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Eigenvalues and eigenvectors

scalar A is an eigenvalue of a square n X n matrix A if

Ax=Ax for x#0

e x is an eigenvector associated with eigenvalue 4

together, (1, x) is an eigenpair; set of all eigenvalues is called spectrum of A

matrix expands/shrinks any vector lying in eigenvector direction by a scalar

eigenvalues are useful in analyzing numerical methods

— analysis of iterative methods for solving systems of equations and optimization problems

— analysis of numerical methods for solving differential equations

Left eigenvector

e w is a left eigenvector, associated with eigenvalue A, if wTA = AwT

e aleft eigenvector of A is a (right) eigenvector of AT
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Example: mass-spring system

d2 t k1
mED kv =0
1
miy 0 0
M = 0 mo 0 k2
0 0 nig
kl + k2 —k2 0
K = —ko ko +ks —ks
0 —ks ks ks

ms3
e k1, ko, and k3 are spring constants
® Y1, y2,and ys3 are vertical displacements

e M is the mass matrix; K is the stiffness matrix

eigenvalues and diagonalization
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Example: mass-spring system

e system exhibits simple harmonic motion with natural frequency w:
yi()=xje', j=1,2,3
where x ; is the amplitude or mode of vibration

e to determine the frequency w and x;, we note that

A%yt
31);(2( ) — _w2xkezwt

e substituting into the differential equation, we obtain the algebraic equation
Kx = w’Mx

e an eigenvalue problem Ax = Ax with A = M~'K and A = w?

eigenvalues and diagonalization
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Characteristic polynomial

we can write the eigenvalue problem Ax = Ax as a homogeneous linear system
(AU-A)x=0
since we want a nontrivial x, this means that A/ — A must be singular
we can find A by finding the roots of the characteristic polynomial:
p(A) =det(A —A)=(1—-21)(1—-22)---(1-2,) =0
which is a polynomial of degree n; p(A) has n roots counting multiplicities

eigenvalues (and eigenvectors) can be complex even if A is real
— complex eigenvalues of real A appear as conjugate pairs

eigenvalues are typically computed using an iterative process
— no closed-form formula exists for a polynomial of degree greater than or equal to 4

Cayley-Hamilton theorem: A satisfies its own characteristic equation

P(A)=A"+a, A"+ A+ apl =0
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Eigenvalues of a 2 X 2 matrix

for a 2 X 2 matrix, the characteristic equation is
A-A;r —Ap
—A21  A-Axp
=% = (A11 + Ag2) 1+ (A11 Az — A12A27)

det(Al — A) = det

we therefore have to solve a quadratic equation of the form
B =bAl+c=0
solving gives
A2 = %(b + \/K) = % (A11 + Ago + \/K)
where A = b2 — 4¢ = (A11 — A2a)? + 441940

e if A > 0, then there are two real eigenvalues
e if A =0, then there is the double real eigenvalue
e if A < 0, then there are two complex eigenvalues

eigenvalues and diagonalization
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e for the matrix

- A=3%+4%=25
-1 =(5+5)/2=5
- 22=(5-5)/2=0

e for the matrix

-A=—-4
- A1 =1
- Ao =-1

eigenvalues and diagonalization
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Some properties

let A € R™" with eigenvalues A1, ..., A,

e if x is an eigenvector, then yx is an also an eigenvector for any scalar y # 0

e ecigenvaluesof A+alaredi +a,...,A,+a
e eigenvalues of AX are A%, ... Ak
e eigenvaluesof A"l are 1/44,...,1/4,

e eigenvalues of AT are equal to the eigenvalues of A

e if A is a triangular matrix, then its eigenvalues are equal to its diagonal element

e ifvy,..., Vg are eigenvectors for k different eigenvalues:
Avy =A1vy, ..., Avip=Apvi
then vy, ..., vg are linearly independent

e p(A) < ||A|| for any induced norm; p(A) = max; |4;| is the spectral radius
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Similar matrices

square matrices A and B are similar if there exists a nonsingular matrix 7" such that
T™'AT =B
e we call the transformation A — T~LAT a similarity transformation of A
e similar matrices have the same eigenvalues:
det(AI — B) = det(Al — T7YAT) = det(T~1 (Al — A)T) = det(Al — A)
e if x is an eigenvector of A then y = T~ 1x is an eigenvector of B:

By = (TT'ATY (T 'x) =T 'Ax =T (ax) = Ay

eigenvalues and diagonalization 15.9



Diagonalizable matrices

if (A7,x;) is an eigenpair, then

AX = Ax1 x9 -+ x,]
=[xy Adoxo -+ Apxy]
= XA

where A = diag(A1,4s,...,4,)

Diagonalization: if the eigenvectors are linearly independent, then

A=XAX!

e this decomposition is the spectral decomposition of A

e not all matrices are diagonalizable

eigenvalues and diagonalization 15.10



Non-diagonalizable matrices

Algebraic multiplicity
e algebraic multiplicity of an eigenvalue is its multiplicity as a root of det(A1 — A)

e the sum of the algebraic multiplicities of the eigenvalues of an n X n matrix is n

Geometric multiplicity
e geometric multiplicity is max no. of lin. indep. eigenvectors with eigenvalue 4
e sum is the maximum number of linearly independent eigenvectors of the matrix

e geometric multipicity never exceeds algebraic multiplicity (can be less)

Non-diagonalizable matrices
e eigenvalue is defective if geometric muliplicity is less than algebraic multiplicity
e a matrix is defective if some of its eigenvalues are defective

e a defective matrix is not diagonalizable
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Example

consider the matrix

e has the eigenvalue 4 with algebraic multiplicity 2
e eigenvector (1, 0); no other linearly independent eigenvector

o the geometric multiplicity of the eigenvalue 4 is, then, only 1

consider

= O
[E—

e two linearly independent eigenvectors, are (1, 0) and (0, 1)
e so the geometric multiplicity of the eigenvalue 4 equals 2
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Example

take the first matrix from last example, and perturb its off-diagonal elements slightly

4 101
A‘[o.m 4 ]

e using the MATLAB function eig we find that the eigenvalues: 4.1005 and 3.8995
e perturbation of 0.01 produced a change of magnitude 0.1005 in eigenvalues!
e cigenvalue is ill-conditioned

e applying the same perturbation to the second, diagonal matrix from last example
produces eigenvalues 4.01 and 3.99, so the eigenvalue 4 is well-conditioned here
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Symmetric eigendecomposition

let A be a real symmetric matrix (A = AT € R"*"), then
o all eigenvalues of A are real
e A has n linearly independent eigenvectors

e there is a set of n orthonormal eigenvectors of A

Symmetric eigendecomposition: let A € R"*" be symmetric, then

n
A=0A0T =3 Aigiq]
i=1

e QO € R™" s orthogonal (QTQ = I)
o A= diag(/ll, e ,/ln)
e columns of Q forms an orthonormal set of eigenvectors of Q

e this factorization is called symmetric eigenvalue decomposition
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Gershgorin’s theorem

the eigenvalues of an n X n matrix A are all contained within the union of n disks:

Di={yl|ly—Aul <X 1Ajl}, i=1,....n

J#i

to see this, let A be any eigenvalue

corresponding eigenvector x is normalized so that ||x||c = 1

suppose |x;| = 1 (by definition of the co-norm)

because Ax = Ax, we have

(A= Ai)xi =D Ajx;
J#k

so that
14— Aul <D0 1A xj] < D 1Al

J#i J#i
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Singular value decomposition (SVD)
every m X n matrix A can be factored as

A=UzvT

e U is m X m and orthogonal, V is n X n and orthogonal

e X ism X n and “diagonal”:

Y =diag(oy,...,07%) itm=n
o diag(o1,...,0%) fm > n
O(m—n)xn

L= diag(or,....0m)  Omx(n-m) | ifm<n
e diagonal entries of X are nonnegative and ordered:
012022 2 Omin{m,n} 20

e in MATLAB, the command is [U,Sigma,V] = svd(A)

singular value decomposition
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Example

=yuzvT

b

Il
Tt W
S B N

[ 0.229847696400071  0.883461017698525  —0.408248290463864
U= 0.524744818760294 0.240782492132547  0.816496580927726
| 0.819641941120516 —0.401896033433433 —0.408248290463363

[ 9.525518091565107 0
T = 0 0.514300580658642
0 0

[ 0.619629483829340 —0.784894453267053
| 0.784894453267053  0.619629483829340
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Singular values and singular vectors

A=UzvT

e columns of U are called left singular vectors of A
e columns of V are right singular vectors of A

e numbers o7 are the singular values of A
if we write the factorization A = ULV as
AV =Ux, ATu=vzT
and compare the ith columns on the left- and right-hand sides, we see that

Avi=ou; and ATu;=ov; fori=1,.. .,min{m, n}

e if m > n the additional m — n vectors u; satisfy ATu; =0fori=n+1,...
e if n > m the additional n — m vectors v; satisfy Av; =0fori =m+1,...

singular value decomposition
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Reduced SVD

if m > n, the last m — n columns of U can be omitted to define

n
A=UsVT =Y o]
i=1

e U is m X n with orthonormal columns
e Vs n X n and orthogonal
e Y is n X n and diagonal with diagonal entries oy > 09 > - > 05, = 0

if m < n, the last n — m columns of V can be omitted to define
m
A=UVT =% o]
i=1

e U is m X m and orthogonal
e V is m X n with orthonormal columns

e > is m X m and diagonal with diagonal entries 0y > 02 > -+ > 07, > 0
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Eigendecomposition of Gram matrix

suppose A is an m X n matrix with full SVD
A=UzvT

the SVD is related to the eigendecomposition of the Gram matrix ATA:

min{m,n}
ATa=veTsvT= S o]
i=1
e V is an orthogonal n X n matrix
e X% isa diagonal n X n matrix with (non-increasing) diagonal elements
2 2 2
T1s O s Oinmon}? 0,0, ...,0
————
n—-min{m,n} zeros
e the n diagonal elements of 7 are the eigenvalues of ATA
e the right singular vectors (columns of V) are corresponding eigenvectors

singular value decomposition
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Eigendecomposition of transpose of Gram matrix

the SVD also gives the eigendecomposition of AAT:
min{m,n}

AAT=UussTuT= Y cPuu]
i=1

e [ is an orthogonal m X m matrix

>>Tisa diagonal m X m matrix with (non-increasing) diagonal elements

2 2 2
O1s O oo Opinmony 0,0, --,0
————

m—min{m,n} zeros

the m diagonal elements of X7 are the eigenvalues of AAT

the left singular vectors (columns of U) are corresponding eigenvectors

in particular, the first min{m, n} eigenvalues of ATA and AAT are the same:

2 2
o O—min{m,n}

singular value decomposition
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Rank

e rank of a matrix is the maximum number of linearly independent columns

e number of positive singular values is the rank of a matrix
Compact-form of SVD: suppose there are r positive singular values:
01 2+ 20y > 0= Or+1 = *** = Omin{m,n}

partition the matrices in a full SVD of A as

21 ‘ 0r><(n—r) T
=|U1 U i V
A [ ! 2] O(m—r)><r ‘ O(m—r)><(n—r) [ ! 2]

r

T T

= U121V1 = Z(Tiuivi
i=1

e X, is r X r with the positive singular values o7, . . ., 0 on the diagonal

e Ui ism X rand V;j is n X r have orthonormal columns

SVD and matrix properties
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Pseudo-inverse
consider the SVD of A:

A= [U1 Ug] [2(:)1 8] [V1 VQ]T: U1Z1V1T

Pseudo-inverse

> o] [u
At=vi=tlul=[vy W [ 1 H 17]
1 Y1 [ ] 0 0 U2T

. 1
=vzuT=% —vul
i=1 O
e if A is square and nonsingular, this reduces to the inverse A~} = V=1 T

e if A is tall with linearly independent columns, AT = (ATA)"1AT

e if A is wide with linearly independent rows, AT = AT(AAT)~!
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Frobenius norm and 2-norm

for an m X n matrix A with singular values o7 :

min{m,n} 1/2
2
lAlE=| > o] . lAllz=01
i=1
this follows from the norm invariance properties

i=1

min{m,n} 1/2
IAllF = [|UZVT||, = IZllF = ( Z 0'i2)

and
IAllz = [J[UZVT]], = IZ]l2 = o
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Condition number

let A be an m X n matrix with rank(A) = n and full SVD

A=UzvT

the normof A'is ||A|| = [UZVT|| = |2 = oy
the norm of AT is ||AT|| = 1/,

the condition number of A is the ratio of largest to smallest singular values

k(A) = I

n

for an ill-conditioned matrix the smallest singular values are very small
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Rank-r approximation

let A be an m X n matrix with rank(A) > r and full SVD

r min{m,n} r
A=UXV"' = Z OiUiv;, 01 2 2 Omin{m,n} = 0, 0441 >0
i=1

the best rank-r approximation of A is the sum of the first r terms in the SVD:
r
B=) a‘iu;viT
i=1

e B is the best approximation for the Frobenius norm: for every C with rank r,

i=r+1

min{m,n} 1/2
|A-Cllr = |A-BllF = ( > fr?)

e B is also the best approximation for the 2-norm: for every C with rank r,

[A=Cll2 2 A= Bll2 = 0ria
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Image compression

rank-r approximation makes it possible to devise a compression scheme:

e by storing the first r columns of U and V, as well as the first r singular values

e we obtain an approximation of A using only »(m + n + 1) locations instead of mn

e image of size 200 x 320 = 64, 000
e rank-20 SVD approximation of size 20 x (200 + 320 + 1) ~ 10, 000
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Matlab code

colormap(’gray’)

load clown.mat;

figure(1)

image (X) ;

[U,S,V] = svd(X);

figure(2)

r = 20;

colormap(’gray’)
image(U(:,1:r)*S(1:r,1:r)*V(:,1:r)’);
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Latent semantic analysis

task: identify documents that are relevant to a user’s query

a term-document matrix is an n X m matrix

e 1 is the number of terms (words)
e m is the number of documents
e entry i, j represents a function of the frequency of word i in document j

e simplest function is a simple count
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Example

two one-sentence documents:
“Numerical computations are fun.”

“Numerical algorithms and numerical methods are interesting.”

words: term-document matrix

1. “algorithms” 0 1

2. “computations” 10

3. “fun” 1
o a=| !

4. “interesting” 0 1

5. “methods” (1) ;

6. “numerical”

e we define 6-long vectors for representing queries; for example, the query
“numerical methods” is represented as ¢ = (0,0, 0,0, 1, 1)

e two documents deal with a similar issue

e but overlap between the two columns in the matrix A is relatively small
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Reduced space

e one popular measure to answer the question whether a query and a document
have much in common is by using angles; for a given query g, we set

(Aej)Tq
cos(f;)=—————, j=1,...,m
T Ae NIgll

o if A, = U, %, VT with r small, then

efvrzr (UrTQ)

cos(f;) = ————
R Ve lIgll

in the reduced space, the n-long query q is transformed into the r-long vector

G=Ulq
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Least squares with full column rank

minimize ||Ax — b||?, A € R™" b eR™

suppose that A has linearly independent column (m > n) with SVD

[ v

A=Uuzv'= U, Uz][

O(m n)xn
where X1 = diag(o, ..., 0y,); observe that

lAx = b||? = |lUZVTIx — 0% = |Z2VTx - UTD||?
_=1] 7 [UTE
(5] v o

|

== VIx - UTb|? + |US D2

the above is minimized when

$=VI'UTb = A"h where AT = VE['UT = (ATA) T AT

least squares via SVD
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Rank deficient least squares

minimize ||Ax — b|| = HUZVTx - b“

e Ais m X n and rank deficient rank(A) = r < min{m, n}

e SVDof Ais
21 0 T
A=[Ur U] |7 o[V Ve
0 O
e the m X n matrix X has only » diagonal entries o4, ..., 0

first we introduce the change of variables
= VT.X — X = [V1 VQ] [;1]
2

where 71 € R" and z9 € R"™"
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Minimum norm solution

| Ax - b||> = |UZVTx - b]|?

= ||ZVTx - U'b|
21 | |Ufb
Ulb
Tiz1 - ?
—UTb

=|1Z121 = UTB|* + U5 |

quantity above is minimized by taking z; = 21‘1U1Tb; plugging back into x gives
X = [V1 VQ] [i;] =Viz1i + Vozo = V121_1U1Tb +Vozo

e where zo € R"7 is arbitrary
e solution with least norm ||x||2 = ||Vz||2 = ||z||? is obtained when z5 = 0:
r
2=VE'UTh =i UTb = Y Lvi(ulb) = ATb
i=1

least squares via SVD 15.34



Truncated SVD for least squares

given an m X n matrix A and threshold €

1. form A = UXVT

2. decide on truncation r such that oy > efork =1,...,r
3. computex = . vi(ulb)

110'

Complexity
e forming the SVD, costs approximately 2mn? + 11n> flops
e for m > n this is approximately the same cost as the QR-based approach 2mn?

e form =~ norn > m the SVD approach is expensive

least squares via SVD 15.35
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