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Constrained least squares

minimize ‖𝐴𝑥 − 𝑏‖2
subject to 𝐶𝑥 = 𝑑

• 𝐴 is an 𝑚 × 𝑛 matrix, 𝐶 is a 𝑝 × 𝑛 matrix, 𝑏 is an 𝑚-vector, 𝑑 is a 𝑝-vector

• ‖𝐴𝑥 − 𝑏‖2 is the objective, 𝐶𝑥 = 𝑑 are the constraints

• we make no assumptions about the shape of 𝐴

• in most applications 𝑝 < 𝑛 and the equation 𝐶𝑥 = 𝑑 is underdetermined

• goal is to find a solution of 𝐶𝑥 = 𝑑 with smallest objective

Solution

• 𝑥 is feasible if 𝐶𝑥 = 𝑑

• 𝑥 is optimal or solution if it is feasible and

‖𝐴𝑥 − 𝑏‖2 ≤ ‖𝐴𝑥 − 𝑏‖2 for all feasible 𝑥
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Example: Piecewise-polynomial fitting

• fit two polynomials 𝑓 (𝑥), 𝑔(𝑥) to points (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )

𝑓 (𝑥𝑖) ≈ 𝑦𝑖 for points 𝑥𝑖 ≤ 𝑎, 𝑔 (𝑥𝑖) ≈ 𝑦𝑖 for points 𝑥𝑖 > 𝑎

• make values and derivatives continuous at point 𝑎: 𝑓 (𝑎) = 𝑔(𝑎), 𝑓 ′(𝑎) = 𝑔′(𝑎)

𝑎

𝑓 (𝑥)

𝑔(𝑥)

𝑥

𝑓 (𝑥)
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Constrained LS formulation

• assume points are numbered so that 𝑥1, . . . , 𝑥𝑀 ≤ 𝑎 and 𝑥𝑀+1, . . . , 𝑥𝑁 > 𝑎:

minimize
𝑀∑
𝑖=1

( 𝑓 (𝑥𝑖) − 𝑦𝑖)2 +
𝑁∑

𝑖=𝑀+1
(𝑔 (𝑥𝑖) − 𝑦𝑖)2

subject to 𝑓 (𝑎) = 𝑔(𝑎), 𝑓 ′(𝑎) = 𝑔′(𝑎)

• for polynomials 𝑓 (𝑥) = 𝜃1 + ··· + 𝜃𝑑𝑥𝑑−1 and 𝑔(𝑥) = 𝜃𝑑+1 + ··· + 𝜃2𝑑𝑥𝑑−1

𝐴 =



1 𝑥1 · ·· 𝑥𝑑−11 0 0 · ·· 0
...

...
...

...
...

...

1 𝑥𝑀 · ·· 𝑥𝑑−1
𝑀

0 0 · ·· 0

0 0 · ·· 0 1 𝑥𝑀+1 · ·· 𝑥𝑑−1
𝑀+1

...
...

...
...

...
...

0 0 · ·· 0 1 𝑥𝑁 · ·· 𝑥𝑑−1
𝑁


, 𝑏 =



𝑦1
...

𝑦𝑀
𝑦𝑀+1
...

𝑦𝑁


𝐶 =

[
1 𝑎 · ·· 𝑎𝑑−1 −1 −𝑎 · ·· −𝑎𝑑−1
0 1 · ·· (𝑑 − 1)𝑎𝑑−2 0 −1 · ·· −(𝑑 − 1)𝑎𝑑−2

]
, 𝑑 =

[
0
0

]
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Example: Advertising budget allocation

• 𝑚 demographics groups (audiences), 𝑛 advertising channels

• 𝑣des
𝑖

is target number of views or impressions for group 𝑖

• 𝑠 𝑗 is amount of advertising purchased in channel 𝑗

• 𝑅𝑖 𝑗 is # views in group 𝑖 per dollar spent on ads in channel 𝑗

• (𝑅𝑠)𝑖 is total number of views in group 𝑖

• fixed budget 1T𝑠 = 𝐵

• constrained LS problem: minimize ‖𝑅𝑠 − 𝑣des‖2 subject to 1T𝑠 = 𝐵

Example: optimal and scaled LS solution to satisfy budget

Group

Im
pr

es
si

on
s

Optimal
Scaled
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Least norm problem

minimize ‖𝑥‖2
subject to 𝐶𝑥 = 𝑑

• 𝐶 is a 𝑝 × 𝑛 matrix, 𝑑 is a 𝑝-vector

• the goal is to find the solution of 𝐶𝑥 = 𝑑 with the smallest norm

• a special case of constrained LS with 𝐴 = 𝐼 and 𝑏 = 0

Least distance problem: minimizing the distance to a given point 𝑎 ≠ 0:

minimize ‖𝑥 − 𝑎‖2
subject to 𝐶𝑥 = 𝑑

• reduces to least norm problem by a change of variables 𝑦 = 𝑥 − 𝑎

minimize ‖𝑦‖2
subject to 𝐶𝑦 = 𝑑 − 𝐶𝑎

• from least norm solution 𝑦, we obtain solution 𝑥 = 𝑦 + 𝑎 of first problem
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Force sequence

𝐹 (𝑡)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑡

𝐹 (𝑡)

0 1 2 3 4 5 6 7 8 9 10

• a unit mass with zero initial position and velocity

• we apply piecewise-constant force 𝐹 (𝑡) during interval [0, 10):
𝐹 (𝑡) = 𝑥 𝑗 for 𝑡 ∈ [ 𝑗 − 1, 𝑗), 𝑗 = 1, . . . , 10

• position and velocity at 𝑡 = 10 are given by

𝑝fin = (19/2)𝑥1 + (17/2)𝑥2 + (15/2)𝑥3 + ··· + (1/2)𝑥10
𝑣fin = 𝑥1 + 𝑥2 + · · · + 𝑥10

we want to choose a force sequence that results in 𝑝fin = 1, 𝑣fin = 0
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Example

there are many solution; we consider two solutions:

1. bang-bang force: solutions with only two nonzero elements:

𝑥 = (1,−1, 0, . . . , 0), 𝑥 = (0, 1,−1, . . . , 0), . . .

2. least norm solution: smallest force sequence

minimize
∫ 10

0
𝐹 (𝑡)2𝑑𝑡 = ‖𝑥‖2

subject to


19/2 17/2 15/2 · ·· 1/2

1 1 1 · ·· 1

 𝑥 =

1

0


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Example results

Bang-bang force

Time
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Least norm force

Time
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Solution of least norm problem

minimize ‖𝑥‖2
subject to 𝐶𝑥 = 𝑑

Assumption: we assume that 𝐶 has linearly independent rows

• 𝐶𝑥 = 𝑑 has at least one solution for every 𝑑

• 𝐶 is wide or square (𝑝 ≤ 𝑛); if 𝑝 < 𝑛 there are infinitely many solutions

Solution of least norm problem

𝑥 = 𝐶T (𝐶𝐶T)−1𝑑

• in other words if 𝐶𝑥 = 𝑑 and 𝑥 ≠ 𝑥, then ‖𝑥‖ > ‖𝑥‖

• unique solution under the above assumption

• 𝐶T (𝐶𝐶T)−1 = 𝐶† is the pseudo-inverse of 𝐶, which is also a right-inverse
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Proof

1. we first verify that 𝑥 satisfies the constraints:

𝐶𝑥 = 𝐶𝐶T (𝐶𝐶T)−1𝑑 = 𝑑

2. next we show that ‖𝑥‖ > ‖𝑥‖ if 𝐶𝑥 = 𝑑 and 𝑥 ≠ 𝑥

‖𝑥‖2 = ‖𝑥 + 𝑥 − 𝑥‖2

= ‖𝑥‖2 + 2𝑥T (𝑥 − 𝑥) + ‖𝑥 − 𝑥‖2

= ‖𝑥‖2 + ‖𝑥 − 𝑥‖2

≥ ‖𝑥‖2 with equality only if 𝑥 = 𝑥

line 3 follows from

𝑥T (𝑥 − 𝑥) = 𝑑T (𝐶𝐶T)−1𝐶 (𝑥 − 𝑥) = 0

where we used 𝐶𝑥 = 𝐶𝑥 = 𝑑
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QR factorization method

using the QR factorization 𝐶T = 𝑄𝑅 of 𝐶T, we get

𝑥 = 𝐶T (𝐶𝐶T)−1𝑑
= 𝑄𝑅(𝑅T𝑄T𝑄𝑅)−1𝑑
= 𝑄𝑅(𝑅T𝑅)−1𝑑
= 𝑄𝑅−T𝑑

Algorithm

1. compute 𝑄𝑅 factorization 𝐶T = 𝑄𝑅 (2𝑝2𝑛 flops)

2. solve 𝑅T𝑧 = 𝑑 by forward substitution (𝑝2 flops)

3. matrix-vector product 𝑥 = 𝑄𝑧 (2𝑝𝑛 flops)

complexity: 2𝑝2𝑛 flops
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Example

𝐶 =

[
1 −1 1 1
1 0 1/2 1/2

]
, 𝑑 =

[
0
1

]
• QR factorization 𝐶T = 𝑄𝑅

1 1
−1 0
1 1/2
1 1/2

 =


1/2 1/
√
2

−1/2 1/
√
2

1/2 0
1/2 0


[
2 1

0 1/
√
2

]

• solve 𝑅T𝑧 = 𝑏[
2 0

1 1/
√
2

] [
𝑧1
𝑧2

]
=

[
0
1

]
⇒ 𝑧1 = 0, 𝑧2 =

√
2

• evaluate 𝑥 = 𝑄𝑧 = (1, 1, 0, 0)
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Assumptions

minimize ‖𝐴𝑥 − 𝑏‖2
subject to 𝐶𝑥 = 𝑑

Assumptions

1. the stacked (𝑚 + 𝑝) × 𝑛 matrix [
𝐴

𝐶

]
has linearly independent columns (left-invertible)

2. 𝑝 × 𝑛 matrix 𝐶 has linearly independent rows (right-invertible)

assumptions imply that 𝑝 ≤ 𝑛 ≤ 𝑚 + 𝑝
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Optimality conditions

minimize ‖𝐴𝑥 − 𝑏‖2
subject to 𝐶𝑥 = 𝑑

𝑥 solves the constrained LS problem if and only if there exists a 𝑧 such that[
𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥

𝑧

]
=

[
𝐴T𝑏

𝑑

]
• this is a set of 𝑛 + 𝑝 linear equations in 𝑛 + 𝑝 variables

• equations are also known as Karush-Kuhn-Tucker (KKT) equations

• matrix on left is called KKT matrix

Special cases

• least squares: when 𝑝 = 0, reduces to normal equations 𝐴T𝐴𝑥 = 𝐴T𝑏

• least norm: when 𝐴 = 𝐼, 𝑏 = 0, reduces to 𝐶𝑥 = 𝑑 and 𝑥 + 𝐶T𝑧 = 0
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Proof

suppose 𝑥 satisfies 𝐶𝑥 = 𝑑, and (𝑥, 𝑧) satisfies optimality conditions, then

‖𝐴𝑥 − 𝑏‖2 = ‖𝐴(𝑥 − 𝑥) + 𝐴𝑥 − 𝑏‖2

= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2 + 2(𝑥 − 𝑥)T𝐴T (𝐴𝑥 − 𝑏)
= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2 − 2(𝑥 − 𝑥)T𝐶T𝑧

= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2

≥ ‖𝐴𝑥 − 𝑏‖2

• on line 3 we use 𝐴T𝐴𝑥 + 𝐶T𝑧 = 𝐴T𝑏; on line 4, 𝐶𝑥 = 𝐶𝑥 = 𝑑

• inequality shows that 𝑥 is optimal

• 𝑥 is the unique optimum because equality holds only if

𝐴(𝑥 − 𝑥) = 0, 𝐶 (𝑥 − 𝑥) = 0 =⇒ 𝑥 = 𝑥

by the first assumption
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Nonsingularity

the KKT matrix [
𝐴T𝐴 𝐶T

𝐶 0

]
is nonsingular (invertible) if and only if the two assumptions hold

Proof: if assumptions hold[
𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥

𝑧

]
=

[
0
0

]
=⇒ 𝑥T (𝐴T𝐴𝑥 + 𝐶T𝑧) = 0, 𝐶𝑥 = 0

=⇒ ‖𝐴𝑥‖2 = 0, 𝐶𝑥 = 0

=⇒ 𝐴𝑥 = 0, 𝐶𝑥 = 0

=⇒ 𝑥 = 0 by assumption 1

if 𝑥 = 0, we have 𝐶T𝑧 = −𝐴T𝐴𝑥 = 0; hence also 𝑧 = 0 by assumption 2
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Singularity

if the assumptions do not hold, then the matrix[
𝐴T𝐴 𝐶T

𝐶 0

]
is singular

• if assumption 1 does not hold, there exists 𝑥 ≠ 0 with 𝐴𝑥 = 0, 𝐶𝑥 = 0; then[
𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥

0

]
= 0

• if assumption 2 does not hold there exists a 𝑧 ≠ 0 with 𝐶T𝑧 = 0; then[
𝐴T𝐴 𝐶T

𝐶 0

] [
0
𝑧

]
= 0

in both cases, this shows that the matrix is singular
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Solving KKT equation directly

[
𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥

𝑧

]
=

[
𝐴T𝑏

𝑑

]
Algorithm

1. compute 𝐻 = 𝐴T𝐴 (𝑚𝑛2 flops)

2. compute 𝑐 = 𝐴T𝑏 (2𝑚𝑛 flops)

3. solve the linear equation [
𝐻 𝐶T

𝐶 0

] [
𝑥

𝑧

]
=

[
𝑐

𝑑

]
by the LU factorization ((2/3) (𝑝 + 𝑛)3 flops) or QR factorization (2(𝑛 + 𝑝)3)

complexity: 𝑚𝑛2 + (2/3) (𝑝 + 𝑛)3 flops
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Solution by QR factorization

we derive a method that avoid computing gram matrix by using QR factorization[
𝐴T𝐴 𝐶T

𝐶 0

] [
𝑥

𝑧

]
=

[
𝐴T𝑏

𝑑

]
• multiply 2nd eq. by 𝐶T, add to 1st eq. , make change of variables 𝑤 = 𝑧 − 𝑑,[

𝐴T𝐴 + 𝐶T𝐶 𝐶T

𝐶 0

] [
𝑥

𝑤

]
=

[
𝐴T𝑏

𝑑

]
• assumption 1 guarantees 𝐴T𝐴 + 𝐶T𝐶 is nonsingular and QR factorization exists:[

𝐴

𝐶

]
= 𝑄𝑅 =

[
𝑄1

𝑄2

]
𝑅
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Solution by QR factorization

substituting 𝐴 = 𝑄1𝑅 and 𝐶 = 𝑄2𝑅 gives the equation[
𝑅T𝑅 𝑅T𝑄T

2

𝑄2𝑅 0

] [
𝑥

𝑤

]
=

[
𝑅T𝑄T

1𝑏

𝑑

]
• multiply first equation with 𝑅−T and make change of variables 𝑦 = 𝑅𝑥[

𝐼 𝑄T
2

𝑄2 0

] [
𝑦

𝑤

]
=

[
𝑄T

1𝑏

𝑑

]
• next we note that the matrix 𝑄2 = 𝐶𝑅−1 has linearly independent rows:

𝑄T
2𝑢 = 𝑅−T𝐶T𝑢 = 0 =⇒ 𝐶T𝑢 = 0 =⇒ 𝑢 = 0

because 𝐶 has linearly independent rows (assumption 2)
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Solution by QR factorization

we use the QR factorization of 𝑄T
2 to solve[

𝐼 𝑄T
2

𝑄2 0

] [
𝑦

𝑤

]
=

[
𝑄T

1𝑏

𝑑

]
• from the 1st block row, 𝑦 = 𝑄T

1𝑏 −𝑄T
2𝑤; substitute this in the 2nd row:

𝑄2𝑄
T
2𝑤 = 𝑄2𝑄

T
1𝑏 − 𝑑

• we solve this equation for 𝑤 using the QR factorization 𝑄T
2 = 𝑄𝑅:

𝑅T𝑅𝑤 = 𝑅T𝑄T𝑄T
1𝑏 − 𝑑

which can be simplified to

𝑅𝑤 = 𝑄T𝑄T
1𝑏 − 𝑅−T𝑑

after solving for 𝑤, we get 𝑦 = 𝑄T
1𝑏 −𝑄T

2𝑤 and solve for 𝑥 in 𝑦 = 𝑅𝑥
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Summary of QR factorization method

[
𝐴T𝐴 + 𝐶T𝐶 𝐶T

𝐶 0

] [
𝑥

𝑤

]
=

[
𝐴T𝑏

𝑑

]
Algorithm

1. compute the two QR factorizations[
𝐴

𝐶

]
=

[
𝑄1

𝑄2

]
𝑅 and 𝑄T

2 = 𝑄𝑅

2. solve 𝑅T𝑢 = 𝑑 by forward substitution and compute 𝑐 = 𝑄T𝑄T
1𝑏 − 𝑢

3. solve 𝑅𝑤 = 𝑐 by back substitution and compute 𝑦 = 𝑄T
1𝑏 −𝑄T

2𝑤

4. compute 𝑅𝑥 = 𝑦 by back substitution

Complexity

• 2(𝑚 + 𝑝)𝑛2 + 2𝑛𝑝2 flops (QR factorizations dominates)

• order (𝑚 + 𝑝)𝑛2 due to assumption 𝑝 ≤ 𝑛 ≤ 𝑚 + 𝑝
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Comparison of the two methods

Complexity: LU is slightly more efficient

• LU factorization

𝑚𝑛2 + 2

3
(𝑝 + 𝑛)3 ≤ 𝑚𝑛2 + 16

3
𝑛3 flops

• QR factorization

2(𝑝 + 𝑚)𝑛2 + 2𝑛𝑝2 ≤ 2𝑚𝑛2 + 4𝑛3 flops

upper bounds follow from 𝑝 ≤ 𝑛 (assumption 2)

Stability

• QR factorization method avoids calculation of Gram matrix 𝐴T𝐴

• hence more robust/stable to numerical errors
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Linear quadratic control

Linear dynamical system

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 , 𝑦𝑡 = 𝐶𝑡𝑥𝑡 , 𝑡 = 1, 2, . . .

• 𝑛-vector 𝑥𝑡 is system state (at time 𝑡)

• 𝑚-vector 𝑢𝑡 is system input (we control)

• 𝑝-vector 𝑦𝑡 is system output

• 𝑥𝑡 , 𝑢𝑡 , 𝑦𝑡 are typically desired to be small

Objective: choose inputs 𝑢1, . . . , 𝑢𝑇 −1 that minimizes 𝐽output + 𝜌𝐽input with

𝐽output = ‖𝑦1 − 𝑦des1 ‖2 + ··· + ‖𝑦𝑇 − 𝑦des𝑇 ‖2, 𝐽input = ‖𝑢1‖2 + ··· + ‖𝑢𝑇 −1‖2

where 𝑦des
𝑖

are given desired values (possibly zero)

Constraints

• dynamics constraint

• initial state and (possibly) the final state are specified 𝑥1 = 𝑥 init, 𝑥𝑇 = 𝑥des
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Linear quadratic control problem

minimize ‖𝐶1𝑥1 − 𝑦des1 ‖2 + ··· + ‖𝐶𝑇 𝑥𝑇 − 𝑦des
𝑇

‖2 + 𝜌
(
‖𝑢1‖2 + ··· + ‖𝑢𝑇 −1‖2

)
subject to 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 , 𝑡 = 1, . . . , 𝑇 − 1

𝑥1 = 𝑥 init , 𝑥𝑇 = 𝑥des

variables: 𝑥1, . . . , 𝑥𝑇 and 𝑢1, . . . , 𝑢𝑇 −1

Constrained least squares formulation

minimize ‖𝐴𝑧 − 𝑏‖2
subject to 𝐶𝑧 = 𝑑

variables: the (𝑛𝑇 + 𝑚(𝑇 − 1))-vector

𝑧 = (𝑥1, . . . , 𝑥𝑇 , 𝑢1, . . . , 𝑢𝑇 −1)
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Linear quadratic control problem

Objective function: ‖𝐴𝑧 − 𝑏‖2 with

𝐴 =



𝐶1 · ·· 0 0 · ·· 0
... · ·· ... ...

. . . ...

0 · ·· 𝐶𝑇 0 · ·· 0
0 · ·· 0

√
𝜌𝐼 · ·· 0

... · ·· ... ...
. . . ...

0 · ·· 0 0 · ·· √
𝜌𝐼


, 𝑏 =



𝑦des1
...

𝑦des
𝑇

0
...

0


Constraints: 𝐶𝑧 = 𝑑 with

𝐶 =



𝐴1 −𝐼 0 · ·· 0 0 𝐵1 0 · ·· 0
0 𝐴2 −𝐼 · ·· 0 0 0 𝐵2 · ·· 0
... ... ... ... ... ... ...

. . . ...

0 0 0 · ·· 𝐴𝑇 −1 −𝐼 0 0 · ·· 𝐵𝑇 −1
𝐼 0 0 · ·· 0 0 0 0 · ·· 0
0 0 0 · ·· 0 𝐼 0 0 · ·· 0


, 𝑑 =



0
0
...

0
𝑥 init

𝑥des


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Example

time-invariant system with constant matrices

𝐴 =


0.855 1.161 0.667
0.015 1.073 0.053

−0.084 0.059 1.022

 , 𝐵 =


−0.076
−0.139
0.342


𝐶 =

[
0.218 −3.597 −1.683

]
• 𝑦des = 0, 𝑇 = 100

• initial condition 𝑥 init = (0.496,−0.745, 1.394)

• target or desired final state 𝑥des = 0

• input and output have dimension one
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Optimal trade-off curve

𝜌 = 0.05
𝜌 = 0.02

𝜌 = 1

𝐽input

𝐽
ou

tp
ut
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Three points on the trade-off curve

𝑡
𝑢
𝑡

𝑡

𝑦
𝑡

𝑡

𝑢
𝑡

𝑡

𝑦
𝑡

𝑡 𝑡

𝑦
𝑡

𝑢
𝑡
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Linear state feedback control

Linear state feedback

• linear state feedback control uses the input

𝑢𝑡 = 𝐾𝑥𝑡 , 𝑡 = 1, 2, . . .

• 𝐾 is the state feedback gain matrix

• widely used, especially when 𝑥𝑡 should converge to zero, 𝑇 is not specified

One approach to compute 𝐾

• solve the linear quadratic control problem with 𝑥des = 0 for (large) 𝑇

• solution 𝑢𝑡 is a linear function of 𝑥 init , hence 𝑢1 can be written as 𝑢1 = 𝐾𝑥 init

• columns of 𝐾 can be found by computing 𝑢1 for 𝑥 init = 𝑒1, . . . , 𝑒𝑛

• use this 𝐾 as state feedback gain matrix
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Example

State feedback

Optimal

𝑡

𝑢
𝑡

State feedback

Optimal

𝑡

𝑦
𝑡

• setup of previous example

• blue curve uses optimal linear quadratic control for 𝑇 = 100

• red curve uses simple linear state feedback 𝑢𝑡 = 𝐾𝑥𝑡

• optimal choice achieves 𝑦𝑇 = 0 but linear state feedback makes 𝑦𝑇 small only
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Outline

• constrained least squares

• solution of least norm problem

• solution of constrained least squares

• linear quadratic control

• linear quadratic estimation

• portfolio optimization



State estimation

Linear dynamical system model

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑤𝑡 , 𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑣𝑡 , 𝑡 = 1, 2, . . .

• 𝑥𝑡 is state (𝑛-vector)

• 𝑦𝑡 is measurement (𝑝-vector)

• 𝑤𝑡 is input or process noise (𝑚-vector)

• 𝑣𝑡 is measurement noise or residual (𝑝-vector)

• 𝐴𝑡 , 𝐵𝑡 , 𝐶𝑡 are the known dynamics, input, and output matrices

State estimation

• we have measurements 𝑦1, . . . , 𝑦𝑇

• 𝑤𝑡 , 𝑣𝑡 are unknown, but assumed small

• goal: estimate state sequence 𝑥1, . . . , 𝑥𝑇
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Least squares state estimation

minimize 𝐽meas + 𝜆𝐽proc

subject to 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑤𝑡 , 𝑡 = 1, . . . , 𝑇 − 1

• variables are the states 𝑥1, . . . , 𝑥𝑇 and input noise 𝑤1, . . . , 𝑤𝑇 −1

• primary objective 𝐽meas is sum of squares of measurement residuals:

𝐽meas = ‖𝐶1𝑥1 − 𝑦1‖2 + ··· + ‖𝐶𝑇 𝑥𝑇 − 𝑦𝑇 ‖2

• secondary objective 𝐽proc is sum of squares of process noise

𝐽proc = ‖𝑤1‖2 + ··· + ‖𝑤𝑇 −1‖2

• 𝜆 > 0 is a parameter, trades off measurement and process errors

• similar to control formulation but interpretation is different
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Constrained least squares formulation

minimize ‖𝐶1𝑥1 − 𝑦1‖2 + ··· + ‖𝐶𝑇 𝑥𝑇 − 𝑦𝑇 ‖2 + 𝜆
(
‖𝑤1‖2 + ··· + ‖𝑤𝑇 −1‖2

)
subject to 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑤𝑡 , 𝑡 = 1, . . . , 𝑇 − 1

• can be written as
minimize ‖𝐴𝑧 − 𝑏‖2
subject to 𝐶𝑧 = 𝑑

• vector 𝑧 contains the 𝑇𝑛 + (𝑇 − 1)𝑚 variables:

𝑧 = (𝑥1, . . . , 𝑥𝑇 , 𝑤1, . . . , 𝑤𝑇 −1)
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Constrained least squares formulation

𝐴 =



𝐶1 0 · ·· 0 0 · ·· 0
0 𝐶2 · ·· 0 0 · ·· 0
... ...

. . . ... ... ...

0 0 · ·· 𝐶𝑇 0 · ·· 0

0 0 · ·· 0
√
𝜆𝐼 · ·· 0

... ... ... ...
. . . ...

0 0 · ·· 0 0 · ··
√
𝜆𝐼


, 𝑏 =



𝑦1
𝑦2
...

𝑦𝑇
0
...

0


𝐶 =


𝐴1 −𝐼 0 · ·· 0 0 𝐵1 0 · ·· 0
0 𝐴2 −𝐼 · ·· 0 0 0 𝐵2 · ·· 0
... ... ... ... ... ... ...

. . . ...

0 0 0 · ·· 𝐴𝑇 −1 −𝐼 0 0 · ·· 𝐵𝑇 −1

 , 𝑑 = 0
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Example

𝐴𝑡 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , 𝐵𝑡 =


0 0
0 0
1 0
0 1

 , 𝐶𝑡 =

[
1 0 0 0
0 1 0 0

]

• simple model of mass moving in a 2-D plane

• 𝑥𝑡 = (𝑝𝑡 , 𝑧𝑡 ): 2-vector 𝑝𝑡 is position, 2-vector 𝑧𝑡 is the velocity

• 𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑤𝑡 is noisy measurement of mass position

• 𝑇 = 100
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Position estimates

𝜆 = 1 𝜆 = 103 𝜆 = 104

• 100 noisy measurements 𝑦𝑡 shown as circles

• solid line is exact position 𝐶𝑡𝑥𝑡

• blue lines show position estimates for three values of 𝜆
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Outline

• constrained least squares

• solution of least norm problem

• solution of constrained least squares

• linear quadratic control

• linear quadratic estimation

• portfolio optimization



Return of an asset

Asset value

• asset can be stock, bond, real estate, commodity, ...

• buy 𝑞 shares of an asset at price 𝑝 at beginning of investment period

• ℎ = 𝑝𝑞 is dollar value of holdings

Asset return

• sell 𝑞 shares at new price 𝑝+ at end of period

• profit is

𝑞(𝑝+ − 𝑝) = (𝑝+ − 𝑝)
𝑝

ℎ = 𝑟ℎ

where 𝑟 (fractional) return is

𝑟 =
(𝑝+ − 𝑝)

𝑝
=

profit

investment
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Mean return and risk

• 𝑟 is a time-series (vector) of returns

• avg(𝑟) is portfolio mean return (or just return); std(𝑟) is risk

• avg(𝑟) and std(𝑟) are per-period return and risk

• mean return and risk are often expressed in annualized form (i.e., per year)

Annualized return and risk: if we have 𝑃 trading periods per year

annualized return = 𝑃 avg(𝑟), annualized risk =
√
𝑃std(𝑟)

• if returns are daily, with 250 trading days in a year

annualized return = 250avg(𝑟), annualized risk =
√
250std(𝑟)

• example: daily return 𝑟 with per-period (daily) return 0.05% and risk 0.5% has an
annualized return and risk of 12.5% and 7.9%
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Portfolio investment

• 𝑛 different assets

• we invest a total of 𝑉 dollars over some period (one day, week, month, ...)

• goal: make investments so that the combined return for all investments is high

Portfolio allocation weights

• 𝑤 is asset weight or allocation vector with 1T𝑤 = 1

• 𝑤 𝑗 is fraction of total portfolio value held in asset 𝑗 ; short position if 𝑤 𝑗 < 0

– short positions are assets you borrow and sell at the beginning, but must return to the
borrower at the end of the period

• 𝑉𝑤 𝑗 is the dollar value of asset 𝑗

• 𝑤 = (−0.2, 0.0, 1.2) means we take a short position of 0.2𝑉 in asset 1, don’t
hold any of asset 2, and invest 1.2𝑉 in asset 3

• leverage of portfolio is 𝐿 = |𝑤1 | + ··· + |𝑤𝑛 |
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Return matrix

(asset) return matrix for investments held for 𝑇 periods is

𝑅 =


𝑅11 𝑅12 · ·· 𝑅1𝑛

𝑅21 𝑅22 · ·· 𝑅2𝑛

... ... · ·· ...

𝑅𝑇 1 𝑅𝑇 2 · ·· 𝑅𝑇 𝑛

 =

𝑟T1
𝑟T2
...

𝑟T
𝑇


• 𝑅𝑡 𝑗 is fractional return of asset 𝑗 in period 𝑡

– 𝑅61 = 0.02 means that asset 1 gained 2% in period 6

• 𝑡th row 𝑟T𝑡 gives asset returns in period 𝑡

• 𝑗 th column is time series of asset 𝑗 returns

• we often assume asset 𝑛 is cash with risk-free return 𝜇rf > 0

• if last asset is risk-free, the last column of 𝑅 is 𝜇rf1

SA — ENGR504portfolio optimization 11.42



Return over a period

• we invest a total (positive) amount 𝑉𝑡 at the beginning of period 𝑡

• so we invest 𝑉𝑡𝑤 𝑗 in asset 𝑗

• the dollar value of the whole portfolio at end of period 𝑡 is

𝑉𝑡+1 =

𝑛∑︁
𝑗=1

𝑉𝑡𝑤 𝑗

(
1 + 𝑅𝑡 𝑗

)
= 𝑉𝑡 (1 + 𝑟T𝑡 𝑤)

where 𝑟𝑡 = (𝑅𝑡1, . . . , 𝑅𝑡𝑛)

• total (fractional) return of the portfolio over period 𝑡 is

𝑉𝑡+1 −𝑉𝑡
𝑉𝑡

=
𝑉𝑡 (1 + 𝑟T𝑡 𝑤) −𝑉𝑡

𝑉𝑡
= 𝑟T𝑡 𝑤

• 𝑟 = 𝑅𝑤 is portfolio (fractional) returns vector (time series)
– if 𝑛 is risk free and 𝑤 = 𝑒𝑛, then 𝑅𝑤 = 𝜇rf1 (constant return)
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Portfolio value

Total portfolio value: if 𝑟 is portfolio return vector in period 𝑡, then

𝑉𝑡+1 = 𝑉1 (1 + 𝑟1) (1 + 𝑟2) ··· (1 + 𝑟𝑡 )

• 𝑉1 is initial investment amount

• portfolio value versus time traditionally plotted using 𝑉1 = $10000

Approximate total portfolio value

• for small per-period returns 𝑟𝑡 and not too large 𝑇 , we have

𝑉𝑇 +1 = 𝑉1 (1 + 𝑟1) ··· (1 + 𝑟𝑇 )
≈ 𝑉1 +𝑉1 (𝑟1 + ··· + 𝑟𝑇 )
= 𝑉1 (1 + 𝑇avg(𝑟))

• approximation assumes 𝑟𝑖𝑟 𝑗 are small (e.g., |𝑟𝑡 | small) and can be neglected

• approx. suggests that we can maximize our portfolio value, by maximizing avg(𝑟)
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Portfolio optimization

choose 𝑤 to minimize risk with fixed mean return 𝜌

minimize std(𝑅𝑤)2 = (1/𝑇)‖𝑅𝑤 − 𝜌1‖2
subject to 1T𝑤 = 1, avg(𝑅𝑤) = 𝜌

• 𝑅 is the returns matrix for past returns

• 𝑟 = 𝑅𝑤 is the (past) portfolio return time series

• solutions 𝑤 are called Pareto optimal

Assumption: future returns will be similar to past ones

• this is false in general

• we choose 𝑤 that would have worked well on past returns

• ... and hope it will work well going forward (just like data fitting)

• we can use validation by finding a solution of certain past period, then testing on
another past period
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Portfolio optimization via constrained least squares

minimize ‖𝑅𝑤 − 𝜌1‖2

subject to

[
1T

𝜇T

]
𝑤 =

[
1
𝜌

]
• 𝜇 = (1/𝑇)𝑅T1 is 𝑛-vector of (past) asset returns

• 𝜌 is required (past) portfolio return

• an equality constrained least squares problem, with solution
𝑤

𝑧1
𝑧2

 =

2𝑅T𝑅 1 𝜇

1T 0 0
𝜇T 0 0


−1 

2𝜌𝑇𝜇
1
𝜌


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Optimal portfolio

optimal portfolio 𝑤 is an affine function of 𝜌
𝑤

𝑧1
𝑧2

 =

2𝑅T𝑅 1 𝜇

1T 0 0
𝜇T 0 0


−1 

0
1
0

 + 𝜌

2𝑅T𝑅 1 𝜇

1T 0 0
𝜇T 0 0


−1 

2𝑇𝜇
0
1


vector 𝑤 has the form

𝑤 = 𝑤0 + 𝜌𝑣, 1T𝑣 = 0

• Pareto optimal portfolio form a line with base 𝑤0 and direction 𝑣

• a point on a line can be written as affine combination of two other points on line

• Pareto optimal portfolios are affine comb. of just two portfolios (two-fund theorem)
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Example

• daily return data for 19 stocks over a period of 2000 days (8 years)

• plus risk-free asset with 1% annual return

• open circles shows individual assets (
√
250std(𝑅𝑒𝑖), 250avg(𝑅𝑒𝑖))

• line shows risk and return for the Pareto optimal portfolios (for different 𝜌)

1/𝑛
Risk-free

Risk

R
et

ur
n
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Five portfolios

Return Risk
Portfolio Train Test Train Test Leverage
risk-free 0.01 0.01 0.00 0.00 1.00
𝜌 = 10% 0.10 0.08 0.09 0.07 1.96
𝜌 = 20% 0.20 0.15 0.18 0.15 3.03
𝜌 = 40% 0.40 0.30 0.38 0.31 5.48
1/𝑛 (uniform weights) 0.10 0.21 0.23 0.13 1.00

• train period of 2000 days used to compute optimal portfolio

• test period is different 500-day period
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Total portfolio value

Total value 𝑉𝑡

Risk-free

1/𝑛

Day

Va
lu

e
(th

ou
sa

nd
do

lla
rs

)

Test period total value

Risk-free

1/𝑛

Day

Va
lu

e
(th

ou
sa

nd
do

lla
rs

)
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References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)
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