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Nonlinear least squares

minimize f:fi(x)2 = £ ()7
=1

x is variable, fi(x), ..., fin(x) are residuals

f: R"™ — R™ is vector residual with components f;(x):

J(x) = (fi(x), fo(x), ..., fin (X))

objective function is || f (x)||?

problem reduces to (linear) least squares if f(x) = Ax — b

e solution approximate or solves the set of nonlinear equations f(x) = 0
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Example: Location from range measurements

e 3-vector x is position in 3-D, which we will estimate
e range measurements give (noisy) distance to known locations
pi=llx—aill+v,, i=1,....m
a; are known locations, v; are noises

e l|east squares location estimation: choose X that minimizes
& 2
> (lx = aill = pi)
i=1

o GPS works like this
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Gradient of nonlinear least squares cost

g = IfWI* = Z fi(x)?

e first derivative of g with respect to x;:

—( )—2Zfl(1) (Z)
e gradient of g at z:

6x1 (Z) m
Vg(z) = ; =23 fi(2)Vfi(z) =2Df(2)Tf(2)
2 () =
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Optimality condition

m
minimize g(x) = Y fi(x)?
i=1
necessary condition for optimality: if x minimizes g(x) then it must satisfy

Vg(x) =2Df(x)Tf(x) =0
e this generalizes the normal equations: if f(x) = Ax — b, then D f(x) = A and

Vg(x) = 2AT(Ax - b)

e for general f, the condition Vg (x) = 0 is not sufficient for optimality
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Linear least square approximation at each iteration

minimize g(x) = ifi(x)Z

x®) is estimate of a solution at time k

f(x;x(k)) is first order Taylor approximation of f around x(K);

Fx®)y = f(x®) + D f(x®) (x - x8))
this is a good approximation if x near x*) (||x — x| is small)

Gauss-Newton method produces new estimate x%+1) that solves the problem

minimize £ (i x )12 = (£ (%) + D (x®) (xr - x®) 2

the above problem is a linear least-squares problem with

A=Df(x®), b=DfxF)x® — fx*)
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Gauss-Newton method

setting x**+1) 10 be the solution of the previous problem, we have

x(k+1) — (ATA)—lATb
= (DF G TDFEN) T DFEE)T(DF(F)x ) — f(x9))
=2 (D NTDF ) Df )T )

e assumes that A = D f(x'%)) has linearly independent columns
e if converged (i.e., x(k*1) = x(K) then
Df"TF (M) =0

hence x %) satisfies the optimality condition since gradient is 2D f (x) T f (x)
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Gauss-Newton algorithm

given a starting point x(!) and solution tolerance €
repeat for k > 0:
1. evaluate D f(x®) = (V1 (x*N)T, ...,V £ (x®)T)
2. set
KU — (k) _ (Df(x(k))TDf(X(k)))_1Df(x(k))Tf(x(k))

if stopping criteria holds, stop and output x(k+D)

Stopping criteria

IFCNP <6, IDFE)TFEE)<e ™ —xP| < e

o if x(kD) = x(K) then x(¥) satisfies the optimality condition
e this does not mean that x(¥) is a good solution

e it is common to run the algorithm from different starting points and choose the
best solution of these multiple runs

Gauss-Newton method 13.8



Issues with Gauss-Newton method

e approximation|| £ (x)||2 ~ ||.f (x; x*®)) |2 holds when x near x %)
e when x(**1) is not near x (K, the affine approximation will not be accurate
e so the algorithm may fail or diverge (|| £ (x**))|| > ||£ (x%)|))

e a second major issue is that columns of the matrix Df(x(k)) may not always be
linearly independent; in this case, the next iterate is not defined
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Example

eX —e™™
X)) = —/—
) eX+e™*
e starting point x(*) = 0.9: converges very rapidly to x* = 0

e starting point x(*) = 1.1: does not converge

T T
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Relation to Newton method for nonlinear equations

e Gauss-Newton update
-1
D =0 — (D) TDF0)) DT ()

e if m = n, then D f(x) is square and this is the Newton update

xUkHD) — (k) _ Df(x(k))flf(x(k))
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Relation to Newton method for unconstrained minimization

() = IF @I = iﬁ-(x)?
e gradient:
Vg(x) =2 ;ﬁ(xwﬁ (x) =2Df(x)Tf(x)
o second derivatives:

o%g o~ [9fi, | Ofi 9% f;
ox 0 (x) =2 ; Ej(x)a(x) + fi(x) 9% 00

(x)

e Hessian

V24(x) = 2D f () TD f(x) + 2 f; [V ()

Gauss-Newton method 13.12



Newton and Gauss-Newton steps

(Undamped) Newton step at x = x(¥):
vne = =V2g(x) "' Vg(x)

- ~(DFOTD)+ X FOVA) DI
Gauss-Newton step at x = x(k):

ven == (DF0DF@) " DI

e can be written as Vg, = —Hg‘ang(x) where Hgy, = Df(x)TDf(x)

e Hg, is the Hessian without the term ) _. f; (x) V2 f; (x)

Gauss-Newton method
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Comparison

Newton step
e requires second derivatives of f
e not always a descent direction (Vzg(x) is not necessarily positive definite)

e fast convergence near local minimum

Gauss-Newton step
e Gauss-Newton iteration is cheaper (does not require second derivatives)
e adescent direction (if columns of D f(x) are linearly independent):
Vg(x) Tvgn = —2ngan(x) TDf(x)vgn <0 ifvgy #0

e local convergence to x* is similar to Newton method if

- 2

2 i)V fi(x%)

i=1

is small (for each i, f;(x*) is small or f; is nearly affine around x*)

Gauss-Newton method 13.14



Outline

e nonlinear least squares
e Gauss-Newton method
e Levenberg-Marquardt method

e nonlinear data fitting



Regularized approximate problem

ensure x is close to x(K) by regularization

minimize || £ (x*)) + D f(x®) (x = x ) [|2 + 20 |lx — x 0|2

e regularization parameter A% controls how close x K1) s to x (k)
e regularization fixes invertibility issue of Gauss-Newton (no condition on D f(x))

o the above problem can be rewritten as

2

i Df(x) Df(x*)x®) — f(xM)
minimize H[ NGT ]x—[ @46

this is just a least-squares problem with objective ||Ax — b||? where

Df(x™®)) D f(xF)x®) — £(x(k))
[w—m ’ l’:[ VAT (8
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the solution is
U+l (k) _ (Df(x(k))TDf(x(k)) +/l(k)l)_lDf(x(k))Tf(x(k))

we see x A1) = x(K) only if optimality condition hold D f (x®)) T £ (x (%))

Updating A0
o it 1) is very small, then x**1) can be far from x¥), and the method may fail

o if 1%%) is large enough, then x(*1) becomes close to x ) and the affine
approximation will be accurate enough

e a simple way to update A% is to check whether

L GEIP < 1f )2

if so, then we can decrease 1(¥*1); otherwise, we increase 1(k+1)

Levenberg-Marquardt method 13.16



Levenberg-Marquardt algorithm

given a starting point x()| solution tolerance €, and A1) > 0
repeat for k > 0

1. evaluate D f(x®)) = (V£ (x0T, .. V£, (x®)T)

2. update

Xk — (k) (Df(x(k))TDf(x(k)) +/l(k)l)_lDf(x(k))Tf(x(k))

if stopping criteria holds, stop and output x(k+D)
3. if | F(xK*FY))12 < || £ (x®))||2, then decrease A5+D) (e.g., 1K+ = (0.82(K)):;
otherwise, increase A1) (e.g., A1) = 21(5)y and keep x (k) = x(k+1)

Stopping criteria

IFCNDP <€, IDFED)TFEE)<e ™ x| < e
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Example

X _ p=X

f) =2

eX+e™*

e we saw Gauss-Newton does not converge starting at xM =11
o for Levenberg-Marquardt starting at x(*) = 1.1 and A(!) = 1 converges
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Example: Location from range measurements

blue circles)

(

e range to 5 points
e red square shows X

Il
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Levenberg-Marquardt from three initial points

03

[FEER]

Levenberg-Marquardt method
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Nonlinear model fitting

N N 7 .
minimize > (f(x(l); 0) — y(z))2
i=1

o x(M . xN) are feature vectors and yV), . .., yN) are associated outcomes

model f(x; 0) is parameterized by parameters 61, .. .,6),

e this generalizes the linear in parameters model
F(x;0) = 01 f1(x) + -+ 0, (x)

here we allow f(x, 6) to be a nonlinear function of 8

e the minimization is over the model parameters 6
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Example

fx;0)

N A

I

a nonlinear least squares problem with four variables 61, 02, 03, 64:

N ) _ 2
minimize > (01692"() cos(Bsx D +6,) - y(l))
=1
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Orthogonal distance regression

o to fit model, minimize sum square distance of data points to graph

e example: orthogonal distance regression to cubic polynomial

fx;0)
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Nonlinear least squares formulation

(@@, y®)
di

(0. 7 g)) d? = (f@®,0) =y + u® - x D)7

e linear in parameters model: f(x; 0)=01fi(x)+ - +0,fp(x)
e minimizing over (1), 6) gives squared distance of (x©), y()) to graph f

Orthogonal distance regression
N A . . . .
minimize > ((f(?;0) = y )2 + u? - <O )
i=1

e optimization variables are model parameters 6 and N points u®

e ith term is squared distance of data point (x(*), y() to point (u'?), f(u?, 6))
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Classification

Linear least squares classifier

e data points (x?), y()) where y() € {-1,1}

e classifier is f(x) = sign(f(x)) where f(x) = 61 f1(x) + --- + Opfp(x)

e @ is chosen by minimizing Zf\il(f(xi) — ;)2 (plus optionally regularization)
Nonlinear least squares classifier

e choose 6 to minimize Zfil (sign(f(xD)) — y())2

o replace sign function with smooth approximation ¢, e.g., sigmoid function

6(u)
N - X . 1
minimize S (p(F(x7)) - yD))?
i=1
o = o
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