11. Constrained least squares

- [constrained least squares](#page-1-0)
- [solution of least norm problem](#page-9-0)
- [solution of constrained least squares](#page-14-0)
- [linear quadratic control](#page-26-0)
- [linear quadratic estimation](#page-35-0)
- [portfolio optimization](#page-42-0)

Constrained least squares

minimize $||Ax - b||^2$ subject to $Cx = d$

- • A is an $m \times n$ matrix, C is a $p \times n$ matrix, b is an m-vector, d is a p-vector
- $||Ax b||^2$ is the *objective*, $Cx = d$ are the *constraints*
- we make no assumptions about the shape of A
- in most applications $p \le n$ and the equation $Cx = d$ is underdetermined
- goal is to find a solution of $Cx = d$ with smallest objective

Solution

- x is *feasible* if $Cx = d$
- \hat{x} is *optimal* or *solution* if it is feasible and

$$
||A\hat{x} - b||^2 \le ||Ax - b||^2 \quad \text{for all feasible } x
$$

Example: Piecewise-polynomial fitting

• fit two polynomials $f(x), g(x)$ to points $(x_1, y_1), \ldots, (x_N, y_N)$

 $f(x_i) \approx y_i$ for points $x_i \leq a$, $g(x_i) \approx y_i$ for points $x_i > a$

• make values and derivatives continuous at point $a: f(a) = g(a), f'(a) = g'(a)$

Constrained LS formulation

• assume points are numbered so that $x_1, \ldots, x_M \le a$ and $x_{M+1}, \ldots, x_N > a$:

minimize
$$
\sum_{i=1}^{M} (f(x_i) - y_i)^2 + \sum_{i=M+1}^{N} (g(x_i) - y_i)^2
$$

subject to $f(a) = g(a), f'(a) = g'(a)$

• for polynomials $f(x) = \theta_1 + \dots + \theta_d x^{d-1}$ and $g(x) = \theta_{d+1} + \dots + \theta_{2d} x^{d-1}$

$$
A = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{d-1} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & x_M & \cdots & x_M^{d-1} & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & x_{M+1} & \cdots & x_{M+1}^{d-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 & x_N & \cdots & x_N^{d-1} \\ \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_M \\ y_{M+1} \\ \vdots \\ y_N \end{bmatrix}
$$

$$
C=\left[\begin{array}{cccccc} 1 & a & \cdots & a^{d-1} & -1 & -a & \cdots & -a^{d-1} \\ 0 & 1 & \cdots & (d-1)a^{d-2} & 0 & -1 & \cdots & -(d-1)a^{d-2} \end{array}\right],\quad d=\left[\begin{array}{c} 0 \\ 0 \end{array}\right]
$$

Example: Advertising budget allocation

- m demographics groups (audiences), n advertising channels
- v_i^{des} is target number of views or impressions for group i
- s_j is amount of advertising purchased in channel j
- R_{ij} is # views in group i per dollar spent on ads in channel j
- $(Rs)_i$ is total number of views in group i
- fixed budget $\mathbf{1}^T s = B$
- constrained LS problem: minimize $||Rs v^{\text{des}}||^2$ subject to $\mathbf{1}^T s = B$

Example: optimal and scaled LS solution to satisfy budget

Least norm problem

minimize $||x||^2$ subject to $Cx = d$

- C is a $p \times n$ matrix, d is a p-vector
- the goal is to find the solution of $Cx = d$ with the smallest norm
- a special case of constrained LS with $A = I$ and $b = 0$

Least distance problem: minimizing the distance to a given point $a \neq 0$:

minimize $||x - a||^2$ subject to $Cx = d$

• reduces to least norm problem by a change of variables $y = x - a$

minimize
$$
||y||^2
$$

subject to $Cy = d - Ca$

• from least norm solution y, we obtain solution $x = y + a$ of first problem

Force sequence

- a unit mass with zero initial position and velocity
- we apply piecewise-constant force $F(t)$ during interval $[0, 10)$:

$$
F(t) = x_j
$$
 for $t \in [j-1, j)$, $j = 1, ..., 10$

• position and velocity at $t = 10$ are given by

$$
p^{\text{fin}} = (19/2)x_1 + (17/2)x_2 + (15/2)x_3 + \dots + (1/2)x_{10}
$$

$$
v^{\text{fin}} = x_1 + x_2 + \dots + x_{10}
$$

we want to choose a force sequence that results in $p^{\rm fin}=1,$ $v^{\rm fin}=0$

 constant east squares $\text{S}A - \text{ENGR504}$ 11.7

Example

there are many solution; we consider two solutions:

1. *bang-bang force:* solutions with only two nonzero elements:

$$
x = (1, -1, 0, \ldots, 0), \quad x = (0, 1, -1, \ldots, 0), \ldots
$$

2. *least norm solution:* smallest force sequence

minimize
$$
\int_0^{10} F(t)^2 dt = ||x||^2
$$

subject to $\begin{bmatrix} 19/2 & 17/2 & 15/2 & \cdots & 1/2 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Example results

Outline

- • [constrained least squares](#page-1-0)
- **[solution of least norm problem](#page-9-0)**
- [solution of constrained least squares](#page-14-0)
- [linear quadratic control](#page-26-0)
- [linear quadratic estimation](#page-35-0)
- [portfolio optimization](#page-42-0)

Solution of least norm problem

minimize $||x||^2$ subject to $Cx = d$

Assumption: we assume that C has linearly independent rows

- $Cx = d$ has at least one solution for every d
- C is wide or square $(p \le n)$; if $p \le n$ there are infinitely many solutions

Solution of least norm problem

 $\hat{x} = C^{T} (CC^{T})^{-1} d$

- in other words if $Cx = d$ and $x \neq \hat{x}$, then $||x|| > ||\hat{x}||$
- unique solution under the above assumption
- $C^{T}(CC^{T})^{-1} = C^{\dagger}$ is the pseudo-inverse of C, which is also a right-inverse

Proof

1. we first verify that \hat{x} satisfies the constraints:

$$
C\hat{x} = CC^T(CC^T)^{-1}d = d
$$

2. next we show that $||x|| > ||\hat{x}||$ if $Cx = d$ and $x \neq \hat{x}$

$$
||x||^2 = ||\hat{x} + x - \hat{x}||^2
$$

= $||\hat{x}||^2 + 2\hat{x}^T(x - \hat{x}) + ||x - \hat{x}||^2$
= $||\hat{x}||^2 + ||x - \hat{x}||^2$
 $\ge ||\hat{x}||^2$ with equality only if $x = \hat{x}$

line 3 follows from

$$
\hat{x}^{T}(x - \hat{x}) = d^{T}(CC^{T})^{-1}C(x - \hat{x}) = 0
$$

where we used $Cx = C\hat{x} = d$

[solution of least norm problem](#page-9-0) **SA ENGR504** 11.11 11.11

QR factorization method

using the QR factorization $C^{T}\!=\mathcal{Q}R$ of C^{T} , we get

$$
\hat{x} = C^T (CC^T)^{-1} d
$$

= $QR(R^TQ^TQR)^{-1} d$
= $QR(R^TR)^{-1} d$
= $QR^{-T} d$

Algorithm

- 1. compute QR factorization $C^{T} = QR (2p^{2}n \text{ flops})$
- 2. solve $R^{T}z = d$ by forward substitution (p^{2} flops)
- 3. matrix-vector product $\hat{x} = Qz$ (2pn flops)

complexity: $2p^2n$ flops

[solution of least norm problem](#page-9-0) SA — ENGR504 11.12

Example

$$
C = \left[\begin{array}{rrr} 1 & -1 & 1 & 1 \\ 1 & 0 & 1/2 & 1/2 \end{array} \right], \quad d = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
$$

• QR factorization $C^T = QR$

 $\begin{array}{c} \n\cdot & \cdot & \cdot \\ \n\cdot$ I L Ī

$$
\begin{bmatrix} 1 & 1 \ -1 & 0 \ 1 & 1/2 \ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/\sqrt{2} \\ -1/2 & 1/\sqrt{2} \\ 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1/\sqrt{2} \end{bmatrix}
$$

• solve $R^T z = b$

$$
\left[\begin{array}{cc} 2 & 0 \\ 1 & 1/\sqrt{2} \end{array}\right] \left[\begin{array}{c} z_1 \\ z_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \Rightarrow z_1 = 0, z_2 = \sqrt{2}
$$

• evaluate $\hat{x} = Qz = (1, 1, 0, 0)$

Outline

- • [constrained least squares](#page-1-0)
- [solution of least norm problem](#page-9-0)
- **[solution of constrained least squares](#page-14-0)**
- [linear quadratic control](#page-26-0)
- [linear quadratic estimation](#page-35-0)
- [portfolio optimization](#page-42-0)

Assumptions

minimize $||Ax - b||^2$ subject to $Cx = d$

Assumptions

1. the stacked $(m + p) \times n$ matrix

$$
\begin{bmatrix} A \\ C \end{bmatrix}
$$

has linearly independent columns (left-invertible)

2. $p \times n$ matrix C has linearly independent rows (right-invertible)

assumptions imply that $p \le n \le m + p$

Optimality conditions

minimize $||Ax - b||^2$ subject to $Cx = d$

 \hat{x} solves the constrained LS problem if and only if there exists a z such that

$$
\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} A^T b \\ d \end{array}\right]
$$

- this is a set of $n + p$ linear equations in $n + p$ variables
- equations are also known as *Karush-Kuhn-Tucker* (*KKT*) equations
- matrix on left is called *KKT matrix*

Special cases

- least squares: when $p = 0$, reduces to normal equations $A^T A \hat{x} = A^T b$
- least norm: when $A = I$, $b = 0$, reduces to $C\hat{x} = d$ and $\hat{x} + C^{T}z = 0$

Proof

suppose x satisfies $Cx = d$, and (\hat{x}, z) satisfies optimality conditions, then

$$
||Ax - b||^2 = ||A(x - \hat{x}) + A\hat{x} - b||^2
$$

= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 + 2(x - \hat{x})^T A^T (A\hat{x} - b)$
= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 - 2(x - \hat{x})^T C^T z$
= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2$
 $\ge ||A\hat{x} - b||^2$

- on line 3 we use $A^T A \hat{x} + C^T z = A^T b$; on line $4, Cx = C \hat{x} = d$
- inequality shows that \hat{x} is optimal
- \hat{x} is the unique optimum because equality holds only if

$$
A(x - \hat{x}) = 0, \quad C(x - \hat{x}) = 0 \quad \Longrightarrow \quad x = \hat{x}
$$

by the first assumption

[solution of constrained least squares](#page-14-0) SA — ENGR504 11.16

Nonsingularity

the KKT matrix

$$
\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix}
$$

is nonsingular (invertible) if and only if the two assumptions hold

Proof: if assumptions hold

$$
\begin{bmatrix} A^{T}A & C^{T} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x^{T} (A^{T}Ax + C^{T}z) = 0, \quad Cx = 0
$$

$$
\implies ||Ax||^{2} = 0, \quad Cx = 0
$$

$$
\implies Ax = 0, \quad Cx = 0
$$

$$
\implies x = 0 \quad \text{by assumption 1}
$$

if $x=0,$ we have $C^Tz=-A^TAx=0;$ hence also $z=0$ by assumption 2

Singularity

if the assumptions do not hold, then the matrix

$$
\begin{bmatrix}A^T A&C^T\\C&0\end{bmatrix}
$$

is singular

• if assumption 1 does not hold, there exists $x \neq 0$ with $Ax = 0$, $Cx = 0$; then

$$
\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = 0
$$

• if assumption 2 does not hold there exists a $z \neq 0$ with $C^{T}z = 0$; then

I

$$
\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} 0 \\ z \end{bmatrix} = 0
$$

in both cases, this shows that the matrix is singular

[solution of constrained least squares](#page-14-0) SA — ENGR504 11.18

Solving KKT equation directly

$$
\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}
$$

Algorithm

- 1. compute $H = A^T A$ (mn^2 flops)
- 2. compute $c = A^T b$ (2mn flops)
- 3. solve the linear equation

$$
\begin{bmatrix} H & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}
$$

by the LU factorization ($(2/3)(p + n)^3$ flops) or QR factorization $(2(n+p)^3)$

complexity: $mn^2 + (2/3)(p + n)^3$ flops

Solution by QR factorization

we derive a method that avoid computing gram matrix by using QR factorization

$$
\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} A^T b \\ d \end{array}\right]
$$

• multiply 2nd eq. by C^T , add to 1st eq., make change of variables $w = z - d$,

$$
\left[\begin{array}{cc}A^T A + C^T C & C^T \\ C & 0\end{array}\right] \left[\begin{array}{c} \hat{x} \\ w \end{array}\right] = \left[\begin{array}{c}A^T b \\ d\end{array}\right]
$$

• assumption 1 guarantees $A^TA + C^TC$ is nonsingular and QR factorization exists:

$$
\left[\begin{array}{c} A \\ C \end{array}\right] = QR = \left[\begin{array}{c} Q_1 \\ Q_2 \end{array}\right] R
$$

Solution by QR factorization

substituting $A = Q_1 R$ and $C = Q_2 R$ gives the equation

$$
\left[\begin{array}{cc} R^T R & R^T Q_2^T \\ Q_2 R & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ w \end{array}\right] = \left[\begin{array}{c} R^T Q_1^T b \\ d \end{array}\right]
$$

• multiply first equation with R^{-T} and make change of variables $y = R\hat{x}$

$$
\left[\begin{array}{cc} I & Q_2^T \\ Q_2 & 0 \end{array}\right] \left[\begin{array}{c} y \\ w \end{array}\right] = \left[\begin{array}{c} Q_1^T b \\ d \end{array}\right]
$$

• next we note that the matrix $Q_2 = C R^{-1}$ has linearly independent rows:

$$
Q_2^T u = R^{-T} C^T u = 0 \implies C^T u = 0 \implies u = 0
$$

because C has linearly independent rows (assumption 2)

Solution by QR factorization

we use the QR factorization of $Q_2^{\pmb{T}}$ to solve

$$
\left[\begin{array}{cc} I & Q_2^T \\ Q_2 & 0 \end{array}\right] \left[\begin{array}{c} y \\ w \end{array}\right] = \left[\begin{array}{c} Q_1^T b \\ d \end{array}\right]
$$

• from the 1st block row, $y = Q_1^T b - Q_2^T w$; substitute this in the 2nd row:

$$
Q_2 Q_2^T w = Q_2 Q_1^T b - d
$$

 $\bullet\;$ we solve this equation for w using the QR factorization $Q_2^{\,T} = \tilde{Q}\tilde{R}$:

$$
\tilde{R}^T \tilde{R} w = \tilde{R}^T \tilde{Q}^T Q_1^T b - d
$$

which can be simplified to

$$
\tilde{R}w = \tilde{Q}^T Q_1^T b - \tilde{R}^{-T} d
$$

after solving for w , we get $y = Q_1^T b - Q_2^T w$ and solve for \hat{x} in $y = R\hat{x}$

Summary of QR factorization method

$$
\left[\begin{array}{cc}A^T A + C^T C & C^T \\ C & 0\end{array}\right] \left[\begin{array}{c} \hat{x} \\ w \end{array}\right] = \left[\begin{array}{c}A^T b \\ d\end{array}\right]
$$

Algorithm

1. compute the two QR factorizations

$$
\left[\begin{array}{c} A \\ C \end{array}\right] = \left[\begin{array}{c} Q_1 \\ Q_2 \end{array}\right] R \text{ and } Q_2^T = \tilde{Q}\tilde{R}
$$

- 2. solve $\tilde{R}^T u = d$ by forward substitution and compute $c = \tilde{Q}^T Q_1^T b u$
- 3. solve $\tilde{R}w = c$ by back substitution and compute $y = Q_1^Tb Q_2^Tw$
- 4. compute $R\hat{x} = y$ by back substitution

Complexity

- $2(m + p)n^2 + 2np^2$ flops (QR factorizations dominates)
- order $(m + p)n^2$ due to assumption $p \le n \le m + p$

Comparison of the two methods

Complexity: LU is slightly more efficient

- LU factorization $mn^2 + \frac{2}{3}$ $\frac{2}{3}(p+n)^3 \le mn^2 + \frac{16}{3}$ 3 n^3 flops
- OR factorization

$$
2(p+m)n^2 + 2np^2 \le 2mn^2 + 4n^3
$$
 flops

upper bounds follow from $p \leq n$ (assumption 2)

Stability

- QR factorization method avoids calculation of Gram matrix $A^T A$
- hence more robust/stable to numerical errors

Outline

- • [constrained least squares](#page-1-0)
- [solution of least norm problem](#page-9-0)
- [solution of constrained least squares](#page-14-0)
- **[linear quadratic control](#page-26-0)**
- [linear quadratic estimation](#page-35-0)
- [portfolio optimization](#page-42-0)

Linear quadratic control

Linear dynamical system

$$
x_{t+1} = A_t x_t + B_t u_t, \quad y_t = C_t x_t, \quad t = 1, 2, \dots
$$

- \bullet *n*-vector x_t is system *state* (at time *t*)
- \bullet *m*-vector u_t is system *input* (we control)
- \bullet *p*-vector y_t is system *output*
- x_t , u_t , y_t are typically desired to be small

Objective: choose inputs u_1, \ldots, u_{T-1} that minimizes $J_{\text{output}} + \rho J_{\text{input}}$ with

$$
J_{\text{output}} = ||y_1 - y_1^{\text{des}}||^2 + \dots + ||y_T - y_T^{\text{des}}||^2, \quad J_{\text{input}} = ||u_1||^2 + \dots + ||u_{T-1}||^2
$$

where $y_i^{\rm des}$ are given desired values (possibly zero)

Constraints

- dynamics constraint
- initial state and (possibly) the final state are specified $x_1 = x^{\text{init}}$, $x_T = x^{\text{des}}$

Linear quadratic control problem

minimize
$$
||C_1x_1 - y_1^{\text{des}}||^2 + \dots + ||C_Tx_T - y_T^{\text{des}}||^2 + \rho (||u_1||^2 + \dots + ||u_{T-1}||^2)
$$

subject to $x_{t+1} = A_tx_t + B_tu_t$, $t = 1, ..., T-1$
 $x_1 = x^{\text{init}}$, $x_T = x^{\text{des}}$

variables: x_1, \ldots, x_T and u_1, \ldots, u_{T-1}

Constrained least squares formulation

minimize
$$
\|\tilde{A}z - \tilde{b}\|^2
$$

subject to $\tilde{C}z = \tilde{d}$

variables: the $(nT + m(T - 1))$ -vector

$$
z=(x_1,\ldots,x_T,u_1,\ldots,u_{T-1})
$$

Linear quadratic control problem

Objective function: $\|\tilde{A}z - \tilde{b}\|^2$ with

$$
\tilde{A} = \begin{bmatrix}\nC_1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & C_T & 0 & \cdots & 0 \\
\hline\n0 & \cdots & 0 & \sqrt{\rho}I & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & \sqrt{\rho}I\n\end{bmatrix}, \quad \tilde{b} = \begin{bmatrix}\ny_1^{\text{des}} \\
\vdots \\
y_T^{\text{des}} \\
0 \\
\vdots \\
0\n\end{bmatrix}
$$

Constraints: $\tilde{C}z = \tilde{d}$ with

$$
\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \\ \hline I & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad \tilde{d} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ x^{\mathsf{init}} \\ x^{\mathsf{init}} \end{bmatrix}
$$

Example

time-invariant system with constant matrices

$$
A = \begin{bmatrix} 0.855 & 1.161 & 0.667 \\ 0.015 & 1.073 & 0.053 \\ -0.084 & 0.059 & 1.022 \end{bmatrix}, \quad B = \begin{bmatrix} -0.076 \\ -0.139 \\ 0.342 \end{bmatrix}
$$

$$
C = \begin{bmatrix} 0.218 & -3.597 & -1.683 \end{bmatrix}
$$

• $y^{\text{des}} = 0, T = 100$

- initial condition $x^{\text{init}} = (0.496, -0.745, 1.394)$
- target or desired final state $x^{\text{des}} = 0$
- input and output have dimension one

Optimal trade-off curve

Three points on the trade-off curve

Linear state feedback control

Linear state feedback

• *linear state feedback control* uses the input

 $u_t = Kx_t, \quad t = 1, 2, ...$

- *K* is the *state feedback gain matrix*
- widely used, especially when x_t should converge to zero, T is not specified

One approach to compute

- solve the linear quadratic control problem with $x^{\text{des}} = 0$ for (large) T
- solution u_t is a linear function of x^{init} , hence u_1 can be written as $u_1 = Kx^{\text{init}}$
- columns of K can be found by computing u_1 for $x^{\text{init}} = e_1, \ldots, e_n$
- use this K as state feedback gain matrix

Example

- setup of previous example
- blue curve uses optimal linear quadratic control for $T = 100$
- red curve uses simple linear state feedback $u_t = Kx_t$
- optimal choice achieves $y_T = 0$ but linear state feedback makes y_T small only

Outline

- • [constrained least squares](#page-1-0)
- [solution of least norm problem](#page-9-0)
- [solution of constrained least squares](#page-14-0)
- [linear quadratic control](#page-26-0)
- **[linear quadratic estimation](#page-35-0)**
- [portfolio optimization](#page-42-0)

State estimation

Linear dynamical system model

$$
x_{t+1} = A_t x_t + B_t w_t, \quad y_t = C_t x_t + v_t, \quad t = 1, 2, ...
$$

- x_t is state (*n*-vector)
- y_t is measurement (*p*-vector)
- \bullet w_t is input or process noise (*m*-vector)
- v_t is measurement noise or residual (*p*-vector)
- A_t , B_t , C_t are the known dynamics, input, and output matrices

State estimation

- we have measurements y_1, \ldots, y_T
- \bullet w_t , v_t are unknown, but assumed small
- goal: estimate state sequence x_1, \ldots, x_T

Least squares state estimation

minimize
$$
J_{\text{meas}} + \lambda J_{\text{proc}}
$$

subject to $x_{t+1} = A_t x_t + B_t w_t$, $t = 1, ..., T - 1$

- variables are the states x_1, \ldots, x_T and input noise w_1, \ldots, w_{T-1}
- primary objective J_{meas} is sum of squares of measurement residuals:

$$
J_{\text{meas}} = ||C_1x_1 - y_1||^2 + \dots + ||C_Tx_T - y_T||^2
$$

• secondary objective J_{proc} is sum of squares of process noise

$$
J_{\text{proc}} = ||w_1||^2 + \dots + ||w_{T-1}||^2
$$

- $\lambda > 0$ is a parameter, trades off measurement and process errors
- similar to control formulation but interpretation is different

 $\frac{1}{11.34}$ [linear quadratic estimation](#page-35-0) $\frac{1}{11.34}$

Constrained least squares formulation

minimize
$$
||C_1x_1 - y_1||^2 + \cdots + ||C_Tx_T - y_T||^2 + \lambda (||w_1||^2 + \cdots + ||w_{T-1}||^2)
$$

subject to $x_{t+1} = A_tx_t + B_tw_t, t = 1, ..., T-1$

• can be written as

$$
\begin{array}{ll}\text{minimize} & \|\tilde{A}z - \tilde{b}\|^2\\ \text{subject to} & \tilde{C}z = \tilde{d}\end{array}
$$

• vector *z* contains the $Tn + (T - 1)m$ variables:

 $z = (x_1, \ldots, x_T, w_1, \ldots, w_{T-1})$

Constrained least squares formulation

$$
\tilde{A} = \begin{bmatrix}\nC_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & C_2 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & C_T & 0 & \cdots & 0 \\
\hline\n0 & 0 & \cdots & 0 & \sqrt{\lambda}I & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \sqrt{\lambda}I\n\end{bmatrix}, \quad \tilde{b} = \begin{bmatrix}\ny_1 \\
y_2 \\
\vdots \\
y_T \\
0 \\
\vdots \\
0\n\end{bmatrix}
$$
\n
$$
\tilde{C} = \begin{bmatrix}\nA_1 & -I & 0 & \cdots & 0 & 0 & 0 & B_1 & 0 & \cdots & 0 \\
0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1}\n\end{bmatrix}, \quad \tilde{d} = 0
$$

Example

$$
A_t = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad B_t = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C_t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
$$

- simple model of mass moving in a 2-D plane
- $x_t = (p_t, z_t)$: 2-vector p_t is position, 2-vector z_t is the velocity
- $y_t = C_t x_t + w_t$ is noisy measurement of mass position
- $T = 100$

Position estimates

- 100 noisy measurements y_t shown as circles
- solid line is exact position $C_t x_t$
- blue lines show position estimates for three values of λ

Outline

- • [constrained least squares](#page-1-0)
- [solution of least norm problem](#page-9-0)
- [solution of constrained least squares](#page-14-0)
- [linear quadratic control](#page-26-0)
- [linear quadratic estimation](#page-35-0)
- **[portfolio optimization](#page-42-0)**

Return of an asset

Asset value

- asset can be stock, bond, real estate, commodity, ...
- buy q shares of an asset at price p at beginning of investment period
- $h = pq$ is dollar value of holdings

Asset return

- sell q shares at new price p^+ at end of period
- profit is

$$
q(p^+ - p) = \frac{(p^+ - p)}{p}h = rh
$$

where r (fractional) return is

$$
r = \frac{(p^+ - p)}{p} = \frac{\text{profit}}{\text{investment}}
$$

Mean return and risk

- r is a time-series (vector) of returns
- $\arg(r)$ is portfolio *mean return* (or just return); $\text{std}(r)$ is *risk*
- $\arg(r)$ and $\text{std}(r)$ are *per-period* return and risk
- mean return and risk are often expressed in annualized form (*i.e.*, per year)

Annualized return and risk: if we have P trading periods per year

annualized return $= P \arg(r), \quad$ annualized risk $= \sqrt{P} \text{std}(r)$

• if returns are daily, with 250 trading days in a year

annualized return $=250 \text{avg}(r)$, annualized risk $=\sqrt{250} \text{std}(r)$

• example: daily return r with per-period (daily) return 0.05% and risk 0.5% has an annualized return and risk of 12.5% and 7.9%

Portfolio investment

- \bullet *n* different assets
- we invest a total of V dollars over some period (one day, week, month, ...)
- goal: make investments so that the combined return for all investments is high

Portfolio allocation weights

- $\bullet \;\; w$ is *asset weight* or *allocation vector* with $\mathbf{1}^T w = 1$
- w_j is fraction of total portfolio value held in asset j; short position if $w_j < 0$
	- short positions are assets you borrow and sell at the beginning, but must return to the borrower at the end of the period
- Vw_i is the dollar value of asset j
- $w = (-0.2, 0.0, 1.2)$ means we take a short position of $0.2V$ in asset 1, don't hold any of asset 2, and invest $1.2V$ in asset 3
- *leverage* of portfolio is $L = |w_1| + \cdots + |w_n|$

Return matrix

(asset) *return matrix* for investments held for T periods is

$$
R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ R_{T1} & R_{T2} & \cdots & R_{Tn} \end{bmatrix} = \begin{bmatrix} \tilde{r}_1^T \\ \tilde{r}_2^T \\ \vdots \\ \tilde{r}_T^T \end{bmatrix}
$$

•
$$
R_{tj}
$$
 is fractional return of asset *j* in period *t*
– $R_{61} = 0.02$ means that asset 1 gained 2% in period 6

- tth row \tilde{r}_t^T gives asset returns in period t
- \bullet *j*th column is time series of asset *j* returns
- $\bullet~$ we often assume asset n is cash with risk-free return $\mu^{\mathrm{rf}}>0$
- $\bullet \;$ if last asset is risk-free, the last column of R is $\mu^{\mathrm{rf}}\boldsymbol{1}$

[portfolio optimization](#page-42-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ 11.42

Return over a period

- we invest a total (positive) amount V_t at the beginning of period t
- so we invest $V_t w_j$ in asset j
- \bullet the dollar value of the whole portfolio at end of period t is

$$
V_{t+1} = \sum_{j=1}^{n} V_t w_j (1 + R_{tj}) = V_t (1 + \tilde{r}_t^T w)
$$

where $\tilde{r}_t = (R_{t1}, \ldots, R_{tn})$

 \bullet total (fractional) return of the portfolio over period t is

$$
\frac{V_{t+1} - V_t}{V_t} = \frac{V_t(1 + \tilde{r}_t^T w) - V_t}{V_t} = \tilde{r}_t^T w
$$

• $r = Rw$ is portfolio (fractional) returns vector (time series) - if n is risk free and $w = e_n$, then $Rw = \mu^{\mathrm{rf}} \mathbf{1}$ (constant return)

[portfolio optimization](#page-42-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ 11.43

Portfolio value

Total portfolio value: if r is portfolio return vector in period t , then

$$
V_{t+1} = V_1 (1+r_1) (1+r_2) \cdots (1+r_t)
$$

- V_1 is initial investment amount
- portfolio value versus time traditionally plotted using $V_1 = 10000

Approximate total portfolio value

• for small per-period returns r_t and not too large T, we have

$$
V_{T+1} = V_1 (1 + r_1) \cdots (1 + r_T)
$$

\n
$$
\approx V_1 + V_1 (r_1 + \cdots + r_T)
$$

\n
$$
= V_1 (1 + T \text{avg}(r))
$$

- approximation assumes $r_i r_j$ are small (e.g., $|r_t|$ small) and can be neglected
- approx. suggests that we can maximize our portfolio value, by maximizing $\arg(r)$

Portfolio optimization

choose w to minimize risk with fixed mean return ρ

minimize
$$
\text{std}(Rw)^2 = (1/T) ||Rw - \rho 1||^2
$$

subject to $\mathbf{1}^T w = 1$, $\text{avg}(Rw) = \rho$

- \overline{R} is the returns matrix for past returns
- $r = Rw$ is the (past) portfolio return time series
- solutions *w* are called *Pareto optimal*

Assumption: *future returns will be similar to past ones*

- this is false in general
- we choose w that would have worked well on past returns
- ... and hope it will work well going forward (just like data fitting)
- we can use validation by finding a solution of certain past period, then testing on another past period

Portfolio optimization via constrained least squares

minimize
$$
||Rw - \rho \mathbf{1}||^2
$$

subject to $\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$

- $\mu = (1/T)R^{T}1$ is *n*-vector of (past) asset returns
- ρ is required (past) portfolio return
- an equality constrained least squares problem, with solution

$$
\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & 1 & \mu \\ 1^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}
$$

Optimal portfolio

optimal portfolio w is an affine function of ρ

$$
\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & 1 & \mu \\ 1^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^T R & 1 & \mu \\ 1^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}
$$

vector w has the form

$$
w = w^0 + \rho v, \quad \mathbf{1}^T v = 0
$$

- Pareto optimal portfolio form a line with base w^0 and direction v
- a point on a line can be written as affine combination of two other points on line
- Pareto optimal portfolios are affine comb. of just two portfolios (two-fund theorem)

Example

- daily return data for 19 stocks over a period of 2000 days (8 years)
- plus risk-free asset with 1% annual return
- open circles shows individual assets ($\sqrt{250}$ std (Re_i) , 250avg (Re_i))
- line shows risk and return for the Pareto optimal portfolios (for different ρ)

Five portfolios

- train period of 2000 days used to compute optimal portfolio
- test period is different 500-day period

Total portfolio value

References and further readings

- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)