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Mathematical optimization

(mathematical) optimization problem

minimize (or maximize) f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(1.1)

• optimization variable: x = (x1, . . . , xn) ∈ Rn

• objective function: f : Rn → R
• inequality constraints functions: gi : Rn → R
• equality constraints functions: hj : Rn → R

Optimal point or solution: a point x⋆ is an optimal point or solution to
problem (1.1) if it attains the smallest (largest) objective value among all
points that satisfy the constraints
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Applications

Applications

• electrical network design

• min-weight aircraft and aerospace design

• optimal space vehicle trajectories

• cost-efficient civil structure design (e.g., bridges, dams)

• min-cost material handling equipment design (e.g., trucks, cranes)

• maximizing profit investment strategies

• optimal data model fitting

Modeling: the process of identifying the objective, constraints, and variables
of a given problem is called modeling
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Finding best decision

• the variable, x, symbolizes specific actions such as:
■ trades in a portfolio
■ adjustments to airplane control surfaces
■ task scheduling or assignment
■ resource allocation decisions
■ transmitted signal...

• constraint functions limit the action or set conditions on outcome:
■ physical or technical limits
■ resource budgets
■ design requirements that need be satisfied...

• objective represents some criteria, we want to minimize:
■ total cost
■ deviation from desired outcome (error)
■ consumption of fuel
■ risk...
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Linear and nonlinear optimization

an optimization problem is called linear program if it has the form

minimize (or maximize)
n∑

i=1

cixi

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n∑
j=1

gijxj = hi, i = 1, . . . , p

• {ci, aij , gij , hi, bi} are given coefficients

• the objective and constraint functions are “linear”

Nonlinear program: an optimization problem is called nonlinear program if it
is not a linear program
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Other optimization classes:

• Unconstrained optimization: no constraints, i.e., hj(x) = gi(x) = 0

• Discrete optimization: variables take only discrete or integer values

• Integer linear program: a discrete optimization with linear objective and
constraints

• Mixed integer optimization: variables can be both integer and continuous

(Note: this course focuses solely on optimization with continuous variables)
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Solving optimization problems

• various methods exist to solve optimization problems

• the chosen method will typically depend on several factors (e.g., problem
class and structure)

• solutions guide decision-makers, who oversee, validate, and adjust the
approach or problem as required.

SA — ENGR507course introduction 1.7



Course topics

General course topics

• unconstrained and constrained optimization: optimality conditions

• convex optimization and duality

• solution methods: unconstrained and constrained

• modeling and applications in optimization

Prerequisites

• solid foundation in linear algebra and calculus

• programming in MATLAB: prior experience not mandatory, but self-study is
expected in the course’s early stages
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Course objectives

• learn the basic mathematical theory of nonlinear optimization (and convex
optimization) and their applications in practice

• learn and implement basic (some advanced) optimization methods

• develop the ability to identify optimization problem types and select
appropriate solution methods

• equip yourself with optimization knowledge needed for research and
real-world applications
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Course information

Course materials: lecture slides and other course material will be posted on
Moodle

Grading

• homework (20%)

• two midterm exams (50%)

• project (30%)

(these weights are approximate; we reserve the right to change them later)

refer to the syllabus on the Moodle course website for more information, such
as course references, office hours, class policy, exam dates, etc.

SA — ENGR507course introduction 1.10



AI tools policy

• unauthorized use of AI tools, like ChatGPT, is treated as plagiarism

• AI is an aid, not a substitute for genuine understanding; reliance solely on
AI without understanding can result in penalties

• suspected misuse of AI may lead to oral exams or alternative assessments
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Maximum power transfer

−
+

V

R
a

i

RL

b

• voltage source: V (in volts)
• line resistor: R (given value)
• objective: Determine RL to maximize power to it

using circuit analysis, the power delivered to RL is p(RL) = i2RL and
i = V/(R+RL); hence, we can formulate the problem as

maximize
V 2 x

(R+ x)2

with variable x = RL; this is an unconstrained nonlinear program
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Battery charging

an electric circuit is designed to use a 30 V source to charge 10 V, 6 V, and
20 V batteries

i1 i3 i5

R1 R3 R5

i2 i4
R2 R4

10 V 6 V 20 V

30 V

• physical constraints limit the currents i1, i2, i3, i4, and i5 to a maximum of
4 A, 3 A, 3 A, 2 A, and 2 A

• the batteries must not be discharged; that is, the currents i1, i2, i3, i4, and
i5 must not be negative

• we wish to find the values of the currents i1, i2, . . . , i5 such that the total
power transferred to the batteries is maximized
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using circuit analysis, the problem can be modeled as the linear program:

maximize 10i2 + 6i4 + 20i5
subject to i1 = i2 + i3

i3 = i4 + i5
i1 ≤ 4
i2 ≤ 3
i3 ≤ 3
i4 ≤ 2
i5 ≤ 2
i1, i2, i3, i4, i5 ≥ 0

once the currents are found, we can find the resistors R1, . . . , R5 that draw
such currents using Ohm’s and Kirchhoff’s laws
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Concrete mixture
Concrete type 1:

• Cost: $5/lb

• Cement: 30%

• Gravel: 40%

• Sand: 30%

Concrete type 2:

• Cost: $1/lb

• Cement: 10%

• Gravel: 20%

• Sand: 70%

Formulate a mixture with at least: 5 kg of Cement, 3 kg of Gravel, 4 kg of
Sand, while minimizing cost

Problem formulation:

minimize 5x1 + x2

subject to 0.3x1 + 0.1x2 ≥ 5
0.4x1 + 0.2x2 ≥ 3
0.3x1 + 0.7x2 ≥ 4
x1 ≥ 0, x2 ≥ 0

variables xi represent the weight of concrete i that we want to buy
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Knapsack problem

Description

• given n items, each with a weight and value

• determine the number of each item to include, maximizing total value while
ensuring the total weight doesn’t exceed a set limit

Investment example:

• Aim: invest among n opportunities

• Budget: at most d dollars
• ith investment:

■ cost: ci dollars
■ expected profit: pi
■ available units: bi

how many items of each type should be bought to maximize the expected
profit?
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problem can be formulated as

maximize
n∑

i=1

pixi

subject to
n∑

i=1

cixi ≤ d, (total cost ≤ available amount),

xi ∈ {0, 1, 2, . . . , bi}, i = 1, . . . , n

• the problem is an integer optimization problem since the variables are
restricted to be integers

• specifically, it is an integer linear program since the objective and
constraints are “linear” and the variables are integer
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Facility placement: Fermat-Weber problem

consider locations of some facilities represented by points:
(a1, b1), . . . , (am, bm) in 2D space

• Goal: Determine the optimal location, x = (x1, x2), of a distribution center
to minimize the total daily distance.

• distance between the center, x, and a facility, (ai, bi), is:

di =
√
(x1 − ai)2 + (x2 − bi)2

the problem can be formulated as

minimize
m∑
i=1

wi

√
(x1 − ai)2 + (x2 − bi)2

• wi is the weight associated with distance di (e.g., higher values of wi for
areas with more traffic)

• this problem is known as the Fermat-Weber problem
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Electrical wires connections

four buildings are to be connected by electrical wires

(x1, y1)

(x2, y2)

(x0, y0)

(x4, y4)

(x3, y3)

d1

d2

d4d3

• central joining point: (x0, y0)

• each building i connects at (xi, yi) with wire length di

• Objective: find the positions (xi, yi) that minimize the total length of wires
used
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• building 1 (circular): center (1, 4), radius 2

• building 2 (circular): center (9, 5), radius 1

• building 3 (square): center (3,−2), side length 2

• building 4 (rectangle): center (7, 0), height 4, width 2

Problem Formulation:

minimize
∑4

i=1

√
(xi − x0)

2
+ (yi − y0)

2

subject to (x1 − 1)
2
+ (y1 − 4)

2 ≤ 4

(x2 − 9)
2
+ (y2 − 5)

2 ≤ 1
2 ≤ x3 ≤ 4
−3 ≤ y3 ≤ −1
6 ≤ x4 ≤ 8
−2 ≤ y4 ≤ 2

with variables (xi, yi) (i = 0, 1, . . . , 4)
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Vectors

column vector of size n (or n-vector):

a =


a1
a2
...
an


• ai: ith entry (also termed as element, coefficient, or component)

• alternate notation: a = (a1, . . . , an)

• set of real n-vectors: Rn

• transpose results in a row vector: aT =
[
a1 · · · an

]
Special vectors (dimension determined from context)

• zero vector: 0 = (0, 0, . . . , 0)

• one vector: 1 = (1, 1, . . . , 1)

• unit vectors: a = ei has entry ai = 1; all other entries are equal to zero
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Vectors operations and properties

• scalar vector multiplication: x = αa, where xi = αai

• vector addition: x = a+ b, where xi = ai + bi

Vector addition properties

• commutative: a+ b = b+ a

• associative: (a+ b) + c = a+ (b+ c)

Scalar-vector multiplication properties

• distributive: for any real scalars α and β

α(a+ b) = αa+ αb

(α+ β)a = αa+ βa

• associative: α(βa) = (αβ)a, which we write as αβa
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Geometric interpretation: displacement

a+ b

a

b
b+ a

a

b

• Left: the displacement a+ b

• Right: the displacement b+ a

SA — ENGR507vectors and matrices 1.23



Geometric interpretation: position

• the point b+ a is the position of the point represented by b displaced by
the displacement represented by a

• the vector p− q represents the displacement from the point represented
by q to the point represented by p
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Line segment

any point on the line passing through distinct a and b can be written as

c = θa+ (1− θ)b

• θ is a scalar

• for 0 ≤ θ ≤ 1, point c lie on the segment between a and b

a

b

: θa+ (1− θ)b

θ > 1

0 < θ < 1

θ < 0
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Euclidean inner product and norm

(euclidean) inner product of two n-vectors:

aTb =

n∑
i=1

aibi = a1b1 + · · ·+ anbn

a and b are said to be orthogonal if aTb = 0

Properties

• nonnegativity: aTa ≥ 0 and aTa = 0 if and only if a = 0

• symmetry: aTb = bTa

• additivity: (a+ b)Tc = aTc+ bTc

• homogeneity: (αa)Tb = α(aTb)
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Euclidean norm

∥a∥ =
√
a21 + a22 + · · ·+ a2n =

√
aTa

Cauchy-Schwarz inequality

|aTb| ≤ ∥a∥∥b∥

Inner product examples

• unit vector: inner product eTia = ai picks ith element of a

• sum: 1Ta = a1 + a2 + · · ·+ an

• average: (1/n)Ta = a1+a2+···+an

n

• sum of squares: aTa = a21 + a22 + · · ·+ a2n = ∥a∥2
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Norm of block vectors

let a, b and c, be any real n-vectors and define the block vector:

d = (a, b, c) =

ab
c


• the euclidean norm squared of block vector d is

∥d∥2 = ∥a∥2 + ∥b∥2 + ∥c∥2

• the norm of d = (a, b, c) can be expressed as:

∥d∥ =
√

∥a∥2 + ∥b∥2 + ∥c∥2 =
∥∥(∥a∥, ∥b∥, ∥c∥)∥∥
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Matrices

matrix of size (dimension) m× n:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn


• aij is the i, j element (or entry or coefficient)
• set of real m× n matrices is denoted by Rm×n

• transpose of A: AT is an n×m matrix with i, j entry equal to aji
• a matrix is square if m = n

Special matrices:
• zero matrix: A = 0 is a matrix with zeros entries aij = 0
• diagonal matrix: square matrix A = diag(a1, . . . , an) with diagonal entries
aii = ai and off-diagonal aij = 0

• identity matrix: diagonal matrix A = I , m = n with diagonal entries
aii = 1 and aij = 0

• symmetric matrix: square matrix A with A = AT
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Columns and rows of a matrix

an m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn


• aj = (a1j , . . . , amj) is the jth column of A

• âTi =
[
ai1 · · · ain

]
is the ith row of A

• the matrix A can represented in terms of its columns or row as

A =
[
a1 a2 · · · an

]
or A =


âT1
âT2
...

âTm
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Block matrices

matrices can be partitioned into submatrices; for example,

A =

[
B C
D E

]
denote a matrix where B,C,D, and E are matrices themselves
• B,C,D, and E are termed as blocks or submatrices
• blocks are identified by their row and column indices, for example, C is the

(1, 2) block of A
• block matrices must have compatible dimensions

Example

B =
[
1 1 1

]
, C = [−1], D =

[
2 2 2
3 3 3

]
, E =

[
4
4

]
we have

A =

[
B C
D E

]
=

1 1 1 −1
2 2 2 4
3 3 3 4
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Matrix operations

• scalar matrix multiplication: X = αA, xij = αaij

• matrix addition: X = A+B, xij = aij + bij

Matrix-vector product: multiplication of a matrix A ∈ Rm×n with a vector of
compatible size x ∈ Rn:

y = Ax, yi =

n∑
j=1

aijxj , i = 1, . . . ,m

Matrix-matrix product: product of a matrix with a matrix A ∈ Rm×p of
compatible size B ∈ Rp×n, C = AB:

cij =

p∑
ℓ=1

aiℓbℓj = ai1b1j + · · ·+ aipbpj ,

i = 1, . . . ,m, j = 1, . . . , n
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Matrix operations properties

Matrix addition properties

• commutativity: A+B = B +A

• associativity: (A+B) + C = A+ (B + C)

• addition with zero matrix: A+ 0 = 0 +A = A

• transpose of sum: (A+B)T = AT +BT

Matrix-vector multiplication properties

• distributive: A(u+ v) = Au+Av and (A+B)u = Au+Bu where
u,v are vectors and A,B are matrices

• homogeneity: (αA)u = α(Au) = A(αu), which we write as αAu
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Matrix multiplication properties

• associativity: (AB)C = A(BC), which we write it as ABC

• distributivity with addition

A(B + C) = AB +AC, (A+B)C = AC +BC

• transpose of product: (AB)T = BTAT

• for scalars α and β, we have

α(AB) = (αA)B = A(αB)

(αA)T = αAT

(αβ)A = α(βA)

(α+ β)A = αA+ βA
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Matrix trace

the trace of an n× n matrix A is the sum of its diagonal elements:

Tr(A) =

n∑
i=1

aii

some properties of the trace are:

• Tr(A) = Tr(AT)

• if A is an m× n matrix and B is an n×m matrix, then

Tr(AB) = Tr(BA)
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Functions

• f : X → Y to denote a function f that maps an element from the set X
into the set Y

• f : Rn → Rm means that f maps a real n-vector to a real m-vector:

f(x) =

 f1(x)
...

fm(x)


where the entry fi : Rn → R is itself a scalar-valued function of x

Function domain: the domain of function f , symbolized by dom f ⊆ X ,
represents the set of points where f is defined and finite; for example, the
functions

f1(x) =

{
1/x if x ̸= 0

∞ otherwise
, f2(x) =

{
1/x if x > 0

∞ otherwise

are different since they have different domains
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Examples

defined everywhere (dom f = Rn)

• f : R → R: f(x) = x2 + x+ 1 maps a scalar x to a scalar f(x)

• f : R3 → R: f(x1, x2, x3) = x1 + x2 + x2
3

• f : Rn → Rm: f(x) = Ax where x ∈ Rn and A is an m× n matrix

• f : R2 → R3: f(x1, x2) = (x1, x2, x1 + x2
2)

undefined everywhere

• f(x) = log x (f : R → R) is a function that takes a real number and
outputs a real number and it is valid only for x > 0, hence
dom f = {x | x > 0}

• f(x1, x2) = x1/x1 + x2 (f : R2 → R) with dom f = {x | x1 + x2 ̸= 0}
where x = (x1, x2)

SA — ENGR507vectors and matrices 1.37



Linear functions

a function f : Rn → Rm is linear if it satisfies the superposition property:

f
(
αx+ βy

)
= αf(x) + βf(y)

for any an n-vectors x,y and any scalars α, β

• a linear function f : Rn → R can always be expressed as: f(x) = aTx
for some n-vector a.

• similarly, a linear function f : Rn → Rm can be represented as:
f(x) = Ax for some m× n matrix A

• to see this, using the linear property of f , we have:

f(x) = f(x1e1 + · · ·+ xnen) = x1f(e1) + · · ·+ xnf(en) = Ax

where the matrix A has columns:

A = [f(e1) · · · f(en)]
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Affine functions

a function f : Rn → Rm is affine if it can be expressed as

f(x) = Ax+ b

for some A ∈ Rm×n and b ∈ Rm

• an affine function f satisfies the superposition

f(αx+ βy) = αf(x) + βf(y)

for any affine combination α+ β = 1

• f : Rn → R is affine if we can write it as

f(x) = aTx+ b

for some n-vector a and scalar b (linear function plus a constant)
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Quadratic functions

a function f : Rn → R is quadratic if it can be expressed as

f(x) = xTQx+ xTr + c

where

• Q is an n× n matrix

• r is an n-vector

• c is a scalar

Quadratic Form:

• a quadratic form is a special case: xTQx where Q is symmetric

• we can always assume Q is symmetric because:

xTQx = (1/2)xT(Q+QT)x

hence, xTQx = xTPx with P = 1
2 (Q+QT) being symmetric
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