
12. Nonlinear equations and optimization

• nonlinear equation in one variable

• Newton method for nonlinear equations

• unconstrained optimization

• gradient and Newton methods for optimization

ENGR 504 (Fall 2024) S. Alghunaim

12.1

Nonlinear equation in one variable

𝑓 (𝑥) = 0

• the root or zero is any solution of the above equation

• we assume 𝑓 is a continuous function

Example: nonlinear resistive circuit

−+𝐸

𝑔(𝑥)

𝑅

−
𝑥

+

𝑥

𝐸/𝑅

(𝐸 − 𝑥)/𝑅

𝑔(𝑥)

𝑔(𝑥) − 𝐸 − 𝑥

𝑅
= 0

a nonlinear equation in the variable 𝑥, with three solutions

SA — ENGR504nonlinear equation in one variable 12.2

Examples

0 2 4 6 8 10 12 14
𝑥

-1

0

1
𝑓
(𝑥
)

𝑓 (𝑥) = sin(𝑥)

0 2 4 6 8 10 12 14 16 18 20
𝑥

-2000

0

2000

𝑓
(𝑥
)

𝑓 (𝑥) = 𝑥3 − 30𝑥2 + 2552

-10 -8 -6 -4 -2 0 2 4 6 8 10
𝑥

0

20

40

𝑓
(𝑥
)

𝑓 (𝑥) = 10 cosh(𝑥/4) − 𝑥 where cosh(𝑡) = 𝑒𝑡+𝑒−𝑡
2

SA — ENGR504nonlinear equation in one variable 12.3

Iterative methods

• nonlinear equations are much difficult to solve compared to linear equations

• obtaining a solution by finite-step algorithm is not feasible

• iterative algorithms start with initial or starting point, 𝑥 (1) and compute estimates

𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑘) , . . .

• moving from 𝑥 (𝑘) to 𝑥 (𝑘+1) is called an iteration of the algorithm

• ideally converge to a root of the target function

𝑥 (𝑘) → 𝑥★ as 𝑘 → ∞

where 𝑓 (𝑥★) = 0

SA — ENGR504nonlinear equation in one variable 12.4

Convergence rates

assume the sequence 𝑥 (𝑘) converges to a limit 𝑥★

Linear convergence: if there exists a constant 𝑐 ∈ (0, 1) such that

|𝑥 (𝑘) − 𝑥★ | ≤ 𝑐 |𝑥 (𝑘−1) − 𝑥★ | for sufficiently large 𝑘

example: 𝑥 (𝑘) = 1 + (1/2)𝑘 linearly converges to 𝑥★ = 1,

|𝑥 (𝑘+1) − 𝑥★ | = (1/2)𝑘+1 =
1

2
|𝑥 (𝑘) − 𝑥★ |

satisfies the definition with 𝑐 = 1/2

R-linear convergence: if a positive constant 𝑀 and a value 𝑐 ∈ (0, 1) exist such that

|𝑥 (𝑘) − 𝑥★ | ≤ 𝑀𝑐𝑘 for sufficiently large 𝑘

linear convergence implies 𝑅-linear convergence (reverse is not necessarily true)

SA — ENGR504nonlinear equation in one variable 12.5

Superlinear convergence: if a sequence 𝑐𝑘 > 0 with 𝑐𝑘 → 0 exists such that

|𝑥 (𝑘) − 𝑥★ | ≤ 𝑐𝑘 |𝑥 (𝑘−1) − 𝑥★ | for large 𝑘

example: 𝑥 (𝑘) = 1 + (1/(𝑘 + 1))𝑘 has superlinear convergence to 𝑥★ = 1, as

|𝑥 (𝑘) − 𝑥★ | = 1

(𝑘 + 1)𝑘
=

𝑘 𝑘−1

(𝑘 + 1)𝑘
1

𝑘 𝑘−1
=

𝑘 𝑘−1

(𝑘 + 1)𝑘
|𝑥 (𝑘−1) − 𝑥★ |

satisfies the definition with 𝑐𝑘 = 𝑘 𝑘−1/(𝑘 + 1)𝑘 , which approaches zero

Quadratic convergence: if a constant 𝑐 > 0 exists such that

|𝑥 (𝑘) − 𝑥★ | ≤ 𝑐 |𝑥 (𝑘−1) − 𝑥★ |2 for large 𝑘

example: 𝑥 (𝑘) = 1 + (1/2)2𝑘 has quadratic convergence to 𝑥★ = 1, as

|𝑥 (𝑘+1) − 𝑥★ | = (1/2)2𝑘+1 =

(
(1/2)2𝑘

)2
= |𝑥 (𝑘) − 𝑥★ |2

satisfies the definition with 𝑐 = 1

SA — ENGR504nonlinear equation in one variable 12.6

The bisection method

given: 𝑎, 𝑏 with 𝑎 < 𝑏, 𝑓 (𝑎) 𝑓 (𝑏) < 0, and tolerance 𝜖

repeat

1. 𝑥 = (𝑎 + 𝑏)/2
2. compute 𝑓 (𝑥); if 𝑓 (𝑥) = 0, return 𝑥

3. if 𝑓 (𝑥) 𝑓 (𝑎) < 0, 𝑏 = 𝑥, else, 𝑎 = 𝑥

4. stop if 𝑏 − 𝑎 ≤ 𝜖

• condition 𝑓 (𝑎) 𝑓 (𝑏) < 0 ensures a root exists between 𝑎, 𝑏

• 𝑎, 𝑏 can be chosen from graphing the function

SA — ENGR504nonlinear equation in one variable 12.7

Convergence

let [𝑎 (𝑘) , 𝑏 (𝑘)] be the interval after iteration 𝑘 , then

𝑏 (𝑘) − 𝑎 (𝑘) = (𝑏 − 𝑎)/2𝑘

• after 𝑘 iterations, the midpoint 𝑥 (𝑘) = (𝑏 (𝑘) + 𝑎 (𝑘))/2 satisfies

|𝑥 (𝑘) − 𝑥★ | ≤ 𝑏 (𝑘) − 𝑎 (𝑘) ≤ (1/2)𝑘 (𝑏 − 𝑎)

thus, it is R-linearly convergent with 𝑐 = 1/2 and 𝑀 = 𝑏 − 𝑎

• the exit condition 𝑏 (𝑘) − 𝑎 (𝑘) ≤ 𝜖 will be satisfied if

log2

(
𝑏 − 𝑎

2𝑘

)
= log2 (𝑏 − 𝑎) − 𝑘 ≤ log2 𝜖

the algorithm therefore terminates after

𝑘 ≈
⌈
log2

(
𝑏 − 𝑎

𝜖

)]
iterations where ⌈𝛼⌉ is the smallest integer greater than or equal to 𝛼

SA — ENGR504nonlinear equation in one variable 12.8

MATLAB implementation

function [x,k] = bisect(f,a,b,tol)

% assuming func is a defined input function

% this function returns in p a value such that | x - root | < atol

% and in k the number of iterations required.

fa=f(a);fb=f(b);

if (a >= b) | (fa*fb >= 0) | (tol <= 0)

disp(’something wrong with the input: quitting’);

x = NaN; k=NaN;

return

end

k = ceil(log2(b-a) - log2(tol));

for i=1:k

x = (a+b)/2;

fx = f(x);

if abs(fx) < eps, k = i; return, end

if fa * fx < 0

b = x; fb = fx;

else

a = x; end

end

end

SA — ENGR504nonlinear equation in one variable 12.9

Examples

• for 𝑓 (𝑥) = 𝑥3 − 30𝑥2 + 2552, starting from interval [0, 20] with a tolerance of
1 × 10−8, the method converges to 𝑥★ ≈ 11.86150151 after 31 iterations

the associated MATLAB script is:

f = @(x) x^3 - 30*x^2 + 2552;

[x,k] = bisect(f,0,20,1.e-8)

• for 𝑓 (𝑥) = 2.5 sinh(𝑥/4) − 1, beginning with interval [−10, 10] and using a
tolerance of 1 × 10−10, the method converges to 𝑥★ ≈ 1.5601412791 after 38
iterations

the associated MATLAB script is:

f = @(x) 2.5 * sinh (x/4) - 1;

[x,k] = bisect(f,-10,10,1.e-10)

SA — ENGR504nonlinear equation in one variable 12.10

Outline

• nonlinear equation in one variable

• Newton method for nonlinear equations

• unconstrained optimization

• gradient and Newton methods for optimization

Set of nonlinear equations

consider 𝑛 nonlinear equations in 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) = 0, 𝑖 = 1, . . . , 𝑛

in vector notation: 𝑓 (𝑥) = 0 with

𝑥 =


𝑥1
𝑥2
...

𝑥𝑛

 , 𝑓 (𝑥) =


𝑓1 (𝑥1, . . . , 𝑥𝑛)
𝑓2 (𝑥1, . . . , 𝑥𝑛)

...

𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)


• 𝑓𝑖 : R

𝑛 → R

• 𝑓𝑖 (𝑥) is 𝑖th residual

• 𝑓 (𝑥) is residual vector

SA — ENGR504Newton method for nonlinear equations 12.11

Difficulty of solving nonlinear equations

• solving nonlinear equations is (in general) much harder than solving linear
equations

• even determining if a solution exists is hard

• so we will use heuristic algorithms

• not guaranteed to always work

• but often work well in practice (like 𝑘-means)

SA — ENGR504Newton method for nonlinear equations 12.12

Deriving Newton method

• linearize 𝑓 (i.e., make affine approximation) around current iterate 𝑥 (𝑘)

𝑓 (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• take solution 𝑥 of linearized equation 𝑓 (𝑥; 𝑥 (𝑘)) = 0 as the next iterate 𝑥 (𝑘+1) :

𝑥 = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))

𝑓 (𝑥; 𝑥 (𝑘))

𝑓 (𝑥)

𝑥 (𝑘)
𝑥 (𝑘+1)

SA — ENGR504Newton method for nonlinear equations 12.13

Newton method for nonlinear equations

assume 𝑓 : R𝑛 → R𝑛 is differentiable

given a starting point 𝑥 (1) and solution tolerance 𝜖

repeat for 𝑘 ≥ 0

1. evaluate 𝐷 𝑓 (𝑥 (𝑘))
2. set

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))

if ∥ 𝑓 (𝑥 (𝑘+1))∥ < 𝜖 (or ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥ < 𝜖), stop and output 𝑥 (𝑘+1)

• 𝐷 𝑓 (𝑥 (𝑘)) is derivative (Jacobian) matrix of 𝑓 at 𝑥 (𝑘) assumed to be nonsingular

• each iteration requires one evaluation of 𝑓 (𝑥) and 𝐷 𝑓 (𝑥)

• each iteration requires factorization of the 𝑛 × 𝑛 matrix 𝐷 𝑓 (𝑥)

• also called Newton-Raphson algorithm

SA — ENGR504Newton method for nonlinear equations 12.14

Example

applying Newton’s method on 𝑓 (𝑥) = 2 cosh(𝑥4) − 𝑥 gives

𝑥 (𝑘+1) = 𝑥 (𝑘) − 2 cosh(𝑥 (𝑘)/4) − 𝑥 (𝑘)

0.5 sinh(𝑥 (𝑘)/4) − 1

where cosh(𝑢) = (𝑒𝑢 + 𝑒−𝑢)/2 and sinh(𝑢) = (𝑒𝑢 − 𝑒−𝑢)/2

with tolerance of 1 × 10−8, we have

• starting from 𝑥0 = 2, 4 iterations are needed to get 𝑥★1 = 2.35755106

• from 𝑥0 = 8, 5 iterations are enough to reach 𝑥★2 = 8.50719958

for 𝑥0 = 8, the values of 𝑓 (𝑥 (𝑘)) evolve as:

𝑘 0 1 2 3 4 5
𝑓 (𝑥 (𝑘)) -4.76e-1 8.43e-2 1.56e-3 5.65e-7 7.28e-14 1.78e-15

SA — ENGR504Newton method for nonlinear equations 12.15

Example

Newton method applied to 𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑒𝑥
(𝑘) − 𝑒−𝑥

(𝑘)

𝑒𝑥
(𝑘) + 𝑒−𝑥 (𝑘)

results with 𝑥 (1) = 10

𝑘

|𝑥 (𝑘) |

𝑘

| 𝑓 (𝑥 (𝑘)) |

SA — ENGR504Newton method for nonlinear equations 12.16

Example

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥 − 3𝑥
𝑥

𝑓 (𝑥)

• starting point 𝑥 (1) = −1: converges to 𝑥★ = −1.62

• starting point 𝑥 (1) = −0.8: converges to 𝑥★ = 1.62

• starting point 𝑥 (1) = −0.7: converges to 𝑥★ = 0

SA — ENGR504Newton method for nonlinear equations 12.17

Example

𝑓1 (𝑥1, 𝑥2) = log
(
𝑥21 + 2𝑥22 + 1

)
− 0.5 = 0

𝑓2 (𝑥1, 𝑥2) = 𝑥2 − 𝑥21 + 0.2 = 0

𝑓1 (𝑥) = 0

𝑓2 (𝑥) = 0

𝑥1

𝑥
2

two equations in two variables; two solutions (0.70, 0.29), (−0.70, 0.29)

SA — ENGR504Newton method for nonlinear equations 12.18

Newton iteration

• evaluate 𝑔 = 𝑓 (𝑥) and

𝐻 = 𝐷 𝑓 (𝑥) =
[
2𝑥1/

(
𝑥21 + 2𝑥22 + 1

)
4𝑥2/

(
𝑥21 + 2𝑥22 + 1

)
−2𝑥1 1

]
• solve 𝐻𝑣 = −𝑔 (two linear equations in two variables)

• update 𝑥 := 𝑥 + 𝑣

Results

• 𝑥 (1) = (1, 1): converges to 𝑥★ = (0.70, 0.29) in about 4 iterations

• 𝑥 (1) = (−1, 1): converges to 𝑥★ = (−0.70, 0.29) in about 4 iterations

• 𝑥 (1) = (1,−1) or 𝑥 (1) = (−1,−1): does not converge

Observations

• Newton’s method works well if started near a solution; may not work otherwise

• can converge to different solutions depending on the starting point

• does not necessarily find the solution closest to the starting point

SA — ENGR504Newton method for nonlinear equations 12.19

Convergence of Newton’s method

if 𝑓 (𝑥★) = 0 and 𝐷 𝑓 (𝑥★) is nonsingular, and 𝑥 (1) is sufficiently close to 𝑥★, then

𝑥 (𝑘) → 𝑥★, ∥𝑥 (𝑘+1) − 𝑥★∥ ≤ 𝑐∥𝑥 (𝑘) − 𝑥★∥2

for some 𝑐 > 0

• has quadratic convergence when started near a solution

• explains fast convergence when started near solution

SA — ENGR504Newton method for nonlinear equations 12.20

Outline

• nonlinear equation in one variable

• Newton method for nonlinear equations

• unconstrained optimization

• gradient and Newton methods for optimization

Hessian

Hessian of 𝑔 at 𝑧: a symmetric 𝑛 × 𝑛 matrix

∇2𝑔(𝑥) =



𝜕2𝑔

𝜕𝑥2
1

𝜕2𝑔

𝜕𝑥1𝜕𝑥2
· ·· 𝜕2𝑔

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑔

𝜕𝑥2𝜕𝑥1

𝜕2𝑔

𝜕𝑥2
2

· ·· 𝜕2𝑔

𝜕𝑥2𝜕𝑥𝑛

... ... · ·· ...
𝜕2𝑔

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑔

𝜕𝑥𝑛𝜕𝑥2
· ·· 𝜕2𝑔

𝜕𝑥2
𝑛


• ∇2𝑔(𝑧)𝑖 𝑗 = 𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑧)

• this is also the derivative matrix of gradient ∇𝑔(𝑥) at 𝑧

Quadratic (second order) approximation of 𝑔 around 𝑧

𝑔q (𝑥) = 𝑔(𝑧) + ∇𝑔(𝑧)T (𝑥 − 𝑧) + 1
2 (𝑥 − 𝑧)T∇2𝑔(𝑧) (𝑥 − 𝑧)

when 𝑛 = 1 this reduces to

𝑔q (𝑥) = 𝑔(𝑧) + 𝑔′ (𝑧) (𝑥 − 𝑧) + 1
2𝑔

′′ (𝑧) (𝑥 − 𝑧)2

SA — ENGR504unconstrained optimization 12.21

Examples

Affine function: 𝑔(𝑥) = 𝑎T𝑥 + 𝑏

∇𝑔(𝑥) = 𝑎, ∇2𝑔(𝑥) = 0

Quadratic function: 𝑔(𝑥) = 𝑥T𝑃𝑥 + 𝑞T𝑥 + 𝑟 with 𝑃 symmetric

∇𝑔(𝑥) = 2𝑃𝑥 + 𝑞, ∇2𝑔(𝑥) = 2𝑃

Least squares cost: 𝑔(𝑥) = ∥𝐴𝑥 − 𝑏∥2 = 𝑥T𝐴T𝐴𝑥 − 2𝑏T𝐴𝑥 + 𝑏T𝑏

∇𝑔(𝑥) = 2𝐴T𝐴𝑥 − 2𝐴T𝑏, ∇2𝑔(𝑥) = 2𝐴T𝐴

Composition with affine mapping: if 𝑔(𝑥) = ℎ(𝐶𝑥 + 𝑑), then

∇𝑔(𝑥) = 𝐶T∇ℎ(𝐶𝑥 + 𝑑)
∇2𝑔(𝑥) = 𝐶T∇2ℎ(𝐶𝑥 + 𝑑)𝐶

SA — ENGR504unconstrained optimization 12.22

Example

𝑔 (𝑥1, 𝑥2) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

gradient is

∇𝑔(𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 − 𝑒−𝑥1−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

]

Hessian is

∇2𝑔(𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1 𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1

]

SA — ENGR504unconstrained optimization 12.23

using composition property we can express 𝑔 as 𝑔(𝑥) = ℎ(𝐶𝑥 + 𝑑) with

ℎ(𝑦1, 𝑦2, 𝑦3) = 𝑒𝑦1 + 𝑒𝑦2 + 𝑒𝑦3 , 𝐶 =


1 1
1 −1

−1 0

 , 𝑑 =


−1
−1
−1


Gradient: ∇𝑔(𝑥) = 𝐶T∇ℎ(𝐶𝑥 + 𝑑)

∇𝑔(𝑥) =
[
1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1

𝑒𝑥1−𝑥2−1

𝑒−𝑥1−1


Hessian: ∇2𝑔(𝑥) = 𝐶T∇ℎ2 (𝐶𝑥 + 𝑑)𝐶

∇2𝑔(𝑥) =
[
1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1 0 0

0 𝑒𝑥1−𝑥2−1 0
0 0 𝑒−𝑥1−1




1 1
1 −1

−1 0


SA — ENGR504unconstrained optimization 12.24

Unconstrained minimization problem

minimize 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛)

• 𝑔 : R𝑛 → R is the cost or objective function

• 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is 𝑛-vector of optimization variables

• to solve a maximization problem (i.e., maximize 𝑔(𝑥)), we can minimize −𝑔(𝑥)

• we will assume that 𝑔 is twice differentiable

SA — ENGR504unconstrained optimization 12.25

Local and global optimum

• 𝑥★ is an optimal point (or a minimum) if

𝑔(𝑥★) ≤ 𝑔(𝑥) for all 𝑥

also called globally optimal

• 𝑥★ is a locally optimal point (local minimum) if for some 𝑅 > 0

𝑔(𝑥★) ≤ 𝑔(𝑥) for all 𝑥 with ∥𝑥 − 𝑥★∥ ≤ 𝑅

Example

𝑧 𝑦

𝑧 is (globally) optimal 𝑦 is locally optimal

SA — ENGR504unconstrained optimization 12.26

Conditions for a minimum

a necessary condition for a minimum is

∇𝑔(𝑥★) = 0

a point where the gradient vanishes ∇𝑔(𝑥) = 0 is called a critical or stationary point

• if 𝑥★ is a local minimum, then for any direction 𝑣 we have

𝑔(𝑥★ + 𝑣) = 𝑔(𝑥★) + ∇𝑔(𝑥★)T𝑣 + (1/2)𝑣T∇2𝑔(𝑥★)𝑣 ≥ 𝑔(𝑥★)

• for a very small ∥𝑣∥, if ∇𝑔 (𝑥★) ≠ 0, then we can find 𝑣 such that ∇𝑔(𝑥★)T𝑣 < 0

• so we must have ∇𝑔(𝑥★) = 0 at a minimum (or maximum)

• gradient also vanish at saddle points, which is neither a minimum or maximum

• at a strict minimum we must also have for all 𝑣 satisfying 0 < ∥𝑣∥ ≪ 1

𝑔(𝑥★ + 𝑣) = 𝑔(𝑥★) + (1/2)𝑣T∇2𝑔(𝑥★)𝑣 > 𝑔(𝑥★)

this will happen if the Hessian matrix ∇2𝑔(𝑥★) is positive definite

SA — ENGR504unconstrained optimization 12.27

Optimality conditions

Necessary condition: if 𝑥★ is locally optimal, then

∇𝑔(𝑥★) = 0 and ∇2𝑔(𝑥★) is positive semidefinite

Sufficient condition: if 𝑥★ satisfies

∇𝑔(𝑥★) = 0 and ∇2𝑔(𝑥★) is positive definite

then 𝑥★ is locally optimal

Necessary and sufficient condition for convex functions

• 𝑔 is called convex if ∇2𝑔(𝑥) is positive semidefinite everywhere

• if 𝑔 is convex then 𝑥★ is optimal if and only if ∇𝑔(𝑥★) = 0

SA — ENGR504unconstrained optimization 12.28

Example

1

𝑥
User

Neighboring BSMain BS

1

2

• power of the received signal measured by the user from each antenna is the
reciprocal of the squared distance from the corresponding antenna

• find position 𝑥 of user (relative to main station) that maximizes signal-to-noise ratio

SA — ENGR504unconstrained optimization 12.29

to solve this problem, we need to maximize the signal-to-noise ratio:

𝑔(𝑥) = 1 + (2 − 𝑥)2
1 + 𝑥2

setting the derivative to zero:

𝑔′ (𝑥) = −2(2 − 𝑥) (1 + 𝑥2) − 2𝑥(1 + (2 − 𝑥)2)
(1 + 𝑥2)2 =

4(𝑥2 − 2𝑥 − 1)
(1 + 𝑥2)2 = 0

• 𝑔′ (𝑥) = 0 at 𝑥 = 1 ±
√
2

• checking the objective values, we see that 𝑥 = 1 −
√
2 gives larger objective

• derivative changes sign + to − when passing through 𝑥 = 1 −
√
2, so 𝑓 ′′ (𝑥) < 0

• hence, 𝑥◦ = 1 −
√
2 is a local maximizer

• it is a global maximizer since 𝑔(𝑥) → 1 < 𝑔(𝑥◦) as |𝑥 | → ∞

SA — ENGR504unconstrained optimization 12.30

Examples (𝑛 = 1)

• 𝑔(𝑥) = log (𝑒𝑥 + 𝑒−𝑥)

𝑔′ (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑔′′ (𝑥) = 4

(𝑒𝑥 + 𝑒−𝑥)2

𝑔′′ (𝑥) ≥ 0 everywhere; 𝑥★ = 0 is the unique optimal point

• 𝑔(𝑥) = 𝑥4

𝑔′ (𝑥) = 4𝑥3, 𝑔′′ (𝑥) = 12𝑥2

𝑔′′ (𝑥) ≥ 0 everywhere; 𝑥★ = 0 is the unique optimal point

• 𝑔(𝑥) = 𝑥3

𝑔′ (𝑥) = 3𝑥2, 𝑔′′ (𝑥) = 6𝑥

𝑔′ (0) = 0, 𝑔′′ (0) = 0 but 𝑥 = 0 is not locally optimal

SA — ENGR504unconstrained optimization 12.31

Examples

• 𝑔(𝑥) = 𝑥T𝑃𝑥 + 𝑞T𝑥 + 𝑟 (𝑃 is symmetric positive definite)

∇𝑔(𝑥) = 2𝑃𝑥 + 𝑞, ∇2𝑔(𝑥) = 2𝑃

∇2𝑔(𝑥) is positive definite everywhere, hence the unique optimal point is

𝑥★ = −(1/2)𝑃−1𝑞

• 𝑔(𝑥) = ∥𝐴𝑥 − 𝑏∥2 (𝐴 is a matrix with linearly independent columns)

∇𝑔(𝑥) = 2𝐴T𝐴𝑥 − 2𝐴T𝑏, ∇2𝑔(𝑥) = 2𝐴T𝐴

∇2𝑔(𝑥) is positive definite everywhere, hence the unique optimal point is

𝑥★ = (𝐴T𝐴)−1𝐴T𝑏

SA — ENGR504unconstrained optimization 12.32

Examples

𝑔 (𝑥1, 𝑥2) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

• we can express ∇2𝑔(𝑥) as

∇2𝑔(𝑥) =
[
1 1 1
1 −1 0

] 
𝑒𝑥1+𝑥2−1 0 0

0 𝑒𝑥1−𝑥2−1 0
0 0 𝑒−𝑥1−1



1 1
1 −1
1 0


this shows that ∇2𝑔(𝑥) is positive definite for all 𝑥

• therefore 𝑥★ is optimal if and only if

∇𝑔
(
𝑥★

)
=

[
𝑒𝑥

★
1 +𝑥★2 −1 + 𝑒𝑥

★
1 −𝑥★2 −1 − 𝑒−𝑥

★
1 −1

𝑒𝑥
★
1 +𝑥★2 −1 − 𝑒𝑥

★
1 −𝑥★2 −1

]
= 0

two nonlinear equations in two variables

SA — ENGR504unconstrained optimization 12.33

Outline

• nonlinear equation in one variable

• Newton method for nonlinear equations

• unconstrained optimization

• gradient and Newton methods for optimization

Descent direction

Descent direction: a vector 𝑣 ∈ R𝑛 is called a descent direction for 𝑔 if

𝑔(𝑥 + 𝑡𝑣) < 𝑔(𝑥)

for sufficiently small 𝑡 > 0

Directional derivative

• for given 𝑧 and nonzero 𝑣, define ℎ(𝑡) = 𝑔(𝑧 + 𝑡𝑣)

• derivative of ℎ at 𝑡 = 0

ℎ′ (0) = 𝜕𝑔

𝜕𝑥1
(𝑧)𝑣1 +

𝜕𝑔

𝜕𝑥2
(𝑧)𝑣2 + ··· + 𝜕𝑔

𝜕𝑥𝑛
(𝑧)𝑣𝑛

= ∇𝑔(𝑧)T𝑣

is called the directional derivative of 𝑔 (at 𝑧, in the direction 𝑣)

• ∇𝑔(𝑥)T𝑣 gives an approximate rate of increase of 𝑓 in the direction 𝑣 at 𝑥

• a vector 𝑣 ∈ R𝑛 is a descent direction if ∇𝑔(𝑥)T𝑣 < 0

SA — ENGR504gradient and Newton methods for optimization 12.34

Gradient descent method

the directional derivative of 𝑓 at 𝑥 in the direction 𝑣 = −∇𝑔(𝑥) is

𝑣T∇𝑔(𝑥) = −∥∇𝑔(𝑥)∥2 < 0

for any 𝑥 with ∇𝑔(𝑥) ≠ 0; thus, −∇𝑔(𝑥) is a descent direction

Gradient descent algorithm

given a starting point 𝑥 (0) and a solution tolerance 𝜖 > 0

repeat for 𝑘 ≥ 1

1. choose a stepsize 𝑡𝑘

2. update
𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑡𝑘∇𝑔(𝑥 (𝑘))

if ∥∇ 𝑓 (𝑥 (𝑘+1))∥ ≤ 𝜖 stop and output 𝑥 (𝑘+1)

• 𝑡𝑘 is called the stepsize or learning rate

• for 𝑡𝑘 small enough, the algorithm is a descent method

• for large 𝑡𝑘 is large enough, algorithm may not be a descent method and may fail

SA — ENGR504gradient and Newton methods for optimization 12.35

Determining the stepsize

suppose 𝑣 (𝑘) is any descent direction

Constant stepsize: set 𝑡𝑘 = 𝑡 for all 𝑘

Backtracking line search

• choose 𝛽 ∈ (0, 1), and 𝛾 ∈ (0, 1) and start with an initial guess 𝑡1 (e.g., 𝑡1 = 1)

• set 𝑡𝑘 := 𝛽𝑡𝑘 until

𝑔(𝑥 (𝑘) + 𝑡𝑘𝑣
(𝑘)) − 𝑔(𝑥 (𝑘)) < 𝛾𝑡𝑘∇𝑔(𝑥 (𝑘))T𝑣 (𝑘)

• simple backtracking algorithm is to set

𝑡 = 1, 0.5, 0.52, 0.53, . . .

until the above is satisfied or until 𝑔(𝑥 (𝑘) + 𝑡𝑘𝑣
(𝑘)) < 𝑔(𝑥 (𝑘))

SA — ENGR504gradient and Newton methods for optimization 12.36

Example

𝑔(𝑥1, 𝑥2, 𝑥3) = (𝑥1 − 4)4 + (𝑥2 − 3)2 + 4(𝑥3 + 5)4

the gradient of this function is

∇𝑔(𝑥) =

4(𝑥1 − 4)3
2(𝑥2 − 3)
16(𝑥3 + 5)3


applying one iteration of gradient descent with 𝑥 (1) = (4, 2,−1) and 𝑡 = 0.002 gives

𝑥 (2) =


4
2

−1

 − 0.002


4(4 − 4)3
2(2 − 3)

16(−1 + 5)3

 =


4.000
2.004
−3.048


notice that

59.06 = 𝑔(4, 2.004,−3.048) < 𝑔(4, 2,−1) = 1025

this shows that 𝑡 = 0.002 is a good choice

SA — ENGR504gradient and Newton methods for optimization 12.37

Newton’s method for minimizing a convex function

if ∇2𝑔(𝑥) is positive definite everywhere, we can minimize 𝑔(𝑥) by solving

∇𝑔(𝑥) = 0

Algorithm: choose 𝑥 (1) and repeat for 𝑘 = 1, 2, . . .

𝑥 (𝑘+1) = 𝑥 (𝑘) − ∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘))

• 𝑣 = −∇2𝑔(𝑥)−1∇𝑔(𝑥) is called the Newton step at 𝑥, which is a descent direction

• converges if started sufficiently close to the solution

• Newton step is computed by a Cholesky factorization of the Hessian

• for 𝑛 = 1, the iteration can be written as

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑔′ (𝑥 (𝑘))
𝑔′′ (𝑥 (𝑘))

SA — ENGR504gradient and Newton methods for optimization 12.38

Interpretations of Newton step

Affine approximation of gradient

• affine approximation of 𝑓 (𝑥) = ∇𝑔(𝑥) around 𝑥 (𝑘) is

𝑓 (𝑥; 𝑥 (𝑘)) = ∇𝑔(𝑥 (𝑘)) + ∇2𝑔(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• Newton update 𝑥 (𝑘+1) is solution of linear equation 𝑓 (𝑥; 𝑥 (𝑘)) = 0

Quadratic approximation of function

• quadratic approximation of 𝑔(𝑥) around 𝑥 (𝑘) is

𝑔q (𝑥; 𝑥 (𝑘)) = 𝑔(𝑥 (𝑘)) +∇𝑔(𝑥 (𝑘))T (𝑥−𝑥 (𝑘)) + 1

2
(𝑥−𝑥 (𝑘))T∇2𝑔(𝑥 (𝑘)) (𝑥−𝑥 (𝑘))

• Newton update 𝑥 (𝑘+1) satisfies ∇𝑔q (𝑥; 𝑥 (𝑘)) = 0

SA — ENGR504gradient and Newton methods for optimization 12.39

Example (𝑛 = 1)

𝑔q (𝑥; 𝑥 (𝑘))

𝑔(𝑥)

𝑥 (𝑘) 𝑥 (𝑘+1) 𝑥★

𝑔′q (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥; 𝑥 (𝑘))

𝑔′ (𝑥)

𝑔q (𝑥; 𝑥 (𝑘)) = 𝑔(𝑥 (𝑘)) + 𝑔′ (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘)) + 𝑔′′ (𝑥 (𝑘))
2

(𝑥 − 𝑥 (𝑘))T (𝑥 − 𝑥 (𝑘))

SA — ENGR504gradient and Newton methods for optimization 12.40

Example

minimize 𝑔(𝑥) = 1

2
𝑥2 − sin 𝑥

• applying Newton’s method with 𝑥 (1) = 0.5, we have

𝑥 (2) = 𝑥 (1) − 𝑔′ (𝑥 (1))
𝑔′′ (𝑥 (1))

= 0.5 − 0.5 − cos(0.5)
1 + sin(0.5)

= 0.5 − −0.3775
1.479

= 0.7552

repeating, we get 𝑥 (3) = 0.7391, 𝑥 (4) = 0.7390, and 𝑥 (5) ≈ 0.7390

• note that 𝑔′ (𝑥 (5)) ≈ 0, and 𝑔′′ (𝑥 (5)) = 1.672 > 0

• so, 𝑥 (5) is an approximate local minimizer (it is an approximate global minimizer)

SA — ENGR504gradient and Newton methods for optimization 12.41

Example

𝑔(𝑥) = log (𝑒𝑥 + 𝑒−𝑥) , 𝑔′ (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑔′′ (𝑥) = 4

(𝑒𝑥 + 𝑒−𝑥)2

𝑥

𝑔(𝑥)

𝑥

𝑔′ (𝑥)

does not converge when started at 𝑥 (1) = 1.15

SA — ENGR504gradient and Newton methods for optimization 12.42

Damped Newton method

given a starting point 𝑥 (1)

repeat for 𝑘 = 1, 2, . . .

1. compute Newton step 𝑣 = −∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘))
2. select a stepsize 𝑡 (e.g., using backtracking line search)

3. update 𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝑡𝑣

SA — ENGR504gradient and Newton methods for optimization 12.43

Example

𝑔(𝑥) = log (𝑒𝑥 + 𝑒−𝑥) , 𝑥 (1) = 4

𝑥

𝑔(𝑥)

Iteration

S
te

p
𝑡

close to the solution: very fast convergence, no backtracking steps

SA — ENGR504gradient and Newton methods for optimization 12.44

Example

𝑔 (𝑥1, 𝑥2) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

damped Newton method started at 𝑥 = (−2, 2)

𝑥1

𝑥
2

𝑘

𝑔
(𝑥

(𝑘
))
−
𝑔
(𝑥

★
)

SA — ENGR504gradient and Newton methods for optimization 12.45

Newton method for nonconvex functions

if ∇2𝑔(𝑥 (𝑘)) is not positive definite, it is possible that Newton step 𝑣 satisfies

∇𝑔(𝑥 (𝑘))T𝑣 = −∇𝑔(𝑥 (𝑘))T∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘)) > 0

𝑥 (𝑘) 𝑥 (𝑘) + 𝑣

𝑔q (𝑥; 𝑥 (𝑘))

𝑔(𝑥)

• if Newton step is not descent direction, replace it with descent direction

• simplest choice is 𝑣 = −∇𝑔(𝑥 (𝑘)) or 𝑣 = −(∇2𝑔(𝑥𝑘) + 𝜇𝑘 𝐼)−1∇𝑔(𝑥 (𝑘))

SA — ENGR504gradient and Newton methods for optimization 12.46

References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

SA — ENGR504references 12.47

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	nonlinear equation in one variable
	Newton method for nonlinear equations
	unconstrained optimization
	gradient and Newton methods for optimization
	references

