ENGR 504 (Fall 2024) S. Alghunaim

13. Nonlinear least squares

- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method
- nonlinear data fitting

Nonlinear least squares

minimize
$$\sum_{i=1}^{m} f_i(x)^2 = ||f(x)||^2$$

- x is variable, $f_1(x), \ldots, f_m(x)$ are residuals
- $f: \mathbb{R}^n \to \mathbb{R}^m$ is vector residual with components $f_i(x)$:

$$f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

- objective function is $||f(x)||^2$
- problem reduces to (linear) least squares if f(x) = Ax b
- solution approximate or solves the set of nonlinear equations f(x) = 0

Example: Location from range measurements

- 3-vector x is position in 3-D, which we will estimate
- range measurements give (noisy) distance to known locations

$$\rho_i = ||x - a_i|| + v_i, \quad i = 1, \dots, m$$

 a_i are known locations, v_i are noises

• least squares location estimation: choose \hat{x} that minimizes

$$\sum_{i=1}^{m} (\|x - a_i\| - \rho_i)^2$$

· GPS works like this

Gradient of nonlinear least squares cost

$$g(x) = ||f(x)||^2 = \sum_{i=1}^{m} f_i(x)^2$$

• first derivative of g with respect to x_i:

$$\frac{\partial g}{\partial x_j}(z) = 2\sum_{i=1}^m f_i(z) \frac{\partial f_i}{\partial x_j}(z)$$

gradient of g at z:

$$\nabla g(z) = \begin{bmatrix} \frac{\partial g}{\partial x_1}(z) \\ \vdots \\ \frac{\partial g}{\partial x_n}(z) \end{bmatrix} = 2\sum_{i=1}^m f_i(z)\nabla f_i(z) = 2Df(z)^T f(z)$$

Optimality condition

minimize
$$g(x) = \sum_{i=1}^{m} f_i(x)^2$$

necessary condition for optimality: if x minimizes g(x) then it must satisfy

$$\nabla g(x) = 2Df(x)^T f(x) = 0$$

• this generalizes the normal equations: if f(x) = Ax - b, then Df(x) = A and

$$\nabla g(x) = 2A^{T}(Ax - b)$$

• for general f, the condition $\nabla g(x) = 0$ is not sufficient for optimality

Outline

- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method
- nonlinear data fitting

Linear least square approximation at each iteration

minimize
$$g(x) = \sum_{i=1}^{m} f_i(x)^2$$

- $x^{(k)}$ is estimate of a solution at time k
- $\hat{f}(x; x^{(k)})$ is first order Taylor approximation of f around $x^{(k)}$:

$$\hat{f}(x;x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$$

this is a good approximation if x near $x^{(k)}$ ($||x - x^{(k)}||$ is small)

• Gauss-Newton method produces new estimate $x^{(k+1)}$ that solves the problem

minimize
$$\|\hat{f}(x;x^{(k)})\|^2 = \|f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})\|^2$$

• the above problem is a linear least-squares problem with

$$A = Df(x^{(k)}), \quad b = Df(x^{(k)})x^{(k)} - f(x^{(k)})$$

Gauss-Newton method

setting $\boldsymbol{x}^{(k+1)}$ to be the solution of the previous problem, we have

$$\begin{split} x^{(k+1)} &= (A^T A)^{-1} A^T b \\ &= \left(D f(x^{(k)})^T D f(x^{(k)}) \right)^{-1} D f(x^{(k)})^T \left(D f(x^{(k)}) x^{(k)} - f(x^{(k)}) \right) \\ &= x^{(k)} - \left(D f(x^{(k)})^T D f(x^{(k)}) \right)^{-1} D f(x^{(k)})^T f(x^{(k)}) \end{split}$$

- assumes that $A = Df(x^{(k)})$ has linearly independent columns
- if converged (i.e., $x^{(k+1)} = x^{(k)}$) then

$$Df(x^{(k)})^T f(x^{(k)}) = 0$$

hence $x^{(k)}$ satisfies the optimality condition since gradient is $2Df(x)^Tf(x)$

Gauss-Newton algorithm

given a starting point $x^{(1)}$ and solution tolerance ϵ

repeat for $k \ge 0$:

- 1. evaluate $Df(x^{(k)}) = (\nabla f_1(x^{(k)})^T, \dots, \nabla f_m(x^{(k)})^T)$
- 2. set

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

if stopping criteria holds, stop and output $x^{(k+1)}$

Stopping criteria

$$\|f(x^{(k)})\|^2 \leq \epsilon, \quad \|Df(x^{(k)})^T f(x^{(k)})\| \leq \epsilon, \quad \|x^{(k+1)} - x^{(k)}\| \leq \epsilon$$

- if $x^{(k+1)} = x^{(k)}$, then $x^{(k)}$ satisfies the optimality condition
- this does not mean that $x^{(k)}$ is a good solution
- it is common to run the algorithm from different starting points and choose the best solution of these multiple runs

Issues with Gauss-Newton method

- approximation $||f(x)||^2 \approx ||\hat{f}(x;x^{(k)})||^2$ holds when x near $x^{(k)}$
- when $x^{(k+1)}$ is not near $x^{(k)}$, the affine approximation will not be accurate
- so the algorithm may fail or diverge $(\|f(x^{(k+1)})\| > \|f(x^{(k)})\|)$
- a second major issue is that columns of the matrix $Df(x^{(k)})$ may not always be linearly independent; in this case, the next iterate is not defined

Gauss-Newton method SA = ENGR504 13.9

Example

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- starting point $x^{(1)} = 0.9$: converges very rapidly to $x^* = 0$
- starting point $x^{(1)} = 1.1$: does not converge

Relation to Newton method for nonlinear equations

Gauss-Newton update

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

• if m = n, then Df(x) is square and this is the Newton update

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

Relation to Newton method for unconstrained minimization

$$g(x) = ||f(x)||^2 = \sum_{i=1}^{m} f_i(x)^2$$

· gradient:

$$\nabla g(x) = 2\sum_{i=1}^{m} f_i(x)\nabla f_i(x) = 2Df(x)^T f(x)$$

second derivatives:

$$\frac{\partial^2 g}{\partial x_j \partial x_k}(x) = 2 \sum_{i=1}^m \left(\frac{\partial f_i}{\partial x_j}(x) \frac{\partial f_i}{\partial x_k}(x) + f_i(x) \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right)$$

Hessian

$$\nabla^{2} g(x) = 2D f(x)^{T} D f(x) + 2 \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x)$$

Newton and Gauss-Newton steps

(Undamped) Newton step at $x = x^{(k)}$:

$$\begin{split} v_{\rm nt} &= -\nabla^2 g(x)^{-1} \nabla g(x) \\ &= - \Big(Df(x)^T Df(x) + \sum_{i=1}^m f_i(x) \nabla^2 f_i(x) \Big)^{-1} Df(x)^T f(x) \end{split}$$

Gauss-Newton step at $x = x^{(k)}$:

$$v_{\rm gn} = -\left(Df(x)^T Df(x)\right)^{-1} Df(x)^T f(x)$$

- can be written as $v_{\rm gn} = -H_{\rm gn}^{-1} \nabla g(x)$ where $H_{\rm gn} = D f(x)^T D f(x)$
- H_{gn} is the Hessian without the term $\sum_i f_i(x) \nabla^2 f_i(x)$

Comparison

Newton step

- requires second derivatives of f
- not always a descent direction ($\nabla^2 g(x)$ is not necessarily positive definite)
- fast convergence near local minimum

Gauss-Newton step

- Gauss-Newton iteration is cheaper (does not require second derivatives)
- a descent direction (if columns of D f(x) are linearly independent):

$$\nabla g(x)^T v_{\rm gn} = -2v_{\rm gn}^T Df(x)^T Df(x) v_{\rm gn} < 0 \quad \text{if } v_{\rm gn} \neq 0$$

• local convergence to x^* is similar to Newton method if

$$\sum_{i=1}^{m} f_i(x^*) \nabla^2 f_i(x^*)$$

is small (for each $i, f_i(x^*)$ is small or f_i is nearly affine around x^*)

Outline

- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method
- nonlinear data fitting

Regularized approximate problem

ensure x is close to $x^{(k)}$ by regularization

minimize
$$\|f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})\|^2 + \lambda^{(k)} \|x - x^{(k)}\|^2$$

- regularization parameter $\lambda^{(k)}$ controls how close $x^{(k+1)}$ is to $x^{(k)}$
- regularization fixes invertibility issue of Gauss-Newton (no condition on D f(x))
- the above problem can be rewritten as

$$\text{minimize} \quad \left\| \begin{bmatrix} Df(x^{(k)}) \\ \sqrt{\lambda^{(k)}}I \end{bmatrix} x - \begin{bmatrix} Df(x^{(k)})x^{(k)} - f(x^{(k)}) \\ \sqrt{\lambda^{(k)}}x^{(k)} \end{bmatrix} \right\|^2$$

this is just a least-squares problem with objective $||Ax - b||^2$ where

$$A = \begin{bmatrix} Df(x^{(k)}) \\ \sqrt{\lambda^{(k)}}I \end{bmatrix}, \quad b = \begin{bmatrix} Df(x^{(k)})x^{(k)} - f(x^{(k)}) \\ \sqrt{\lambda^{(k)}}x^{(k)} \end{bmatrix}$$

the solution is

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

we see $x^{(k+1)} = x^{(k)}$ only if optimality condition hold $Df(x^{(k)})^T f(x^{(k)})$

Updating $\lambda^{(k)}$

- if $\lambda^{(k)}$ is very small, then $x^{(k+1)}$ can be far from $x^{(k)}$, and the method may fail
- if $\lambda^{(k)}$ is large enough, then $x^{(k+1)}$ becomes close to $x^{(k)}$ and the affine approximation will be accurate enough
- a simple way to update $\lambda^{(k)}$ is to check whether

$$\|f(x^{(k+1)})\|^2 < \|f(x^{(k)})\|^2$$

if so, then we can decrease $\lambda^{(k+1)}$; otherwise, we increase $\lambda^{(k+1)}$

Levenberg-Marquardt algorithm

given a starting point $x^{(1)}$, solution tolerance ϵ , and $\lambda^{(1)} > 0$

repeat for $k \ge 0$

1. evaluate
$$Df(x^{(k)}) = (\nabla f_1(x^{(k)})^T, \dots, \nabla f_m(x^{(k)})^T)$$

2. update

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

if stopping criteria holds, stop and output $x^{(k+1)}$

3. if $\|f(x^{(k+1)})\|^2 < \|f(x^{(k)})\|^2$, then decrease $\lambda^{(k+1)}$ (e.g., $\lambda^{(k+1)} = 0.8\lambda^{(k)}$); otherwise, increase $\lambda^{(k+1)}$ (e.g., $\lambda^{(k+1)} = 2\lambda^{(k)}$) and keep $x^{(k)} = x^{(k+1)}$

Stopping criteria

$$||f(x^{(k)})||^2 \le \epsilon, \quad ||Df(x^{(k)})^T f(x^{(k)})|| \le \epsilon, \quad ||x^{(k+1)} - x^{(k)}|| \le \epsilon$$

Example

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- we saw Gauss-Newton does not converge starting at $x^{(1)} = 1.1$
- for Levenberg-Marquardt starting at $x^{(1)} = 1.1$ and $\lambda^{(1)} = 1$ converges

Example: Location from range measurements

- range to 5 points (blue circles)
- red square shows \hat{x}

Levenberg-Marquardt from three initial points

Outline

- nonlinear least squares
- Gauss-Newton method
- Levenberg-Marquardt method
- nonlinear data fitting

Nonlinear model fitting

$$\label{eq:minimize} \begin{aligned} & \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}; \theta) - y^{(i)} \right)^2 \end{aligned}$$

- $x^{(1)}, \ldots, x^{(N)}$ are feature vectors and $y^{(1)}, \ldots, y^{(N)}$ are associated outcomes
- model $\hat{f}(x;\theta)$ is parameterized by parameters θ_1,\dots,θ_p
- this generalizes the linear in parameters model

$$\hat{f}(x;\theta) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- here we allow $\hat{f}(x,\theta)$ to be a nonlinear function of θ
- ullet the minimization is over the model parameters heta

Example

a nonlinear least squares problem with four variables $\theta_1, \theta_2, \theta_3, \theta_4$:

minimize
$$\sum_{i=1}^N \left(\theta_1 e^{\theta_2 x^{(i)}} \cos(\theta_3 x^{(i)} + \theta_4) - y^{(i)}\right)^2$$

Orthogonal distance regression

- to fit model, minimize sum square distance of data points to graph
- example: orthogonal distance regression to cubic polynomial

nonlinear data fitting SA = FNGR504 13.23

Nonlinear least squares formulation

$$(x^{(i)}, y^{(i)})$$

$$d_{i}$$

$$(u^{(i)}; \hat{f}(u^{(i)}, \theta))$$

$$d_{i}^{2} = (\hat{f}(u^{(i)}, \theta) - y^{(i)})^{2} + ||u^{(i)} - x^{(i)}||^{2}$$

- linear in parameters model: $\hat{f}(x;\theta) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$
- minimizing over $(u^{(i)}, \theta)$ gives squared distance of $(x^{(i)}, y^{(i)})$ to graph \hat{f}

Orthogonal distance regression

minimize
$$\sum_{i=1}^{N} \left((\hat{f}(u^{(i)}; \theta) - y^{(i)})^2 + ||u^{(i)} - x^{(i)}||^2 \right)$$

- ullet optimization variables are model parameters heta and N points $u^{(i)}$
- *i*th term is squared distance of data point $(x^{(i)}, y^{(i)})$ to point $(u^{(i)}, \hat{f}(u^{(i)}, \theta))$

nonlinear data fitting Sa_FNGR504 13.24

Classification

Linear least squares classifier

- data points $(x^{(i)}, y^{(i)})$ where $y^{(i)} \in \{-1, 1\}$
- classifier is $\hat{f}(x) = \operatorname{sign}(\tilde{f}(x))$ where $\tilde{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$
- θ is chosen by minimizing $\sum_{i=1}^{N} (\tilde{f}(x_i) y_i)^2$ (plus optionally regularization)

Nonlinear least squares classifier

- choose θ to minimize $\sum_{i=1}^{N} (\operatorname{sign}(\tilde{f}(x^{(i)})) y^{(i)}))^2$
- replace sign function with smooth approximation ϕ , *e.g.*, sigmoid function

minimize
$$\sum_{i=1}^N \left(\phi(\tilde{f}(x^{(i)})) - y^{(i)})\right)^2$$

$$\phi(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_ENGREDA 13.26