10. Least squares data fitting

- data-fitting (model fitting)
- examples
- validation and over-fitting
- feature engineering
- classification

Model fitting

Setup: a scalar *y* and an *n*-vector *x* are related by model, $f : \mathbb{R}^n \to \mathbb{R}$,

 $y \approx f(x)$

- *x* is the *independent variable* or *feature vector*
- *y* is the *outcome* or *response variable*
- we don't know *f*, which gives the 'true' relationship between *x* and *y*

Data: we are given some data (observations, samples, or measurements)

 $x^{(1)}, \ldots, x^{(N)}, y^{(1)}, \ldots, y^{(N)}$

- $x^{(i)}, y^{(i)}$ is *i*th *data pair*
- $x_i^{(i)}$ is the *j*th component of *i*th data point $x^{(i)}$

Model fitting: choose model \hat{f} that approximates f based on observations

Prediction error

- $\hat{y}^{(i)} = \hat{f}(x^{(i)})$ is (the model's) *prediction* of $y^{(i)}$
- goal: $\hat{y}^{(i)} \approx y^{(i)}$ (model is consistent with observed data)
- $r_i = y^{(i)} \hat{y}^{(i)}$ is prediction error or residual

Data fitting problem: choose model to minimize RMS or mean-square error (MSE) prediction error on data set

$$\mathsf{RMS} = \left(\frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2\right)^{1/2}$$

or

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2$$

Linear in parameters model

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- $f_i : \mathbb{R}^n \to \mathbb{R}$ are basis functions or feature mappings that we choose
- θ_i are model parameters that we choose

Linear in parameters model fitting: choose θ_i to minimize

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2 = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{f}(x^{(i)}))^2$$

- fit linear-in-parameters model to data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- residual for data sample *i* is

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)}) = y^{(i)} - \theta_1 f_1(x^{(i)}) - \dots - \theta_p f_p(x^{(i)})$$

Least squares data fitting

a least squares problem:

minimize $||A\theta - y^d||^2$

with

$$A = \begin{bmatrix} f_1(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ f_1(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & & \vdots \\ f_1(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}, \quad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

- $\hat{y} = A\hat{\theta}$ is our prediction of y^{d} , residual $r^{d} = \hat{y} y$
- $||r^{d}||^{2}/N$ is minimum mean-square error (MMSE)
- RMS prediction error rms $(r^{d}) = ||r^{d}|| / \sqrt{N}$; ratio $\frac{rms(r^{d})}{rms(y^{d})}$ is relative error
- notation remark: here θ is the variable and x refers to given data points

Example: fitting a constant model

model is a constant

$$\hat{f}(x) = \theta_1$$

• simplest possible model: p = 1, $f_1(x) = 1$

•
$$A = 1$$
, so
 $\hat{\theta}_1 = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T y^{d} = (1/N) \mathbf{1}^T y^{d} = \operatorname{avg}(y^{d})$

- the mean (average) of $y^{(1)},\ldots,y^{(N)}$ is the least squares fit by a constant
- RMS error is $rms(y avg(y^d)\mathbf{1}) = std(y^d)$

Regression

recall the regression model:

$$\hat{y} = \hat{f}(x) = x^T \beta + v$$

• least squares regression: choose the model parameters v, β that minimize

2

$$\frac{1}{N} \sum_{i=1}^{N} \left(v + (x^{(i)})^T \beta - y^{(i)} \right)^2 = \|A\theta - y^{\rm d}\|^2$$

with

$$A = \begin{bmatrix} 1 & (x^{(1)})^T \\ \vdots & \vdots \\ 1 & (x^{(N)})^T \end{bmatrix}, \quad \theta = \begin{bmatrix} v \\ \beta \end{bmatrix}, \quad y^{d} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

· same as data fitting with basis functions

$$f_1(x) = 1, f_i(x) = x_{i-1}, \quad i = 2, \dots, n+1$$

Outline

- data-fitting (model fitting)
- examples
- validation and over-fitting
- feature engineering
- classification

Fitting univariate functions

- approximate a univariate function $f : \mathbb{R} \to \mathbb{R}$ (n = 1)
- we can plot the data $(x^{(i)}, y^{(i)})$ and the model function $\hat{y} = \hat{f}(x)$

Straight-line fit

$$\hat{f}(x) = \theta_1 + \theta_2 x$$

- $p = 2, f_1(x) = 1, f_2(x) = x$
- matrix A has form

$$A = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(N)} \end{bmatrix}$$

Asset α and β in finance

predict the return of an individual asset from the return of the whole market

- *x* is return of whole market over some period
- y is return of a particular asset over some period
- a widely used model is the straight-line model

$$\hat{y} = \left(r^{\rm rf} + \alpha\right) + \beta \left(x - \mu^{\rm mkt}\right)$$

- r^{rf} is the risk-free interest rate over the period
- $-\mu^{mkt}$ is the average market return
- ' α ' and ' β ' called *asset*
- · other models exists

Polynomial fit

model is a polynomial of degree at most p-1:

$$\hat{f}(x) = \theta_1 + \theta_2 x + \dots + \theta_p x^{p-1}$$

- $f_i(x) = x^{i-1}$, i = 1, ..., p; here x^i means scalar x to ith power
- $x^{(i)}$ is *i*th data point
- *A* is Vandermonde matrix

$$A = \begin{bmatrix} 1 & x^{(1)} & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x^{(N)} & \cdots & (x^{(N)})^{p-1} \end{bmatrix}$$

Piecewise-linear fit

- define *knot points* $a_1 < a_2 < \cdots < a_k$ on the real axis
- piecewise-linear function is continuous, and affine on each interval $[a_i, a_{i+1}]$
- piecewise-linear function with knot points a_1, \ldots, a_k can be written as

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 (x - a_1)_+ + \dots + \theta_{2+k} (x - a_k)_+$$

where $u_{+} = \max\{u, 0\}$

Piecewise-linear fitting

piecewise-linear model is linear in the parameters θ , with basis functions

$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = (x - a_1)_+$, ..., $f_{k+2}(x) = (x - a_k)_+$

Example: fit piecewise-affine function with knots $a_1 = -1$, $a_2 = 1$ to 100 points

Time series trend

- N data samples from time series: $y^{(1)}, \ldots, y^{(N)}$
- straight-line fit

$$\hat{y}^{(i)} = \theta_1 + \theta_2 i$$

is called the *trend line* (θ_2 is trend coefficient)

• least squares fitting of trend line: minimize $\|A\theta - y^d\|^2$ with

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & N \end{bmatrix}, \quad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

• $y^{d} - \hat{y}^{d} = (y^{(1)} - \hat{y}^{(1)}, \dots, y^{(N)} - \hat{y}^{(N)})$ is the *de-trended time series*

Example: world petroleum consumption

time series of world petroleum consumption (million barrels/day) versus year

Consumption

De-trended consumption

- left figure shows data samples and trend line
- right figure shows de-trended time series

Trend and seasonal component

• model time series as a linear trend plus a periodic component with period P:

$$\hat{y}^{d} = \hat{y}^{\text{lin}} + \hat{y}^{\text{seas}}$$

with $\hat{y}^{\text{lin}} = \theta_1(1, 2, \dots, N)$ and

$$\hat{y}^{\text{seas}} = (\theta_2, \theta_3, \dots, \theta_{P+1}, \theta_2, \theta_3, \dots, \theta_{P+1}, \dots, \theta_2, \theta_3, \dots, \theta_{P+1})$$

- the mean of \hat{y}^{seas} serves as a constant offset
- residual $y^d \hat{y}^d$ is the de-trended, seasonally adjusted time series
- least squares formulation: minimize $\|A\theta-y^d\|^2$ with

$$A_{1:N,1} = \begin{bmatrix} 1\\ 2\\ \vdots\\ N \end{bmatrix}, \quad A_{1:N,2:P+1} = \begin{bmatrix} I_P\\ I_P\\ \vdots\\ I_P \end{bmatrix}, \quad y^{d} = \begin{bmatrix} y^{(1)}\\ y^{(2)}\\ \vdots\\ y^{(N)} \end{bmatrix}$$

Example: vehicle miles traveled in the US per month

Auto-regressive time series model

auto-regressive model (AR model) for the time series, z_1, z_2, \ldots , has the form

$$\hat{z}_{t+1} = \theta_1 z_t + \theta_2 z_{t-1} + \dots + \theta_M z_{t-M+1}, \quad t = M, M+1, \dots$$

- \hat{z}_{t+1} is a prediction of z_{t+1} , made at time t
- prediction \hat{z}_{t+1} is a linear function of previous M values z_t, \ldots, z_{t-M+1}
- *M* is the *memory* of the model

Least squares fitting of AR model: given observed data z_1, \ldots, z_T , minimize

$$(z_{M+1} - \hat{z}_{M+1})^2 + (z_{M+2} - \hat{z}_{M+2})^2 + \dots + (z_T - \hat{z}_T)^2$$

this is a least squares problem: minimize $\|A\theta-y^d\|^2$ with

$$A = \begin{bmatrix} z_M & z_{M-1} & \cdots & z_1 \\ z_{M+1} & z_M & \cdots & z_2 \\ \vdots & \vdots & & \vdots \\ z_{T-1} & z_{T-2} & \cdots & z_{T-M} \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_M \end{bmatrix}, \quad y^{d} = \begin{bmatrix} z_{M+1} \\ z_{M+2} \\ \vdots \\ z_T \end{bmatrix}$$

examples

Example: hourly temperature at LAX in May 2016, length 744

- predictor $\hat{z}_{t+1} = z_t$ has RMS error 1.16° F
- predictor $\hat{z}_{t+1} = z_{t-23}$ has RMS error 1.73° F
- AR model with M = 8 gives RMS error 0.98° F
- solid line shows one-hour ahead predictions from AR model, first 5 days

examples

Outline

- data-fitting (model fitting)
- examples
- validation and over-fitting
- feature engineering
- classification

Generalization and validation

Generalization

- goal of model fitting is typically to achieve a good fit on new unseen data
- model with good predictions on new, unseen data has generalization ability

(Out-of-sample) validation: to assess generalization ability,

- divide data in two sets: training set and test (validation) set (e.g., 80%/20%)
- use only training set to fit model
- use test set to get an idea of generalization ability
 - compare MSE/RMS prediction error on train and test data
 - if they are similar, we can guess the model will generalize

Over-fit model

- · model that makes poor predictions on new, unseen data suffers from over-fit
- prediction error on training set is much smaller than on test set

Example

polynomial fit using training set of 100 points; circles show test set of 100 points

Example

- suggests degree 4, 5, or 6 are reasonable choices
- models with degrees 0, 1, and 2 have good generalization ability, but worse prediction performance

Cross validation

Cross validation

- divide data into *K* folds (typically $5 \le K \le 10$)
- for i = 1 to K, fit model i using fold i as test set and other data as training set
- compare parameters and train/test RMS errors for the K models

Notes

- · cross-validation is used to asses choice of basis functions used in the model
- · if training and test set errors are similar, then our model is not over-fit
- RMS cross-validation error is defined as

$$\sqrt{(\epsilon_1^2 + \dots + \epsilon_K^2)/K}$$

where ϵ_i is training RMS error for model *i*

Example: house price prediction

$$\hat{y} = v + \beta_1 x_1 + \beta_2 x_2$$

- y is the selling price; \hat{y} is prediction
- x₁ is the area (1000 square feet); x₂ is the number of bedrooms
- $774 \ {\rm sales},$ divided into $5 \ {\rm folds} \ {\rm of} \ 155 \ {\rm sales}$ each
- fit 5 regression models, removing each fold

	Мо	del parame	R	RMS error			
Fold	v	β_1	β_2	Tra	in	Test	
1	60.65	143.36	-18.00	74.	00	78.44	
2	54.00	151.11	-20.30	75.	11	73.89	
3	49.06	157.75	-21.10	76.	22	69.93	
4	47.96	142.65	-14.35	71.	16	88.35	
5	60.24	150.13	-21.11	77.	28	64.20	

Is fit over all data gives RMS error 74.8

Regularized data fitting

consider linear-in-parameters model

$$\hat{f}(x) = \theta_1 + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

- we fit the model $\hat{f}(x)$ to examples $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})$
- large coefficient θ_i makes model more sensitive to changes in $f_i(x)$
- keeping $\theta_2, \ldots, \theta_p$ small helps avoid over-fitting
- this leads to two objectives:

$$J_1(\theta) = \sum_{k=1}^N \left(\hat{f}(x^{(k)}) - y^{(k)} \right)^2, \quad J_2(\theta) = \sum_{j=2}^P \theta_j^2 = \|\theta_{2:P}\|^2$$

primary objective $J_1(\theta)$ is sum of squares of prediction errors

Weighted least squares formulation

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

- λ is positive regularization parameter
- equivalent to least squares problem:

$$\begin{array}{l} \text{minimize} \quad \left\| \begin{bmatrix} A_1 \\ \sqrt{\lambda}A_2 \end{bmatrix} \theta - \begin{bmatrix} y^d \\ 0 \end{bmatrix} \right\|^2 \\ \text{with } y^d = (y^{(1)}, \dots, y^{(N)}) \\ A_1 = \begin{bmatrix} 1 & f_2(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ 1 & f_2(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ 1 & f_2(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by (out-of-sample) validation or cross-validation

Example

- solid line is signal used to generate synthetic (simulated) data
- 10 circle points are used as training set; 20 bullet points are used as test set
- we fit a model with five parameters $\theta_1, \ldots, \theta_5$:

$$\hat{f}(x) = \theta_1 + \sum_{k=1}^4 \theta_{k+1} \sin(\omega_k x + \phi_k)$$
 (with given ω_k, ϕ_k)

validation and over-fitting

Result of regularized least squares fit

- minimum test RMS error is for λ around 0.08
- increasing λ 'shrinks' the coefficients $\theta_2, \ldots, \theta_5$
- dashed lines show coefficients used to generate the data (true coefficients)
- for λ near 0.08, estimated coefficients are close to these 'true' values
- any choice between 0.065 and 0.1 is reasonable

validation and over-fitting

Outline

- data-fitting (model fitting)
- examples
- validation and over-fitting
- feature engineering
- classification

Feature engineering

$$\hat{y} = \hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

choosing the feature mapping functions f_1, \ldots, f_p is called *feature engineering*

- start with original or base feature *n*-vector *x*
- choose basis functions f_1, \ldots, f_p to create feature *p*-vector $(f_1(x), \ldots, f_p(x))$
- now fit linear in parameters model with mapped features
- check the model using validation

Remarks

- common to let $f_1(x) = 1$
- common to initially use $f_i(x) = x_{i-1}, i = 2, ..., n-1$ (basic regression model)
- if *n* is very large, feature mapping can be used to reduce dimension p < n

Transforming features

Standardizing features: replace *x_i* with *z*-scores

 $(x_i-b_i)/a_i$

- $b_i \approx$ mean value of feature across data $x_i^{(1)}, \ldots, x_i^{(N)}$
- $a_i \approx$ standard deviation of feature across data
- standardization is first step in feature engineering
- constant feature $f_1(x) = 1$ cannot be standardized

Winsorizing (clipping) features

- · clip the data values that include some very large errors
- example: replace standarized x_i with

$$\tilde{x}_i = \begin{cases} x_i & |x_i| \le 3\\ 3 & x_i > 3\\ -3 & x_i < -3 \end{cases}$$

Log transform: if x_i is nonnegative and spans a wide range, replace it with

$$\log(x_i), \quad i = 2, ..., n - 1$$

- use $\log(1 + x_i)$ if features has zero values
- · compresses the range of values that we encounter

hi and lo features: create new features given by

$$\max\{x_i - b, 0\}, \quad \min\{x_i + a, 0\}$$

• example: $\hat{y} = \psi_1(x_1) + \dots + \psi_n(x_n)$, where ψ_i is piecewise-linear function

$$\psi_i(x_i) = \theta_{n+i} \min\{x_i + a, 0\} + \theta_i x_i + \theta_{2n+i} \max\{x_i - b, 0\}$$

• model has 3*n* parameters (original plus two additional features per original feature)

Example: house price regression model

$$\hat{y} = v + \tilde{x}_1 \beta_1 + \dots + \beta_7 \tilde{x}_7$$

- \tilde{x}_1 is area of the house (in 1000 square feet)
- $\tilde{x}_2 = \max{\{\tilde{x}_1 1.5, 0\}}, i.e.$, area in excess of 1.5 (in 1000 square feet)
- \tilde{x}_3 is number of bedrooms
- \tilde{x}_4 is one for a condo; zero otherwise
- $\tilde{x}_5, \tilde{x}_6, \tilde{x}_7$ specify location (four groups of ZIP codes)

Location	\tilde{x}_5	\tilde{x}_6	\tilde{x}_7
А	0	0	0
В	1	0	0
С	0	1	0
D	0	0	1

Example: house price regression model

RMS fitting error is 68.3 (improved over original model 74.8 on page 10.24)

feature engineering

Outline

- data-fitting (model fitting)
- examples
- validation and over-fitting
- feature engineering
- classification

Classification

Classification

- *N* training data points $(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})$
- outcome y_i takes on finite number of values called *labels* or *categories*
 - TRUE or FALSE
 - SPAM or NOT SPAM
 - DOG, HORSE, or MOUSE
- data fitting $f(x^{(i)}) \approx y^{(i)}$ is called *classification*

Boolean (2-way) classification

- two possible outcomes only encoded as $y \in \{+1, -1\}$
- Boolean classifier has form $\hat{y} = \hat{f}(x), \hat{f} : \mathbb{R}^n \to \{-1, +1\}$

Applications

Email spam detection

x contains features of an email message (word counts, origin of email, ...)

Financial transaction fraud detection

x contains features of proposed transaction, initiator, average balance

Document classification (*e.g.*, sport or politics or ...)

x is word count histogram of document

Disease detection

x contains patient features, results of medical tests, age, specific symptoms

Digital communications receiver

y is transmitted bit; x contain n measurements of received signal

Prediction errors

data point (x, y) with predicted outcome $\hat{y} = \hat{f}(x)$; only four possibilities:

	Prediction					
Outcome	$\hat{y} = +1$	$\hat{y} = -1$				
y = +1	true positive	false negative				
y = -1	false positive	true negative				

Confusion matrix: count each of the four outcomes on data-set

	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	$N_{ m tp}$	$N_{ m fn}$	$N_{ m p}$
y = -1	$N_{ m fp}$	$N_{ m tn}$	$N_{ m n}$
All	$N_{\mathrm{tp}}+N_{\mathrm{fp}}$	N_{fn} + N_{tn}	N

- error rate is $(N_{\rm fp} + N_{\rm fn})/N$
- true positive rate or recall rate is $N_{
 m tp}/N_{
 m p}$
- false positive rate or false alarm rate is $N_{\mathrm{fp}}/N_{\mathrm{n}}$
- a classifier is judged by its error rate(s) on a test set

classification

Example

spam filter performance on a test set (say)

	$\hat{y} = +1$ (SPAM)	$\hat{y} = -1$ (not SPAM)	Total
y = +1 (SPAM)	95	32	127
y = -1 (not SPAM)	19	1120	1139
All	114	1152	1266

- error rate is (19 + 32)/1266 = 4.03%
- false positive rate is 19/1139 = 1.67%

Least squares Boolean classifier

- we are given the data points $(x^{(i)}, y^{(i)}), i = 1, \dots, N$
- determine basis functions f_1, \ldots, f_p for linear-in-parameter model

$$\tilde{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

- use least squares data-fitting to find parameters $\theta_1, \ldots, \theta_n$
- take the sign of $\tilde{f}(x)$ to get the *Boolean classifier*:

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \begin{cases} +1 & \text{if } \tilde{f}(x) \ge 0\\ -1 & \text{if } \tilde{f}(x) < 0 \end{cases}$$

• often used with regression model $\tilde{f}(x) = x^T \beta + v$

Handwritten digits example

- MNIST data set of $70000,\,28\times28=784$ images of digits $0,\,\ldots,\,9$
- divided into training set (60000) and test set (10000)
- only 493 nonzero pixels in at least 600 examples are used (shown on right)
- y = +1 if digit is 0, y = -1 otherwise

Least squares classifier results

results for regression model $\hat{f}(x^{(i)}) = \operatorname{sign}(\tilde{f}(x^{(i)})) = \operatorname{sign}((x^{(i)})^T \hat{\beta} + \hat{v})$

training set results (error rate 1.6%)								
$\hat{y} = +1$ $\hat{y} = -1$ Total								
y = +1	5158	765	5923					
y = -1	167	53910	54077					
All	5325	54675	60000					

test set results (error rate 1.6%)								
$\hat{y} = +1$ $\hat{y} = -1$ Total								
y = +1	864	116	980					
y = -1	42	8978	9020					
All	906	9094	10000					

Distribution of least squares fit

- distribution of values of $\tilde{f}(x^{(i)}) = (x^{(i)})^T \hat{\beta} + \hat{v}$ over training set
- blue bars to the left of dashed line are false negatives (misclassified digits zero)
- red bars to the right of dashed line are false positives (misclassified non-zeros)

classification

Skewed decision threshold

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x) - \alpha) = \begin{cases} +1 & \tilde{f}(x) \ge \alpha \\ -1 & \tilde{f}(x) < \alpha \end{cases}$$

- α is the decision threshold
- for positive α , false positive rate is lower but so is true positive rate
- for negative α, false positive rate is higher but so is true positive rate

Example (error rate 1.4% with $\alpha = -0.1$, dashed line $\alpha = 0.25$)

Classifier with additional nonlinear features

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \operatorname{sign}\left(\sum_{i=1}^{p} \theta_i f_i(x)\right)$$

basis functions include constant, 493 elements of x, plus 5000 functions

 $f_i(x) = \max\{0, r_i^T x + s_i\}$ with randomly generated r_i, s_i

error rate is 0.21% on training test and 0.24% on test set

Multi-class classifiers

- a data fitting problem where the outcome $y \in \{1, \ldots, K\}$
- values of *y* represent *K* labels or categories
- multi-class classifier $\hat{y} = \hat{f}(x)$ maps x to an element of $\{1, 2, \dots, K\}$

Least squares multi-class classifier

• for k = 1, ..., K, compute Boolean classifier to distinguish class k from not k

$$\hat{f}_k(x) = \mathrm{sign}(\tilde{f}_k(x))$$

· define multi-class classifier as

$$\hat{f}(x) = \underset{k=1,...,K}{\operatorname{argmax}} \tilde{f}_k(x)$$

i.e., choose k with largest value of $\tilde{f}_k(x)$

classification

Example: handwritten digit classification

• compute least squares Boolean classifier for each digit versus the rest

$$\hat{f}_k(x) = \operatorname{sign}(x^T \beta_k + v_k), \quad k = 1, \dots, K$$

• table shows results for test set (error rate 13.9%)

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	944	0	1	2	2	8	13	2	7	1	980
1	0	1107	2	2	3	1	5	1	14	0	1135
2	18	54	815	26	16	0	38	22	39	4	1032
3	4	18	22	884	5	16	10	22	20	9	1010
4	0	22	6	0	883	3	9	1	12	46	982
5	24	19	3	74	24	656	24	13	38	17	892
6	17	9	10	0	22	17	876	0	7	0	958
7	5	43	14	6	25	1	1	883	1	49	1028
8	14	48	11	31	26	40	17	13	756	18	974
9	16	10	3	17	80	0	1	75	4	803	1009
All	1042	1330	887	1042	1086	742	994	1032	898	947	10000

Example: handwritten digit classification

- ten least squares Boolean classifiers use 5000 new features
- table shows results for test set (error rate 2.6%)

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	972	0	0	2	0	1	1	1	3	0	980
1	0	1126	3	1	1	0	3	0	1	0	1135
2	6	0	998	3	2	0	4	7	11	1	1032
3	0	0	3	977	0	13	0	5	8	4	1010
4	2	1	3	0	953	0	6	3	1	13	982
5	2	0	1	5	0	875	5	0	3	1	892
6	8	3	0	0	4	6	933	0	4	0	958
7	0	8	12	0	2	0	1	992	3	10	1028
8	3	1	3	6	4	3	2	2	946	4	974
9	4	3	1	12	11	7	1	3	3	964	1009
All	997	1142	1024	1006	977	905	956	1013	983	997	10000

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)