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10. Least squares data fitting

e data-fitting (model fitting)
e examples

e validation and over-fitting
o feature engineering

o classification
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Model fitting

Setup: a scalar y and an n-vector x are related by model, f : R" — R,

y~ fx)
e x is the independent variable or feature vector
e Yy is the outcome or response variable

e we don’t know f, which gives the ‘true’ relationship between x and y

Data: we are given some data (observations, samples, or measurements)

o x( v is jth data pair
° x;i) is the jth component of ith data pointx(i)
Model fitting: choose model f that approximates f based on observations

data-fitting (model fitting)
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Prediction error

e 3 = f(x®)is (the model's) prediction of y¥)
e goal: ﬁ(i) x y(i) (model is consistent with observed data)

o ri =y — 5 is prediction error or residual

Data fitting problem: choose model to minimize RMS or mean-square error (MSE)
prediction error on data set

N 1/2
1 ()12
RMS = NZ(r )
i=1
or

L

= E: ()2

MSE—N'l(r)
i=

data-fitting (model fitting) 10.3



Linear in parameters model

FO) =01 fi(x) + -+ + 60, f (%)

e f; : R"™ — R are basis functions or feature mappings that we choose

e O; are model parameters that we choose

Linear in parameters model fitting: choose 6; to minimize

MSE = ﬁ:(rm)z _1 ﬁ: (v = F(x0)?
N i=1 N i=1

e fit linear-in-parameters model to data set (x(1), y(), ..., (x(N), y(NV))

e residual for data sample i is

r =y = fa ) =y =0 i) = =0, ()

data-fitting (model fitting) 10.4



Least squares data fitting

a least squares problem:
minimize  ||A6 — y4||

with
AGED) e f(x W) 01 y®
ao| AED ) | e ||
AGD) ) 2 y®

e § = A6 is our prediction of y4, residual r4 = § — y

l74]12/N is minimum mean-square error (MMSE)

d
RMS prediction error rms(rd) = ||rd||/VN; ratio :gzg;d)) is relative error

e notation remark: here 6 is the variable and x refers to given data points

data-fitting (model fitting)
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Example: fitting a constant model

model is a constant

fx) =6

e simplest possible model: p =1, fi(x) =1

e A=1,s0 .
61 = (171)7 17y = (1/N)17y? = avg(y?)

e the mean (average) of y(l), cey y(N) is the least squares fit by a constant

e RMS erroris rms(y — avg(y?)1) = std(y?)

data-fitting (model fitting)
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Regression

recall the regression model:
y=Fx) =x"B+v
e |east squares regression: choose the model parameters v, 5 that minimize
1 N
AT N2
5 2 =y )" = |46 - y4)°
i=1

4

with
1 (x(l))T

) y®
; : , 0= [ 8 ] , yi= :
1 (xM)HT y(N)

A=

e same as data fitting with basis functions

fix)=1, ix)=x;.1, i=2,...,n+1

data-fitting (model fitting)
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e data-fitting (model fitting)
e examples

e validation and over-fitting
e feature engineering

o classification
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Fitting univariate functions

e approximate a univariate function f : R - R (n = 1)
e we can plot the data (x(¥), y(?) and the model function 9 = f(x)

Straight-line fit

F(x) =61 +6ox R
fx)
e p=2 filx)=1, folx) =x
e matrix A has form

1 x® Ps

1 x®
A = . .

1)
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Asset a and ( in finance

predict the return of an individual asset from the return of the whole market

e x is return of whole market over some period
e y is return of a particular asset over some period

o a widely used model is the straight-line model
)A} — (rrf +a) +,B(x _ﬂmkt)

— ™ is the risk-free interest rate over the period
- ,umkt is the average market return
e ‘@’ and ‘B’ called asset

e other models exists

examples
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Polynomial fit

model is a polynomial of degree at most p — 1:
f(x) =601 +0ox + - +0,xP7!
e fi(x)=x""1, i=1,...,p;herex’ means scalar x to ith power

e x( is ith data point

e A is Vandermonde matrix

1 x®M o (x(Wyrt

]_ x(2) see x(z) p_l
A ( .)

1 XM Ny

examples 10.10



Example: N = 100 data points

f(x) Degree 2 f(x) Degree 6

X X
f(x) Degree 10 f(x) Degree 15

X X
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Piecewise-linear fit

e define knot points a1 < as < --+ < ay on the real axis
e piecewise-linear function is continuous, and affine on each interval [a jra j+1]

e piecewise-linear function with knot points ay, . . ., ax can be written as
f(x) =01 +02x+03(x —ar)s + - + 024k (X —ag)s

where 1, = max{u, 0}

(x+ 1)+ (x = 1)+
3 3
2 2
1 1
0 0
X X
-3 -1 1 3 -3 -1 1 3
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Piecewise-linear fitting

piecewise-linear model is linear in the parameters 6, with basis functions

H) =1 folx)=x, fsx)=G&-a)e, ..., fea2(x) =& -a):

Example: fit piecewise-affine function with knots a; = —1, a3 = 1 to 100 points

f@

examples 10.13



Time series trend

e N data samples from time series: y(!), ..., y(N)

e straight-line fit
9 =6, + 0yi

is called the trend line (65 is trend coefficient)

e least squares fitting of trend line: minimize ||A6 — y4||? with

1 1 y(l)

1 2 (2)
A= T oy=|

1 N y(N)

o yl—3d = (yM 5@ y(N) _ 5(N))is the de-trended time series

examples
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Example: world petroleum consumption

time series of world petroleum consumption (million barrels/day) versus year

Consumption De-trended consumption
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e |eft figure shows data samples and trend line

e right figure shows de-trended time series
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Trend and seasonal component

e model time series as a linear trend plus a periodic component with period P:

3 nseas

yd — )A}Iin +y
with " = 6,(1,2,...,N) and
5‘)5935 = (92,93, e 70P+17627637 e 90P+19 cee 02’ 03’ e ’9P+1)

e the mean of y°°@ serves as a constant offset
e residual yd - j}d is the de-trended, seasonally adjusted time series

e least squares formulation: minimize || A6 — y||? with

1 AL
Ip y?

Avva=| |, AvNazpa=| |, yd= :
N Ip y)

examples
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examples

Example: vehicle miles traveled in the US per month

Miles(millions)
N N N
N kS [

N

Miles(millions)
N N N
N » [

N

data
10°

SPPFEFSFISTISTS

least squares fit
-10°

SPPFFFFFISTIOTS

10.17



Auto-regressive time series model

auto-regressive model (AR model) for the time series, 71, 22, . . ., has the form
2t+1=912[+922[—1+"'+9MZ1—M+1, t=M,M+1,...
® 7,1 is a prediction of z;,1, made at time ¢

e prediction Z;41 is a linear function of previous M values zs, . . ., Zr—pM+1

e M is the memory of the model
Least squares fitting of AR model: given observed data z1, ..., zr, minimize
(zm+1 = 2m41)? + (2aa2 — Ema2)® + - + (27 — 27)?

this is a least squares problem: minimize ||A68 — y9||? with

M IM-1 21 01 ZM+1
M+l M e 22 02 ZM+2
A= . . . . 0= | y'=
r-1 Ir-2 vt IT-M Om zr
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Example: hourly temperature at LAX in May 2016, length 744

70
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e
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e
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t

predictor Z;+1 = z; has RMS error 1.16°F

e predictor Z;4+1 = z;—23 has RMS error 1.73°F

AR model with M = 8 gives RMS error 0.98°F

solid line shows one-hour ahead predictions from AR model, first 5 days

examples 10.19
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Generalization and validation

Generalization
e goal of model fitting is typically to achieve a good fit on new unseen data

e model with good predictions on new, unseen data has generalization ability

(Out-of-sample) validation: to assess generalization ability,
e divide data in two sets: training set and test (validation) set (e.g., 80%/20%)
e use only training set to fit model
e use test set to get an idea of generalization ability
— compare MSE/RMS prediction error on train and test data

— if they are similar, we can guess the model will generalize

Over-fit model
e model that makes poor predictions on new, unseen data suffers from over-fit

e prediction error on training set is much smaller than on test set

validation and over-fitting
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Example

polynomial fit using training set of 100 points; circles show test set of 100 points

f(x) Degree 2 f(x) Degree 6

X X
f(x) Degree 10 f(x) Degree 15

X X

validation and over-fitting
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Example

1 —o—Train | |
—m— Test
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Degree

e suggests degree 4, 5, or 6 are reasonable choices
e models with degrees 0, 1, and 2 have good generalization ability, but worse
prediction performance

validation and over-fitting 10.22



Cross validation

Cross validation
e divide data into K folds (typically 5 < K < 10)

e fori =1 to K, fit model i using fold i as test set and other data as training set

e compare parameters and train/test RMS errors for the K models

Notes

e cross-validation is used to asses choice of basis functions used in the model
e if training and test set errors are similar, then our model is not over-fit

o RMS cross-validation error is defined as

J(@+ -+ e2) /K

where ¢; is training RMS error for model i

validation and over-fitting 10.23



e |s fit over all data gives RMS error 74.8

validation and over-fitting

Example: house price prediction

¥ =v+Bix1 + Boxa

y is the selling price; ¥ is prediction

fit 5 regression models, removing each fold

X1 is the area (1000 square feet); x5 is the number of bedrooms
774 sales, divided into 5 folds of 155 sales each

Model parameters RMS error
Fold v b1 B2 Train  Test
1 60.65 143.36 -18.00 74.00 78.44
2 54.00 151.11 -20.30 75.11 73.89
3 49.06 157.75 -21.10 76.22 69.93
4 4796 142.65 -14.35 71.16 88.35
5 60.24 150.13 -21.11 77.28 64.20
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Regularized data fitting

consider linear-in-parameters model

f(x) =6, +02f2(x) + - +0pfp(x)

we fit the model £ (x) to examples (x(V, y(1), ... (x(V) (V)

e large coefficient ; makes model more sensitive to changes in f; (x)

keeping 62, . . ., 6, small helps avoid over-fitting

this leads to two objectives:

N p
J1(0) =D (0 =y 02 1) =3 62 = 162,
k=1

Jj=2

primary objective J1(0) is sum of squares of prediction errors

validation and over-fitting 10.25



Weighted least squares formulation

N P
minimize J1(0) + AJ2(6) = Z (F (xR — y(k))2 +2 Z 6?
k=1 =2

e A is positive regularization parameter

e equivalent to least squares problem:

d 112
minimize H‘/%‘l‘b ]9_[})0]
with yd = (y(1, ..., y(V))
1 folx®) .. fp(x(l)) 01 0 - 0
A = 1 fox®@) .. fp(x(z)) A - 00 1 - 0
i fQ(x(N)) fp(‘x;(N)) 0 () 0 1

e stacked matrix has linearly independent columns (for positive 1)

e value of A can be chosen by (out-of-sample) validation or cross-validation

10.26
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Example

//
.
2
\

0 02 04 06 08 1
t

e solid line is signal used to generate synthetic (simulated) data
e 10 circle points are used as training set; 20 bullet points are used as test set
o we fit a model with five parameters 61, . . ., 05:

4
f(x) =0+ Z Or+1 sin(wix + ¢g)  (with given wy, dx)

k=1
validation and over-fitting 10.27



Result of regularized least squares fit
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e minimum test RMS error is for A around 0.08

e increasing A ‘shrinks’ the coefficients -, . . ., 5

e dashed lines show coefficients used to generate the data (true coefficients)
o for A near 0.08, estimated coefficients are close to these ‘true’ values

e any choice between 0.065 and 0.1 is reasonable

validation and over-fitting 10.28
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Feature engineering

F=F0) = 01fi(x0) + - + 0 fp(x)
choosing the feature mapping functions fi, ..., fp is called feature engineering
e start with original or base feature n-vector x
e choose basis functions f1, ..., f, to create feature p-vector (f1(x),..., fp(x))
e now fit linear in parameters model with mapped features

e check the model using validation

Remarks
e commontolet fi(x) =1

e common to initially use f;(x) =x;—1,i =2,...,n — 1 (basic regression model)

e if nis very large, feature mapping can be used to reduce dimension p < n

feature engineering 10.29



Transforming features

Standardizing features: replace x; with z-scores

(x; = bi)/a;

m W

PR

a; =~ standard deviation of feature across data

b; ~ mean value of feature across data x

standardization is first step in feature engineering

constant feature f(x) = 1 cannot be standardized

Winsorizing (clipping) features
e clip the data values that include some very large errors

e example: replace standarized x; with

xi x| <3
fl‘ = 3 X; > 3
-3 X < -3

feature engineering 10.30



Log transform: if x; is nonnegative and spans a wide range, replace it with

log(x;), i=2,...,n—-1

e use log(1 + x;) if features has zero values

e compresses the range of values that we encounter

hi and lo features: create new features given by

max{x; — b,0}, min{x; +a,0}

e example: y =¥ (x1) + -+ + ¥, (x,), where ; is piecewise-linear function
Yi(xi) = Opyi min{x; + @, 0} + 0:x; + 024 max{x; — b, 0}

e model has 3n parameters (original plus two additional features per original feature)

feature engineering 10.31



Example: house price regression model

y=v+xifi+-+ By

e X is area of the house (in 1000 square feet)

e Xy = max{x; — 1.5,0}, i.e., area in excess of 1.5 (in 1000 square feet)
e X3 is number of bedrooms

e X, is one for a condo; zero otherwise

® X5, Xg, X7 specify location (four groups of ZIP codes)

Location X5 Xg X7
A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1

feature engineering 10.32



Example: house price regression model

800

200

Predicted price ¥ (thousand dollars)

0 200 400 600 800
Actual price y (thousand dollars)

RMS fitting error is 68.3 (improved over original model 74.8 on page 10.24)

feature engineering 10.33
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Classification

Classification

e N training data points (xV, y(), ..., (xN), y(N))

e outcome y; takes on finite number of values called labels or categories
— TRUE or FALSE
— SPAM or NOT SPAM
— DOG, HORSE, or MOUSE

e data fitting £ (x() ~ y©) is called classification

Boolean (2-way) classification

e two possible outcomes only encoded as y € {+1, -1}

e Boolean classifier has form § = f(x), f : R" — {-1,+1}

classification 10.34



Applications

Email spam detection

x contains features of an email message (word counts, origin of email, ...)

Financial transaction fraud detection

x contains features of proposed transaction, initiator, average balance

Document classification (e.g., sport or politics or ...)

x is word count histogram of document

Disease detection

x contains patient features, results of medical tests, age, specific symptoms

Digital communications receiver

y is transmitted bit; x contain n measurements of received signal

classification 10.35



Prediction errors

data point (x, y) with predicted outcome = f(x); only four possibilities:

Prediction
Outcome y=+1 y=-1
y=+1 true positive  false negative
y=-1 false positive  true negative

Confusion matrix: count each of the four outcomes on data-set

y=+1 y=-1 Total

y= +1 th an Np

y= -1 pr Ntn Nn
All Nip + Nep Ny + Nin N

e error rateis (Ng, + Npy) /N
e true positive rate or recall rateis Ny, /Ny,

false positive rate or false alarm rate is N, /Ny,

a classifier is judged by its error rate(s) on a test set

classification
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Example

spam filter performance on a test set (say)

$ =+1 (SPAM) § = —1 (not SPAM)  Total

y = +1 (SPAM) 95 32 127
y = —1 (not SPAM) 19 1120 1139
Al 114 1152 1266

e errorrate is (19 + 32)/1266 = 4.03%
e false positive rate is 19/1139 = 1.67%

classification
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Least squares Boolean classifier

e we are given the data points (x(?, y) i=1,... N

e determine basis functions fi, .. .,fp for linear-in-parameter model

f(x) = 6’1f1 ()C) + 92f2(x) + -+ HI,fI,(x)
e use least squares data-fitting to find parameters 64, ...,06,

e take the sign of f (x) to get the Boolean classifier:

+1 if f(x) >0

f(x) =sign(f(x)) = {_1 it f(x) <0

e often used with regression model f(x) = xT8 +v

classification 10.38



classification

Handwritten digits example

MNIST data set of 70000, 28 x 28 = 784 images of digits 0, ..., 9
divided into training set (60000) and test set (10000)
only 493 nonzero pixels in at least 600 examples are used (shown on right)

y =+1if digitis 0, y = —1 otherwise

H HE

NOEON
NEEN
ESEDND

ENEN
NE NS

10.39



Least squares classifier results

results for regression model f(x®) = sign(f(x®)) = sign((x@) 73 + v)

training set results (error rate 1.6%)
y=+41 y=-1 Total

y=+1 5158 765 5923
y=-1 167 53910 54077
All 5325 54675 60000

test set results (error rate 1.6%)
y=+41 y=-1 Total
y=+1 864 116 980
y=-1 42 8978 9020
All 906 9094 10000

classification 10.40



Distribution of least squares fit

0.1f E (o Positive |
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fx®)
e distribution of values of f(x?) = (x(?)TB + ¥ over training set
e blue bars to the left of dashed line are false negatives (misclassified digits zero)

e red bars to the right of dashed line are false positives (misclassified non-zeros)
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Skewed decision threshold

f(x) = sign(f(x) -

e « is the decision threshold

a) =

+1 f(x)>a
-1 f(x)<a

e for positive @, false positive rate is lower but so is true positive rate

e for negative «, false positive rate is higher but so is true positive rate

Example (error rate 1.4% with @ = —0.1, dashed line @ = 0.25)
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Classifier with additional nonlinear features

F(x) = sign(f(x)) = sign ( fl 0:fi(x))

e basis functions include constant, 493 elements of x, plus 5000 functions
fi(x) = max{0, riTx +s;}  with randomly generated r;, s;

e error rate is 0.21% on training test and 0.24% on test set

[0 Positive
[l 0Negative
0.15
c
2 0.10
o
o
[
0.05

-2 -15-1-05 0 05 1 15 2

classification f (x(i) ) 10.43



Multi-class classifiers

e a data fitting problem where the outcome y € {1,...,K}
e values of y represent K labels or categories

e multi-class classifier § = (x) maps x to an element of {1, 2, ..., K}

Least squares multi-class classifier

e fork =1,..., K, compute Boolean classifier to distinguish class k from not k
Ji(x) = sign(fi(x))
o define multi-class classifier as

f(x) = argmax fk(x)
k=1,....K

i.e., choose k with largest value of fk(x)

classification 10.44



Example: handwritten digit classification

e compute least squares Boolean classifier for each digit versus the rest

fr(x) =sign(xTBx +vi), k=1,...,K
o table shows results for test set (error rate 13.9%)
Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total
0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009
Al 1042 1330 887 1042 1086 742 994 1032 898 947 10000

classification
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Example: handwritten digit classification

e ten least squares Boolean classifiers use 5000 new features

e table shows results for test set (error rate 2.6%)

Prediction
Digit 0 1 2 3 4 5 6 7 8 9 Total
0 972 0 0 2 0 1 1 1 3 0 980
1 0 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010
4 2 1 3 0 953 0 6 3 1 13 982
5 2 0 1 5 0 875 5 0 3 1 892
6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028
8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000

classification
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References and further readings

e S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

e L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)
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