisithrow of A

e dimensions must be compatible (number of columns of A equals the size of x)

e Ax is alinear combination of the columns of A:

X1

X2
Ax =[ay az - ap]| | =x1a1 +X2a2 + -+ +Xua,

Xn

each a; is an m-vector (ith column of A)

matrix operations
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Properties of matrix-vector multiplication

for matrices A, B, vectors x, y and scalar 8

e associativity: (BA)x = A(Bx) = B(Ax) (we write SAx)
e distributivity: A(x +y) = Ax + Ay and (A + B)x = Ax + Bx

matrix operations 1.42



General examples

e Ox =0, i.e.,, multiplying by zero matrix gives zero

e [x = x, i.e.,, multiplying by identity matrix does nothing

e inner product aTh is matrix-vector product of 1 X n matrix aT and n-vector b
e Aej =ayj,the jth column of A [ATe; = b; where bl.T is ith row]

e the product A1 is the sum of the columns of A

e for the n X n matrix

1-1/n -1/n - =1/n
A —1./n 1-1/n - —1./n ’
—i/n -1/n - 1—.1/n

X = Ax is de-meaned version of x (i.e., ¥ = x — avg(x)1)

matrix operations
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Difference matrix

(n = 1) X n difference matrix is

-1 1 0 - 0 00
0 -1 1 0 00
D=
0O 0 O -1 1 0
0 0 O 0 -1 1

y = Dx is (n — 1)-vector of differences of consecutive entries of x:

X2 —X1
X3 — X2
Dx =
Xn —Xn-1

matrix operations
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Vandermonde matrix

consider a polynomial of degree n — 1 or less with coefficients x1, xs, . . .

p(1) = X1 + Xof + X3t% + - + Xpt

e values of p(t) at m points t1, . . ., t;, can be written as
p(t1) [ RO X1
plez) | |1 12 - ! X2
p(tm) 1 1, - t;ln_l Xn

e the matrix A is called a Vandermonde matrix

n-1

= Ax

e the product Ax maps coefficients of polynomial to function values

matrix operations
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Matrix multiplication

product of m X n matrix A and n X p matrix B
C=AB

is the m X p matrix with 7, j entry

n
cij = ) aixbxj = ainbij +aigbsj + -+ + ainby;
=1

e to get ¢;; : move along ith row of A, jth column of B

e dimensions must be compatible:
#columns in A = #rows in B

e example:

matrix operations
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Special cases of matrix multiplication

scalar-vector product (with scalar on right!) xa
inner product a’b
matrix-vector multiplication Ax

outer product of m-vector a and n-vector b is the m X n matrix

a1b1 a1b2 alb,,
abT— LZle a2b2 agbn
ambi ambs -+ apby,

multiplication by identity Al,, = Aand [,,A = A

matrix power: multiplication of matrix with itself p times: A”? = AA---

matrix operations
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Properties of matrix-matrix product

e associativity: (AB)C = A(BC) so we write ABC
e associativity: with scalar multiplication: (yA)B = y(AB) = yAB
e distributivity with sum:
A(B+C)=AB+AC, (A+B)C=AC+BC
e transpose of product:
(AB)T = BTAT and (Ax)T=xTAT
e not commutative: AB # BA in general; for example,
[—1 OHO 1]¢[0 1H—1 0]
0 1 1 0 1 0 0 1
there are exceptions, e.g., AI = I A for square A

matrix operations 1.48



Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 X 2 block matrices
A B
C D

if the dimensions of the blocks are compatible

WY]

AW + BX
X Z

CW+DX

matrix operations

AY + BZ
CY+DZ
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Column and row representations

Column representation

e Aism X n, Bisn X p with columns b;

AB=A|by by -+ by,| =[Aby Aby -

e so AB is ‘batch’ multiply of A times columns of B

Row representation

e with al.Tthe rows of A

aliB (Bial);

a,B B a
AB = 2 _ ( 2)

a,{LB (BTa,)T

o rowiis (BTa;)T

matrix operations

Ab|
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Inner and outer product representations

Inner product representation: A is m X n with rows al.T, B is n X p with columns b;

T T T
aiby ajby - ajbp
T T T
aby asbs - asb
amby ambs - agybp

i, jthentryis alb;

Outer product representation: A is m X n with rows a!, B is n X p with rows b7

bf
— - T T
AB=[ay - anl|: |=aibT+ - +a,b]
bT

n

matrix operations 1.51



Trace of a matrix

the trace of a square matrix A € R"*" is the sum of its diagonal entries:

tr(A) = i aij
i=1

some properties of the trace are:
o tr(A) = tr(A7T)
e tr(A+ B) = tr(A) + tr(B) for square and equal size matrices A and B
o tr(BA) = Btr(A) for any scalar 8
e if Aisan m X n matrix and B is an n X m matrix, then

tr(AB) = tr(BA)
o tr(ab”) = tr(bTa) = b%a for any n-vectors a and b

Inner product of matrices: the standard inner product between A, B € R"*"

m n
(A,B) = tr(ATB) = 3" a;;bij
i=1 j=1
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Determinant of a matrix

the determinant of a square matrix for value of i (i = 1,2, ...,n)is

det A = Z(—l)i+jaij det Aij

Jj=1

e A;j is the ijth submatrix of A obtained by removing row i and column j from A;
for example

1 2 3
A=14 5 6, A12:[§ g], A32=[1 3]
7 8 9

e det A;; is called the ijth minor of A
e (—=1)"*/ det(A;;) is called the i jth cofactor of A

matrix operations 1.53



Examples
e for a scalar matrix A = [a11], we have det A = aq

e fora 2 X 2 matrix:

ail ai2
det A = det [ =ajjaze —az1di2

a1 azg

e for the matrix

we have fori = 1

5 6 4 6 4 5
A11=[8 9], A12=[7 9], A13=[7 8]

thus, the determinant is
det A = (=1)%aqi(det A1y) + (=1)%ai2(det A2) + (=1)*ar3(det Ay3)
=ayi(det A1) —aja(det Ap) +aiz(det Ag)
= 1(=3) — 2(=6) +3(=3) =0

matrix operations 1.54



Determinant properties

o det A =det AT

e det BA = B det A for any scalar 8

e det AB = det A X det B for square matrices A and B
e if A is lower/upper triangular, then det A = a1+ au,

e if A is block upper/lower triangular, with square diagonal blocks A11, ..., Axr (of
possibly different sizes), then det A = det A11--- det Agx

e determinant unchanged if we add to a column a linear comb. of other columns

e swapping two rows/columns changes the sign of det(A)

matrix operations 1.55
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Functions

e f: X — Y denotes a function f that maps an element from set X to set Y
e f:R"™ — R™ means that f maps a real n-vector to a real m-vector:

fi(x)
fx)y=1| :
Jm(x)

where the entry f; : R" — R is itself a scalar-valued function of x

Function domain
o the domain of f, denoted by dom f C X, is the set where f is defined and finite
o for example, the functions

1/x ifx#0
co  otherwise

1/x iftx>0
oo otherwise

Ji(x) ={ f2(x) ={

are different since they have different domains

functions 1.56



Examples

Defined everywhere (dom f = R")

e f:R — R: f(x) =x? +x + 1 maps a scalar x to a scalar f(x)

o f:R3 = R: f(x1,Xx2,x3) = X1 + X2 +x§

o f:R" - R™: f(x) = Ax wherex € R" and A is an m X n matrix

o [:R? > R3: f(x1,x2) = (x1,x2,x1 +x3)

Undefined everywhere

e f(x) =logux is valid only for x > 0, hence dom f = {x | x > 0}

e f(x1,x2) =x1/(x1 +x2) has domain dom f = {(x1,x2) | x1 +x2 # 0}

functions
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Linear functions

Linear functions: f is linear if it satisfies the superposition property

flax+By) = af(x)+Bf(y)

for all numbers «, 3, and all n-vectors x, y

Extension: if f is linear, then

flaruy + agus + - + @mity) = 1 f(u1) + agf(uz) + - + amf(um)

for all n-vectors uq, ..., u,, and all scalars a1, ..., a,

functions
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Linear functions as matrix-vector product

define f(x) = Ax for fixed A € R™ " (f : R" — R™)

e any function of this type is linear: A(ax + By) = a(Ax) + B(Ay)

e every linear function f can be written as f(x) = Ax:

fx) = fx1eq +x2e0 + -+ +x,ep)
=x1f(e1) +xof(e2) + - +x,f(en)

X1

= [fler) flez) - flen)]| & | = Ax

Xn

where A = [f(e1) f(e2) -+ f(en)] and f(e;) is an m-vector

e for f : R” — R, we get inner product function f(x) = a’x

functions
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Examples

Linear
e average function of an n-vector, f(x) = (1/n)Tx = (x; + --- +x,,)/n

o f reverses the order of the components of x is linear

0 0
A={0 1
1 0

o O

e f scales x1 by a given number d1, x2 by da, x3 by d3 is linear

d 0 0
A= 0 doy O
0 0 ds

Nonlinear
e f sorts the components of x in decreasing order: not linear

e | replaces each x; by its absolute value |x;| : not linear

functions
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Affine function

a function f : R" — R™ is affineif it satisfies

flax+By) = af(x)+Bf(y)

for all n-vectors x, y and all scalars a, Bwitha + 5 =1

Extension: if f is affine, then
flaguy + agus + -+ + auty) = ay f(ur) +az f(ug) + - + ap f ()
for all n-vectors uq, ..., u,, and all scalars a1, .. ., a,, with

ay+as+ - ta, =1

functions
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Affine functions and matrix-vector product

[ R"™ — R™ is affine, if and only if it can be expressed as
f(x)=Ax+b

for some A € R™" ph ¢ R™

e to see itis affine, let &« + 5 = 1 then
Alax+By)+b=a(Ax+b) + B(Ay + b)
e using the definition, we can show

A =[f(er) = f(0) flez) = f(0) - flen) = f(O)], b=f(0)

e for f : R” — R the above becomes f(x) = a’x + b

functions
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Quadratic functions

a function f : R" — R is quadratic if it can be expressed as

fx) =xTox +xTr+s

e (is an n X n matrix
e 1 is an n-vector

e s is ascalar

Quadratic form
e a quadratic form is a special case: xTQx where Q is symmetric

e we can always assume Q is symmetric because:
x'0x = (1/2)x7(Q + Q")x

hence, xTOx = xTPx with P = %(Q +Q7) being symmetric

functions
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Some sets notation

e nonnegative orthant:

R} = {(x1,x2,...,x,) | X1,X2,...,x, >0}
e positive orthant:

RY, = {(x1,x2,...,x,) | x1,%2,...,%, >0}

e symmetric matrices:
S"={XeR™ | X=XxT}
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Level sets

the level set (sublevel set or contour lines) of a function f : R — R at level y is

Sy={x1/x) =7}

the set of points with function value equal to y

for n = 2, this level set is called a curve; for n = 3, it is a surface
e for larger values of n, it is referred to as a hyper-surface

e example:

%

fx) =2x2 —x2 Level sets (controur lines) of f (x)

1

functions



Outline

® vectors

e vector operations

e inner product and norm
e matrices

e matrix operations

e functions

o linear equations



Systems of linear equations

set (system) of m linear equations in n variables x1, . . ., xy,:

aiixiy +aioxe + - +aipx, = bl

ag1XxX1 +dagoexo + - +dopXx, = b2

Am1X1 + ApoXo + - + ApnXn = by

e can express compactly as Ax = b

e a;; are the coefficients; A is the coefficient matrix

e b is called the right-hand side

e may have no solution, a unique solution, infinitely many solutions
Classification

e under-determined if m < n (A wide; more unknowns than equations)
e square if m = n (A square)

e over-determined if m > n (A tall; more equations than unknowns)
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Examples

® no solution

X1 +X2+X3 =

X1 —Xgo + 2)63

2x1 + 3x3 =

e unique solution

X1 +Xo+Xx3 =
X1 —Xo+2x3 =
Xo + 3x3 =

e infinitely many solutions

X1 +Xo+Xx3 =
X1 —XQ+2)C3 =

linear equations
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Example: polynomial interpolation

e polynomial of degree at most n — 1 with coefficients x1, x2, ..., X,:

(1) = x1 +xof +x38% + -+ +x,t" !

e fit polynomial to m given points (f1, y1), . . . (£, Vi)

e this is a system of linear equations:

I ST X1 Y1
Ay = 1 g - 7t X2 | | y2
1t - t?n_l Xn Ym

where A is the Vandermonde matrix

linear equations
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Particular and general solution

1 0 8 -4 X2 | _ 2
01 2 12 x3 | | 8
X4
e first two columns consist of a 1 and a 0, so a particular solution is x = (42, 8,0, 0)
e to find a general solution, we find Axg = 0; for any x3, x4
X1 = —8.X3 + 4.X4, X9 = —2X3 - 12)(4
SO Xg = (—8)63 +4dxy, —2x3 — 12)64,)63,)(4) satisfies Axg =0

e combining solutions, the set of all solution, called general solution, is
42 —8x3 + 4xy 42 -8 4
8 —2x3—12x4| | 8 -2 -12
0 + s =10 + X3 1 + x4 N x3,x4 €R
0 0 0 1

X4
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Elementary row transformation

the solution of Ax = b is invariant under the elementary operations:

e exchange of two equations (rows of augmented matrix [A b])

e multiplication of an equation (row of [A b]) with a nonzero constant
e addition of two equations (rows of [A b])

Row echelon form: system is in row-echelon form if it has staircase structure:
o all rows that contain only zeros are below the nonzero rows (bottom of matrix)

® in nonzero rows, leading coefficient or pivot is to right of pivot of row above it

it is in reduced row-echelon form or row canonical form (as in page 1.69) if further
e every pivotis 1

e pivot is the only nonzero entry in its column

Basic and free variables

e variables corresponding to the pivots are called basic variables

e other variables are called free variables
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Gaussian elimination

Gaussian elimination is an algorithm that solves Ax = b by transforming [A b] into
(reduced) row-echelon form

to find all solutions to Ax = b:
1. find a particular solution to Ax = b by Guassian elimination

— obtained from pivot columns (basic variables) with free variables set to zero

2. find all solutions to the homogeneous equation Ax = 0

— by expressing basic variables in term of free variables

3. combine the solutions to the general solution
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Example

—3x1 + 2x3 =-1
X1 — 2X2 + 2X3 = —5/3
—X1 — 4)62 + 6)63 = —13/3
e r;: ith equation or row of [A b]

e transform system into row echelon-form

-3 0 2 -1 -3 0 2| -1
1 -2 2| -5/3 W 0 -2 8/3|-2
— — _ r1+r2 _ _
14 6|-13/3 ] ‘w0 -4 16/3 | -4

3 0 2]|-1
0 -2 8/3|-2
0 0 0| 0

—2ro+r3

we can work backward to solve this system or continue to make it into reduced
row echelon form
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e multiplying row 1 by —1/3 and row 2 by 1/—2, we obtain the canonical form

1 0 -2/3|1/3
0 1 -4/3| 1
00 0 |0

basic variables are x1, x2 and free variable is x3

e a particular solution is x = (1/3, 1, 0) and the homogeneous solution is

(2/3)x3
xo = |(4/3)x3
X3
e the set of all solutions is
1/3 2/3
1 +1 4/3 |z zeR
0 1

each value of z gives a different solution

linear equations
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Example
suppose after Gaussian elimination, we obtain
3
9

1 300 1
[Ab]=]|0 0 1 0 2
000 1 3

W~

e basic variables are x1, x3, x4 and a particular solution is x = (1,0, 2, 3, 0)
e for Ax = 0 expressing the basic variables in terms of free variables x5, x5:

X1 = —3)(2 - 3X5, X3 = —9)65, Xq = 4_)65

e so the homogeneous solution has the form

3XQ - 3X5 3 -3
X9 1 0

—9.X5 = X2 0 + X5 -9 , X2,X5 € R
4xs 0 4
X5 0 1
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