ENGR 504 (Fall 2024) S. Alghunaim

12. Nonlinear equations and optimization

e nonlinear equation in one variable
e Newton method for nonlinear equations
e unconstrained optimization

o gradient and Newton methods for optimization
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Nonlinear equation in one variable

f(x)=0
e the root or zero is any solution of the above equation

e we assume f is a continuous function

Example: nonlinear resistive circuit
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a nonlinear equation in the variable x, with three solutions

nonlinear equation in one variable
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Examples

f(x) = sin(x)

f(x) =10cosh(x/4) — x where cosh(¢) =
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nonlinear equation in one variable
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nonlinear equation in one variable

Iterative methods

nonlinear equations are much difficult to solve compared to linear equations
obtaining a solution by finite-step algorithm is not feasible

iterative algorithms start with initial or starting point, xM and compute estimates

O @

g0 e ey P

moving from x®) to x(k*1) is called an iteration of the algorithm

ideally converge to a root of the target function

k)

0 S5 x* ask »

where f(x*) =0
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Convergence rates

assume the sequence x(K) converges to a limit x*
Linear convergence: if there exists a constant ¢ € (0, 1) such that
x®) —x*| < elx® —x*| for sufficiently large k
example: x¥) =1 + (1/2)* linearly converges to x* = 1,
|x(k+1) _x*| — (1/2)k+1 — %lx(k) _x*l
satisfies the definition with ¢ = 1/2
R-linear convergence: if a positive constant M and a value ¢ € (0, 1) exist such that
Ix®) — x*| < Mc*  for sufficiently large k
linear convergence implies R-linear convergence (reverse is not necessarily true)

nonlinear equation in one variable 12.5



Superlinear convergence: if a sequence ¢y > 0 with ¢z — 0 exists such that
x5 —x*| < clx® D —x*| forlarge k
example: x®) =1+ (1/(k + 1))¥ has superlinear convergence to x* = 1, as

1 kk—l 1 kk—l
— — |x(k—1) —x*]

Ttk (kr DEKET T (k+ 1)k

) — x|

satisfies the definition with c; = k¥~ /(k + 1)*, which approaches zero

Quadratic convergence: if a constant ¢ > 0 exists such that
x5 —x*| < e|x® D —x*12 for large k
example: x) =1 + (1/2)2k has quadratic convergence to x* = 1, as
|x(k+1) —x*| _ (1/2)2k+1 _ ((1/2)2k)2 — |x(k) —x*|2

satisfies the definition with ¢ = 1
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The bisection method

given: a, b with a < b, f(a) f(b) < 0, and tolerance €
repeat

1. x=(a+b)/2

2. compute f(x);if f(x) = 0, return x

3. if f(x)f(a) <0,b=ux,else,a=x

4. stopifb—a <e€

condition f(a) f(b) < 0 ensures a root exists between a, b

e a, b can be chosen from graphing the function

nonlinear equation in one variable
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Convergence
let [a™®, b(X)] e the interval after iteration k, then
b* —a®) = (b —a)/2*
e after k iterations, the midpoint x¥) = (b(X) 4+ ¢(K)) /2 satisfies
e —x* < ™ —a® < (1/2)K(b - a)

thus, it is R-linearly convergentwithc = 1/2and M = b —a

e the exit condition 5¥) — a %) < € will be satisfied if
b-a
log, (Q_k) =logy(b —a) —k <logy €
the algorithm therefore terminates after

b o (127

iterations where [a] is the smallest integer greater than or equal to «

nonlinear equation in one variable



MATLAB implementation

function [x,k] = bisect(f,a,b,tol)

% assuming func is a defined input function
% this function returns in p a value such that | x - root | < atol
% and in k the number of iterations required.
fa=f (a) ;£b=£ (b);

if (a >= b) | (faxfb >= 0) | (tol <= 0)
disp(’something wrong with the input: quitting’);
x = NaN; k=NaN;

return

end

k = ceil(log2(b-a) - log2(tol));

for i=1:k

x = (a+b)/2;

fx = £(x);

if abs(fx) < eps, k = i; return, end

if fa * fx < 0

b = x; fb = £fx;

else

a = x; end

end

end

nonlinear equation in one variable
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Examples

e for f(x) = x3 — 30x2 + 2552, starting from interval [0, 20] with a tolerance of
1 x 1078, the method converges to x* ~ 11.86150151 after 31 iterations
the associated MATLAB script is:

f = 0(x) x~3 - 30%x"2 + 2552;
[x,k] = bisect(£f,0,20,1.e-8)

e for f(x) = 2.5sinh(x/4) — 1, beginning with interval [-10, 10] and using a
tolerance of 1 x 10719, the method converges to x* ~ 1.5601412791 after 38
iterations
the associated MATLAB script is:

f = @(x) 2.5 * sinh (x/4) - 1;
[x,k] = bisect(f,-10,10,1.e-10)

nonlinear equation in one variable 12.10



Outline

e nonlinear equation in one variable
o Newton method for nonlinear equations
e unconstrained optimization

e gradient and Newton methods for optimization



Set of nonlinear equations

consider n nonlinear equations in n variables x1, x2, . . . , X!

fiGx1, .. ,x,) =0, i=1,...,n

in vector notation: f(x) = 0 with

*1 fl(x1,...,xn)
= x:2 . )= fQ(xl"."’x")
Xn Ja(x1, . oy xn)

o i :R" >R
o fi(x) is ith residual
o f(x) is residual vector

Newton method for nonlinear equations 12.11



Difficulty of solving nonlinear equations

e solving nonlinear equations is (in general) much harder than solving linear
equations

e even determining if a solution exists is hard
e so we will use heuristic algorithms
e not guaranteed to always work

e but often work well in practice (like k-means)
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Deriving Newton method

e linearize f (i.e., make affine approximation) around current iterate x(K)
Forix®) = f9) 4 D0 (e - x)
e take solution x of linearized equation f(x; x(k)) = 0 as the next iterate x (K*1):
x=x® = D))
flesx0)

it F()

Newton method for nonlinear equations 12.13



Newton method for nonlinear equations

assume f : R" — R" is differentiable

given a starting point x) and solution tolerance e
repeat for k > 0
1. evaluate D f(x(K))
2. set
xUkHD) — (k) _ Df(x(k))_lf(x(k))

it || f(xE )| < € (or ||x**D) — x| < €), stop and output x *+1)

° Df(x(k)) is derivative (Jacobian) matrix of f at x(¥) assumed to be nonsingular
e each iteration requires one evaluation of f(x) and D f(x)
e each iteration requires factorization of the n X n matrix D f (x)

e also called Newton-Raphson algorithm

Newton method for nonlinear equations 12.14



Example

applying Newton’s method on f(x) = 2 cosh(%) — x gives

k1) (k) _ 2 cosh(x®) /4) — x(&)

x(
0.5sinh(x*) /4) — 1

where cosh(u) = (e" + e™)/2 and sinh(u) = (e —e™)/2

with tolerance of 1 x 10~%, we have

e starting from x¢ = 2, 4 iterations are needed to get xf = 2.35755106

e from xo = 8, 5 iterations are enough to reach x; = 8.50719958

for xo = 8, the values of f(x¥)) evolve as:

k 0 1 2 3 4

F(x®) | -476e-1 843e2 156e-3 56567 7.28e-14

Newton method for nonlinear equations
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Example

Newton method appliedto f(x) = ¥ —e™*

(k) —x (k)
X Y

e —e
LU — () _

ex®) 4 p=x(k)
results with x(1) = 10
xR |f (x|
10°
10°
10°
1073
1073
10710 10°10
0 5 10 0 5 10
k k
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Example

f )

f(x)=e*—e™ - 3x | /\ | .

e starting pointx(l) = —1: converges to x* = —1.62
e starting pointx(l) = —0.8: converges to x* = 1.62

e starting point x(*) = —0.7: converges to x* = 0

Newton method for nonlinear equations 1217



Example

fi(x1,x2) =log (x} +2x3+1) = 0.5=0

fa (x1,x2) = x2 —xf +0.2=0

filx)=0
05
g0
-05
_1 Il | |
-1 -05 0 05 1
X1

two equations in two variables; two solutions (0.70, 0.29), (-=0.70, 0.29)

Newton method for nonlinear equations 12.18



Newton iteration
e evaluate g = f(x) and

2x1/(x% + 2x§ + 1) Mg/(x% + 2x§ + 1)

H=Df(x)= —2x, 1

e solve Hv = —g (two linear equations in two variables)

e update x :==x+v

Results

e x(M) =(1,1): converges to x* = (0.70,0.29) in about 4 iterations

o x(1) = (=1,1): converges to x* = (=0.70, 0.29) in about 4 iterations

o x(1 =(1,-1) orx™ = (-1, —1): does not converge

Observations

o Newton’s method works well if started near a solution; may not work otherwise
e can converge to different solutions depending on the starting point

e does not necessarily find the solution closest to the starting point

Newton method for nonlinear equations 12.19



Convergence of Newton’s method

it £(x*) =0and D f(x*) is nonsingular, and x(1) is sufficiently close to x*, then
X(k) N X*, ||x(k+1) —X*” < c||x(k) _x*||2

for some ¢ > 0

e has quadratic convergence when started near a solution

e explains fast convergence when started near solution

Newton method for nonlinear equations 12.20



Outline

e nonlinear equation in one variable
e Newton method for nonlinear equations
e unconstrained optimization

e gradient and Newton methods for optimization



Hessian

Hessian of g at z: a symmetric n X n matrix

9%g d%g d2g
6xf 0x10x5 Y Bx10x,
g g . g
V2g(x) — O0x20x1 (’)xg 0x20x,,
% 9% 0%
Ox,0x1 0x,0x2 Ox?

o Vig(2)ij = %(Z)
e this is also the derivative matrix of gradient Vg (x) at z
Quadratic (second order) approximation of g around 7
2a(¥) = g(2) +Vg(2) T(x - 2) + 5 (x - 2) V% () (x - 2)
when n = 1 this reduces to

gq(x) =g()+g (D)(x —2) + 3g" () (x - 2)*

unconstrained optimization 12.21



Examples
Affine function: g(x) = a’x + b
Vg(x)=a, Vg(x)=0
Quadratic function: g(x) = xTPx + ¢%x + r with P symmetric
Vg(x) =2Px+q, V?g(x)=2P
Least squares cost: g(x) = ||Ax — b||?> = xTATAx — 2bTAx + b7b

Vg(x) = 24TAx — 2ATb, V2g(x) =247A

Composition with affine mapping: if g(x) = A(Cx + d), then

Vg(x) = CTVh(Cx + d)
VZg(x) = CTVh(Cx + d)C

unconstrained optimization
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Example

g (.x1,.x2) — ex1+X2—1 +eX1—X2—1 +e—X1—1

gradient is
eX1+X2—1 + exl—xQ—l _ e—xl—l
Vg(x) - ex1+xz—1 _ exl—xQ—l

Hessian is

xX1+x2—-1 _ ,x1—-x2-1

5 B ex1+x2—1 + exl—xQ—l + e—xl—l ex1+xz—1 _ exl—xQ—l
\ g(x) - x1+x9—1 +ex1—x2—1

e e e

unconstrained optimization 12.23



using composition property we can express g as g(x) = h(Cx + d) with

1 1 -1
h(y1,y2,y3) =€’ +e¥? +e¥, C= 1 -1, d=| -1
-1 0 -1
Gradient: Vg(x) = CTVh(Cx + d)
X1+x2—1
ve=| 1 1 ]| enome
S U |
Hessian: V2g(x) = CTVh?(Cx + d)C
el 0 0 11
V2g(x) = [ } _1 _(1) ] 0 el 1 -1
0 0 e ¥l -1 0

unconstrained optimization
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Unconstrained minimization problem

minimize  g(x1,X2,...,X,)

g : R™ — Riis the cost or objective function
e x = (x1,X9,...,X,) is n-vector of optimization variables
e to solve a maximization problem (i.e., maximize g(x)), we can minimize —g(x)

e we will assume that g is twice differentiable

unconstrained optimization 12.25



Local and global optimum

e x* is an optimal point (or a minimum) if
g(x*) < g(x) forallx
also called globally optimal
e x* is a locally optimal point (local minimum) if for some R > 0
g(x*) < g(x) forallx with ||x —x*|| < R

Example

z y

z is (globally) optimal y is locally optimal

unconstrained optimization 12.26



Conditions for a minimum
a necessary condition for a minimum is
Vg(x*) =0
a point where the gradient vanishes Vg (x) = 0 is called a critical or stationary point
e if x* is a local minimum, then for any direction v we have
g +v) = g(x*) + Ve (™) v+ (1/2)v Vg (x*)v 2 g(x*)
e fora very small ||v|, if Vg (x*) # 0, then we can find v such that Vg(x*)Tv < 0

e s0 we must have Vg(x*) = 0 at a minimum (or maximum)

gradient also vanish at saddle points, which is neither a minimum or maximum
e at a strict minimum we must also have for all v satisfying 0 < ||v|| <« 1

g™ +v) = g(*) + (1/2)v Ve (x*)v > g(x*)
this will happen if the Hessian matrix V2g(x*) is positive definite
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Optimality conditions

Necessary condition: if x* is locally optimal, then

Vg(x*)=0 and VZg(x*) is positive semidefinite
Sufficient condition: if x* satisfies

Vg(x*) =0 and VZg(x*) is positive definite

then x* is locally optimal

Necessary and sufficient condition for convex functions
e gis called convexif V2g(x) is positive semidefinite everywhere

e if g is convex then x* is optimal if and only if Vg(x*) = 0

unconstrained optimization 12.28



Example

| |
Main BS Neighboring BS

Signal Noise

e power of the received signal measured by the user from each antenna is the
reciprocal of the squared distance from the corresponding antenna

o find position x of user (relative to main station) that maximizes signal-to-noise ratio

unconstrained optimization 12.29



to solve this problem, we need to maximize the signal-to-noise ratio:

2
gy = 20

setting the derivative to zero:

g/(x) _ _2(2—x)(1+x2)—2x(1+(2—x)2) _ 4()52—2)6—]_) 0

(1+x2)2 (1+x2)2

g(x)=0atx=1x+2

checking the objective values, we see thatx = 1 — V2 gives larger objective
e derivative changes sign + to — when passing through x = 1 — V2, so f”(x) < 0

hence, x° =1 — \5 is a local maximizer

it is a global maximizer since g(x) — 1 < g(x°) as |x| — o

unconstrained optimization 12.30



Examples (n = 1)

e g(x)=log(e*+e™)

X —e™* 4

’ _ € 4 —
g (x) - g ('x) - (ex+e—x)2

eX +e '
g” (x) = 0 everywhere; x* = (0 is the unique optimal point

o g(x) =x!
g (x) =4x%, g"(x) = 124

g” (x) = 0 everywhere; x* = 0 is the unique optimal point

o g(x) =x°
g'(x) =3x% g"(x)=6x

g’ (0) =0, g”(0) =0 butx =0 is not locally optimal

unconstrained optimization 12.31



Examples

o g(x) = xTPx + gTx + r (P is symmetric positive definite)
Vg(x) =2Px+q, VZg(x)=2P
V2g(x) is positive definite everywhere, hence the unique optimal point is
x*=—(1/2)P g
e g(x) = ||Ax — b||? (A is a matrix with linearly independent columns)
Vg(x) = 24TAx = 2A4Tb, V2g(x) =247A
V2g(x) is positive definite everywhere, hence the unique optimal point is

x* = (ATA)tATD

unconstrained optimization 12.32



Examples

g(xl’x2) — ex1+x2—1 +ex1—xz—1 +e—x1—1

e we can express V2g(x) as

L1 1] et 0 0 11
V2g(x)=[1 o 0] 0 emxl 1 -1
0 0 e lll1 o0

this shows that V2g(x) is positive definite for all x
e therefore x* is optimal if and only if

xXF+x3-1 +exf—x;—1 _ e—x{‘—l 0

e
*)
Vg ()C ) - [ exf+x;—1 _ ex{‘—x;—l

two nonlinear equations in two variables
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Outline

e nonlinear equation in one variable
e Newton method for nonlinear equations
e unconstrained optimization

e gradient and Newton methods for optimization



Descent direction
Descent direction: a vector v € R" is called a descent direction for g if
glx+1v) < glx)

for sufficiently small t > 0

Directional derivative

e for given z and nonzero v, define A(t) = g(z + tv)

e derivative of hatr =0

0 0 0
W(0) = =2 (2)v) + o2 (Jvg + -+ + —S (2
0x1 0xo O0xp
=Vg()Ty

is called the directional derivative of g (at z, in the direction v)
e Vg(x) Ty gives an approximate rate of increase of f in the direction v at x

e avector v € R" is a descent direction if Vg(x)Tv < 0

gradient and Newton methods for optimization

12.34



Gradient descent method
the directional derivative of f at x in the direction v = —Vg(x) is
vIVg(x) = —[IVe()|I* < 0

for any x with Vg (x) # 0; thus, —Vg(x) is a descent direction

Gradient descent algorithm

given a starting pointx(o) and a solution tolerance € > 0
repeat for k > 1
1. choose a stepsize 7%
2. update
k) = (k) thg(x(k))

if || V£ (x**D)|| < € stop and output x (¥+1)

e 1 is called the stepsize or learning rate
e for ¢z small enough, the algorithm is a descent method
e for large # is large enough, algorithm may not be a descent method and may fail

gradient and Newton methods for optimization 12.35



Determining the stepsize

suppose k) s any descent direction
Constant stepsize: set t; =t for all k

Backtracking line search
e choose 8 € (0,1),andy € (0, 1) and start with an initial guess #; (e.g., t1 = 1)
o set f = Sty until

g+ v ™) — (M) < 1 Vg (x) v ®
e simple backtracking algorithm is to set
t=1,0.5,0.5%,0.5% ...

until the above is satisfied or until g(x¥) + 1,0 %)) < g(x(¥))

gradient and Newton methods for optimization 12.36



Example

g(x1,x2,x3) = (x1 —4)* + (x2 — 3)> + 4(x3 +5)*

the gradient of this function is

4(x1 - 4)3
Vg(x) =| 2(x2 - 3)
16(X3 + 5)3

applying one iteration of gradient descent with xD = (4,2,-1) and t = 0.002 gives

4 4(4 — 4)3 4.000
x@ = 2]-0002] 22-3) =] 2.004
-1 16(-1+5)3 -3.048

notice that
59.06 = g(4,2.004, -3.048) < g(4,2,-1) = 1025

this shows that # = 0.002 is a good choice

gradient and Newton methods for optimization 12.37



Newton’s method for minimizing a convex function

if V2g(x) is positive definite everywhere, we can minimize g(x) by solving
Vg(x)=0
Algorithm: choose x and repeatfork =1,2,...

KU+ — (k) _ V2g(x(k))_1Vg(x(k))

v =-V2g(x)"1Vg(x) is called the Newton step at x, which is a descent direction

e converges if started sufficiently close to the solution

o Newton step is computed by a Cholesky factorization of the Hessian

for n = 1, the iteration can be written as

w1 _ iy &)
X =X -
8" (x(k))

gradient and Newton methods for optimization 12.38



Interpretations of Newton step

Affine approximation of gradient
e affine approximation of f(x) = Vg(x) around x'¥) is
Flaix®) = Vg (x(h) + V2 () (x = x9)

e Newton update x®+1) is solution of linear equation f(x; x(k)) =0

Quadratic approximation of function

e quadratic approximation of g(x) around x) is
1
gq(x;x)) = g(x("))+Vg(x("))T(x—x(k))+5(x—x(k))TVQg(x("))(x—x("))

e Newton update x¥+1) satisfies Vg, (x; x(K)) = 0

gradient and Newton methods for optimization 12.39



Example (n = 1)

gq(x;x))

g(x)

LB )
84 (i xR)) = (x; x (K

g’ (x)

)

gu(x(k) T
8aleix ) = (M) + g/ () (x = x(0) + B2 (- x ) T = 29

gradient and Newton methods for optimization 12.40



Example

1
minimize g(x) = §x2 —sinx

e applying Newton’s method with x = 0.5, we have

(D _
2@ = 8@ o 0.5 -cos(0.5)
g (x(M) 1 +sin(0.5)
-0.3775
= 0.5 - — o = 0.7552

repeating, we get x®) = 0.7391, x4) = 0.7390, and x(® ~ 0.7390
e note that g’ (x(®)) ~ 0, and g” (x(®)) = 1.672 > 0

® SO, x®) is an approximate local minimizer (it is an approximate global minimizer)

gradient and Newton methods for optimization 12.41



Example

W =log(e*+e). g =""" g')=—"2
x) =log(e*+e7"), x) = , x) =
8 g 8 eX +eo-X 8 (ex_,_e—x)2
g(x) g (x)
3 r T
2,
-3 =2 |-1 1 2 3 X
T
e

does not converge when started atx® =1.15

gradient and Newton methods for optimization 12.42



Damped Newton method

given a starting point x (V)

repeatfork =1,2,...

1. compute Newton step v = —V2g(x(K))~1vg(x(k))

2. select a stepsize ¢ (e.g., using backtracking line search)
3. update x k1) = x(K) 4 ¢y

gradient and Newton methods for optimization 12.43



Example

g(x)=log(e*+e™), xM =4

g(x)

Y 2 4 1 2 3 4 5

Iteration

close to the solution: very fast convergence, no backtracking steps

gradient and Newton methods for optimization
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Example

g(x1,x2) — ex1+x2—1 +ex1—xQ—1 +e—x1—1

damped Newton method started at x = (-2, 2)

2 e
2
1 o0 1072
I
~ 107
g o 2
- S0
! 1078
=2 10°10
- = 1 0 1 1 2 3 4 5 6
X1 k

gradient and Newton methods for optimization
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Newton method for nonconvex functions

if V2g(x()) is not positive definite, it is possible that Newton step v satisfies
Ve(x®)Ty = ~Vg(x¥) 7924 (x*¥)) Vg (x*)) > 0

gq(x§x(k))

g(x)

x (k) x4y

o if Newton step is not descent direction, replace it with descent direction

e simplest choice is v = —=Vg(x®)) or v = —(V2g(xy) + uxd) Vg (x X))

gradient and Newton methods for optimization
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References and further readings

e S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

e L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)
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