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Vector

a (column) vector is an ordered list of numbers arranged in a vertical array, written as:

𝑎 =


𝑎1
𝑎2
...

𝑎𝑛

 or 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)

• 𝑎𝑖 is the 𝑖th entry (element, coefficient, component) of vector 𝑎

• 𝑖 is the index of the 𝑖th entry 𝑎𝑖

• number of entries 𝑛 is the size (length, dimension) of the vector

• a vector of size 𝑛 is called an 𝑛-vector

the transpose of an 𝑛-vector 𝑎 is a row vector arranged in a horizontal array:

𝑎T = [𝑎1 𝑎2 · ·· 𝑎𝑛]

• (·)T is transpose operation

• (𝑎T)T = 𝑎 (transpose of row vector is a column vector)
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Notes and conventions

• all vectors are column vectors unless otherwise stated
– for row vector we use the transpose notation (e.g., 𝑎T)

• R𝑛 is set of 𝑛-vectors with real entries

• 𝑎 ∈ R𝑛 means 𝑎 is 𝑛-vector with real entries

• two 𝑛-vectors 𝑎 and 𝑏 are equal, denoted as 𝑎 = 𝑏, if 𝑎𝑖 = 𝑏𝑖 for all 𝑖

• 𝑎𝑖 can refer to an 𝑖th vector in a collection of vectors
– in this case, we use (𝑎𝑖) 𝑗 to denote the 𝑗 th entry of vector 𝑎𝑖

– example: if 𝑎2 = (−1, 2,−5), then (𝑎2)3 = −5

Conventions

• parentheses are also used instead of rectangular brackets to represent a vector

• other notations exist to distinguish vectors from numbers (e.g., 𝒂, ®𝑎, a)

• conventions vary; be prepared to distinguish scalars from vectors
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Examples of vectors

Location and displacement

• location (position): coordinates of a point in 2-D (plane) or 3-D space

• displacement: vector represents the change in position from one point to another
(shown as an arrow in plane or 3-D space)

𝑥1 𝑥1

𝑥2 𝑥 = (𝑥1, 𝑥2)

𝑥𝑥2
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Examples of vectors

Time series or signal: entries are values of some quantity at 𝑛 different times

• hourly temperature over a period of 𝑛 hours

• audio signal: entries give the acoustic pressure values at equally spaced times

Feature vector: entries are quantities that relate to a single object

• example: age, height, weight, blood pressure, gender, etc., of patients

• entries are called the features or attributes

Portfolio: entries can represent stock portfolio (e.g., investment in 𝑛 assets)

• 𝑖th entry is the number of shares of asset 𝑖 held (or invested in asset 𝑖)

• entries can be the no. of shares, dollar values, fractions of total dollar amount

• shares you owe another party (short positions) are represented by negative values
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Special vectors

Zero vector and ones vector

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1)

size follows from context (if not, we add a subscript and write 0𝑛, 1𝑛)

Unit vectors
• there are 𝑛 unit vectors of size 𝑛, denoted by 𝑒1, 𝑒2, . . . , 𝑒𝑛

(𝑒𝑖) 𝑗 =
{
1 𝑗 = 𝑖

0 𝑗 ≠ 𝑖

• the 𝑖th unit vector is zero except its 𝑖th entry which is 1

• example: for 𝑛 = 3,

𝑒1 =


1
0
0

 , 𝑒2 =


0
1
0

 , 𝑒3 =


0
0
1


• the size of 𝑒𝑖 follows from context (or should be specified explicitly)
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Block vectors, subvectors

Stacking

• vectors can be stacked (concatenated) to create larger vectors

• stacking vectors 𝑏, 𝑐, 𝑑 of size 𝑚, 𝑛, 𝑝 gives an (𝑚 + 𝑛 + 𝑝)-vector

𝑎 =


𝑏

𝑐

𝑑

 = (𝑏, 𝑐, 𝑑) = (𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑛, 𝑑1, . . . , 𝑑𝑝)

• we call 𝑏, 𝑐, and 𝑑 as subvectors or slices of 𝑎

• example: if 𝑎 = 1, 𝑏 = (2,−1), 𝑐 = (4, 2, 7), then (𝑎, 𝑏, 𝑐) = (1, 2,−1, 4, 2, 7)

Subvectors slicing

• colon (:) notation is used to define subvectors (slices) of a vector

• for vector 𝑎, we define 𝑎𝑟 :𝑠 = (𝑎𝑟 , . . . , 𝑎𝑠)

• example: if 𝑎 = (1,−1, 2, 0, 3), then 𝑎2:4 = (−1, 2, 0)
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Addition and subtraction

for 𝑛-vectors 𝑎 and 𝑏,

𝑎 + 𝑏 =


𝑎1 + 𝑏1
𝑎2 + 𝑏2

...

𝑎𝑛 + 𝑏𝑛

 , 𝑎 − 𝑏 =


𝑎1 − 𝑏1
𝑎2 − 𝑏2

...

𝑎𝑛 − 𝑏𝑛


Example 

0
7
3

 +

1
2
0

 =

1
9
3


Properties: for vectors 𝑎, 𝑏 of equal size

• commutative: 𝑎 + 𝑏 = 𝑏 + 𝑎

• associative: 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐
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Geometric interpretation: displacements addition

• if 𝑎 and 𝑏 are displacements, 𝑎 + 𝑏 is the net displacement

𝑎

𝑏𝑎 + 𝑏

𝑎

𝑏 𝑏 + 𝑎

• position displacements

𝑝𝑏

𝑏 + 𝑎

𝑎

𝑞

𝑝 − 𝑞
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Scalar-vector multiplication

for scalar 𝛽 and 𝑛-vector 𝑎, example:

𝛽


𝑎1
𝑎2
...

𝑎𝑛

 =

𝛽𝑎1
𝛽𝑎2
...

𝛽𝑎𝑛

 (−2)

1
9
6

 =


−2
−18
−12


Properties: for vectors 𝑎, 𝑏 of equal size, scalars 𝛽, 𝛾

• commutative: 𝛽𝑎 = 𝑎𝛽

• associative: (𝛽𝛾)𝑎 = 𝛽(𝛾𝑎), we write as 𝛽𝛾𝑎

• distributive with scalar addition: (𝛽 + 𝛾)𝑎 = 𝛽𝑎 + 𝛾𝑎

• distributive with vector addition: 𝛽(𝑎 + 𝑏) = 𝛽𝑎 + 𝛽𝑏
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Linear combination

a linear combination of vectors 𝑎1, . . . , 𝑎𝑘 is a sum of scalar-vector products

𝛽1𝑎1 + 𝛽2𝑎2 + ··· + 𝛽𝑘𝑎𝑘

• scalars 𝛽1, . . . , 𝛽𝑘 are the coefficients of the linear combination

• example: any 𝑛-vector 𝑏 can be written as

𝑏 = 𝑏1𝑒1 + · · · + 𝑏𝑛𝑒𝑛

Special linear combinations

• affine combination: when 𝛽1 + · · · + 𝛽𝑘 = 1

• convex combination or weighted average: when 𝛽1 + · · · + 𝛽𝑘 = 1 and 𝛽𝑖 ≥ 0
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Example: combination of displacements

𝑏 = −0.5𝑎1 + 1.5𝑎2

𝑎1

𝑎2

− 1
2𝑎1 +

3
2𝑎2

− 1
2𝑎1

3
2𝑎2
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Line segment

any point on the line passing through distinct 𝑎 and 𝑏 can be written as

𝑐 = 𝜃𝑎 + (1 − 𝜃)𝑏

• 𝜃 is a scalar

• for 0 ≤ 𝜃 ≤ 1, point 𝑐 lie on the segment between 𝑎 and 𝑏

𝑎

𝑏

: 𝜃𝑎 + (1 − 𝜃)𝑏

𝜃 > 1

0 < 𝜃 < 1

𝜃 < 0
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Inner product

the (Euclidean) inner product (or dot product) of two 𝑛-vectors 𝑎, 𝑏 is

𝑎T𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + ··· + 𝑎𝑛𝑏𝑛

• a scalar

• other notation exists: ⟨𝑎, 𝑏⟩, ⟨𝑎 | 𝑏⟩, 𝑎 · 𝑏

• example: 
−1
2
2


T 

1
0

−3

 = (−1) (1) + (2) (0) + (2) (−3) = −7
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Properties of inner product

for vectors 𝑎, 𝑏, 𝑐 of equal size, scalar 𝛾

• nonnegativity: 𝑎T𝑎 ≥ 0, and 𝑎T𝑎 = 0 if and only if 𝑎 = 0

• commutative: 𝑎T𝑏 = 𝑏T𝑎

• associative with scalar multiplication: (𝛾𝑎)T𝑏 = 𝛾(𝑎T𝑏)
• distributive with vector addition: (𝑎 + 𝑏)T𝑐 = 𝑎T𝑐 + 𝑏T𝑐

Useful combination: for vectors 𝑎, 𝑏, 𝑐, 𝑑

(𝑎 + 𝑏)T (𝑐 + 𝑑) = 𝑎T𝑐 + 𝑎T𝑑 + 𝑏T𝑐 + 𝑏T𝑑

Block vectors: if vectors 𝑎, 𝑏 are block vectors, and corresponding blocks
𝑎𝑖 , 𝑏𝑖 ∈ R𝑛𝑖 have the same sizes (they conform),

𝑎T𝑏 =


𝑎1
...

𝑎𝑘


T 

𝑏1
...

𝑏𝑘

 = 𝑎T1𝑏1 + ··· + 𝑎T𝑘𝑏𝑘

SA — ENGR507inner product and norm 1.15



Simple examples

Inner product with unit vector
𝑒T𝑖 𝑎 = 𝑎𝑖

Differencing
(𝑒𝑖 − 𝑒 𝑗 )T𝑎 = 𝑎𝑖 − 𝑎 𝑗

Sum and average

1T𝑎 = 𝑎1 + 𝑎2 + ··· + 𝑎𝑛

avg(𝑎) = 𝑎1 + 𝑎2 + ··· + 𝑎𝑛

𝑛
=
(
1
𝑛
1
)T

𝑎
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Inner product examples

Polynomial evaluation

• 𝑛-vector 𝑐 represents the coefficients of a polynomial 𝑝 of degree 𝑛 − 1 or less:

𝑝(𝑥) = 𝑐1 + 𝑐2𝑥 + ··· + 𝑐𝑛−1𝑥
𝑛−2 + 𝑐𝑛𝑥

𝑛−1

• 𝑡 is number, and let 𝑧 = (1, 𝑡, 𝑡2, . . . , 𝑡𝑛−1) be the 𝑛-vector of powers of 𝑡

• 𝑐T𝑧 = 𝑝(𝑡) is the value of the polynomial 𝑝 at the point 𝑡

Price quantity (cost)

• vectors of prices 𝑝 and quantities 𝑞 of 𝑛 goods

• 𝑝T𝑞 = 𝑝1𝑞1 + 𝑝2𝑞2 + ··· + 𝑝𝑛𝑞𝑛 is the total cost

Portfolio value

• 𝑠 is an 𝑛-vector of holdings in shares of a portfolio of 𝑛 assets

• 𝑝 is an 𝑛-vector for the prices of the assets

• 𝑝T𝑠 is the total (or net) value of the portfolio
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Euclidean norm

Euclidean norm of vector 𝑎 ∈ R𝑛:

∥𝑎∥ =
√︃
𝑎21 + 𝑎22 + ··· + 𝑎2𝑛 =

√︁
𝑎T𝑎

• reduces to absolute value |𝑎 | = max{𝑎,−𝑎} when 𝑛 = 1

• measures the magnitude of 𝑎

• examples 








2
−1
2








 = √

9 = 3,





[ 0
−1

]



 = 1
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Properties

Positive definiteness

∥𝑎∥ ≥ 0 for all 𝑎, ∥𝑎∥ = 0 only if 𝑎 = 0

Homogeneity

∥𝛽𝑎∥ = |𝛽 |∥𝑎∥ for all vectors 𝑎 and scalars 𝛽

Triangle inequality

∥𝑎 + 𝑏∥ ≤ ∥𝑎∥ + ∥𝑏∥ for all vectors 𝑎 and 𝑏 of equal length

• any real function that satisfies these properties is called a (general) norm

(we will see other norms)

• Euclidean norm is often written as ∥𝑎∥2 to distinguish from other norms
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Norm of block vector and norm of sum

Norm of block vector: for vectors 𝑎, 𝑏, 𝑐,







𝑎

𝑏

𝑐








 = √︁

∥𝑎∥2 + ∥𝑏∥2 + ∥𝑐∥2

Norm of sum: for vectors 𝑎, 𝑏,

∥𝑎 + 𝑏∥ =
√︁
∥𝑎∥2 + 2𝑎T𝑏 + ∥𝑏∥
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Cauchy-Schwarz inequality

|𝑎T𝑏 | ≤ ∥𝑎∥∥𝑏∥ for all 𝑎, 𝑏 ∈ R𝑛

moreover, equality |𝑎T𝑏 | = ∥𝑎∥∥𝑏∥ holds if:

• 𝑎 = 0 or 𝑏 = 0; in this case 𝑎T𝑏 = 0 = ∥𝑎∥∥𝑏∥

• 𝑏 = 𝛾𝑎 for some 𝛾 > 0; in this case

0 < 𝑎T𝑏 = 𝛾∥𝑎∥2 = ∥𝑎∥∥𝑏∥

• 𝑏 = −𝛾𝑎 for some 𝛾 > 0; in this case

0 > 𝑎T𝑏 = −𝛾∥𝑎∥2 = −∥𝑎∥∥𝑏∥
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Proof of Cauchy-Schwarz inequality

1. trivial if 𝑎 = 0 or 𝑏 = 0

2. assume ∥𝑎∥ = ∥𝑏∥ = 1; we show that −1 ≤ 𝑎T𝑏 ≤ 1

0 ≤ ∥𝑎 − 𝑏∥2

= (𝑎 − 𝑏)T (𝑎 − 𝑏)
= ∥𝑎∥2 − 2𝑎T𝑏 + ∥𝑏∥2

= 2(1 − 𝑎T𝑏)

with equality only if 𝑎 = 𝑏

0 ≤ ∥𝑎 + 𝑏∥2

= (𝑎 + 𝑏)T (𝑎 + 𝑏)
= ∥𝑎∥2 + 2𝑎T𝑏 + ∥𝑏∥2

= 2(1 + 𝑎T𝑏)

with equality only if 𝑎 = −𝑏

3. for general nonzero 𝑎, 𝑏, apply case 2 to the unit-norm vectors

1

∥𝑎∥ 𝑎,
1

∥𝑏∥ 𝑏
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Euclidean distance

Euclidean distance between two vectors 𝑎 and 𝑏,

dist(𝑎, 𝑏) = ∥𝑎 − 𝑏∥

• agrees with ordinary distance for 𝑛 = 1, 2, 3

𝑎

dist(𝑎, 𝑏) =
√
3 dist(𝑝, 𝑞) = 2

𝑏

𝑝𝑞

• when the distance between two vectors is small, we say they are ‘close’ or
‘nearby’, and when the distance is large, we say they are ‘far’
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Angle between vectors

the angle between nonzero real vectors 𝑎, 𝑏 is defined as

𝜃 = ∠(𝑎, 𝑏) = arccos

(
𝑎T𝑏

∥𝑎∥∥𝑏∥

)
𝑎

𝑏

𝜃

• this is the unique value of 𝜃 ∈ [0, 𝜋] that satisfies 𝑎T𝑏 = ∥𝑎∥∥𝑏∥ cos 𝜃

• coincides with ordinary angle between vectors in 2-D and 3-D

• symmetric: ∠(𝑎, 𝑏) = ∠(𝑏, 𝑎)

• unaffected by positive scaling: ∠(𝛽𝑎, 𝛾𝑏) = ∠(𝑎, 𝑏) for 𝛽, 𝛾 > 0
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Classification of angles

𝜃 = 0 𝑎T𝑏 = ∥𝑎∥∥𝑏∥ vectors are aligned or parallel

0 ≤ 𝜃 < 𝜋/2 𝑎T𝑏 > 0 vectors make an acute angle

𝜃 = 𝜋/2 𝑎T𝑏 = 0 vectors are orthogonal (𝑎 ⊥ 𝑏)
𝜋/2 < 𝜃 ≤ 𝜋 𝑎T𝑏 < 0 vectors make an obtuse angle

𝜃 = 𝜋 𝑎T𝑏 = −∥𝑎∥∥𝑏∥ vectors are anti-aligned or opposed
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Orthonormal vectors

set of vectors 𝑎1, 𝑎2, . . . , 𝑎𝑘 is orthonormal if:

𝑎T𝑖 𝑎 𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

• vectors are mutually orthogonal and have unit norm

• vector of norm one is called normalized

• process of dividing a vector by its norm is known as normalizing

Examples

• standard unit vectors 𝑒1, . . . , 𝑒𝑛 are orthonormal
• vectors 

0
0

−1

 ,
1
√
2


1
1
0

 ,
1
√
2


1

−1
0


are orthonormal

SA — ENGR507inner product and norm 1.26



Outline

• vectors

• vector operations

• inner product and norm

• matrices

• matrix operations

• functions

• linear equations



Matrices

a matrix is an ordered rectangular array of numbers, written as

𝐴 =


𝑎11 𝑎12 · ·· 𝑎1𝑛
𝑎21 𝑎22 · ·· 𝑎2𝑛
... ... ...

𝑎𝑚1 𝑎𝑚2 · ·· 𝑎𝑚𝑛


• scalars in array are the entries (elements, coefficients, components)

• 𝑎𝑖 𝑗 is the 𝑖, 𝑗 th entry of 𝐴 (𝑖 is row index, 𝑗 is column index)

• size (dimensions) of the matrix is 𝑚 × 𝑛 = (#rows) × (#columns)

Example

𝐴 =


0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7


• 𝑎23 = −0.1
• a 3 × 4 matrix
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Notes and conventions

Notes

• a matrix of size 𝑚 × 𝑛 is called an 𝑚 × 𝑛-matrix

• R𝑚×𝑛 is set of 𝑚 × 𝑛 matrices with real entries

• we use 𝑎𝑖, 𝑗 when 𝑖 or 𝑗 are more than one digit

• two matrices with same size are equal if corresponding entries are all equal

• sometimes 𝐴𝑘 is a matrix; in this case, we use (𝐴𝑘)𝑖 𝑗 to denote its 𝑖, 𝑗 entry

Conventions

• matrices are typically denoted by capital letters

• parentheses are also used instead of rectangular brackets to represent a matrix

• sometimes 𝐴𝑖 𝑗 is used to denote the 𝑖, 𝑗 th entry of 𝐴

• some authors use bold capital letter for matrices (e.g., A, 𝑨)

• be prepared to figure out whether a symbol represents a matrix, vector, or a scalar
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Matrix examples

Images

• 𝑚 × 𝑛 matrix denote a monochrome (black and white) image

• 𝑥𝑖 𝑗 is 𝑖, 𝑗 pixel value in a monochrome image

Multiple asset returns

• 𝑇 × 𝑛 matrix 𝑅 gives the returns of 𝑛 assets over 𝑇 periods

• 𝑟𝑖 𝑗 is return of asset 𝑗 in period 𝑖

• 𝑗 th column of 𝑅 is a 𝑇 -vector that is the return time series for asset 𝑗

Feature matrix

• 𝑋 = [𝑥1 · ·· 𝑥𝑁 ] is 𝑛 × 𝑁 feature matrix

• column 𝑥 𝑗 is feature 𝑛-vector for object or example 𝑗

• 𝑥𝑖 𝑗 is value of feature 𝑖 for example 𝑗
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Matrix shapes

Scalar: a 1 × 1 matrix is a scalar

Row and column vectors

• a 1 × 𝑛 matrix is called a row vector

• an 𝑛 × 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an 𝑚 × 𝑛 matrix is

• tall, skinny, or thin if 𝑚 > 𝑛

• wide or fat if 𝑚 < 𝑛

• square if 𝑚 = 𝑛
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Transpose of a matrix

transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix:

𝐴T =


𝑎11 𝑎21 · ·· 𝑎𝑚1

𝑎12 𝑎22 · ·· 𝑎𝑚2

... ... ...

𝑎1𝑛 𝑎2𝑛 · ·· 𝑎𝑚𝑛


• (𝐴T)𝑖 𝑗 = 𝑎 𝑗𝑖

• (𝐴T)T = 𝐴

• example: 
1 2
3 4
5 6


T

=

[
1 3 5
2 4 6

]
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Columns and rows

an 𝑚 × 𝑛 matrix can be viewed as a matrix with row/column vectors

Columns representation

𝐴 = [𝑎1 𝑎2 · ·· 𝑎𝑛] , 𝑎 𝑗 =


𝑎1 𝑗
...

𝑎𝑚𝑗


each 𝑎 𝑗 is an 𝑚-vector (the 𝑗 th column of 𝐴)

Rows representation

𝐴 =


𝑏T1

𝑏T2
...

𝑏T𝑚


, 𝑏T𝑖 = [𝑎𝑖1 · ·· 𝑎𝑖𝑛]

each 𝑏T
𝑖

is a 1 × 𝑛 row vector (the 𝑖th row of 𝐴)
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Block matrix and submatrices

• a block matrix is a rectangular array of matrices

• entries in the array are the blocks or submatrices of the block matrix

Example: a 2 × 2 block matrix

𝐴 =

[
𝐵 𝐶

𝐷 𝐸

]
• submatrices can be referred to by their block row and column (𝐶 is 1, 2 block of 𝐴)

• dimensions of the blocks must be compatible

• if the blocks are

𝐵 =

[
2
1

]
, 𝐶 =

[
0 2 3
5 4 7

]
, 𝐷 =

[
1

]
, 𝐸 =

[
−1 6 0

]
then

𝐴 =


2 0 2 3
1 5 4 7
1 −1 6 0


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Slice of matrix

𝐴𝑝:𝑞,𝑟 :𝑠 =


𝑎𝑝𝑟 𝑎𝑝,𝑟+1 · ·· 𝑎𝑝𝑠

𝑎𝑝+1,𝑟 𝑎𝑝+1,𝑟+1 · ·· 𝑎𝑝+1,𝑠
... ... ...

𝑎𝑞𝑟 𝑎𝑞,𝑟+1 · ·· 𝑎𝑞𝑠


• an (𝑞 − 𝑝 + 1) × (𝑠 − 𝑟 + 1) matrix

• obtained by extracting from 𝐴 entries in rows 𝑝 to 𝑞 and columns 𝑟 to 𝑠

• from last page example, we have

𝐴2:3,3:4 =

[
4 7
6 0

]
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Transpose of block matrix

the transpose of a block matrix (shown for a 2 × 2 block matrix)[
𝐴 𝐵

𝐶 𝐷

]T
=

[
𝐴T 𝐶T

𝐵T 𝐷T

]
• 𝐴, 𝐵, 𝐶, and 𝐷 are matrices with compatible sizes

• concept holds for any number of blocks
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Special matrices

Zero matrix

• matrix with 𝑎𝑖 𝑗 = 0 for all 𝑖, 𝑗

• notation: 0 or 0𝑚×𝑛 (if dimension is not clear from context)

Identity matrix

• square matrix with 𝑎𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝑎𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗

• notation: 𝐼 or 𝐼𝑛 (if dimension is not clear from context)

• columns of 𝐼𝑛 are unit vectors 𝑒1, 𝑒2, . . . , 𝑒𝑛; for example,

𝐼3 =


1 0 0
0 1 0
0 0 1

 = [𝑒1 𝑒2 𝑒3]
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Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

• square with 𝑎𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗

• represented as 𝐴 = diag(𝑎1, . . . , 𝑎𝑛) where 𝑎𝑖 are diagonal entries

diag(0.2,−3, 1.2) =

0.2 0 0
0 −3 0
0 0 1.2


Lower triangular matrix: square with 𝑎𝑖 𝑗 = 0 for 𝑖 < 𝑗

4 0 0
3 −1 0

−1 5 −2

 ,


4 0 0
0 −1 0

−1 0 −2


Upper triangular matrix: square with 𝑎𝑖 𝑗 = 0 for 𝑖 > 𝑗

(a triangular matrix is unit upper/lower triangular if 𝑎𝑖𝑖 = 1 for all 𝑖)
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Symmetric matrices

a square matrix is symmetric if
𝐴 = 𝐴T

• 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖

• examples: 
3 7 −2
7 −1 5

−2 5 0


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Outline

• vectors

• vector operations

• inner product and norm

• matrices

• matrix operations

• functions

• linear equations



Matrix addition

sum of two 𝑚 × 𝑛 matrices 𝐴 and 𝐵

𝐴 + 𝐵 =


𝑎11 + 𝑏11 𝑎12 + 𝑏12 · ·· 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 · ·· 𝑎2𝑛 + 𝑏2𝑛

... ... ...

𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 · ·· 𝑎𝑚𝑛 + 𝑏𝑚𝑛


Properties

• commutativity: 𝐴 + 𝐵 = 𝐵 + 𝐴

• associativity: (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)

• addition with zero matrix: 𝐴 + 0 = 0 + 𝐴 = 𝐴

• transpose of sum: (𝐴 + 𝐵)T = 𝐴T + 𝐵T
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Scalar-matrix multiplication

scalar-matrix product of 𝑚 × 𝑛 matrix 𝐴 with scalar 𝛽

𝛽𝐴 =


𝛽𝑎11 𝛽𝑎12 · ·· 𝛽𝑎1𝑛
𝛽𝑎21 𝛽𝑎22 · ·· 𝛽𝑎2𝑛
... ... ...

𝛽𝑎𝑚1 𝛽𝑎𝑚2 · ·· 𝛽𝑎𝑚𝑛


Properties: for matrices 𝐴, 𝐵, scalars 𝛽, 𝛾

• associativity: (𝛽𝛾)𝐴 = 𝛽(𝛾𝐴)
• distributivity: (𝛽 + 𝛾)𝐴 = 𝛽𝐴 + 𝛾𝐴 and 𝛾(𝐴 + 𝐵) = 𝛾𝐴 + 𝛾𝐵

• transposition: (𝛽𝐴)T = 𝛽𝐴T
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Matrix-vector product

product of 𝑚 × 𝑛 matrix 𝐴 with 𝑛-vector 𝑥

𝐴𝑥 =


𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛
...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ··· + 𝑎𝑚𝑛𝑥𝑛


=


𝑏T1𝑥

𝑏T2𝑥

...

𝑏T𝑚𝑥


• 𝑏T

𝑖
is 𝑖th row of 𝐴

• dimensions must be compatible (number of columns of 𝐴 equals the size of 𝑥)

• 𝐴𝑥 is a linear combination of the columns of 𝐴:

𝐴𝑥 = [𝑎1 𝑎2 · ·· 𝑎𝑛]


𝑥1
𝑥2
...

𝑥𝑛

 = 𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛

each 𝑎𝑖 is an 𝑚-vector (𝑖th column of 𝐴)
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Properties of matrix-vector multiplication

for matrices 𝐴, 𝐵, vectors 𝑥, 𝑦 and scalar 𝛽

• associativity: (𝛽𝐴)𝑥 = 𝐴(𝛽𝑥) = 𝛽(𝐴𝑥) (we write 𝛽𝐴𝑥)

• distributivity: 𝐴(𝑥 + 𝑦) = 𝐴𝑥 + 𝐴𝑦 and (𝐴 + 𝐵)𝑥 = 𝐴𝑥 + 𝐵𝑥
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General examples

• 0𝑥 = 0, i.e., multiplying by zero matrix gives zero

• 𝐼𝑥 = 𝑥, i.e., multiplying by identity matrix does nothing

• inner product 𝑎T𝑏 is matrix-vector product of 1 × 𝑛 matrix 𝑎T and 𝑛-vector 𝑏

• 𝐴𝑒 𝑗 = 𝑎 𝑗 , the 𝑗 th column of 𝐴 [𝐴T𝑒𝑖 = 𝑏𝑖 where 𝑏T
𝑖

is 𝑖th row]

• the product 𝐴1 is the sum of the columns of 𝐴

• for the 𝑛 × 𝑛 matrix

𝐴 =


1 − 1/𝑛 −1/𝑛 · ·· −1/𝑛
−1/𝑛 1 − 1/𝑛 · ·· −1/𝑛
... · ·· ...

−1/𝑛 −1/𝑛 · ·· 1 − 1/𝑛

 ,
𝑥 = 𝐴𝑥 is de-meaned version of 𝑥 (i.e., 𝑥 = 𝑥 − avg(𝑥)1)
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Difference matrix

(𝑛 − 1) × 𝑛 difference matrix is

𝐷 =



−1 1 0 · ·· 0 0 0
0 −1 1 · ·· 0 0 0

. . . . . .
. . . . . .

0 0 0 · ·· −1 1 0
0 0 0 · ·· 0 −1 1


𝑦 = 𝐷𝑥 is (𝑛 − 1)-vector of differences of consecutive entries of 𝑥:

𝐷𝑥 =


𝑥2 − 𝑥1
𝑥3 − 𝑥2

...

𝑥𝑛 − 𝑥𝑛−1


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Vandermonde matrix

consider a polynomial of degree 𝑛 − 1 or less with coefficients 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + ··· + 𝑥𝑛𝑡

𝑛−1

• values of 𝑝(𝑡) at 𝑚 points 𝑡1, . . . , 𝑡𝑚 can be written as
𝑝(𝑡1)
𝑝(𝑡2)
...

𝑝(𝑡𝑚)

 =

1 𝑡1 · ·· 𝑡𝑛−11

1 𝑡2 · ·· 𝑡𝑛−12
... ... ...

1 𝑡𝑚 · ·· 𝑡𝑛−1𝑚



𝑥1
𝑥2
...

𝑥𝑛

 = 𝐴𝑥

• the matrix 𝐴 is called a Vandermonde matrix

• the product 𝐴𝑥 maps coefficients of polynomial to function values
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Matrix multiplication

product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵

𝐶 = 𝐴𝐵

is the 𝑚 × 𝑝 matrix with 𝑖, 𝑗 entry

𝑐𝑖 𝑗 =
𝑛∑

𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗 = 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + ··· + 𝑎𝑖𝑛𝑏𝑛 𝑗

• to get 𝑐𝑖 𝑗 : move along 𝑖th row of 𝐴, 𝑗 th column of 𝐵

• dimensions must be compatible:

#columns in 𝐴 = #rows in 𝐵

• example: [
−1.5 3 2

1 −1 0

] 
−1 −1
0 −2
1 0

 =
[
3.5 −4.5
−1 1

]
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Special cases of matrix multiplication

• scalar-vector product (with scalar on right!) 𝑥𝛼

• inner product 𝑎T𝑏

• matrix-vector multiplication 𝐴𝑥

• outer product of 𝑚-vector 𝑎 and 𝑛-vector 𝑏 is the 𝑚 × 𝑛 matrix

𝑎𝑏T =


𝑎1𝑏1 𝑎1𝑏2 · ·· 𝑎1𝑏𝑛
𝑎2𝑏1 𝑎2𝑏2 · ·· 𝑎2𝑏𝑛
... ... ...

𝑎𝑚𝑏1 𝑎𝑚𝑏2 · ·· 𝑎𝑚𝑏𝑛


• multiplication by identity 𝐴𝐼𝑛 = 𝐴 and 𝐼𝑚𝐴 = 𝐴

• matrix power: multiplication of matrix with itself 𝑝 times: 𝐴𝑝 = 𝐴𝐴· ··𝐴
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Properties of matrix-matrix product

• associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) so we write 𝐴𝐵𝐶

• associativity: with scalar multiplication: (𝛾𝐴)𝐵 = 𝛾(𝐴𝐵) = 𝛾𝐴𝐵

• distributivity with sum:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

• transpose of product:

(𝐴𝐵)T = 𝐵T𝐴T and (𝐴𝑥)T = 𝑥T𝐴T

• not commutative: 𝐴𝐵 ≠ 𝐵𝐴 in general; for example,[
−1 0
0 1

] [
0 1
1 0

]
≠

[
0 1
1 0

] [
−1 0
0 1

]
there are exceptions, e.g., 𝐴𝐼 = 𝐼 𝐴 for square 𝐴
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Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 × 2 block matrices[
𝐴 𝐵

𝐶 𝐷

] [
𝑊 𝑌

𝑋 𝑍

]
=

[
𝐴𝑊 + 𝐵𝑋 𝐴𝑌 + 𝐵𝑍

𝐶𝑊 + 𝐷𝑋 𝐶𝑌 + 𝐷𝑍

]
if the dimensions of the blocks are compatible
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Column and row representations

Column representation

• 𝐴 is 𝑚 × 𝑛, 𝐵 is 𝑛 × 𝑝 with columns 𝑏𝑖

𝐴𝐵 = 𝐴
[
𝑏1 𝑏2 · ·· 𝑏𝑝

]
=
[
𝐴𝑏1 𝐴𝑏2 · ·· 𝐴𝑏𝑝

]
• so 𝐴𝐵 is ‘batch’ multiply of 𝐴 times columns of 𝐵

Row representation

• with 𝑎T
𝑖

the rows of 𝐴

𝐴𝐵 =


𝑎T1𝐵

𝑎T2𝐵
...

𝑎T𝑚𝐵

 =


(𝐵T𝑎1)T
(𝐵T𝑎2)T

...

(𝐵T𝑎𝑚)T


• row 𝑖 is (𝐵T𝑎𝑖)T
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Inner and outer product representations

Inner product representation: 𝐴 is 𝑚 × 𝑛 with rows 𝑎T
𝑖
, 𝐵 is 𝑛 × 𝑝 with columns 𝑏𝑖

𝐴𝐵 =


𝑎T1𝑏1 𝑎T1𝑏2 · ·· 𝑎T1𝑏𝑝

𝑎T2𝑏1 𝑎T2𝑏2 · ·· 𝑎T2𝑏𝑝

... ... ...

𝑎T𝑚𝑏1 𝑎T𝑚𝑏2 · ·· 𝑎T𝑚𝑏𝑝


𝑖, 𝑗 th entry is 𝑎T

𝑖
𝑏 𝑗

Outer product representation: 𝐴 is 𝑚 × 𝑛 with rows 𝑎T
𝑖
, 𝐵 is 𝑛 × 𝑝 with rows 𝑏T

𝑖

𝐴𝐵 = [𝑎1 · ·· 𝑎𝑛]

𝑏T1
...

𝑏T𝑛

 = 𝑎1𝑏
T
1 + · · · + 𝑎𝑛𝑏

T
𝑛
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Trace of a matrix

the trace of a square matrix 𝐴 ∈ R𝑛×𝑛 is the sum of its diagonal entries:

tr(𝐴) =
𝑛∑
𝑖=1

𝑎𝑖𝑖

some properties of the trace are:

• tr(𝐴) = tr(𝐴T)

• tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵) for square and equal size matrices 𝐴 and 𝐵

• tr(𝛽𝐴) = 𝛽 tr(𝐴) for any scalar 𝛽

• if 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑚 matrix, then

tr(𝐴𝐵) = tr(𝐵𝐴)
• tr(𝑎𝑏T) = tr(𝑏T𝑎) = 𝑏T𝑎 for any 𝑛-vectors 𝑎 and 𝑏

Inner product of matrices: the standard inner product between 𝐴, 𝐵 ∈ R𝑚×𝑛

⟨𝐴, 𝐵⟩ = tr(𝐴T𝐵) =
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑏𝑖 𝑗
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Determinant of a matrix

the determinant of a square matrix for value of 𝑖 (𝑖 = 1, 2, . . . , 𝑛) is

det 𝐴 =
𝑛∑
𝑗=1

(−1)𝑖+ 𝑗𝑎𝑖 𝑗 det 𝐴𝑖 𝑗

• 𝐴𝑖 𝑗 is the 𝑖 𝑗 th submatrix of 𝐴 obtained by removing row 𝑖 and column 𝑗 from 𝐴;
for example

𝐴 =


1 2 3
4 5 6
7 8 9

 , 𝐴12 =

[
4 6
7 9

]
, 𝐴32 =

[
1 3
4 6

]
• det 𝐴𝑖 𝑗 is called the 𝑖 𝑗 th minor of 𝐴

• (−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 ) is called the 𝑖 𝑗 th cofactor of 𝐴
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Examples

• for a scalar matrix 𝐴 = [𝑎11], we have det 𝐴 = 𝑎11

• for a 2 × 2 matrix:

det 𝐴 = det

[
𝑎11 𝑎12
𝑎21 𝑎22

]
= 𝑎11𝑎22 − 𝑎21𝑎12

• for the matrix

𝐴 =


1 2 3
4 5 6
7 8 9


we have for 𝑖 = 1

𝐴11 =

[
5 6
8 9

]
, 𝐴12 =

[
4 6
7 9

]
, 𝐴13 =

[
4 5
7 8

]
thus, the determinant is

det 𝐴 = (−1)2𝑎11 (det 𝐴11) + (−1)3𝑎12 (det 𝐴12) + (−1)4𝑎13 (det 𝐴13)
= 𝑎11 (det 𝐴11) − 𝑎12 (det 𝐴12) + 𝑎13 (det 𝐴13)
= 1(−3) − 2(−6) + 3(−3) = 0
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Determinant properties

• det 𝐴 = det 𝐴T

• det 𝛽𝐴 = 𝛽𝑛 det 𝐴 for any scalar 𝛽

• det 𝐴𝐵 = det 𝐴 × det 𝐵 for square matrices 𝐴 and 𝐵

• if 𝐴 is lower/upper triangular, then det 𝐴 = 𝑎11 · ··𝑎𝑛𝑛

• if 𝐴 is block upper/lower triangular, with square diagonal blocks 𝐴11, . . . , 𝐴𝑘𝑘 (of
possibly different sizes), then det 𝐴 = det 𝐴11 · ·· det 𝐴𝑘𝑘

• determinant unchanged if we add to a column a linear comb. of other columns

• swapping two rows/columns changes the sign of det(𝐴)
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Functions

• 𝑓 : X → Y denotes a function 𝑓 that maps an element from set X to set Y
• 𝑓 : R𝑛 → R𝑚 means that 𝑓 maps a real 𝑛-vector to a real 𝑚-vector:

𝑓 (𝑥) =

𝑓1 (𝑥)
...

𝑓𝑚 (𝑥)


where the entry 𝑓𝑖 : R

𝑛 → R is itself a scalar-valued function of 𝑥

Function domain

• the domain of 𝑓 , denoted by dom 𝑓 ⊆ X, is the set where 𝑓 is defined and finite

• for example, the functions

𝑓1 (𝑥) =
{
1/𝑥 if 𝑥 ≠ 0

∞ otherwise
, 𝑓2 (𝑥) =

{
1/𝑥 if 𝑥 > 0

∞ otherwise

are different since they have different domains
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Examples

Defined everywhere (dom 𝑓 = R𝑛)

• 𝑓 : R → R: 𝑓 (𝑥) = 𝑥2 + 𝑥 + 1 maps a scalar 𝑥 to a scalar 𝑓 (𝑥)

• 𝑓 : R3 → R: 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 𝑥2 + 𝑥23

• 𝑓 : R𝑛 → R𝑚: 𝑓 (𝑥) = 𝐴𝑥 where 𝑥 ∈ R𝑛 and 𝐴 is an 𝑚 × 𝑛 matrix

• 𝑓 : R2 → R3: 𝑓 (𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥1 + 𝑥22)

Undefined everywhere

• 𝑓 (𝑥) = log 𝑥 is valid only for 𝑥 > 0, hence dom 𝑓 = {𝑥 | 𝑥 > 0}

• 𝑓 (𝑥1, 𝑥2) = 𝑥1/(𝑥1 + 𝑥2) has domain dom 𝑓 = {(𝑥1, 𝑥2) | 𝑥1 + 𝑥2 ≠ 0}
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Linear functions

Linear functions: 𝑓 is linear if it satisfies the superposition property

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all numbers 𝛼, 𝛽, and all 𝑛-vectors 𝑥, 𝑦

Extension: if 𝑓 is linear, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + ··· + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + ··· + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚
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Linear functions as matrix-vector product

define 𝑓 (𝑥) = 𝐴𝑥 for fixed 𝐴 ∈ R𝑚×𝑛 ( 𝑓 : R𝑛 → R𝑚)

• any function of this type is linear: 𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼(𝐴𝑥) + 𝛽(𝐴𝑦)

• every linear function 𝑓 can be written as 𝑓 (𝑥) = 𝐴𝑥:

𝑓 (𝑥) = 𝑓 (𝑥1𝑒1 + 𝑥2𝑒2 + ··· + 𝑥𝑛𝑒𝑛)
= 𝑥1 𝑓 (𝑒1) + 𝑥2 𝑓 (𝑒2) + ··· + 𝑥𝑛 𝑓 (𝑒𝑛)

= [ 𝑓 (𝑒1) 𝑓 (𝑒2) ··· 𝑓 (𝑒𝑛)]

𝑥1
...

𝑥𝑛

 = 𝐴𝑥

where 𝐴 = [ 𝑓 (𝑒1) 𝑓 (𝑒2) ··· 𝑓 (𝑒𝑛)] and 𝑓 (𝑒𝑖) is an 𝑚-vector

• for 𝑓 : R𝑛 → R, we get inner product function 𝑓 (𝑥) = 𝑎T𝑥
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Examples

Linear

• average function of an 𝑛-vector, 𝑓 (𝑥) = (1/𝑛)T𝑥 = (𝑥1 + ··· + 𝑥𝑛)/𝑛
• 𝑓 reverses the order of the components of 𝑥 is linear

𝐴 =


0 0 1
0 1 0
1 0 0


• 𝑓 scales 𝑥1 by a given number 𝑑1, 𝑥2 by 𝑑2, 𝑥3 by 𝑑3 is linear

𝐴 =


𝑑1 0 0
0 𝑑2 0
0 0 𝑑3


Nonlinear

• 𝑓 sorts the components of 𝑥 in decreasing order: not linear

• 𝑓 replaces each 𝑥𝑖 by its absolute value |𝑥𝑖 | : not linear
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Affine function

a function 𝑓 : R𝑛 → R𝑚 is affine if it satisfies

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

Extension: if 𝑓 is affine, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + ··· + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + ··· + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚 with

𝛼1 + 𝛼2 + ··· + 𝛼𝑚 = 1
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Affine functions and matrix-vector product

𝑓 : R𝑛 → R𝑚 is affine, if and only if it can be expressed as

𝑓 (𝑥) = 𝐴𝑥 + 𝑏

for some 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

• to see it is affine, let 𝛼 + 𝛽 = 1 then

𝐴(𝛼𝑥 + 𝛽𝑦) + 𝑏 = 𝛼(𝐴𝑥 + 𝑏) + 𝛽(𝐴𝑦 + 𝑏)

• using the definition, we can show

𝐴 = [ 𝑓 (𝑒1) − 𝑓 (0) 𝑓 (𝑒2) − 𝑓 (0) ··· 𝑓 (𝑒𝑛) − 𝑓 (0)] , 𝑏 = 𝑓 (0)

• for 𝑓 : R𝑛 → R the above becomes 𝑓 (𝑥) = 𝑎T𝑥 + 𝑏
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Quadratic functions

a function 𝑓 : R𝑛 → R is quadratic if it can be expressed as

𝑓 (𝑥) = 𝑥T𝑄𝑥 + 𝑥T𝑟 + 𝑠

• 𝑄 is an 𝑛 × 𝑛 matrix

• 𝑟 is an 𝑛-vector

• 𝑠 is a scalar

Quadratic form

• a quadratic form is a special case: 𝑥T𝑄𝑥 where 𝑄 is symmetric

• we can always assume 𝑄 is symmetric because:

𝑥T𝑄𝑥 = (1/2)𝑥T (𝑄 +𝑄T)𝑥

hence, 𝑥T𝑄𝑥 = 𝑥T𝑃𝑥 with 𝑃 = 1
2 (𝑄 +𝑄T) being symmetric
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Some sets notation

• nonnegative orthant:

R𝑛
+ = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥1, 𝑥2, . . . , 𝑥𝑛 ≥ 0}

• positive orthant:

R𝑛
++ = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥1, 𝑥2, . . . , 𝑥𝑛 > 0}

• symmetric matrices:
S𝑛 = {𝑋 ∈ R𝑛×𝑛 | 𝑋 = 𝑋T}
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Level sets

the level set (sublevel set or contour lines) of a function 𝑓 : R𝑛 → R at level 𝛾 is

S𝛾 = {𝑥 | 𝑓 (𝑥) = 𝛾}

• the set of points with function value equal to 𝛾

• for 𝑛 = 2, this level set is called a curve; for 𝑛 = 3, it is a surface

• for larger values of 𝑛, it is referred to as a hyper-surface

• example:

𝑥1

𝑥2

𝑥1
𝑥2

𝑓 (𝑥) = 2𝑥21 − 𝑥22 Level sets (controur lines) of 𝑓 (𝑥)
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Systems of linear equations

set (system) of 𝑚 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ··· + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

• can express compactly as 𝐴𝑥 = 𝑏

• 𝑎𝑖 𝑗 are the coefficients; 𝐴 is the coefficient matrix

• 𝑏 is called the right-hand side

• may have no solution, a unique solution, infinitely many solutions

Classification

• under-determined if 𝑚 < 𝑛 (𝐴 wide; more unknowns than equations)

• square if 𝑚 = 𝑛 (𝐴 square)

• over-determined if 𝑚 > 𝑛 (𝐴 tall; more equations than unknowns)
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Examples

• no solution
𝑥1 + 𝑥2 + 𝑥3 = 3

𝑥1 − 𝑥2 + 2𝑥3 = 2
2𝑥1 + 3𝑥3 = 1

• unique solution
𝑥1 + 𝑥2 + 𝑥3 = 3

𝑥1 − 𝑥2 + 2𝑥3 = 2
𝑥2 + 3𝑥3 = 1

• infinitely many solutions
𝑥1 + 𝑥2 + 𝑥3 = 3

𝑥1 − 𝑥2 + 2𝑥3 = 2
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Example: polynomial interpolation

• polynomial of degree at most 𝑛 − 1 with coefficients 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + ··· + 𝑥𝑛𝑡

𝑛−1

• fit polynomial to 𝑚 given points (𝑡1, 𝑦1), . . . (𝑡𝑚, 𝑦𝑚)

• this is a system of linear equations:

𝐴𝑥 =


1 𝑡1 · ·· 𝑡𝑛−11

1 𝑡2 · ·· 𝑡𝑛−12
... ... ...

1 𝑡𝑚 · ·· 𝑡𝑛−1𝑚



𝑥1
𝑥2
...

𝑥𝑛

 =


𝑦1
𝑦2
...

𝑦𝑚


where 𝐴 is the Vandermonde matrix
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Particular and general solution

[
1 0 8 −4
0 1 2 12

] 
𝑥1
𝑥2
𝑥3
𝑥4

 =
[
42
8

]
• first two columns consist of a 1 and a 0, so a particular solution is 𝑥 = (42, 8, 0, 0)

• to find a general solution, we find 𝐴𝑥0 = 0; for any 𝑥3, 𝑥4

𝑥1 = −8𝑥3 + 4𝑥4, 𝑥2 = −2𝑥3 − 12𝑥4

so 𝑥0 = (−8𝑥3 + 4𝑥4,−2𝑥3 − 12𝑥4, 𝑥3, 𝑥4) satisfies 𝐴𝑥0 = 0

• combining solutions, the set of all solution, called general solution, is

𝑥 =


42
8
0
0

 +

−8𝑥3 + 4𝑥4
−2𝑥3 − 12𝑥4

𝑥3
𝑥4

 =

42
8
0
0

 + 𝑥3


−8
−2
1
0

 + 𝑥4


4

−12
0
1

 , 𝑥3, 𝑥4 ∈ R
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Elementary row transformation

the solution of 𝐴𝑥 = 𝑏 is invariant under the elementary operations:

• exchange of two equations (rows of augmented matrix [𝐴 𝑏])
• multiplication of an equation (row of [𝐴 𝑏]) with a nonzero constant

• addition of two equations (rows of [𝐴 𝑏])

Row echelon form: system is in row-echelon form if it has staircase structure:

• all rows that contain only zeros are below the nonzero rows (bottom of matrix)

• in nonzero rows, leading coefficient or pivot is to right of pivot of row above it

it is in reduced row-echelon form or row canonical form (as in page 1.69) if further

• every pivot is 1

• pivot is the only nonzero entry in its column

Basic and free variables

• variables corresponding to the pivots are called basic variables

• other variables are called free variables
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Gaussian elimination

Gaussian elimination is an algorithm that solves 𝐴𝑥 = 𝑏 by transforming [𝐴 𝑏] into
(reduced) row-echelon form

to find all solutions to 𝐴𝑥 = 𝑏:

1. find a particular solution to 𝐴𝑥 = 𝑏 by Guassian elimination
– obtained from pivot columns (basic variables) with free variables set to zero

2. find all solutions to the homogeneous equation 𝐴𝑥 = 0

– by expressing basic variables in term of free variables

3. combine the solutions to the general solution
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Example

−3𝑥1 + 2𝑥3 = −1
𝑥1 − 2𝑥2 + 2𝑥3 = −5/3

−𝑥1 − 4𝑥2 + 6𝑥3 = −13/3

• r𝑖 : 𝑖th equation or row of [𝐴 𝑏]
• transform system into row echelon-form

−3 0 2 −1
1 −2 2 −5/3

−1 −4 6 −13/3

 →
(1/3)r1+r2
−(1/3)r1+r3


−3 0 2 −1
0 −2 8/3 −2
0 −4 16/3 −4


−2r2+r3−−−−−−→


−3 0 2 −1
0 −2 8/3 −2
0 0 0 0


we can work backward to solve this system or continue to make it into reduced
row echelon form
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• multiplying row 1 by −1/3 and row 2 by 1/−2, we obtain the canonical form
1 0 −2/3 1/3
0 1 −4/3 1
0 0 0 0


basic variables are 𝑥1, 𝑥2 and free variable is 𝑥3

• a particular solution is 𝑥 = (1/3, 1, 0) and the homogeneous solution is

𝑥0 =


(2/3)𝑥3
(4/3)𝑥3

𝑥3


• the set of all solutions is


1/3
1
0

 +

2/3
4/3
1

 𝑧 | 𝑧 ∈ R


each value of 𝑧 gives a different solution
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Example

suppose after Gaussian elimination, we obtain

[𝐴 𝑏] =

1 3 0 0 3 1
0 0 1 0 9 2
0 0 0 1 −4 3


• basic variables are 𝑥1, 𝑥3, 𝑥4 and a particular solution is 𝑥 = (1, 0, 2, 3, 0)
• for 𝐴𝑥 = 0 expressing the basic variables in terms of free variables 𝑥2, 𝑥5:

𝑥1 = −3𝑥2 − 3𝑥5, 𝑥3 = −9𝑥5, 𝑥4 = 4𝑥5

• so the homogeneous solution has the form
3𝑥2 − 3𝑥5

𝑥2
−9𝑥5
4𝑥5
𝑥5


= 𝑥2


3
1
0
0
0


+ 𝑥5


−3
0
−9
4
1


, 𝑥2, 𝑥5 ∈ R
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References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
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