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Equality constrained optimization

minimize  f(x)
subjectto g;(x) =0, i=1,...,p

fR" S5 R; g :R" >R

welet g(x) = (g1(x),...,gp(x))

e a point x satisfying g(x) = 0 is called a feasible point

X is a solution if it is feasible and f(x) < f(x) for all feasible x

Regular point: a feasible point x is a regular point if the vectors

Vgl(x)9 VgQ(X)v sy Vg]?(x)

are linearly independent
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Lagrangian function

the Lagrangian function is defined as
P
L(x,2) = f(x) +>_ zigi (%)
i=1

e z=(z1,...,2p) is a p-vector
e the entries of z; are called the Lagrange multipliers
e the gradient of Lagrangian is

ViL(x,2)

VL(x,7) = [VZL(x, 2)

where
VxL(x,z) = Vf(x) + EPI 7;Vgi(x)
i=1

V.L(x,7) = g(x)
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Method of Lagrange multipliers

if X is a regular point and a local minimizer, then there exists a vector Z such that

ViL(x,2) =Vf(X) + Zp: 2iVgi(x) =0
i=1

V:L(x,2) =g(¥) =0

Z is called an optimal Lagrange multiplier

these are necessary conditions but not sufficient

there can be points (x, z) satisfying the above but x is not a local minimizer

the above method is known as the method of Lagrange multipliers

called KKT conditions or Lagrange conditions

equality constrained optimization
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Example

minimize  x? + x3
subjectto X% +2x2 =1

e the Lagrangian is
L(x,2) = x% +x§ + z(xf + 2x§ -1)

e the necessary optimality conditions are

ViL(x,z) =

2x1 + 2x12
2X2 + 4.)C2Z

V.L(x,2) =x?+2x2-1=0

equality constrained optimization
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solving, we get the stationary points
— 1 - _
x—(O,i‘/E), b4 1/2

and
x=(x1,0), z=-1
all feasible points are regular since Vg(x) = (2x1, 4x2) is linearly independent

thus, any minimizer to the above problem must satisfy the optimality conditions

checking the value of the objective, we see that it is smallest at

1) _ 1 (2) —L1
X _(0’\/5) and x'“* = (0, v

therefore, the points x() and x(?) are candidate minimizers

equality constrained optimization
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Example

X2
minimize  xo
subjectto x? +xZ=1 m
(x1-2)%+x3=1 w x1

one feasible point X = (1, 0), thus optimal

e X is notregular as Vg1 (x) = (2,0), Vga(X) = (-2, 0) are dependent

e the Lagrangian is
L(x,2) =x2+21(x] +x3 = 1) + 22((x1 — 2)% +x3 - 1)
e the necessary condition

B 2X111 + 2(x1 — 2)12 —
Vil(x,2) =70 2xo(z1 +22) |~ 0

cannot be satisfied at X = (1, 0)
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Quadratic penalty formulation

minimize £ (x) + u|lg(x)||?

g(x) = (g1(x),....8p(x))

U € R is the penalty parameter

wllg@)|? = u Zf’zl (gi(x))? penalize constraints violation
a solution of the above problem might not feasible

for large u we expect to have small values (g,-()c))2

minimizing the above for an increasing sequence u is called the penalty method

penalty method 14.8



Penalty method

given a starting pointx(l), u(l), and a solution tolerance € > 0

repeatfork =1,2,...

1.

set xk*1) 10 be the (approximate) solution to
minimize  f (x) + u®[lg(x)[1?

using an unconstrained optimization method with initial point x <)
update p¥+1) = 2,,(K)

penalty method is terminated when ||g(x(©))|| becomes sufficiently small
simple and easy to implement

feasibility g(x(k)) = 0 is only satisfied approximately for ,u”“l) large enough
y(k) increases rapidly and must become large to drive g(x) to (near) zero

for large /1("), step 1 can take a large number of iterations, or fail

penalty method
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Connection to optimality condition

recall optimality condition

V() +Dg(®)72=0, g(* =0

xk+1) satisfies optimality condition for unconstrained problem:
Vf(x(k+1)) + 2u(k>Dg(x(k+1))Tg(x(k”)) =0

if we define z5*1) = 24 (K) g (x(k*1)) this can be written as

Vf(x(k+1)) +Dg(x(k+1))TZ(k+1) =0

so xk*1) and z(k+1) satisfy first equation in KKT optimality condition

feasibility g(x(k”)) = 0 is only satisfied approximately for u(k) large enough
o feasibility g(x**1)) = 0 holds in the limit

penalty method 14.10
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Minimizing the Lagrangian

minimize  f(x)
subjectto  g(x) =0

fR*">Randg:R? - R

Lagrangian: L(x,z) = f(x) + zTg(x) where z € R”

problem is equivalent to (for any z)

minimize  L(x,z) = f(x) +z7g(x)
subjectto  g(x) =0

if X is a solution and a regular point, then

ViL(x,2) =0 forsome z

augmented Lagrangian method 14.11



Augmented Lagrangian

the augmented Lagrangian (AL) is
Ly (x,2) = L(x,2) + pllg ()|
= f(x) +2"8(x) + ullg()

e this is the Lagrangian L(x, z) augmented with a quadratic penalty

e i is a positive penalty parameter

augmented Lagrangian is the Lagrangian of the equivalent problem

minimize £ (x) + plg (%)
subjectto  g(x) =0

solution of the original problem is also a solution of the AL formulation

AL method minimizes L (x, z) for a sequence of values of z and u

augmented Lagrangian method
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Lagrange multiplier update

e minimizer X of augmented Lagrangian L (x, z) satisfies
Vf(%) +Dg(®)7(2ug (%) +2) = 0
e if we define 7 = 7 + 2ug(X) this can be written as
Vf(x) +Dg(x)z=0
e this is the first equation in the optimality conditions
Vf(#)+Dg()2=0, g®) =0
e shows that if g(X) = 0, then X is optimal

e if g(X) is not small, suggests Z is a good update for z
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Augmented Lagrangian algorithm

given x(M), z() (1) and a solution tolerance € > 0
repeatfork =1,2,...

1. setx®*1) to pe an (approximate) solution to

minimize  f(x) + (2% Tg(x) + @ || (x)||?

using any unconstrained optimization method with initial point X0
2. update 70
Z(k+1) (k) +2y(k)g(x(k+1))

3. set u¥) as constant or

p® it [lg(x*D)| < 0.25]1g(x P
2u®) otherwise

e u is increased only when needed, more slowly than in penalty method

e continues until g(x¥)) and/or VL (x*), z(k)) are sufficiently small

augmented Lagrangian method
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Example

minimize ~ €3%1 4 ¢~ 4*2
subjectto x? +x3 =1

the augmented Lagrangian function is:
L,(x,z) = 3 42 47 (x? 4 xZ — 1) + u(x? +x2 - 1)?

e initial points x(1) = (0,0) and z(") = -1, and ¥ = 10

e for the inner minimization problems we use Newton’s method with stepsize ¢ = 1:

%% —1V2L,(%,20) VL, (3, 2)
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the gradient and Hessian are:

VoL, (x.2) 3e3¥1 4 27x1 + 4,ux1(xf +x§ -1
X,27) = _
TR —de™2 + 22x0 + dpxo (x? +x2 - 1)
and
2 _ [9e3x1 427 +4/J(x% + x% -1)+ 8/1xf 8uxyx2
VxLll(x’ Z) - [ 8ux1 Xo 16€™4%2 + 2z +4p(x? +x2 — 1) + 8ux3

Newton method starts from £ = x(%) and and stops if IVL, (%, 28| <1075

the value x**1) is then set to £ and the Lagrange multiplier is subsequently updated:
Z(k+1) — Z(k) + 2/1((x§k+1))2 + (x§k+1))2 _ 1)
after executing the augmented Lagrangian method until ||g(x))|| < 1076 or 50

iterations, the results are approximately X = (—0.7483,0.6633) and z* = 0.2123
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MATLAB code implementation

mu=10;

%% AL gradient and Hessian

g=0(x,z) [3*exp(3*x (1)) +2%z*x (1) +4*mu*x (1) * (x (1) “2+x(2)"2-1) ;
-4xexp (—4*x(2) ) +2%z*x (2) +4*mu*x (2) * (x (1) "2+x(2)"2-1)];
hess=0(x,z) [9%exp (3*x (1)) +2*z+4xmux* (x (1) "2+x(2) "2-1)+. ..
8xmu*x (1) "2 8*xmuxx(1)*x(2);

8*muxx (1) *x(2) 16%exp(-4*x(2))+2*z+4*mux (x(1) "2+x(2) "2-1) +8*mu*x (2) "2] ;
%% AL method

x=[0;0];

z=-1;

for i=1:50

% Newton inner minimization

while (norm(g(x,z)) >= 1le-5)

d = -hess(x,z)\g(x,z);

X = x+d;

end

% Lagrange update

z=z+mu* (x (1) “2+x(2)"2-1);

if norm((x(1)~2+x(2)"2-1))<1le-6

return

end

end

augmented Lagrangian method 1417
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Constrained nonlinear least squares

minimize  f1(x)% + -+ + £ (x)?
subjectto g1(x) =0,...,8,(x) =0

in vector notation:
minimize || £ (x)]?
subjectto  g(x) =0

with f(x) = (f1(x), ..., fm(x), g(x) = (81(x), . ... 8p(x))

e f;(x) is ith (scalar) residual; g;(x) = O is ith (scalar) equality constraint
e x is feasible if it satisfies the constraints g(x) = 0

e X is a solution if it is feasible and || f (x)||? > || £ ()]|? for all feasible x

constrained nonlinear least squares 14.18



Lagrange multipliers

the Lagrangian of the problem is the function

L(x,2) = [ +2181(x) + - + Zmgm (%)
= F I +g(x) 'z
e p-vector z = (21, ..., Zp) is vector of Lagrange multipliers
e gradient of Lagrangian with respect to x is
V. L(%,2) =2Df(x)Tf(%) + Dg(#)"z
e gradient with respect to z is
V:L(x,2) = g(%)
Optimality condition: if X is optimal, then there exists Z such that
2Df()Tf(2) +Dg(®)2=0, g(x)=0
provided the rows of Dg(x) are linearly independent

constrained nonlinear least squares

14.19



Constrained (linear) least squares

minimize  (1/2)||Ax — b||?
subjectto Cx =d

e a special case of the nonlinear problem with f(x) = Ax — b,g(x) =Cx —d

e apply general optimality condition:

Df(%)Tf(%)+Dg(x)7z = AT(Ax - b) +CTz =0
g(®) =Ci-d=0

-]

o these are the KKT equations

Gl

2=
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Penalty algorithm

given a starting pointx(l), ;1(1), and solution tolerance €
repeatfork =1,2,...

1. setx®*1) {0 pe an (approximate) solution to

2

f(x)
Vg (x)

using the Levenberg-Marquardt algorithm, starting from initial point x (<)
2. update u®) = 24K

minimize H[

if stopping criteria holds, stop and output x(k+1)

constrained nonlinear least squares
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Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

Ly(x,2) = L(x,2) + pllg()|I?
= IF NP +g(x) T2+ plig (D)1

e equivalent expressions for augmented Lagrangian
Ly(x,2) = [IF I + g(x) Tz + pllg ()17
_ 2 12 _ i 2
= If @I + plg ) + 5:2]| o Izl

_ H[ f(x)
VHE (x) + 2/ (2y/p)
e can be minimized over x (for fixed u, z ) by Levenberg-Marquardt method:

f(x) ]
VHg(x) +2/(2y/p)

2

1 2
- ﬂllzll

2

minimize H[

constrained nonlinear least squares 14.22



Augmented Lagrangian algorithm

given: z(1 =0, u™ =1, and xV)
repeatfork =1,2...

1. setx(¥*1) to pe the (approximate) solution of
2
minimize F
w/#(k)g(x) + Z<k)/(2"’/~1(k))

using Levenberg-Marquardt algorithm, starting from initial point x (k)

2. multiplier update:
Z(k+1) — Z(k) +2M(k)g(x(k+1))

3. penalty parameter update:

D) = u® if [ (x**D)|| < 0.25]|g (x|
u k) =2, otherwise

constrained nonlinear least squares
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Example

X1 +exp ( — XQ) 3 2
X1,X2) = X1,X2) = X1 +X] +Xxo+X
f( 1 2) x%+2x2+1 ’ g( 1 2) 1 1 2 2
1 = - S
g =1 .
o 8g=0 O\ Y| e solid: contour lines of || £ (x) |2
™~ — N N
2 ofglx)=-1 * | ,
‘\ . \ e dashed: contour lines of g(x)
o ) e = solution £ = (0, 0)
IR 0 1
X1
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Convergence

F T T T F
10" b Feasibility 10"
E Opt. cond £
100 100 F
g 107 F EE- U
_g _, = E| _g = E|
B 1077F E- E E
[ S| [ E|
o 1073 e o E
e o
1076 t 1 1 1 1 1 1 B 1076 t Bl
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Cumulative L-M iterations Cumulative L-M iterations

e left: augmented Lagrangian, right: penalty method
e blue curve is norm ||g(x¥)) ||
e red curve is norm of |2D f(x*) T £(x(®)) + Dg(x®) T (0|

constrained nonlinear least squares
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Cumulative L-M iterations
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Nonlinear dynamical system

a nonlinear dynamical system has the form
Xi+1 = fOpour), k=1,...,K

e x; € R" is the state vector at instant k
e 1, € R™ is the input or control at instant k

e f:R™™ — R" describes evolution of the system (system dynamics)

examples: vehicle dynamics, robots, chemical plants evolution...
Optimal control

e initial state x; = Xjnitial IS knOwn

e choose the inputs u1, . . ., ug to achieve some goal for the states/inputs

nonlinear control example 14.27



Simple model of a car

dp: _
- s(t) cosO(t)
dpa _ .
o s(1) sin6(t)
de _ ( )
7 tan ¢ (1)

L wheelbase (length)

p(t) position

0(t) orientation (angle)

¢ (1) steering angle

s(t) speed

we control speed s and steering angle ¢

nonlinear control example 14.28



Discretized car dynamics

p1(t+h) =~ pi(t) + hs(t) cosO(t)
pa(t+h) = pa(t) + hs(t)sinO(¢
O(t+h) ~0(t)+ h(s(t)/L) tan ¢(r)

e his a small time interval

let state vector x;. = (p1(kh), po(kh), 0(kh))
let input vector uy = (s(kh), ¢(kh))
discretized model is

cos(xx)3
Xie1 = (X, ug) = xx + h (ug)y sin(xg)s
(tan(ug)2)/L

nonlinear control example 14.29



Car control problem

e move car from given initial to desired final position and orientation

e using a small and slowly varying input sequence

Problem formulation

N K K-1
minimize Zkzo lluxll? +y Zk:o s — ugll?
subjectto  xo = f(0,u1)
Xee1 = f Qe up), k=2,...,K-1
Xiinal = f (XK, UK)

variables uq,...,ug,and xo, ..., Xg

the initial state is assumed to be zero

the objective ensures the input is small with little variation
e ¥ > (is an input variation trade-off parameter

nonlinear control example
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Four solution trajectories

Xinal = (0,1, 0) Xinal = (0,1, 77/2)
1
1
05 o5
0 .
-05 0 05
Xfinat = (0.5, 0.5, —7/2)
06
04
4
’ 02
02 0
0 -02
-06 -04 -02 O 02 -02 0 02 04 06 08

solution trajectories with different final states; the outline of the car shows the position
(p1(kh); pa(kh)), orientation 8(kh), and the steering angle ¢(kh) at time kh

nonlinear control example 14.31



Inputs for four trajectories

Angie
05f 1 05} 1
Speed
g of 1% o ]
Angle
-05 Speed 4 -o0s5f .
0 10 2 30 40 50 0 10 20 30 40 50
k k
05 {Angle 1 os) .
Spee
. - Angle
x 0f = I y
-0.5F-Speed 4 -05fF R
0 10 20 30 40 50 0 10 20 30 40 50
k k

nonlinear control example
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