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Constrained least squares

minimize || Ax — b]?
subjectto Cx =d

e Aisanm X nmatrix, C is a p X n matrix, b is an m-vector, d is a p-vector

|Ax — b||? is the objective, Cx = d are the constraints

e we make no assumptions about the shape of A

in most applications p < n and the equation Cx = d is underdetermined

goal is to find a solution of Cx = d with smallest objective

Solution
e xis feasibleif Cx = d

e X is optimal or solution if it is feasible and

lAx — b||? < ||Ax — b||* for all feasible x

constrained least squares
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Example: Piecewise-polynomial fitting

e fit two polynomials f(x), g(x) to points (x1, y1),..., (xn,YN)
f (x;) = y; forpoints x; < a, g (x;) ~ y; for points x; > a

e make values and derivatives continuous at point a: f(a) = g(a), f'(a) = g’(a)

fx)

g(x)
fx)
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Constrained LS formulation

e assume points are numbered so that x1,...,xp7 < aand xXpr41,...,XN > a:

minimize Z(f(x,) yi)? + Z (g(xl) yi)®
subject to f(a) g(a), f(a) g(a)

e for polynomials f(x) = 61 + - + x4  and g(x) = Ogyq + -+ + Oogx?~!
(1 xg  - xil_l 0 0 0 | 1
Ao 1 xp xij_l 0 0 0 po| M
0 0 1 xpe - x470101 YM+1
0 0 0 1 xy x4 YN
Co 1 a - ad-1 1 —a - —_qd-1 - 0
1o 1 - @d-1)a*? 0 -1 - —d-Da?Z | "7 |0
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Example: Advertising budget allocation

e m demographics groups (audiences), n advertising channels

. v?es is target number of views or impressions for group i

e s; is amount of advertising purchased in channel j

e R;jis # views in group i per dollar spent on ads in channel j

e (Rs); is total number of views in group i

e fixed budget 17s = B

e constrained LS problem: minimize ||Rs — v9¢%||% subjectto 17s = B

Example: optimal and scaled LS solution to satisfy budget

JoOptimal
Io Scaled M

1,000

Impressions

500

0" B L — J
12 3 4 5 6 7 8 910

Group

constrained least squares
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Least norm problem

minimize  ||x]?
subjectto Cx =d
e Cisa p X nmatrix, d is a p-vector
e the goal is to find the solution of Cx = d with the smallest norm
e a special case of constrained LS with A =Tand b =0
Least distance problem: minimizing the distance to a given point a # 0:

minimize  ||x — al|?
subjectto Cx =d

e reduces to least norm problem by a change of variables y = x — a

minimize  ||y||?
subjectto Cy=d - Ca

e from least norm solution y, we obtain solution x = y + a of first problem

constrained least squares
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Force sequence

F(t)

=

012345678910
e a unit mass with zero initial position and velocity
e we apply piecewise-constant force F () during interval [0, 10):
F(t)=x; forte[j-1,7), j=1,...,10
e position and velocity at # = 10 are given by
pi = (19/2)x1 + (17/2)x2 + (15/2)x5 + - + (1/2)x10
VI = Xl xo 4+ 210
we want to choose a force sequence that results in pﬁ“ =1,vin=0

constrained least squares 1.7



Example

there are many solution; we consider two solutions:

1. bang-bang force: solutions with only two nonzero elements:

x=(1,-1,0,...,0), x=(0,1,-1,...,0), ...

2. least norm solution: smallest force sequence

minimize [ F(1)%d1 = ||x||?
19/2 17/2 15/2 - 1/2

subject to X =
1 1 1 1

constrained least squares
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Example results

Bang-bang force

1 b 1h

Force
(=}
-
Position
o
.
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-1r B 0 B

Least norm force

Position
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Solution of least norm problem

minimize  ||x]?
subjectto Cx =d

Assumption: we assume that C has linearly independent rows
e Cx = d has at least one solution for every d

e Cis wide or square (p < n);if p < n there are infinitely many solutions
Solution of least norm problem

x=cTcchta
e in other words if Cx = d and x # X, then ||x|| > ||x]|

e unique solution under the above assumption

e CT(CCT)™! = CT is the pseudo-inverse of C, which is also a right-inverse

solution of least norm problem 11.10



Proof

1. we first verify that X satisfies the constraints:
ci=cclcchtd=a
2. next we show that ||x|| > ||X|| if Cx = d and x # X
Ix]1* = [1% +x - 2|
= (|17 +2&7(r = %) + |lx - £
= [I%)1% + [l - 2|17
> ||%]|? with equality only if x = %
line 3 follows from
#Tx-x) =dfcchHc(x-% =0
where we used Cx = Cx =d

solution of least norm problem
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QR factorization method

using the QR factorization CT = QR of CT, we get
i=clcchta
= QR(R'QTQR)d
= QR(RTR)d
=QR 4

Algorithm

1. compute QR factorization CT = QR (2p?n flops)
2. solve RTz =d by forward substitution (p2 flops)
3. matrix-vector product X = Qz (2pn flops)

complexity: 2p2n flops

solution of least norm problem

11.12



Example

1 -1 1 1 0
C=11 0 12 1/2}’ d_[l]
e QR factorization CT = QR
1 1 1/2 1/42
-1 0 | _|-1/2 V2 {[2 1
1 1/2 /2 0 0 1/v2
1 1/2 /2 0

e solve RTz=b

Tl SRR R

e evaluate x = Qz = (1,1,0,0)

solution of least norm problem 11.13
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Assumptions

minimize || Ax — b||?
subjectto Cx =d

Assumptions
1. the stacked (m + p) X n matrix

A
C
has linearly independent columns (left-invertible)

2. p X n matrix C has linearly independent rows (right-invertible)

assumptions imply that p <n <m+p

solution of constrained least squares 11.14



Optimality conditions

minimize || Ax — b]|?
subjectto Cx =d

X solves the constrained LS problem if and only if there exists a z such that

HEkA

e this is a set of n + p linear equations in n + p variables

ATA T
cC 0

e equations are also known as Karush-Kuhn-Tucker (KKT) equations

e matrix on left is called KKT matrix

Special cases
e least squares: when p = 0, reduces to normal equations ATAx = ATb

e leastnorm: when A = I,b =0, reducesto Ct =dand X +CTz=0

solution of constrained least squares
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Proof

suppose x satisfies Cx = d, and (X, z) satisfies optimality conditions, then
[Ax = b||* = |A(x = £) + A% = b||
=|A(x = %)|1? + |A% - b2 + 2(x — %) TAT(A% - b)
= A(x = D)II* + 1A% = b]I> - 2(x - %) 'CTz
= |A(x = D)1 + | A% - b|?
> || A% - b|I?

e online3we use ATAX +CTz = ATb;online 4,Cx = Cx =d
e inequality shows that X is optimal
e X is the unique optimum because equality holds only if
Ax-x)=0, C(x—-x)=0 = x=2x
by the first assumption

solution of constrained least squares 11.16



Nonsingularity

ATA C
cC 0

is nonsingular (invertible) if and only if the two assumptions hold

the KKT matrix

Proof: if assumptions hold

ATA C
cC 0

)ZC] = [8] = xT(ATAx+CT2) =0, Cx=0

= ||Ax]|?=0, Cx=0
= Ax=0, Cx=0
= x =0 by assumption 1

if x = 0, we have CTz = ~ATAx = 0; hence also z = 0 by assumption 2

solution of constrained least squares 1117



Singularity

if the assumptions do not hold, then the matrix

ATA T
cC 0

is singular
e if assumption 1 does not hold, there exists x # 0 with Ax = 0, Cx = 0; then

Wi

e if assumption 2 does not hold there exists a z # 0 with C7z = 0; then

ATA C ol _,
cC 0]z~

in both cases, this shows that the matrix is singular

solution of constrained least squares

11.18



Solving KKT equation directly

e -1

1. compute H = ATA (mn? flops)

Algorithm

2. compute ¢ = ATb (2mn flops)

&SI

by the LU factorization ((2/3)(p + n)? flops) or QR factorization (2(n + p)?3)

3. solve the linear equation

complexity: mn? + (2/3)(p + n)? flops

solution of constrained least squares 11.19



Solution by QR factorization
we derive a method that avoid computing gram matrix by using QR factorization
| _[ ATp
z | | d
e multiply 2nd eq. by CT addto 1st eq. , make change of variables w = 7 — d,

R EEEY

ATA T
cC 0

e assumption 1 guarantees ATA + CTC is nonsingular and QR factorization exists:

2]-on-[ ]

solution of constrained least squares 11.20



Solution by QR factorization

substituting A = Q1R and C = Q2R gives the equation

o 0[]

e multiply first equation with R~ T and make change of variables y = Rx

o S]]

e next we note that the matrix 0o = CR™! has linearly independent rows:

Qu=R7CTu=0 = CcTu=0 = u=0

because C has linearly independent rows (assumption 2)

solution of constrained least squares
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Solution by QR factorization

we use the QR factorization of QQT to solve

o S [-%]

e from the 1st block row, y = Q{b - Q2Tw; substitute this in the 2nd row:
0205w = 0201b —d
e we solve this equation for w using the QR factorization Q2T = Qlé:
RTRw = RTQTQTh - d
which can be simplified to
Rw=070Th - R Td
after solving for w, we get y = Q{b - Qérw and solve for X in y = Rx

solution of constrained least squares 11.22



Summary of QR factorization method

ATA+cTc cT [ = | _[ ATp
C 0 w | d
Algorithm
1. compute the two QR factorizations
A Ql T ~ o~
= R and =Q0R
| &]-[ G ]r we oi-o
2. solve RTu = d by forward substitution and compute ¢ = QTQTb — u
3. solve Rw = ¢ by back substitution and compute y = Q{b - ng
4. compute Rx = y by back substitution

Complexity
e 2(m + p)n? + 2np? flops (QR factorizations dominates)

e order (m + p)n® due to assumption p < n < m+ p

solution of constrained least squares 11.23



Comparison of the two methods

Complexity: LU is slightly more efficient

e | U factorization 9 16
mn? + g(p +n)® <mn® + gn?’ flops

e QR factorization
2(p + m)n? + 2np? < 2mn® + 4n> flops

upper bounds follow from p < n (assumption 2)

Stability
e QR factorization method avoids calculation of Gram matrix ATA

e hence more robust/stable to numerical errors

solution of constrained least squares
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Linear quadratic control

Linear dynamical system

X1 = AeXp + Bruy, y =Crxy, =12,

e n-vector x; is system state (at time 1)

e m-vector u;, is system input (we control)
e p-vector y; is system output

® Xx;, U,y are typically desired to be small

Objective: choose inputs u1, ..., ur 1 that minimizes Joupu + oJinput With

des des
Joutput = ||Y1 - )’1eq||2 +e ”yT - yTeq”Qa Jinput = “ul”2 +-ot ”uT—l”2
des

where y; " are given desired values (possibly zero)

Constraints
e dynamics constraint

e initial state and (possibly) the final state are specified x; = x™™, des

XT =X

linear quadratic control 11.25



Linear quadratic control problem

minimize  [|C1xy = Y{||2 + - + [|[Croar = y312 + p (lun | + - + llur1]1%)

SUbjeCt o X471 = A,x, + B,ut, t= 1, ey T-1

X1 = xinit , Xy = xdes

variables: x1,...,xr anduy,...,ur—1

Constrained least squares formulation

minimize  ||Az — b||?
subjectto Cz=d

variables: the (nT + m(T — 1))-vector

2= (X1, ., X7, U1, ..., UT-1)

linear quadratic control 11.26



Linear quadratic control problem

Objective function: ||Az — b||? with

[c; - 0 0 0 [ y‘fes
: S (ies
A — 0 CT 0 0 l; — yI
0 - 0 |+pl 0 0
0 0 0 el ] 0
Constraints: C zZ= d with
A1 -1 O 0 0 By O 0 0
0 Ay -1 0 0 0 By 0 0
C = : : : : : ’ d= :
0 0 0 Ar_1 =11 0 0 Br_4 0
1 0 0 0 0 0 0 0 Xt
0 0 0 0 1 0 0 0 xdes

linear quadratic control
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Example

time-invariant system with constant matrices

0.855 1.161 0.667
A= 0.015 1.073 0.053 |, B
-0.084 0.059 1.022

C=] 0218 -3.597 -1.683 |

ydes =0, T = 100
e initial condition x™ = (0.496, —0.745, 1.394)

e target or desired final state x3¢* = 0

e input and output have dimension one

linear quadratic control

-0.076
-0.139
0.342
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Optimal trade-off curve

Joutput

linear quadratic control
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linear quadratic control

Three points on the trade-off curve

05 04
~ -
=0 02
-05 0

0 20 40 t 60 80 100 0 20 40 t 60 80 100
T T T
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Linear state feedback control

Linear state feedback

e linear state feedback control uses the input
u[Zth, t=1,2,...

e K is the state feedback gain matrix

o widely used, especially when x; should converge to zero, T is not specified

One approach to compute K

e solve the linear quadratic control problem with x9¢¢ = 0 for (large) T
e solution u;, is a linear function of x™', hence u; can be written as u; = Kx™!
init

e columns of K can be found by computing u; for x™ =eq,...,e,

e use this K as state feedback gain matrix

linear quadratic control 11.31



Example

0.1 1 04 .
State feedback
S 0 =02 |
Optimal
State feedback
=01
O ,,,,,,,,,,,,,,,,
0 50 ; 100 150 0 50 ; 100 150

e setup of previous example
e blue curve uses optimal linear quadratic control for 7 = 100

e red curve uses simple linear state feedback u; = Kx;

optimal choice achieves yr = 0 but linear state feedback makes yr small only

linear quadratic control 11.32
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State estimation

Linear dynamical system model

Xr+1 =At.xl»+Bth, Vi =Ct.xl»+vt, t=1,2,...

X; is state (n-vector)
e Yy, is measurement (p-vector)
e W, is input or process noise (m-vector)

e V; is measurement noise or residual (p-vector)

A¢, B;, C; are the known dynamics, input, and output matrices

State estimation
e we have measurements yi,...,yr
® w,, Vv, are unknown, but assumed small

e goal: estimate state sequence x1,...,xT

linear quadratic estimation 11.33



Least squares state estimation

minimize  Jmeas + AJproc
SUbjeCttO Xr+1 =A1X1+B[Wt, t= 1,...,T— 1

e variables are the states x1,...,x7 and input noise wy,...,wr_1

e primary objective Jeas is sum of squares of measurement residuals:

2 2
Jmeas = [|C1x1 _y1|| + -+ ||Crxr _yT”

secondary objective Jyoc is sum of squares of process noise

2 2
Joroe = Wl + - + [lwr 1]

A > 0 is a parameter, trades off measurement and process errors

similar to control formulation but interpretation is different

linear quadratic estimation 11.34



Constrained least squares formulation

minimize

subjectto  x;41 = Aix; + Bywy, t=1,...,T -1

e can be written as L
minimize  ||Az — b||?
subjectto Cz=d

e vector 7 contains the Tn + (T — 1)m variables:

Z = (x]..?"',‘xT?Wl”"’wT_l)

linear quadratic estimation

IC1x1 =yl + -+ ICrxr = yr |2+ A (Iwall* + -+ + wr-|l?)
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Constrained least squares formulation

c; 0 0] o 0 1
0 Gy 0] 0 0 Vo
AN = O 0 CT O O N B = yT
0 0 0 | var 0 0
0 0 0l 0 varl 0
A, -1 0 0 0B 0 0
. 0 Ay -1 0 00 B 0 5
C= ‘ , d=0

linear quadratic estimation 11.36



Example

Ay

I
OO O
o o= O
O = O =
—_ O = O

o]

oy

1
o~ OO
_ o O O

9

1l

—_—
O =
—= O
o O
o O
e

simple model of mass moving in a 2-D plane

x; = (ps, 2¢): 2-vector p, is position, 2-vector z; is the velocity
e y, = Cix; + w; is noisy measurement of mass position

e 7=100

linear quadratic estimation 11.37



Position estimates

=1 A1=103

r— TS

e 100 noisy measurements y; shown as circles
e solid line is exact position C,x;
e blue lines show position estimates for three values of 4

linear quadratic estimation 11.38
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Return of an asset

Asset value

e asset can be stock, bond, real estate, commaodity, ...
e buy g shares of an asset at price p at beginning of investment period

e h = pgq is dollar value of holdings

Asset return
e sell g shares at new price p™ at end of period

e profitis
+ —_—
gt =) = L=
p
where r (fractional) return is
. (p*—-p) _ profit
p investment

portfolio optimization 11.39



Mean return and risk

e 1 is a time-series (vector) of returns
e avg(r) is portfolio mean return (or just return); std(r) is risk
e avg(r) and std(r) are per-period return and risk

e mean return and risk are often expressed in annualized form (i.e., per year)

Annualized return and risk: if we have P trading periods per year
annualized return = P avg(r), annualized risk = VPstd(r)

e if returns are daily, with 250 trading days in a year
annualized return = 250avg(r), annualized risk = V250std(r)

e example: daily return r with per-period (daily) return 0.05% and risk 0.5% has an
annualized return and risk of 12.5% and 7.9%

portfolio optimization 11.40



Portfolio investment

e 1 different assets
e we invest a total of V dollars over some period (one day, week, month, ...)

e goal: make investments so that the combined return for all investments is high

Portfolio allocation weights

e W is asset weight or allocation vector with 1Tw=1

e w; is fraction of total portfolio value held in asset j; short positionif w; < 0

— short positions are assets you borrow and sell at the beginning, but must return to the
borrower at the end of the period

e Vw; is the dollar value of asset j

e w =(-0.2,0.0, 1.2) means we take a short position of 0.2V in asset 1, don’t
hold any of asset 2, and invest 1.2V in asset 3

e Jeverage of portfolio is L = |[wq| + -+ + |wy|

portfolio optimization 11.41



Return matrix

(asset) return matrix for investments held for T periods is

Ri1 Rz - Ry ’71;
R= Ra1 R?2 -+ Roy _ |2
Rty Rr2 -+ Rrn iL

R, ; is fractional return of asset j in period ¢
— Rg1 = 0.02 means that asset 1 gained 2% in period 6

tth row 71 gives asset returns in period ¢

Jth column is time series of asset j returns

we often assume asset n is cash with risk-free return ;ff >0

if last asset is risk-free, the last column of R is ,urfl

portfolio optimization 11.42



Return over a period

e we invest a total (positive) amount V; at the beginning of period ¢
e sowe invest V;w; in asset j

e the dollar value of the whole portfolio at end of period ¢ is
n
Vl+1 = ZV[W] (1 +R[]) = V[(l +fl,TW)
j=1
where 7, = (Ry1, ..., Ripn)

o total (fractional) return of the portfolio over period ¢ is

Vii =V, Vi(L+ifw) -V,
= =7r;w
Vi Vi
e r = Rw is portfolio (fractional) returns vector (time series)
— if nisrisk free and w = e,, then Rw = ,urfl (constant return)

portfolio optimization 11.43



Portfolio value

Total portfolio value: if r is portfolio return vector in period #, then
Vier =Vi(1+r1) (L +r2) - (1+714)
e V; is initial investment amount
e portfolio value versus time traditionally plotted using V1 = $10000

Approximate total portfolio value

e for small per-period returns r; and not too large 7', we have

Vrsi=Vi(d+ry) - (1+rp)
~Vi+V; (}"1 + - +rT)
=V (1 + Tavg(r))

e approximation assumes r;r; are small (e.g., |r¢| small) and can be neglected

e approx. suggests that we can maximize our portfolio value, by maximizing avg(r)

portfolio optimization 11.44



Portfolio optimization

choose w to minimize risk with fixed mean return p

minimize  std(Rw)? = (1/T)||Rw — p1||?
subjectto 17w =1, avg(Rw) =p

e R is the returns matrix for past returns
e r = Rw is the (past) portfolio return time series

e solutions w are called Pareto optimal

Assumption: future returns will be similar to past ones

e this is false in general

e we choose w that would have worked well on past returns

e ... and hope it will work well going forward (just like data fitting)

e we can use validation by finding a solution of certain past period, then testing on
another past period

portfolio optimization 11.45



Portfolio optimization via constrained least squares

minimize  ||Rw — p1||?

subject to T |w=
M P

e i = (1/T)R™1is n-vector of (past) asset returns
e p is required (past) portfolio return

e an equality constrained least squares problem, with solution

w 2RTR

1 u 2pTu
z =] 1T 0 0 1
22 ut 0 0 P

portfolio optimization
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Optimal portfolio

optimal portfolio w is an affine function of p

w 2RTR 1 u]'[0 2RTR 1 u |7'[ 21w
2= 1T 0 0 1l+p| 1T 0 0 0
22 ul 0 0 0 ul 0 0 1

vector w has the form
w=w0+pv, 1Tv=0

e Pareto optimal portfolio form a line with base w9 and direction v
e apoint on a line can be written as affine combination of two other points on line

o Pareto optimal portfolios are affine comb. of just two portfolios (two-fund theorem)

portfolio optimization 11.47



Example

daily return data for 19 stocks over a period of 2000 days (8 years)

plus risk-free asset with 1% annual return

open circles shows individual assets (V250std(Re;), 250avg(Re;))

o line shows risk and return for the Pareto optimal portfolios (for different p)

04

03

02

Return

0.

0 S
\Risk—free

0 0.1 02 03
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Five portfolios

Return Risk
Portfolio Train  Test Train  Test Leverage
risk-free 0.01  0.01 0.00 0.00 1.00
o =10% 0.10 0.08 0.09 0.07 1.96
o =20% 0.20 0.15 0.18 0.15 3.03
o = 40% 0.40 0.30 0.38 0.31 5.48
1/n (uniform weights)  0.10  0.21 0.23 0.13 1.00

e train period of 2000 days used to compute optimal portfolio

e test period is different 500-day period

portfolio optimization 11.49



Total portfolio value

Value (thousand dollars)

Total value V; Test period total value
150 ‘ ‘ 40% 18
40%
©
©
5 1/n
©
100 =
=
8 20%
=1
o
£
200 =
50 2 10%
-~ s
h// - /10% = Risk-free
I e s SR Y
10 =
L I L L Risk-free
0 400 800 1200 1600 2000 0 100 200 300 400 500
ay Day
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