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Model fitting

Setup: a scalar 𝑦 and an 𝑛-vector 𝑥 are related by model, 𝑓 : R𝑛 → R,

𝑦 ≈ 𝑓 (𝑥)

• 𝑥 is the independent variable or feature vector

• 𝑦 is the outcome or response variable

• we don’t know 𝑓 , which gives the ‘true’ relationship between 𝑥 and 𝑦

Data: we are given some data (observations, samples, or measurements)

𝑥 (1) , . . . , 𝑥 (𝑁 ) , 𝑦 (1) , . . . , 𝑦 (𝑁 )

• 𝑥 (𝑖) , 𝑦 (𝑖) is 𝑖th data pair

• 𝑥
(𝑖)
𝑗

is the 𝑗 th component of 𝑖th data point 𝑥 (𝑖)

Model fitting: choose model 𝑓 that approximates 𝑓 based on observations
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Prediction error

• 𝑦 (𝑖) = 𝑓 (𝑥 (𝑖) ) is (the model’s) prediction of 𝑦 (𝑖)

• goal: 𝑦 (𝑖) ≈ 𝑦 (𝑖) (model is consistent with observed data)

• 𝑟𝑖 = 𝑦
(𝑖) − 𝑦 (𝑖) is prediction error or residual

Data fitting problem: choose model to minimize RMS or mean-square error (MSE)
prediction error on data set

RMS =

(
1

𝑁

𝑁∑︁
𝑖=1

(𝑟 (𝑖) )2
)1/2

or

MSE =
1

𝑁

𝑁∑︁
𝑖=1

(𝑟 (𝑖) )2
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Linear in parameters model

𝑓 (𝑥) = 𝜃1 𝑓1 (𝑥) + ··· + 𝜃𝑝 𝑓𝑝 (𝑥)

• 𝑓𝑖 : R
𝑛 → R are basis functions or feature mappings that we choose

• 𝜃𝑖 are model parameters that we choose

Linear in parameters model fitting: choose 𝜃𝑖 to minimize

MSE =
1

𝑁

𝑁∑︁
𝑖=1

(𝑟 (𝑖) )2 =
1

𝑁

𝑁∑︁
𝑖=1

(
𝑦 (𝑖) − 𝑓 (𝑥 (𝑖) )

)2
• fit linear-in-parameters model to data set (𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑁 ) , 𝑦 (𝑁 ) )
• residual for data sample 𝑖 is

𝑟 (𝑖) = 𝑦 (𝑖) − 𝑓 (𝑥 (𝑖) ) = 𝑦 (𝑖) − 𝜃1 𝑓1 (𝑥 (𝑖) ) − ··· − 𝜃𝑝 𝑓𝑝 (𝑥 (𝑖) )
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Least squares data fitting

a least squares problem:
minimize ‖𝐴𝜃 − 𝑦d‖2

with

𝐴 =


𝑓1 (𝑥 (1) ) ··· 𝑓𝑝 (𝑥 (1) )
𝑓1 (𝑥 (2) ) ··· 𝑓𝑝 (𝑥 (2) )

... ...

𝑓1 (𝑥 (𝑁 ) ) ··· 𝑓𝑝 (𝑥 (𝑁 ) )

 , 𝜃 =


𝜃1
𝜃2
...

𝜃𝑝

 , 𝑦d =


𝑦 (1)

𝑦 (2)

...

𝑦 (𝑁 )


• 𝑦 = 𝐴𝜃 is our prediction of 𝑦d, residual 𝑟d = 𝑦 − 𝑦

• ‖𝑟d‖2/𝑁 is minimum mean-square error (MMSE)

• RMS prediction error rms(𝑟d) = ‖𝑟d‖/
√
𝑁 ; ratio rms(𝑟d)

rms(𝑦d) is relative error

• notation remark: here 𝜃 is the variable and 𝑥 refers to given data points
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Example: fitting a constant model

model is a constant
𝑓 (𝑥) = 𝜃1

• simplest possible model: 𝑝 = 1, 𝑓1 (𝑥) = 1

• 𝐴 = 1, so
𝜃1 = (1T1)−11T𝑦d = (1/𝑁)1T𝑦d = avg(𝑦d)

• the mean (average) of 𝑦 (1) , . . . , 𝑦 (𝑁 ) is the least squares fit by a constant

• RMS error is rms(𝑦 − avg(𝑦d)1) = std(𝑦d)
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Regression

recall the regression model:
𝑦 = 𝑓 (𝑥) = 𝑥T𝛽 + 𝑣

• least squares regression: choose the model parameters 𝑣, 𝛽 that minimize

1

𝑁

𝑁∑︁
𝑖=1

(
𝑣 + (𝑥 (𝑖) )T𝛽 − 𝑦 (𝑖)

)2
= ‖𝐴𝜃 − 𝑦d‖2

with

𝐴 =


1 (𝑥 (1) )T
... ...

1 (𝑥 (𝑁 ) )T

 , 𝜃 =

[
𝑣

𝛽

]
, 𝑦d =


𝑦 (1)

...

𝑦 (𝑁 )


• same as data fitting with basis functions

𝑓1 (𝑥) = 1, 𝑓𝑖 (𝑥) = 𝑥𝑖−1, 𝑖 = 2, . . . , 𝑛 + 1
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Outline
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Fitting univariate functions

• approximate a univariate function 𝑓 : R → R (𝑛 = 1)

• we can plot the data (𝑥 (𝑖) , 𝑦 (𝑖) ) and the model function 𝑦 = 𝑓 (𝑥)

Straight-line fit

𝑓 (𝑥) = 𝜃1 + 𝜃2𝑥

• 𝑝 = 2, 𝑓1 (𝑥) = 1, 𝑓2 (𝑥) = 𝑥

• matrix 𝐴 has form

𝐴 =


1 𝑥 (1)

1 𝑥 (2)

... ...

1 𝑥 (𝑁 )

 𝑥

𝑓 (𝑥)
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Asset 𝛼 and 𝛽 in finance

predict the return of an individual asset from the return of the whole market

• 𝑥 is return of whole market over some period

• 𝑦 is return of a particular asset over some period

• a widely used model is the straight-line model

𝑦 =
(
𝑟rf + 𝛼

)
+ 𝛽

(
𝑥 − 𝜇mkt)

– 𝑟rf is the risk-free interest rate over the period

– 𝜇mkt is the average market return

• ‘𝛼’ and ‘𝛽 ’ called asset

• other models exists

SA — ENGR504examples 10.9



Polynomial fit

model is a polynomial of degree at most 𝑝 − 1:

𝑓 (𝑥) = 𝜃1 + 𝜃2𝑥 + ··· + 𝜃𝑝𝑥𝑝−1

• 𝑓𝑖 (𝑥) = 𝑥𝑖−1, 𝑖 = 1, . . . , 𝑝; here 𝑥𝑖 means scalar 𝑥 to 𝑖th power

• 𝑥 (𝑖) is 𝑖th data point

• 𝐴 is Vandermonde matrix

𝐴 =


1 𝑥 (1) · ·· (𝑥 (1) ) 𝑝−1
1 𝑥 (2) · ·· (𝑥 (2) ) 𝑝−1
... ... ...

1 𝑥 (𝑁 ) · ·· (𝑥 (𝑁 ) ) 𝑝−1


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Example: 𝑁 = 100 data points

𝑥

𝑓 (𝑥) Degree 2

𝑥

𝑓 (𝑥) Degree 6

𝑥

𝑓 (𝑥) Degree 10

𝑥

𝑓 (𝑥) Degree 15
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Piecewise-linear fit

• define knot points 𝑎1 < 𝑎2 < · ·· < 𝑎𝑘 on the real axis

• piecewise-linear function is continuous, and affine on each interval [𝑎 𝑗 , 𝑎 𝑗+1]

• piecewise-linear function with knot points 𝑎1, . . . , 𝑎𝑘 can be written as

𝑓 (𝑥) = 𝜃1 + 𝜃2𝑥 + 𝜃3 (𝑥 − 𝑎1)+ + ··· + 𝜃2+𝑘 (𝑥 − 𝑎𝑘 )+

where 𝑢+ = max{𝑢, 0}

𝑥

(𝑥 + 1)+

𝑥

(𝑥 − 1)+
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Piecewise-linear fitting

piecewise-linear model is linear in the parameters 𝜃, with basis functions

𝑓1 (𝑥) = 1, 𝑓2 (𝑥) = 𝑥, 𝑓3 (𝑥) = (𝑥 − 𝑎1)+, . . . , 𝑓𝑘+2 (𝑥) = (𝑥 − 𝑎𝑘 )+

Example: fit piecewise-affine function with knots 𝑎1 = −1, 𝑎2 = 1 to 100 points

𝑥

𝑓 (𝑥)
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Time series trend

• 𝑁 data samples from time series: 𝑦 (1) , . . . , 𝑦 (𝑁 )

• straight-line fit
𝑦 (𝑖) = 𝜃1 + 𝜃2𝑖

is called the trend line (𝜃2 is trend coefficient)

• least squares fitting of trend line: minimize ‖𝐴𝜃 − 𝑦d‖2 with

𝐴 =


1 1
1 2
... ...

1 𝑁

 , 𝑦d =


𝑦 (1)

𝑦 (2)

...

𝑦 (𝑁 )


• 𝑦d − 𝑦d = (𝑦 (1) − 𝑦 (1) , . . . , 𝑦 (𝑁 ) − 𝑦 (𝑁 ) ) is the de-trended time series
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Example: world petroleum consumption

time series of world petroleum consumption (million barrels/day) versus year

Consumption De-trended consumption

Year

Pe
tro

le
um

co
ns

um
pt

io
n

(m
ill
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n

ba
rr

el
s

pe
rd

ay
)

Year
Pe

tro
le

um
co

ns
um

pt
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n
(m
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n
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s
pe

rd
ay

)

• left figure shows data samples and trend line

• right figure shows de-trended time series
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Trend and seasonal component

• model time series as a linear trend plus a periodic component with period 𝑃:

𝑦d = 𝑦lin + 𝑦seas

with 𝑦lin = 𝜃1 (1, 2, . . . , 𝑁) and

𝑦seas = (𝜃2, 𝜃3, . . . , 𝜃𝑃+1, 𝜃2, 𝜃3, . . . , 𝜃𝑃+1, . . . , 𝜃2, 𝜃3, . . . , 𝜃𝑃+1)

• the mean of 𝑦seas serves as a constant offset

• residual 𝑦d − 𝑦d is the de-trended, seasonally adjusted time series

• least squares formulation: minimize ‖𝐴𝜃 − 𝑦d‖2 with

𝐴1:𝑁 ,1 =


1
2
...

𝑁

 , 𝐴1:𝑁 ,2:𝑃+1 =


𝐼𝑃
𝐼𝑃
...

𝐼𝑃

 , 𝑦d =


𝑦 (1)

𝑦 (2)

...

𝑦 (𝑁 )


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Example: vehicle miles traveled in the US per month

data

M
ile

s(
m

ill
io

ns
)

least squares fit

M
ile

s(
m

ill
io

ns
)
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Auto-regressive time series model

auto-regressive model (AR model) for the time series, 𝑧1, 𝑧2, . . ., has the form

𝑧̂𝑡+1 = 𝜃1𝑧𝑡 + 𝜃2𝑧𝑡−1 + ··· + 𝜃𝑀 𝑧𝑡−𝑀+1, 𝑡 = 𝑀, 𝑀 + 1, . . .

• 𝑧̂𝑡+1 is a prediction of 𝑧𝑡+1, made at time 𝑡

• prediction 𝑧̂𝑡+1 is a linear function of previous 𝑀 values 𝑧𝑡 , . . . , 𝑧𝑡−𝑀+1

• 𝑀 is the memory of the model

Least squares fitting of AR model: given observed data 𝑧1, . . . , 𝑧𝑇 , minimize

(𝑧𝑀+1 − 𝑧̂𝑀+1)2 + (𝑧𝑀+2 − 𝑧̂𝑀+2)2 + ··· + (𝑧𝑇 − 𝑧̂𝑇 )2

this is a least squares problem: minimize ‖𝐴𝜃 − 𝑦d‖2 with

𝐴 =


𝑧𝑀 𝑧𝑀−1 · ·· 𝑧1
𝑧𝑀+1 𝑧𝑀 · ·· 𝑧2
... ... ...

𝑧𝑇 −1 𝑧𝑇 −2 · ·· 𝑧𝑇 −𝑀

 , 𝜃 =


𝜃1
𝜃2
...

𝜃𝑀

 , 𝑦d =


𝑧𝑀+1
𝑧𝑀+2
...

𝑧𝑇


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Example: hourly temperature at LAX in May 2016, length 744

𝑡

Te
m

pe
ra

tu
re

(F
)

• predictor 𝑧̂𝑡+1 = 𝑧𝑡 has RMS error 1.16◦F

• predictor 𝑧̂𝑡+1 = 𝑧𝑡−23 has RMS error 1.73◦F

• AR model with 𝑀 = 8 gives RMS error 0.98◦F

• solid line shows one-hour ahead predictions from AR model, first 5 days
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Generalization and validation

Generalization

• goal of model fitting is typically to achieve a good fit on new unseen data

• model with good predictions on new, unseen data has generalization ability

(Out-of-sample) validation: to assess generalization ability,

• divide data in two sets: training set and test (validation) set (e.g., 80%/20%)

• use only training set to fit model

• use test set to get an idea of generalization ability
– compare MSE/RMS prediction error on train and test data

– if they are similar, we can guess the model will generalize

Over-fit model

• model that makes poor predictions on new, unseen data suffers from over-fit

• prediction error on training set is much smaller than on test set
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Example

polynomial fit using training set of 100 points; circles show test set of 100 points

𝑥

𝑓 (𝑥) Degree 2

𝑥

𝑓 (𝑥) Degree 6

𝑥

𝑓 (𝑥) Degree 10

𝑥

𝑓 (𝑥) Degree 15
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Example

Degree

R
el

at
iv

e
R

M
S

er
ro

r

Train
Test

• suggests degree 4, 5, or 6 are reasonable choices
• models with degrees 0, 1, and 2 have good generalization ability, but worse

prediction performance
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Cross validation

Cross validation

• divide data into 𝐾 folds (typically 5 ≤ 𝐾 ≤ 10)

• for 𝑖 = 1 to 𝐾 , fit model 𝑖 using fold 𝑖 as test set and other data as training set

• compare parameters and train/test RMS errors for the 𝐾 models

Notes

• cross-validation is used to asses choice of basis functions used in the model

• if training and test set errors are similar, then our model is not over-fit

• RMS cross-validation error is defined as√︃
(𝜖21 + · · · + 𝜖2

𝐾
)/𝐾

where 𝜖𝑖 is training RMS error for model 𝑖
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Example: house price prediction

𝑦 = 𝑣 + 𝛽1𝑥1 + 𝛽2𝑥2

• 𝑦 is the selling price; 𝑦 is prediction

• 𝑥1 is the area (1000 square feet); 𝑥2 is the number of bedrooms

• 774 sales, divided into 5 folds of 155 sales each

• fit 5 regression models, removing each fold

Model parameters RMS error
Fold 𝑣 𝛽1 𝛽2 Train Test

1 60.65 143.36 -18.00 74.00 78.44
2 54.00 151.11 -20.30 75.11 73.89
3 49.06 157.75 -21.10 76.22 69.93
4 47.96 142.65 -14.35 71.16 88.35
5 60.24 150.13 -21.11 77.28 64.20

• ls fit over all data gives RMS error 74.8
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Regularized data fitting

consider linear-in-parameters model

𝑓 (𝑥) = 𝜃1 + 𝜃2 𝑓2 (𝑥) + ··· + 𝜃𝑝 𝑓𝑝 (𝑥)

• we fit the model 𝑓 (𝑥) to examples (𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑁 ) , 𝑦 (𝑁 ) )

• large coefficient 𝜃𝑖 makes model more sensitive to changes in 𝑓𝑖 (𝑥)

• keeping 𝜃2, . . . , 𝜃𝑝 small helps avoid over-fitting

• this leads to two objectives:

𝐽1 (𝜃) =
𝑁∑︁
𝑘=1

(
𝑓 (𝑥 (𝑘) ) − 𝑦 (𝑘)

)2
, 𝐽2 (𝜃) =

𝑝∑︁
𝑗=2

𝜃2𝑗 = ‖𝜃2:𝑝 ‖2

primary objective 𝐽1 (𝜃) is sum of squares of prediction errors

SA — ENGR504validation and over-fitting 10.25



Weighted least squares formulation

minimize 𝐽1 (𝜃) + 𝜆𝐽2 (𝜃) =
𝑁∑︁
𝑘=1

(
𝑓 (𝑥 (𝑘) ) − 𝑦 (𝑘)

)2 + 𝜆 𝑝∑︁
𝑗=2

𝜃2𝑗

• 𝜆 is positive regularization parameter

• equivalent to least squares problem:

minimize





[ 𝐴1√
𝜆𝐴2

]
𝜃 −

[
𝑦d

0

]



2
with 𝑦d = (𝑦 (1) , . . . , 𝑦 (𝑁 ) )

𝐴1 =


1 𝑓2 (𝑥 (1) ) ··· 𝑓𝑝 (𝑥 (1) )
1 𝑓2 (𝑥 (2) ) ··· 𝑓𝑝 (𝑥 (2) )
... ... ...

1 𝑓2 (𝑥 (𝑁 ) ) ··· 𝑓𝑝 (𝑥 (𝑁 ) )

 , 𝐴2 =


0 1 0 · ·· 0
0 0 1 · ·· 0
... ... ... · ·· ...

0 0 0 · ·· 1


• stacked matrix has linearly independent columns (for positive 𝜆)

• value of 𝜆 can be chosen by (out-of-sample) validation or cross-validation

SA — ENGR504validation and over-fitting 10.26



Example

𝑡

𝑠
(𝑡)

Train
Test

• solid line is signal used to generate synthetic (simulated) data

• 10 circle points are used as training set; 20 bullet points are used as test set

• we fit a model with five parameters 𝜃1, . . . , 𝜃5:

𝑓 (𝑥) = 𝜃1 +
4∑︁
𝑘=1

𝜃𝑘+1 sin(𝜔𝑘𝑥 + 𝜙𝑘 ) (with given 𝜔𝑘 , 𝜙𝑘 )

SA — ENGR504validation and over-fitting 10.27



Result of regularized least squares fit

Train

Test

R
M

S
er

ro
r

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

𝜆

C
oe

fc
ie

nt
s

• minimum test RMS error is for 𝜆 around 0.08

• increasing 𝜆 ‘shrinks’ the coefficients 𝜃2, . . . , 𝜃5

• dashed lines show coefficients used to generate the data (true coefficients)

• for 𝜆 near 0.08, estimated coefficients are close to these ‘true’ values

• any choice between 0.065 and 0.1 is reasonable
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Feature engineering

𝑦 = 𝑓 (𝑥) = 𝜃1 𝑓1 (𝑥) + ··· + 𝜃𝑝 𝑓𝑝 (𝑥)

choosing the feature mapping functions 𝑓1, . . . , 𝑓𝑝 is called feature engineering

• start with original or base feature 𝑛-vector 𝑥

• choose basis functions 𝑓1, . . . , 𝑓𝑝 to create feature 𝑝-vector ( 𝑓1 (𝑥), . . . , 𝑓𝑝 (𝑥))

• now fit linear in parameters model with mapped features

• check the model using validation

Remarks

• common to let 𝑓1 (𝑥) = 1

• common to initially use 𝑓𝑖 (𝑥) = 𝑥𝑖−1, 𝑖 = 2, . . . , 𝑛 − 1 (basic regression model)

• if 𝑛 is very large, feature mapping can be used to reduce dimension 𝑝 < 𝑛

SA — ENGR504feature engineering 10.29



Transforming features

Standardizing features: replace 𝑥𝑖 with 𝑧-scores

(𝑥𝑖 − 𝑏𝑖)/𝑎𝑖

• 𝑏𝑖 ≈ mean value of feature across data 𝑥 (1)
𝑖
, . . . , 𝑥

(𝑁 )
𝑖

• 𝑎𝑖 ≈ standard deviation of feature across data

• standardization is first step in feature engineering

• constant feature 𝑓1 (𝑥) = 1 cannot be standardized

Winsorizing (clipping) features

• clip the data values that include some very large errors

• example: replace standarized 𝑥𝑖 with

𝑥𝑖 =


𝑥𝑖 |𝑥𝑖 | ≤ 3
3 𝑥𝑖 > 3
−3 𝑥𝑖 < −3
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Log transform: if 𝑥𝑖 is nonnegative and spans a wide range, replace it with

log(𝑥𝑖), 𝑖 = 2, . . . , 𝑛 − 1

• use log(1 + 𝑥𝑖) if features has zero values

• compresses the range of values that we encounter

hi and lo features: create new features given by

max{𝑥𝑖 − 𝑏, 0}, min{𝑥𝑖 + 𝑎, 0}

• example: 𝑦 = 𝜓1 (𝑥1) + ··· + 𝜓𝑛 (𝑥𝑛), where 𝜓𝑖 is piecewise-linear function

𝜓𝑖 (𝑥𝑖) = 𝜃𝑛+𝑖min{𝑥𝑖 + 𝑎, 0} + 𝜃𝑖𝑥𝑖 + 𝜃2𝑛+𝑖max{𝑥𝑖 − 𝑏, 0}

• model has 3𝑛 parameters (original plus two additional features per original feature)
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Example: house price regression model

𝑦 = 𝑣 + 𝑥1𝛽1 + · · · + 𝛽7𝑥7

• 𝑥1 is area of the house (in 1000 square feet)

• 𝑥2 = max{𝑥1 − 1.5, 0}, i.e., area in excess of 1.5 (in 1000 square feet)

• 𝑥3 is number of bedrooms

• 𝑥4 is one for a condo; zero otherwise

• 𝑥5, 𝑥6, 𝑥7 specify location (four groups of ZIP codes)

Location 𝑥5 𝑥6 𝑥7
A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1
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Example: house price regression model

Actual price 𝑦 (thousand dollars)
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)

RMS fitting error is 68.3 (improved over original model 74.8 on page 10.24)
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Classification

Classification

• 𝑁 training data points (𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑁 ) , 𝑦 (𝑁 ) )

• outcome 𝑦𝑖 takes on finite number of values called labels or categories
– TRUE or FALSE
– SPAM or NOT SPAM
– DOG, HORSE, or MOUSE

• data fitting 𝑓 (𝑥 (𝑖) ) ≈ 𝑦 (𝑖) is called classification

Boolean (2-way) classification

• two possible outcomes only encoded as 𝑦 ∈ {+1,−1}

• Boolean classifier has form 𝑦 = 𝑓 (𝑥), 𝑓 : R𝑛 → {−1, +1}
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Applications

Email spam detection

𝑥 contains features of an email message (word counts, origin of email, ...)

Financial transaction fraud detection

𝑥 contains features of proposed transaction, initiator, average balance

Document classification (e.g., sport or politics or ...)

𝑥 is word count histogram of document

Disease detection

𝑥 contains patient features, results of medical tests, age, specific symptoms

Digital communications receiver

𝑦 is transmitted bit; 𝑥 contain 𝑛 measurements of received signal
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Prediction errors

data point (𝑥, 𝑦) with predicted outcome 𝑦 = 𝑓 (𝑥); only four possibilities:

Prediction
Outcome 𝑦 = +1 𝑦 = −1
𝑦 = +1 true positive false negative
𝑦 = −1 false positive true negative

Confusion matrix: count each of the four outcomes on data-set

𝑦 = +1 𝑦 = −1 Total
𝑦 = +1 𝑁tp 𝑁fn 𝑁p

𝑦 = −1 𝑁fp 𝑁tn 𝑁n

All 𝑁tp + 𝑁fp 𝑁fn + 𝑁tn 𝑁

• error rate is (𝑁fp + 𝑁fn)/𝑁
• true positive rate or recall rate is 𝑁tp/𝑁p

• false positive rate or false alarm rate is 𝑁fp/𝑁n

• a classifier is judged by its error rate(s) on a test set
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Example

spam filter performance on a test set (say)

𝑦 = +1 (SPAM) 𝑦 = −1 (not SPAM) Total
𝑦 = +1 (SPAM) 95 32 127

𝑦 = −1 (not SPAM) 19 1120 1139
All 114 1152 1266

• error rate is (19 + 32)/1266 = 4.03%

• false positive rate is 19/1139 = 1.67%
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Least squares Boolean classifier

• we are given the data points (𝑥 (𝑖) , 𝑦 (𝑖) ), 𝑖 = 1, . . . , 𝑁

• determine basis functions 𝑓1, . . . , 𝑓𝑝 for linear-in-parameter model

𝑓 (𝑥) = 𝜃1 𝑓1 (𝑥) + 𝜃2 𝑓2 (𝑥) + ··· + 𝜃𝑝 𝑓𝑝 (𝑥)

• use least squares data-fitting to find parameters 𝜃1, . . . , 𝜃𝑛

• take the sign of 𝑓 (𝑥) to get the Boolean classifier:

𝑓 (𝑥) = sign( 𝑓 (𝑥)) =
{
+1 if 𝑓 (𝑥) ≥ 0

−1 if 𝑓 (𝑥) < 0

• often used with regression model 𝑓 (𝑥) = 𝑥T𝛽 + 𝑣
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Handwritten digits example

• MNIST data set of 70000, 28 × 28 = 784 images of digits 0, . . . , 9

• divided into training set (60000) and test set (10000)

• only 493 nonzero pixels in at least 600 examples are used (shown on right)

• 𝑦 = +1 if digit is 0, 𝑦 = −1 otherwise
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Least squares classifier results

results for regression model 𝑓 (𝑥 (𝑖) ) = sign( 𝑓 (𝑥 (𝑖) )) = sign((𝑥 (𝑖) )T𝛽 + 𝑣)

training set results (error rate 1.6%)
𝑦 = +1 𝑦 = −1 Total

𝑦 = +1 5158 765 5923
𝑦 = −1 167 53910 54077

All 5325 54675 60000

test set results (error rate 1.6%)
𝑦 = +1 𝑦 = −1 Total

𝑦 = +1 864 116 980
𝑦 = −1 42 8978 9020

All 906 9094 10000
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Distribution of least squares fit

𝑓 (𝑥 (𝑖) )

Fr
ac

tio
n

Positive
Negative

• distribution of values of 𝑓 (𝑥 (𝑖) ) = (𝑥 (𝑖) )T𝛽 + 𝑣 over training set

• blue bars to the left of dashed line are false negatives (misclassified digits zero)

• red bars to the right of dashed line are false positives (misclassified non-zeros)
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Skewed decision threshold

𝑓 (𝑥) = sign( 𝑓 (𝑥) − 𝛼) =
{
+1 𝑓 (𝑥) ≥ 𝛼
−1 𝑓 (𝑥) < 𝛼

• 𝛼 is the decision threshold

• for positive 𝛼, false positive rate is lower but so is true positive rate

• for negative 𝛼, false positive rate is higher but so is true positive rate

Example (error rate 1.4% with 𝛼 = −0.1, dashed line 𝛼 = 0.25)

𝑓 (𝑥 (𝑖) )

Fr
ac

tio
n

Positive
Negative True positive

False positive

Total error

𝛼

R
at

e
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Classifier with additional nonlinear features

𝑓 (𝑥) = sign( 𝑓 (𝑥)) = sign
( 𝑝∑
𝑖=1
𝜃𝑖 𝑓𝑖 (𝑥)

)
• basis functions include constant, 493 elements of 𝑥, plus 5000 functions

𝑓𝑖 (𝑥) = max{0, 𝑟T𝑖 𝑥 + 𝑠𝑖} with randomly generated 𝑟𝑖 , 𝑠𝑖

• error rate is 0.21% on training test and 0.24% on test set

𝑓 (𝑥 (𝑖) )

Fr
ac

tio
n

Positive
Negative
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Multi-class classifiers

• a data fitting problem where the outcome 𝑦 ∈ {1, . . . , 𝐾}
• values of 𝑦 represent 𝐾 labels or categories

• multi-class classifier 𝑦 = 𝑓 (𝑥) maps 𝑥 to an element of {1, 2, . . . , 𝐾}

Least squares multi-class classifier

• for 𝑘 = 1, . . . , 𝐾 , compute Boolean classifier to distinguish class 𝑘 from not 𝑘

𝑓𝑘 (𝑥) = sign( 𝑓𝑘 (𝑥))

• define multi-class classifier as

𝑓 (𝑥) = argmax
𝑘=1,...,𝐾

𝑓𝑘 (𝑥)

i.e., choose 𝑘 with largest value of 𝑓𝑘 (𝑥)
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Example: handwritten digit classification

• compute least squares Boolean classifier for each digit versus the rest

𝑓𝑘 (𝑥) = sign(𝑥T𝛽𝑘 + 𝑣𝑘 ), 𝑘 = 1, . . . , 𝐾

• table shows results for test set (error rate 13.9%)

Prediction
Digit 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009
All 1042 1330 887 1042 1086 742 994 1032 898 947 10000
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Example: handwritten digit classification

• ten least squares Boolean classifiers use 5000 new features

• table shows results for test set (error rate 2.6%)

Prediction
Digit 0 1 2 3 4 5 6 7 8 9 Total

0 972 0 0 2 0 1 1 1 3 0 980
1 0 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010
4 2 1 3 0 953 0 6 3 1 13 982
5 2 0 1 5 0 875 5 0 3 1 892
6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028
8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000
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References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)
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