
16. Computing eigenvalues and eigenvectors

• power iteration

• shift and inverse techniques

• simultaneous (subspace) iteration

• QR iteration

ENGR 504 (Fall 2024) S. Alghunaim

16.1

Eigenvalue problem

given 𝐴 ∈ R𝑛×𝑛, find eigenvector 𝑥 and eigenvalue 𝜆:

𝐴𝑥 = 𝜆𝑥

• we assume that 𝐴 ∈ R𝑛×𝑛 has only real eigenvalues/eigenvectors

• we discuss methods for finding eigenvalues and eigenvectors

Need for iterative methods

• polynomial det(𝜆𝐼 − 𝐴) = 𝜆𝑛 + 𝑎𝑛−1𝜆𝑛−1 + ··· + 𝑎1𝜆 + 𝑎0 roots are eig. values
of

𝐴 =



−𝑎𝑛−1 −𝑎𝑛−2 −𝑎𝑛−3 · ·· −𝑎1 −𝑎0
1 0 0 · ·· 0 0
0 1 0 · ·· 0 0
...

0 0 0 · ·· 0 0
0 0 0 · ·· 1 0


∈ R𝑛×𝑛

• no closed-form formula exists for roots of a general polynomial of degree 𝑛 ≥ 5

• hence, no finite algorithm exists for eigenvalues of general matrix of order 𝑛 ≥ 5

SA — ENGR504power iteration 16.2

The power iteration

given 𝐴 ∈ R𝑛×𝑛 and nonzero 𝑣 (0) ∈ R𝑛

for 𝑘 = 1, 2, . . .

1. 𝑣 = 𝐴𝑣 (𝑘−1)

2. 𝑣 (𝑘) = 𝑣/∥𝑣∥ (or 𝑣 (𝑘) = 𝑣/∥𝑣∥∞)

3. 𝜆 (𝑘) = 𝑣 (𝑘)T𝐴𝑣 (𝑘)

• if 𝑣 ∈ C𝑛 and 𝜆 ∈ C, we replace 𝑣T by the conjugate transpose 𝑣𝐻

• 𝜆 (𝑘) converges to the largest eigenvalue in magnitude (dominant eigenvalue)

• 𝑣 (𝑘) converges to eigenvector corresponding to largest eigenvalue

• reason for normalization is to keep the iterate magnitude in check

SA — ENGR504power iteration 16.3

Convergence of the power method

• let the eigenvalues and eigenvectors of 𝐴 be {𝜆 𝑗 , 𝑥 𝑗 } for 𝑗 = 1, . . . , 𝑛

• assume 𝜆1, 𝜆2, . . . , 𝜆𝑛 are sorted in decreasing order in terms of their magnitude

|𝜆1 | > |𝜆2 | ≥ ··· ≥ |𝜆𝑛 |

Dominant eigenvector

• output at the 𝑘 th step is 𝑣 (𝑘) = 𝛾𝑘𝐴
𝑘𝑣 (0) , where 𝛾𝑘 guarantees ∥𝑣 (𝑘) ∥ = 1

• assume 𝐴 has lin. indep. eigenvectors such that 𝑣 (0) =
∑𝑛

𝑗=1 𝛽 𝑗𝑥 𝑗 for some 𝛽 𝑗

• multiplying 𝑣 (0) by 𝐴 we obtain

𝐴𝑣 (0) =
𝑛∑
𝑗=1

𝛽 𝑗𝐴𝑥 𝑗 =
𝑛∑
𝑗=1

𝛽 𝑗𝜆 𝑗𝑥 𝑗

• continuing, for any positive integer 𝑘 we have

𝐴𝑘𝑣 (0) =
𝑛∑
𝑗=1

𝛽 𝑗𝜆
𝑘
𝑗 𝑥 𝑗

SA — ENGR504power iteration 16.4

• suppose that 𝛽1 ≠ 0, then

𝑣 (𝑘) = 𝛾𝑘𝜆
𝑘
1

𝑛∑
𝑗=1

𝛽 𝑗

(
𝜆 𝑗/𝜆1

) 𝑘
𝑥 𝑗 = 𝛾𝑘𝜆

𝑘
1

(
𝛽1𝑥1 +

𝑛∑
𝑗=2

𝛽 𝑗

(
𝜆 𝑗/𝜆1

) 𝑘
𝑥 𝑗

)
• it follows that for 𝑗 ≥ 2 we have |𝜆 𝑗/𝜆1 |𝑘 → 0 as 𝑘 → ∞

• the power method converges linearly with rate |𝜆2/𝜆1 |:
in the limit we obtain a unit vector in the direction of 𝑥1

Dominant eigenvalue

• suppose 𝑣 is an approximate eigenvector for real 𝐴

• the “best” estimate of 𝜆 is the least squares solution of ∥𝑣𝜆 − 𝐴𝑣∥2

• solution is the Rayleigh quotient 𝜇(𝑣) = 𝑣T𝐴𝑣/𝑣T𝑣

• if 𝑣 were an eigenvector, then 𝜇(𝑣) gives the associated eigenvalue

• note that by the normalization of 𝑣 (𝑘) , we have 𝜇(𝑣 (𝑘)) = 𝑣 (𝑘)T𝐴𝑣 (𝑘)

SA — ENGR504power iteration 16.5

Limitations of the power method

• initialization may have no component in the dominant eigenvector 𝑥1: 𝛽1 = 0

– this is extremely unlikely if 𝑣 (0) is chosen randomly

– in practice 𝛽1 ≠ 0 due to roundoff errors

• there may be more than one eigenvalue having the same (maximum) modulus
– iteration may converge to a a linear combination of the corresponding eigenvectors

• for real matrix and real initialization, iteration cannot converge to complex vector

• we have assumed that all the eigenvectors of the matrix are linearly independent:

power method can still be applied, but convergence may be very slow

SA — ENGR504power iteration 16.6

Example

• we consider two diagonal matrices

𝐴 = diag(1, 2, . . . , 32) and 𝐵 = diag(1, 2, . . . , 30, 30, 32)
• in MATLAB syntax the matrices are

u = [1:32]; v = [1:30,30,32];

A = diag(u); B = diag(v);

• plot depicts the absolute error |𝜆 (𝑘)
1 − 𝜆1 | = |𝜆 (𝑘)

1 − 32|

iteration

ab
so

lu
te

er
ro

r

SA — ENGR504power iteration 16.7

Example: PageRank

Problem: rank relevant webpages and determine their importance

• models internet as directed network with 𝑛 nodes (webpages)

• PageRank computes the importance or rank 𝑥𝑖 ≥ 0 of a web site 𝑎𝑖 by counting
the number of pages pointing to 𝑎𝑖

• locations or indices of pages related to 𝑥𝑖 are given by the set 𝐵𝑖

• if page 𝑗 ∈ 𝐵𝑖 points to 𝑁 𝑗 pages including page 𝑖, then we set

𝑥𝑖 =
∑
𝑗∈𝐵𝑖

1

𝑁 𝑗

𝑥 𝑗 , 𝑖 = 1, . . . , 𝑛

• an eigenvalue problem: 𝑥 = 𝐴𝑥, where 𝐴𝑖 𝑗 = 1/𝑁 𝑗 if 𝑗 ∈ 𝐵𝑖 and zero otherwise

• if 𝑣 (0) = 1
𝑛
1, then, for 𝑘 = 0, 1, . . ., the iteration is defined by

𝑣
(𝑘+1)
𝑖

=
∑
𝑗∈𝐵𝑖

1

𝑁 𝑗

𝑣
(𝑘)
𝑗

, 𝑖 = 1, . . . , 𝑛

(without normalization and eigenvalue estimation-operations)

SA — ENGR504power iteration 16.8

Example

webpages are nodes in the graph, numbered 1 through 6

1 2 3

4 5 6

𝐴 =



0 0 1
3 0 0 0

1
2 0 0 1

2
1
2 0

0 1
2 0 0 0 1

1
2 0 1

3 0 0 0
0 0 0 1

2 0 0
0 1

2
1
3 0 1

2 0


• 𝑗 th column represents the outlinks from page 𝑗 ; rows indicate the inlinks

• columns sum up to 1; such a matrix is called column stochastic

• matrix 𝐴 is elementwise nonnegative

• Perron–Frobenius theorem ensures for this matrix that
– a unique, simple eigenvalue 1 exists

– all other eigenvalues of 𝐴 are smaller in magnitude

– the associated eigenvector of the dominant eigenvalue has real entries

SA — ENGR504power iteration 16.9

• to compute PageRank, we start with 𝑣 (0) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

• eventually, the method converges to the desired PageRank vector

𝑥 = (0.0994, 0.1615, 0.2981, 0.1491, 0.0745, 0.2174)

• this shows that node 3 is the top-ranked entry

• the ranking according to the values of 𝑥 is (3, 6, 2, 4, 1, 5)

• in this example, since ∥𝑣 (0) ∥1 = 1, all subsequent iterates satisfy ∥𝑣 (𝑘) ∥1 = 1

• interpretation: gives probability of a surfer being at a given webpage after a long
(“infinite”) time, regardless of where they started their journey

• when there are no outlinks from a certain webpage we can replace the whole
column from zeros to entries all equal to 1/𝑛 (in our example, 1/6)

1

3

2

SA — ENGR504power iteration 16.10

5

1 2 4

3

• entering a “dead end,” as shown in diagram can be fixed by forming:

𝛼𝐴 + (1 − 𝛼)𝑢1T

where 𝛼 is a damping factor and 𝑢 is a personalization vector

• interpretation: if 𝛼 = 0.85 and 𝑢 = 1
𝑛
1, then with probability 0.85 a surfer follows

links and 0.15 probability jump randomly to anywhere

• 𝛼𝐴 + (1 − 𝛼)𝑢1T has dominant eigenvalue is 1, the rest of its eigenvalues (which
are generally complex) are bounded in magnitude by 𝛼

SA — ENGR504power iteration 16.11

Outline

• power iteration

• shift and inverse techniques

• simultaneous (subspace) iteration

• QR iteration

Shifted power iteration

• recall that the eigenvalues of 𝐴 − 𝛼𝐼 are 𝜆𝑖 − 𝛼 with same eigenvectors of 𝐴

• using shifts convergence maybe enhanced to |𝜆2 − 𝛼 |/|𝜆1 − 𝛼 | < |𝜆2/𝜆𝑛 |

Power iteration with shifts

given 𝐴 ∈ R𝑛×𝑛 and nonzero 𝑣 (0) ∈ R𝑛

for 𝑘 = 1, 2, . . .

1. 𝑣 = (𝐴 − 𝛼𝐼)𝑣 (𝑘−1)

2. 𝑣 (𝑘) = 𝑣/∥𝑣∥ (or 𝑣 (𝑘) = 𝑣/∥𝑣∥∞)

3. 𝜆 (𝑘) = 𝑣 (𝑘)T𝐴𝑣 (𝑘)

Two extreme eigenvalues: shift allows us to find extreme eigenvectors 𝜆1 or 𝜆𝑛

• converges to 𝜆1 if |𝜆1 − 𝛼 | > |𝜆𝑛 − 𝛼 |

• converges to 𝜆𝑛 if |𝜆𝑛 − 𝛼 | > |𝜆1 − 𝛼 |

SA — ENGR504shift and inverse techniques 16.12

The inverse iteration

Inverse Iteration: power iteration applied to (𝐴 − 𝛼𝐼)−1

given 𝐴 ∈ R𝑛×𝑛, nonzero 𝑣 (0) ∈ R𝑛, and shift 𝛼

for 𝑘 = 1, 2, . . .

1. solve (𝐴 − 𝛼𝐼)𝑣 = 𝑣 (𝑘−1)

2. 𝑣 (𝑘) = 𝑣/∥𝑣∥
3. 𝜆 (𝑘) = 𝑣 (𝑘)T𝐴𝑣 (𝑘)

• requires solving linear eq. in each iteration

• eigenvalues of (𝐴 − 𝛼𝐼)−1 are 1/(𝜆 𝑗 − 𝛼) with same eigenvectors as 𝐴

• converges to 𝜆 𝑗 with largest 1/|𝜆 𝑗 − 𝛼 |, i.e., 𝜆 𝑗 is the eigenvalue closest to 𝛼

– this can allow us to find any eigenvalue
– to converge to 𝜆1 taking 𝛼 = ∥𝐴∥1 may be a reasonable since 𝜌(𝐴) ≤ ∥𝐴∥

• useful to find eigenvector corresponding to a known approximate eigenvalue

SA — ENGR504shift and inverse techniques 16.13

Selecting shift dynamically

Rayleigh Quotient iteration

given 𝐴 ∈ R𝑛×𝑛 and nonzero normalized 𝑣 (0) ∈ R𝑛; set 𝜆 (0) = 𝑣 (0)T𝐴𝑣 (0)

for 𝑘 = 1, 2, . . .

1. solve (𝐴 − 𝜆 (𝑘−1) 𝐼)𝑣 = 𝑣 (𝑘−1)

2. 𝑣 (𝑘) = 𝑣/∥𝑣∥
3. 𝜆 (𝑘) = 𝑣 (𝑘)T𝐴𝑣 (𝑘)

• selecting 𝛼 = 𝛼 (𝑘) = 𝑣 (𝑘)T𝐴𝑣 (𝑘) to be the Rayleigh quotient

• given an approximate eigenvector, Rayleigh quotient provides a good estimate for
the corresponding eigenvalue

• improves convergence rate as we get closer to the desired eigenvalue

• requires refactoring 𝐴 − 𝜆 (𝑘−1) 𝐼 each iteration for the solution step 1

SA — ENGR504shift and inverse techniques 16.14

Example

𝐴 = diag(1, 2, . . . , 32) and 𝐵 = diag(1, 2, . . . , 30, 30, 32)

• we run the inverse iteration with random initialization for 𝛼 = 33 and 𝛼 = 35

iteration

ab
so

lu
te

er
ro

r

𝛼 = 33
𝛼 = 35

• a shift closer to the dominant eigenvalue of 32 yields much faster convergence
• running the Rayleigh quotient iteration, things are even faster; a typical sequence

of is 3.71e-1, 9.46e-2, 2.34e-4, 2.16e-11

SA — ENGR504shift and inverse techniques 16.15

Outline

• power iteration

• shift and inverse techniques

• simultaneous (subspace) iteration

• QR iteration

Subspace

a nonempty set S of R𝑛 is a subspace of R𝑛 if for all 𝛼, 𝛽 ∈ R and 𝑥, 𝑦, ∈ S

𝛼𝑥 + 𝛽𝑦 ∈ S

(closed under vector addition and scalar multiplication)

• all linear combination of elements of S are in S
• every subspace includes the zero vector 0

• geometrically, a subspace is a flat (plane) that passes through the origin

Examples

• {0} and R𝑛 are subspaces

• for 𝑚 ∈ R, the line {(𝑥, 𝑚𝑥) | 𝑥 ∈ R} is a subspace of R2

• span(𝑣1, . . . , 𝑣𝑘) is a subspace where 𝑣𝑖 ∈ R𝑛

• R2
+ = {(𝑥1, 𝑥2) | 𝑥1, 𝑥2 ≥ 0} is not a subspace

– for instance, (1, 1) ∈ R2
+ but −1(1, 1) ∉ R2

+

SA — ENGR504simultaneous (subspace) iteration 16.16

Basis

given a subspace S, the set of vectors {𝑣1, 𝑣2, . . . , 𝑣𝑘} ∈ S is a basis for S if

1. the set {𝑣1, 𝑣2, . . . , 𝑣𝑘} is linearly independent

2. S = span(𝑣1, . . . , 𝑣𝑘)

• every 𝑥 ∈ S can be expressed uniquely as

𝑥 = 𝛼1𝑣1 + ··· + 𝛼𝑘𝑣𝑘

for some coefficients 𝛼1, . . . 𝛼𝑘 called coordinates or components

• any set of 𝑛-linearly independent vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑛 is a basis for R𝑛

SA — ENGR504simultaneous (subspace) iteration 16.17

Eigenspace

Invariant subspace: for 𝐴 ∈ R𝑛×𝑛 a subspace S is an invariant subspace if

𝑥 ∈ S =⇒ 𝐴𝑥 ∈ S

Eigenspace: for 𝐴 ∈ R𝑛×𝑛, the eigenspace is the set

S𝜆 = {𝑣 | 𝐴𝑣 = 𝜆𝑣}

• an eigenspace is an invariant subspace of R𝑛 (or C𝑛)

• if 𝑥1, . . . , 𝑥𝑝 are eigenvectors, then span(𝑥1, . . . , 𝑥𝑝) is an invariant subspace

SA — ENGR504simultaneous (subspace) iteration 16.18

Simultaneous iteration

Simultaneous iteration

given 𝐴 ∈ R𝑛×𝑛 and 𝑉0 = [𝑣 (0)1 · ·· 𝑣
(0)
𝑝] ∈ R𝑛×𝑝 with lin. indep. columns

for 𝑘 = 1, 2, . . .

𝑉𝑘 = 𝐴𝑉𝑘−1

• power iteration with several starting points

• columns of 𝑉𝑘 can be normalized to avoid blow up

• columns of 𝑉𝑘 = 𝐴𝑘𝑉0 converge to a basis for span(𝑥1, . . . , 𝑥𝑝) provided

|𝜆1 | > · ·· > |𝜆𝑝 | > |𝜆𝑝+1 | ≥ ··· ≥ |𝜆𝑛 |

SA — ENGR504simultaneous (subspace) iteration 16.19

Convergence discussion

• assume 𝐴 has lin. indep. eigenvectors such that 𝑣 (0)
𝑖

=
𝑛∑
𝑗=1

𝛽𝑖, 𝑗𝑥 𝑗 for some 𝛽𝑖, 𝑗

• we have for 𝑖 = 1, 2, . . . , 𝑝

𝑣
(𝑘)
𝑖

= 𝜆𝑘
1𝛽𝑖,1𝑥1 + ··· + 𝜆𝑘

𝑛𝛽𝑖,𝑛𝑥𝑛

= 𝜆𝑘
𝑝

(
𝑝∑
𝑗=1

(𝜆 𝑗/𝜆𝑝)𝑘𝛽𝑖, 𝑗𝑥 𝑗 +
𝑛∑

𝑗=𝑝+1
(𝜆 𝑗/𝜆𝑝)𝑘𝛽𝑖, 𝑗𝑥 𝑗

)
• columns of 𝑉𝑘 = 𝐴𝑘𝑉0 converge to basis for span(𝑥1, . . . , 𝑥𝑝) if |𝜆𝑝 | > |𝜆𝑝+1 |
• columns of 𝑉𝑘 become increasingly ill-conditioned basis:

– each column will be very close to 𝑣1

– so columns become almost linearly dependent

SA — ENGR504simultaneous (subspace) iteration 16.20

Outline

• power iteration

• shift and inverse techniques

• simultaneous (subspace) iteration

• QR iteration

Orthogonal iteration

Orthogonal (simultaneous) iteration

given 𝐴 ∈ R𝑛×𝑛 and an 𝑛 × 𝑝 matrix 𝑈0 with orthonormal columns

for 𝑘 = 1, 2, . . .

1. compute: 𝑉𝑘 = 𝐴𝑈𝑘−1

2. QR factorization: 𝑉𝑘 = 𝑈𝑘𝑅𝑘

• 𝑉𝑘 and 𝑈𝑘 span the same space

• columns of 𝑈𝑘 converge to an orthonormal basis for span(𝑥1, . . . , 𝑥𝑝)

• orthogonal transformation 𝑈T
𝑘
𝐴𝑈𝑘 preserves eigenvalues of 𝐴

• for 𝑈0 = 𝐼 , 𝑈T
𝑘
𝐴𝑈𝑘 converges to an upper triangular matrix with eigenvalues on

diagonal if
– the eigenvalues of 𝐴 are all real and distinct

– all the principal submatrices of 𝐴 are nonsingular

SA — ENGR504QR iteration 16.21

Interpretation as QR factorization of powers of 𝐴

for 𝑝 = 𝑛, we have

𝑈0 = 𝐼, 𝐴𝑈𝑘−1 = 𝑈𝑘𝑅𝑘 (for 𝑘 ≥ 1)

with 𝑈𝑘 orthogonal, 𝑅𝑘 upper triangular

• repeated substitution gives:

𝐴 = 𝑈1𝑅1, 𝐴2 = 𝐴𝑈1𝑅1 = 𝑈2𝑅2𝑅1, 𝐴3 = 𝐴𝑈2𝑅2𝑅1 = 𝑈3𝑅3𝑅2𝑅1, . . .

• after 𝑘 steps,
𝐴𝑘 = 𝑈𝑘𝑆𝑘 where 𝑆𝑘 = 𝑅𝑘𝑅𝑘−1 · ··𝑅1

• the product 𝑆𝑘 = 𝑅𝑘𝑅𝑘−1 · ··𝑅1 is upper triangular

SA — ENGR504QR iteration 16.22

Reorganization of orthogonal iteration

• assume 𝑝 = 𝑛 so that 𝑈𝑘 is orthogonal and let 𝑈0 = 𝐼

• from 𝐴𝑈𝑘−1 = 𝑈𝑘𝑅𝑘 , we have

𝑈T
𝑘 𝐴𝑈𝑘−1 = 𝑅𝑘

and
𝐴𝑘 = 𝑈T

𝑘−1𝐴𝑈𝑘−1 = 𝑈T
𝑘−1𝑈𝑘𝑅𝑘 = 𝑄𝑘𝑅𝑘

last equation is QR factorization with 𝑄𝑘 = 𝑈T
𝑘−1𝑈𝑘

• from this it follows that

𝐴𝑘+1 = 𝑈T
𝑘 𝐴𝑈𝑘 = (𝑈T

𝑘 𝐴𝑈𝑘−1) (𝑈T
𝑘−1𝑈𝑘) = 𝑅𝑘𝑄𝑘

SA — ENGR504QR iteration 16.23

Relation to orthogonal iteration

𝐴0 = 𝐴, 𝐴𝑘 = 𝑄𝑘𝑅𝑘 , 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 (for 𝑘 ≥ 0)

• the matrices 𝐴𝑘+1 and 𝐴𝑘 are orthogonaly similar

𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 = 𝑄T
𝑘𝐴𝑘𝑄𝑘

• continuing recursively, we see that an orthogonal similarity relates 𝐴𝑘 and 𝐴:

𝐴𝑘+1 = (𝑄1𝑄2 · ··𝑄𝑘)T𝐴(𝑄1𝑄2 · ··𝑄𝑘)
= 𝑈T

𝑘 𝐴𝑈𝑘 where 𝑈𝑘 = 𝑄1𝑄2 · ··𝑄𝑘

therefore the matrices 𝐴𝑘 all have the same eigenvalues as 𝐴

• the orthogonal matrices 𝑈𝑘 = 𝑄1𝑄2 · ··𝑄𝑘 and the upper triangular 𝑅𝑘 satisfy

𝐴𝑈𝑘−1 = 𝑈𝑘−1𝐴𝑘 = 𝑈𝑘−1𝑄𝑘𝑅𝑘 = 𝑈𝑘𝑅𝑘

hence, equivalence to orthogonal iteration is 𝑈𝑘 = 𝑄1𝑄2 · ··𝑄𝑘

SA — ENGR504QR iteration 16.24

QR algorithm

most popular method for finding all eigenvalues of a matrix

QR iteration

given 𝐴 ∈ R𝑛×𝑛; set 𝐴0 = 𝐴

for 𝑘 = 0, 1, 2, . . .

1. QR factorization: 𝐴𝑘 = 𝑄𝑘𝑅𝑘

2. compute: 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘

• 𝐴𝑘 converges to upper (block) triangular matrix with eigenvalues in diagonal

• 𝑈𝑘 = 𝑄1𝑄2 · ··𝑄𝑘 converges to matrix of eigenvectors

SA — ENGR504QR iteration 16.25

Two stages

Stage 1: orthogonal similarity transformation

• idea: orthogonally transforming the matrix into upper Hessenberg form

• for symmetric 𝐴 into tridiagonal matrix

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

Stage 2

• apply QR iteration

• computing the QR decomposition of an upper Hessenberg matrix requires order
𝑛2 operations compared to the order 𝑛3 for a full matrix

SA — ENGR504QR iteration 16.26

Example

𝐴 =


.5 −.1 −.5 .4

−.1 .3 −.2 −.3
−.3 −.2 .6 .3
.1 −.3 .3 1


The first stage

• use Householder reflections to form 𝐻T𝐴𝐻, which is upper Hessenberg

• denote elementary transformation matrices for the first two steps by 𝐻1 and 𝐻2

• 𝑘 = 1, apply Householder reflection that zeros last two elements in first column:

find a reflector 𝑢1 such that (−.1,−.3, .1) turns into (𝛼, 0, 0)

SA — ENGR504QR iteration 16.27

• the vector is 𝑢1 = (−.8067,−.5606, .1869), and we have an orthogonal 3 × 3
matrix of the form 𝑃 (1) = 𝐼3 − 2𝑢1𝑢

T
1 ; we then define

𝐻T
1 =

[
1

𝑃 (1)

]
• 𝐻T

1 𝐴 now has two zeros in the (3, 1) and (4, 1) positions

• multiplying by 𝐻T
1 on the left does not touch the first row of 𝐴

• multiplying by 𝐻1 on the right does not touch the first column of 𝐻T
1 𝐴

• the first similarity transformation gives

𝐻T
1 𝐴𝐻1 =


.5 .6030 −.0114 .2371

.3317 .3909 −.1203 .0300
0 −.1203 .6669 .5255
0 .03 .5255 .8422


and by construction the eigenvalues of 𝐴 are preserved

SA — ENGR504QR iteration 16.28

• similarly for 𝑘 = 2; the reflector is 𝑢2 = (−.9925, .1221), and

𝐻T
2 =

[
𝐼2 0
0 𝑃 (2)

]
where 𝑃 (2) = 𝐼2 − 2𝑢2𝑢

T
2

• we get an upper Hessenberg form, as desired, given by

𝐻T
2𝐻

T
1 𝐴𝐻1𝐻2 =


.5 .6030 .0685 .2273

.3317 .3909 .1240 0
0 .1240 .4301 −.4226
0 0 −.4226 1.0790


• only 𝑛 − 1 nonzeros out of (𝑛−1)𝑛

2 are left in the entire strictly lower left triangle

SA — ENGR504QR iteration 16.29

Matlab code

function A = houseeig(A)

%

% function A = houseeig(A)

%

% reduce A to upper Hessenberg form using Householder reflections

n = size(A,1);

for k = 1:n-2

z=A(k+1:n,k);

e1=[1; zeros(n-k-1,1)];

u=z+sign(z(1))*norm(z)*e1;

u = u/norm(u);

% multiply from left and from right by Q = eye(n-k)-2*u*u’;

A(k+1:n,k:n) = A(k+1:n,k:n) - 2*u*(u’*A(k+1:n,k:n));

A(1:n,k+1:n) = A(1:n,k+1:n) - 2*(A(1:n,k+1:n)*u)*u’;

end

SA — ENGR504QR iteration 16.30

QR algorithm with shifts

QR iteration with shifts

given 𝐴0 transformed into upper Hessenberg form

for 𝑘 = 1, 2, . . .

1. choose shift 𝛼𝑘

2. QR factorization: 𝐴𝑘 − 𝛼𝑘 𝐼 = 𝑄𝑘𝑅𝑘

3. compute: 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 + 𝛼𝑘 𝐼

• it often suffices to take 𝛼𝑘 as a value along the diagonal

• common practice: use last diagonal entry of the matrix as a shift

• with properly chosen shifts, the iteration always converges

SA — ENGR504QR iteration 16.31

MATLAB implementation

function [lambda,itn] = qreig (A,tol)

% First stage, bring to upper Hessenberg form

A = houseeig(A);

% second stage: deflation loop

n = size(A,1); lambda = []; itn = [];

for j = n:-1:1

% find jth eigenvalue

[lambda(j),itn(j),A] = qrshift (A(1:j,1:j),tol);

end

function [lam,iter,A] = qrshift (A,tol)

m = size(A,1); lam = A(m,m); iter=0; I = eye(m);

if m == 1, return, end

while (iter < 100) % max number of iterations

if (abs(A(m,m-1)) < tol), return, end % check convergence

iter=iter+1;

[Q,R]=qr(A-lam*I); % compute the QR decomposition

A=R*Q+lam*I; % find the next iterate

lam = A(m,m); % next shift

end

SA — ENGR504QR iteration 16.32

Example

find eigenvalues 𝜆 and corresponding eigenfunctions 𝑢(𝑡) such that

𝑢′′ (𝑡) − 𝑢′ (𝑡) = 𝜆𝑢(𝑡), 0 < 𝑡 < 𝐿, 𝑢(0) = 𝑢(𝐿) = 0

• we regard 𝐿 as a parameter and seek nontrivial solutions

• eigenvalues for this differential problem are given by

𝜆de
𝑗 = −1

4
−

(
𝑗𝜋

𝐿

)2
, 𝑗 = 1, 2, . . .

• discretization: for small value ℎ, we look for 𝜆,𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑁−1):

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1
ℎ2

− 𝑢𝑖+1 − 𝑢𝑖−1
2ℎ

= 𝜆𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑁 − 1,

setting 𝑢0 = 𝑢𝑁 = 0, for 𝑁 = 𝐿/ℎ

SA — ENGR504QR iteration 16.33

• writing this as 𝐴𝑢 = 𝜆𝑢, we have a nonsymmetric, potentially large tridiagonal
matrix 𝐴 of size 𝑛 = 𝑁 − 1 and hopefully real eigenvalues

• we have applied qreig to this problem for 𝐿 = 10 using ℎ = .1, i.e., the matrix
size is 𝑛 = 99, with tolerance 1e-4

• sorting the eigenvalues in descending order, the maximum absolute difference
between the first six eigenvalues 𝜆 𝑗 and their corresponding continuous comrades
𝜆de
𝑗

is .015; the discrepancy arises because of the discretization error

• applying qreig to 𝐿 = 80 with ℎ = .1 (𝑛 = 799) does not converge

• applying MATLAB function eig for 𝐿 = 80 results in complex eigenvalues even
though 𝜆de

𝑗
stay real

• the reason for the sudden appearance of complex eigenvalues has to do with
ill-conditioning of the differential problem and is not our focus here

SA — ENGR504QR iteration 16.34

Computing the SVD

• before, we applied same orthogonal transformation on left and right (transposed)

• for SVD 𝐴 = 𝑈Σ𝑉T, there is no need to perform the same operations

• we search for a procedure that would reduce 𝐴 into bidiagonal form, using
different orthogonal transformations on the left and on the right

• note that the eigenvalues of 𝐴T𝐴 are the squares of the singular values of 𝐴, and
for the former we have a technique of reducing the matrix into tridiagonal form

0 2 4 6 8 10

0

2

4

6

8

10

12 0 2 4 6 8 10

0

2

4

6

8

10

the result of the first stage of the computation of the SVD is a bi-diagonal matrix 𝐶
(left); the corresponding tridiagonal matrix 𝐶T𝐶 is given on the right

SA — ENGR504QR iteration 16.35

Reduction to bidiagonal

• to illustrate the idea, suppose the nonzero structure of a 5 × 4 matrix 𝐴 is given by

𝐴 =


× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


• applying 𝑈T

1 on the left using Householder transformations, we have

𝑈T
1 𝐴 =


× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×


SA — ENGR504QR iteration 16.36

• now, we can apply a different orthogonal transformation on the right, but since we
do not want to touch the first column, we settle for zeroing out the entries to the
right of the (1, 2) element, namely,

𝑈T
1 𝐴𝑉1 =


× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×


• another step gives

𝑈T
2𝑈

T
1 𝐴𝑉1𝑉2 =


× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×


• this continues until we get a bidiagonal form

• traditional methods involve an adaptation of the QR to zero out off-diagonal entries

SA — ENGR504QR iteration 16.37

References and further readings

• U. M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics,
2011.

• M. T. Heath. Scientific Computing: An Introductory Survey (revised second edition). Society for
Industrial and Applied Mathematics, 2018.

• L. Vandenberghe. EE133B lecture notes, Univ. of California, Los Angeles.
(https://www.seas.ucla.edu/~vandenbe/ece133b.html)

SA — ENGR504references 16.38

https://www.seas.ucla.edu/~vandenbe/ece133b.html

	power iteration
	shift and inverse techniques
	simultaneous (subspace) iteration
	QR iteration
	references

