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Eigenvalues and eigenvectors

scalar 𝜆 is an eigenvalue of a square 𝑛 × 𝑛 matrix 𝐴 if

𝐴𝑥 = 𝜆𝑥 for 𝑥 ≠ 0

• 𝑥 is an eigenvector associated with eigenvalue 𝜆

• together, (𝜆, 𝑥) is an eigenpair; set of all eigenvalues is called spectrum of 𝐴

• matrix expands/shrinks any vector lying in eigenvector direction by a scalar

• eigenvalues are useful in analyzing numerical methods

– analysis of iterative methods for solving systems of equations and optimization problems

– analysis of numerical methods for solving differential equations

Left eigenvector

• 𝑤 is a left eigenvector, associated with eigenvalue 𝜆, if 𝑤T𝐴 = 𝜆𝑤T

• a left eigenvector of 𝐴 is a (right) eigenvector of 𝐴T
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Example: mass-spring system

𝑀
𝑑2𝑦(𝑡)
𝑑𝑡2

+ 𝐾𝑦(𝑡) = 0

𝑀 =


𝑚1 0 0
0 𝑚2 0
0 0 𝑚3


𝐾 =


𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3
0 −𝑘3 𝑘3



𝑚1

𝑚2

𝑚3

𝑘1

𝑘2

𝑘3

• 𝑘1, 𝑘2, and 𝑘3 are spring constants

• 𝑦1, 𝑦2, and 𝑦3 are vertical displacements

• 𝑀 is the mass matrix; 𝐾 is the stiffness matrix
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Example: mass-spring system

• system exhibits simple harmonic motion with natural frequency 𝜔:

𝑦 𝑗 (𝑡) = 𝑥 𝑗𝑒𝚤𝜔𝑡 , 𝑗 = 1, 2, 3

where 𝑥 𝑗 is the amplitude or mode of vibration

• to determine the frequency 𝜔 and 𝑥 𝑗 , we note that

𝑑2𝑦𝑘 (𝑡)
𝑑𝑡2

= −𝜔2𝑥𝑘𝑒
𝚤𝜔𝑡

• substituting into the differential equation, we obtain the algebraic equation

𝐾𝑥 = 𝜔2𝑀𝑥

• an eigenvalue problem 𝐴𝑥 = 𝜆𝑥 with 𝐴 = 𝑀−1𝐾 and 𝜆 = 𝜔2
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Characteristic polynomial

• we can write the eigenvalue problem 𝐴𝑥 = 𝜆𝑥 as a homogeneous linear system

(𝜆𝐼 − 𝐴)𝑥 = 0

since we want a nontrivial 𝑥, this means that 𝜆𝐼 − 𝐴 must be singular

• we can find 𝜆 by finding the roots of the characteristic polynomial:

𝑝(𝜆) = det(𝜆𝐼 − 𝐴) = (𝜆 − 𝜆1) (𝜆 − 𝜆2) ··· (𝜆 − 𝜆𝑛) = 0

which is a polynomial of degree 𝑛; 𝑝(𝜆) has 𝑛 roots counting multiplicities

• eigenvalues (and eigenvectors) can be complex even if 𝐴 is real
– complex eigenvalues of real 𝐴 appear as conjugate pairs

• eigenvalues are typically computed using an iterative process
– no closed-form formula exists for a polynomial of degree greater than or equal to 4

• Cayley-Hamilton theorem: 𝐴 satisfies its own characteristic equation

𝑝(𝐴) = 𝐴𝑛 + 𝛼𝑛−1𝐴𝑛−1 + ··· + 𝛼1𝐴 + 𝛼0𝐼 = 0
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Eigenvalues of a 2 × 2 matrix

for a 2 × 2 matrix, the characteristic equation is

det(𝜆𝐼 − 𝐴) = det

[
𝜆 − 𝐴11 −𝐴12

−𝐴21 𝜆 − 𝐴22

]
= 𝜆2 − (𝐴11 + 𝐴22) 𝜆 + (𝐴11𝐴22 − 𝐴12𝐴21)

we therefore have to solve a quadratic equation of the form

𝜆2 − 𝑏𝜆 + 𝑐 = 0

solving gives

𝜆1,2 =
1

2
(𝑏 ±

√
Δ) = 1

2

(
𝐴11 + 𝐴22 ±

√
Δ

)
where Δ = 𝑏2 − 4𝑐 = (𝐴11 − 𝐴22)2 + 4𝐴12𝐴21

• if Δ > 0, then there are two real eigenvalues

• if Δ = 0, then there is the double real eigenvalue

• if Δ < 0, then there are two complex eigenvalues
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Example

• for the matrix

𝐴 =

[
1 2
2 4

]
– Δ = 32 + 42 = 25

– 𝜆1 = (5 + 5)/2 = 5

– 𝜆2 = (5 − 5)/2 = 0

• for the matrix

𝐴 =

[
0 1

−1 0

]
– Δ = −4
– 𝜆1 = 𝚤

– 𝜆2 = −𝚤
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Some properties

let 𝐴 ∈ R𝑛×𝑛 with eigenvalues 𝜆1, . . . , 𝜆𝑛

• if 𝑥 is an eigenvector, then 𝛾𝑥 is an also an eigenvector for any scalar 𝛾 ≠ 0

• eigenvalues of 𝐴 + 𝛼𝐼 are 𝜆1 + 𝛼, . . . , 𝜆𝑛 + 𝛼

• eigenvalues of 𝐴𝑘 are 𝜆𝑘1 , . . . , 𝜆
𝑘
𝑛

• eigenvalues of 𝐴−1 are 1/𝜆1, . . . , 1/𝜆𝑛
• eigenvalues of 𝐴T are equal to the eigenvalues of 𝐴

• if 𝐴 is a triangular matrix, then its eigenvalues are equal to its diagonal element

• if 𝑣1, . . . , 𝑣𝑘 are eigenvectors for 𝑘 different eigenvalues:

𝐴𝑣1 = 𝜆1𝑣1, . . . , 𝐴𝑣𝑘 = 𝜆𝑘𝑣𝑘

then 𝑣1, . . . , 𝑣𝑘 are linearly independent

• 𝜌(𝐴) ≤ ∥𝐴∥ for any induced norm; 𝜌(𝐴) = max𝑖 |𝜆𝑖 | is the spectral radius
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Similar matrices

square matrices 𝐴 and 𝐵 are similar if there exists a nonsingular matrix 𝑇 such that

𝑇−1𝐴𝑇 = 𝐵

• we call the transformation 𝐴→ 𝑇−1𝐴𝑇 a similarity transformation of 𝐴

• similar matrices have the same eigenvalues:

det(𝜆𝐼 − 𝐵) = det(𝜆𝐼 − 𝑇−1𝐴𝑇) = det(𝑇−1 (𝜆𝐼 − 𝐴)𝑇) = det(𝜆𝐼 − 𝐴)

• if 𝑥 is an eigenvector of 𝐴 then 𝑦 = 𝑇−1𝑥 is an eigenvector of 𝐵:

𝐵𝑦 = (𝑇−1𝐴𝑇) (𝑇−1𝑥) = 𝑇−1𝐴𝑥 = 𝑇−1 (𝜆𝑥) = 𝜆𝑦
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Diagonalizable matrices

if (𝜆 𝑗 , 𝑥 𝑗 ) is an eigenpair, then

𝐴𝑋 = 𝐴 [𝑥1 𝑥2 · ·· 𝑥𝑛]
= [𝜆1𝑥1 𝜆2𝑥2 · ·· 𝜆𝑛𝑥𝑛]
= 𝑋Λ

where Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑛)

Diagonalization: if the eigenvectors are linearly independent, then

𝐴 = 𝑋Λ𝑋−1

• this decomposition is the spectral decomposition of 𝐴

• not all matrices are diagonalizable
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Non-diagonalizable matrices

Algebraic multiplicity

• algebraic multiplicity of an eigenvalue is its multiplicity as a root of det(𝜆𝐼 − 𝐴)
• the sum of the algebraic multiplicities of the eigenvalues of an 𝑛 × 𝑛 matrix is 𝑛

Geometric multiplicity

• geometric multiplicity is max no. of lin. indep. eigenvectors with eigenvalue 𝜆

• sum is the maximum number of linearly independent eigenvectors of the matrix

• geometric multipicity never exceeds algebraic multiplicity (can be less)

Non-diagonalizable matrices

• eigenvalue is defective if geometric muliplicity is less than algebraic multiplicity

• a matrix is defective if some of its eigenvalues are defective

• a defective matrix is not diagonalizable
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Example

consider the matrix

𝐴 =

[
4 1
0 4

]
• has the eigenvalue 4 with algebraic multiplicity 2

• eigenvector (1, 0); no other linearly independent eigenvector

• the geometric multiplicity of the eigenvalue 4 is, then, only 1

consider

𝐴 =

[
4 0
0 4

]
• two linearly independent eigenvectors, are (1, 0) and (0, 1)
• so the geometric multiplicity of the eigenvalue 4 equals 2
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Example

take the first matrix from last example, and perturb its off-diagonal elements slightly

𝐴 =

[
4 1.01

0.01 4

]
• using the MATLAB function eig we find that the eigenvalues: 4.1005 and 3.8995

• perturbation of 0.01 produced a change of magnitude 0.1005 in eigenvalues!

• eigenvalue is ill-conditioned

• applying the same perturbation to the second, diagonal matrix from last example
produces eigenvalues 4.01 and 3.99, so the eigenvalue 4 is well-conditioned here

SA — ENGR504eigenvalues and diagonalization 15.13



Symmetric eigendecomposition

let 𝐴 be a real symmetric matrix (𝐴 = 𝐴T ∈ R𝑛×𝑛), then

• all eigenvalues of 𝐴 are real

• 𝐴 has 𝑛 linearly independent eigenvectors

• there is a set of 𝑛 orthonormal eigenvectors of 𝐴

Symmetric eigendecomposition: let 𝐴 ∈ R𝑛×𝑛 be symmetric, then

𝐴 = 𝑄Λ𝑄T =
𝑛∑
𝑖=1

𝜆𝑖𝑞𝑖𝑞
T
𝑖

• 𝑄 ∈ R𝑛×𝑛 is orthogonal (𝑄T𝑄 = 𝐼)

• Λ = diag(𝜆1, . . . , 𝜆𝑛)
• columns of 𝑄 forms an orthonormal set of eigenvectors of 𝑄

• this factorization is called symmetric eigenvalue decomposition
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Gershgorin’s theorem

the eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 are all contained within the union of 𝑛 disks:

𝐷𝑖 = {𝛾 | |𝛾 − 𝐴𝑖𝑖 | ≤
∑
𝑗≠𝑖

|𝐴𝑖 𝑗 |}, 𝑖 = 1, . . . , 𝑛

• to see this, let 𝜆 be any eigenvalue

• corresponding eigenvector 𝑥 is normalized so that ∥𝑥∥∞ = 1

• suppose |𝑥𝑖 | = 1 (by definition of the ∞-norm)

• because 𝐴𝑥 = 𝜆𝑥, we have

(𝜆 − 𝐴𝑖𝑖) 𝑥𝑖 =
∑
𝑗≠𝑘

𝐴𝑖 𝑗𝑥 𝑗

so that
|𝜆 − 𝐴𝑖𝑖 | ≤

∑
𝑗≠𝑖

|𝐴𝑖 𝑗 | |𝑥 𝑗 | ≤
∑
𝑗≠𝑖

|𝐴𝑖 𝑗 |

SA — ENGR504eigenvalues and diagonalization 15.15



Outline

• eigenvalues and diagonalization

• singular value decomposition

• SVD and matrix properties

• least squares via SVD



Singular value decomposition (SVD)

every 𝑚 × 𝑛 matrix 𝐴 can be factored as

𝐴 = 𝑈Σ𝑉T

• 𝑈 is 𝑚 × 𝑚 and orthogonal, 𝑉 is 𝑛 × 𝑛 and orthogonal

• Σ is 𝑚 × 𝑛 and “diagonal”:

Σ = diag(𝜎1, . . . , 𝜎𝑛) if 𝑚 = 𝑛

Σ =

[
diag(𝜎1, . . . , 𝜎𝑛)

0(𝑚−𝑛)×𝑛

]
if 𝑚 > 𝑛

Σ =
[
diag(𝜎1, . . . , 𝜎𝑚) 0𝑚×(𝑛−𝑚)

]
if 𝑚 < 𝑛

• diagonal entries of Σ are nonnegative and ordered:

𝜎1 ≥ 𝜎2 ≥ ··· ≥ 𝜎min{𝑚,𝑛} ≥ 0

• in MATLAB, the command is [U,Sigma,V] = svd(A)
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Example

𝐴 =


1 2
3 4
5 6

 = 𝑈Σ𝑉T

𝑈 =


0.229847696400071 0.883461017698525 −0.408248290463864
0.524744818760294 0.240782492132547 0.816496580927726
0.819641941120516 −0.401896033433433 −0.408248290463863


Σ =


9.525518091565107 0

0 0.514300580658642
0 0


𝑉 =

[
0.619629483829340 −0.784894453267053
0.784894453267053 0.619629483829340

]
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Singular values and singular vectors

𝐴 = 𝑈Σ𝑉T

• columns of𝑈 are called left singular vectors of 𝐴

• columns of 𝑉 are right singular vectors of 𝐴

• numbers 𝜎𝑖 are the singular values of 𝐴

if we write the factorization 𝐴 = 𝑈Σ𝑉T as

𝐴𝑉 = 𝑈Σ, 𝐴T𝑈 = 𝑉ΣT

and compare the 𝑖th columns on the left- and right-hand sides, we see that

𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 and 𝐴T𝑢𝑖 = 𝜎𝑖𝑣𝑖 for 𝑖 = 1, . . . ,min{𝑚, 𝑛}

• if 𝑚 > 𝑛 the additional 𝑚 − 𝑛 vectors 𝑢𝑖 satisfy 𝐴T𝑢𝑖 = 0 for 𝑖 = 𝑛 + 1, . . . , 𝑚

• if 𝑛 > 𝑚 the additional 𝑛 − 𝑚 vectors 𝑣𝑖 satisfy 𝐴𝑣𝑖 = 0 for 𝑖 = 𝑚 + 1, . . . , 𝑛
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Reduced SVD

if 𝑚 > 𝑛, the last 𝑚 − 𝑛 columns of𝑈 can be omitted to define

𝐴 = 𝑈Σ𝑉T =
𝑛∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
T
𝑖

• 𝑈 is 𝑚 × 𝑛 with orthonormal columns

• 𝑉 is 𝑛 × 𝑛 and orthogonal

• Σ is 𝑛 × 𝑛 and diagonal with diagonal entries 𝜎1 ≥ 𝜎2 ≥ ··· ≥ 𝜎𝑛 ≥ 0

if 𝑚 < 𝑛, the last 𝑛 − 𝑚 columns of 𝑉 can be omitted to define

𝐴 = 𝑈Σ𝑉T =
𝑚∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
T
𝑖

• 𝑈 is 𝑚 × 𝑚 and orthogonal

• 𝑉 is 𝑚 × 𝑛 with orthonormal columns

• Σ is 𝑚 × 𝑚 and diagonal with diagonal entries 𝜎1 ≥ 𝜎2 ≥ ··· ≥ 𝜎𝑚 ≥ 0
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Eigendecomposition of Gram matrix

suppose 𝐴 is an 𝑚 × 𝑛 matrix with full SVD

𝐴 = 𝑈Σ𝑉T

the SVD is related to the eigendecomposition of the Gram matrix 𝐴T𝐴:

𝐴T𝐴 = 𝑉ΣTΣ𝑉T =

min{𝑚,𝑛}∑
𝑖=1

𝜎2
𝑖 𝑣𝑖𝑣

T
𝑖

• 𝑉 is an orthogonal 𝑛 × 𝑛 matrix

• ΣTΣ is a diagonal 𝑛 × 𝑛 matrix with (non-increasing) diagonal elements

𝜎2
1 , 𝜎

2
2 , · ··, 𝜎2

min{𝑚,𝑛} , 0, 0, . . . , 0︸         ︷︷         ︸
𝑛−min{𝑚,𝑛} zeros

• the 𝑛 diagonal elements of ΣTΣ are the eigenvalues of 𝐴T𝐴

• the right singular vectors (columns of 𝑉 ) are corresponding eigenvectors
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Eigendecomposition of transpose of Gram matrix

the SVD also gives the eigendecomposition of 𝐴𝐴T :

𝐴𝐴T = 𝑈ΣΣT𝑈T =

min{𝑚,𝑛}∑
𝑖=1

𝜎2
𝑖 𝑢𝑖𝑢

T
𝑖

• 𝑈 is an orthogonal 𝑚 × 𝑚 matrix

• ΣΣT is a diagonal 𝑚 × 𝑚 matrix with (non-increasing) diagonal elements

𝜎2
1 , 𝜎

2
2 , . . . , 𝜎

2
min{𝑚,𝑛} , 0, 0, · ··, 0︸       ︷︷       ︸

𝑚−min{𝑚,𝑛} zeros

• the 𝑚 diagonal elements of ΣΣT are the eigenvalues of 𝐴𝐴T

• the left singular vectors (columns of𝑈) are corresponding eigenvectors

in particular, the first min{𝑚, 𝑛} eigenvalues of 𝐴T𝐴 and 𝐴𝐴T are the same:

𝜎2
1 , 𝜎2

2 , . . . , 𝜎2
min{𝑚,𝑛}
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Rank

• rank of a matrix is the maximum number of linearly independent columns

• number of positive singular values is the rank of a matrix

Compact-form of SVD: suppose there are 𝑟 positive singular values:

𝜎1 ≥ ··· ≥ 𝜎𝑟 > 0 = 𝜎𝑟+1 = · ·· = 𝜎min{𝑚,𝑛}

partition the matrices in a full SVD of 𝐴 as

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0𝑟×(𝑛−𝑟 )

0(𝑚−𝑟 )×𝑟 0(𝑚−𝑟 )×(𝑛−𝑟 )

] [
𝑉1 𝑉2

]T
= 𝑈1Σ1𝑉

T
1 =

𝑟∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
T
𝑖

• Σ1 is 𝑟 × 𝑟 with the positive singular values 𝜎1, . . . , 𝜎𝑟 on the diagonal

• 𝑈1 is 𝑚 × 𝑟 and 𝑉1 is 𝑛 × 𝑟 have orthonormal columns
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Pseudo-inverse

consider the SVD of 𝐴:

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0
0 0

] [
𝑉1 𝑉2

]T
= 𝑈1Σ1𝑉

T
1

Pseudo-inverse

𝐴† = 𝑉1Σ
−1
1 𝑈T

1 =
[
𝑉1 𝑉2

] [
Σ−1
1 0
0 0

] [
𝑈T

1

𝑈T
2

]
= 𝑉Σ†𝑈T =

𝑟∑
𝑖=1

1

𝜎𝑖
𝑣𝑖𝑢

T
𝑖

• if 𝐴 is square and nonsingular, this reduces to the inverse 𝐴−1 = 𝑉Σ−1𝑈T

• if 𝐴 is tall with linearly independent columns, 𝐴† = (𝐴T𝐴)−1𝐴T

• if 𝐴 is wide with linearly independent rows, 𝐴† = 𝐴T (𝐴𝐴T)−1
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Frobenius norm and 2-norm

for an 𝑚 × 𝑛 matrix 𝐴 with singular values 𝜎𝑖 :

∥𝐴∥𝐹 =

(
min{𝑚,𝑛}∑

𝑖=1

𝜎2
𝑖

)1/2
, ∥𝐴∥2 = 𝜎1

this follows from the norm invariance properties

∥𝐴∥𝐹 =
𝑈Σ𝑉T


𝐹
= ∥Σ∥𝐹 =

(
min{𝑚,𝑛}∑

𝑖=1

𝜎2
𝑖

)1/2
and

∥𝐴∥2 =
𝑈Σ𝑉T


2
= ∥Σ∥2 = 𝜎1
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Condition number

let 𝐴 be an 𝑚 × 𝑛 matrix with rank(𝐴) = 𝑛 and full SVD

𝐴 = 𝑈Σ𝑉T

• the norm of 𝐴 is ∥𝐴∥ = ∥𝑈Σ𝑉T∥ = ∥Σ∥ = 𝜎1

• the norm of 𝐴† is ∥𝐴†∥ = 1/𝜎𝑛

• the condition number of 𝐴 is the ratio of largest to smallest singular values

𝜅(𝐴) = 𝜎1

𝜎𝑛

• for an ill-conditioned matrix the smallest singular values are very small

SA — ENGR504SVD and matrix properties 15.25



Rank-𝑟 approximation

let 𝐴 be an 𝑚 × 𝑛 matrix with rank(𝐴) > 𝑟 and full SVD

𝐴 = 𝑈Σ𝑉T =

min{𝑚,𝑛}∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
T
𝑖 , 𝜎1 ≥ ··· ≥ 𝜎min{𝑚,𝑛} ≥ 0, 𝜎𝑟+1 > 0

the best rank-𝑟 approximation of 𝐴 is the sum of the first 𝑟 terms in the SVD:

𝐵 =
𝑟∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
T
𝑖

• 𝐵 is the best approximation for the Frobenius norm: for every 𝐶 with rank 𝑟 ,

∥𝐴 − 𝐶∥𝐹 ≥ ∥𝐴 − 𝐵∥𝐹 =

(
min{𝑚,𝑛}∑

𝑖=𝑟+1
𝜎2
𝑖

)1/2
• 𝐵 is also the best approximation for the 2-norm: for every 𝐶 with rank 𝑟 ,

∥𝐴 − 𝐶∥2 ≥ ∥𝐴 − 𝐵∥2 = 𝜎𝑟+1
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Image compression

rank-𝑟 approximation makes it possible to devise a compression scheme:

• by storing the first 𝑟 columns of𝑈 and 𝑉 , as well as the first 𝑟 singular values

• we obtain an approximation of 𝐴 using only 𝑟 (𝑚 + 𝑛 + 1) locations instead of 𝑚𝑛

• image of size 200 × 320 = 64, 000

• rank-20 SVD approximation of size 20 × (200 + 320 + 1) ≈ 10, 000
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Matlab code

colormap(’gray’)

load clown.mat;

figure(1)

image(X);

[U,S,V] = svd(X);

figure(2)

r = 20;

colormap(’gray’)

image(U(:,1:r)*S(1:r,1:r)*V(:,1:r)’);
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Latent semantic analysis

task: identify documents that are relevant to a user’s query

a term-document matrix is an 𝑛 × 𝑚 matrix

• 𝑛 is the number of terms (words)

• 𝑚 is the number of documents

• entry 𝑖, 𝑗 represents a function of the frequency of word 𝑖 in document 𝑗

• simplest function is a simple count
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Example

two one-sentence documents:

“Numerical computations are fun.”

“Numerical algorithms and numerical methods are interesting.”

words:

1. “algorithms”

2. “computations”

3. “fun”

4. “interesting”

5. “methods”

6. “numerical”

term-document matrix

𝐴 =



0 1
1 0
1 0
0 1
0 1
1 2


• we define 6-long vectors for representing queries; for example, the query

“numerical methods” is represented as 𝑞 = (0, 0, 0, 0, 1, 1)
• two documents deal with a similar issue

• but overlap between the two columns in the matrix 𝐴 is relatively small
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Reduced space

• one popular measure to answer the question whether a query and a document
have much in common is by using angles; for a given query 𝑞, we set

cos(𝜃 𝑗 ) =
(𝐴𝑒 𝑗 )T𝑞
∥𝐴𝑒 𝑗 ∥∥𝑞∥

, 𝑗 = 1, . . . , 𝑚

• if 𝐴𝑟 = 𝑈𝑟Σ𝑟𝑉
T
𝑟 with 𝑟 small, then

cos(𝜃 𝑗 ) =
𝑒T
𝑗
𝑉𝑟Σ𝑟 (𝑈T

𝑟 𝑞)
∥Σ𝑟𝑉

T
𝑟 𝑒 𝑗 ∥∥𝑞∥

in the reduced space, the 𝑛-long query 𝑞 is transformed into the 𝑟-long vector

𝑞 = 𝑈T
𝑟 𝑞
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Outline

• eigenvalues and diagonalization

• singular value decomposition

• SVD and matrix properties

• least squares via SVD



Least squares with full column rank

minimize ∥𝐴𝑥 − 𝑏∥2, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

suppose that 𝐴 has linearly independent column (𝑚 ≥ 𝑛) with SVD

𝐴 = 𝑈Σ𝑉T =
[
𝑈1 𝑈2

] [
Σ1

0(𝑚−𝑛)×𝑛

] [
𝑉1 𝑉2

]T
where Σ1 = diag(𝜎1, . . . , 𝜎𝑛); observe that

∥𝐴𝑥 − 𝑏∥2 = ∥𝑈Σ𝑉T𝑥 − 𝑏∥2 = ∥Σ𝑉T𝑥 −𝑈T𝑏∥2

=

[Σ1

0

]
𝑉T𝑥 −

[
𝑈T

1 𝑏

𝑈T
2 𝑏

]2
=

[Σ1𝑉
T𝑥 −𝑈T

1 𝑏

−𝑈T
2 𝑏

]2
= ∥Σ1𝑉

T𝑥 −𝑈T
1 𝑏∥2 + ∥𝑈T

2 𝑏∥2

the above is minimized when

𝑥 = 𝑉Σ−1
1 𝑈T

1 𝑏 = 𝐴†𝑏 where 𝐴† = 𝑉Σ−1
1 𝑈T

1 = (𝐴T𝐴)−1𝐴T
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Rank deficient least squares

minimize ∥𝐴𝑥 − 𝑏∥ =
𝑈Σ𝑉T𝑥 − 𝑏


• 𝐴 is 𝑚 × 𝑛 and rank deficient rank(𝐴) = 𝑟 < min{𝑚, 𝑛}

• SVD of 𝐴 is

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0
0 0

] [
𝑉1 𝑉2

]T
• the 𝑚 × 𝑛 matrix Σ has only 𝑟 diagonal entries 𝜎1, . . . , 𝜎𝑟

• first we introduce the change of variables

𝑧 = 𝑉T𝑥 ⇐⇒ 𝑥 =
[
𝑉1 𝑉2

] [
𝑧1
𝑧2

]
where 𝑧1 ∈ R𝑟 and 𝑧2 ∈ R𝑛−𝑟

SA — ENGR504least squares via SVD 15.33



Minimum norm solution

∥𝐴𝑥 − 𝑏∥2 = ∥𝑈Σ𝑉T𝑥 − 𝑏∥2

= ∥Σ𝑉T𝑥 −𝑈T𝑏∥2

=

[Σ1 0
0 0

] [
𝑧1
𝑧2

]
−

[
𝑈T

1 𝑏

𝑈T
2 𝑏

]2
=

[Σ1𝑧1 −𝑈T
1 𝑏

−𝑈T
2 𝑏

]2
= ∥Σ1𝑧1 −𝑈T

1 𝑏∥2 + ∥𝑈T
2 𝑏∥2

quantity above is minimized by taking 𝑧1 = Σ−1
1 𝑈T

1 𝑏; plugging back into 𝑥 gives

𝑥 =
[
𝑉1 𝑉2

] [
𝑧1
𝑧2

]
= 𝑉1𝑧1 +𝑉2𝑧2 = 𝑉1Σ

−1
1 𝑈T

1 𝑏 +𝑉2𝑧2

• where 𝑧2 ∈ R𝑛−𝑟 is arbitrary

• solution with least norm ∥𝑥∥2 = ∥𝑉𝑧∥2 = ∥𝑧∥2 is obtained when 𝑧2 = 0:

𝑥 = 𝑉Σ†𝑈T𝑏 = 𝑉1Σ
−1
1 𝑈T

1 𝑏 =
𝑟∑
𝑖=1

1
𝜎𝑖
𝑣𝑖 (𝑢T𝑖 𝑏) = 𝐴†𝑏
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Truncated SVD for least squares

given an 𝑚 × 𝑛 matrix 𝐴 and threshold 𝜖

1. form 𝐴 = 𝑈Σ𝑉T

2. decide on truncation 𝑟 such that 𝜎𝑘 > 𝜖 for 𝑘 = 1, . . . , 𝑟

3. compute 𝑥 =
∑𝑟

𝑖=1
1
𝜎𝑖
𝑣𝑖 (𝑢T𝑖 𝑏)

Complexity

• forming the SVD, costs approximately 2𝑚𝑛2 + 11𝑛3 flops

• for 𝑚 ≫ 𝑛 this is approximately the same cost as the QR-based approach 2𝑚𝑛2

• for 𝑚 ≈ 𝑛 or 𝑛 ≥ 𝑚 the SVD approach is expensive
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