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9. Least squares

® |east squares problem

e solution and normal equations
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e control

e estimation and inversion
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Least squares problem

e let A be m X n and consider Ax = b where b is an m-vector

e in most applications, m > n and there is no x that satisfies Ax = b

Least squares problem: choose x that minimizes the residual norm r = Ax — b:
m n 2
minimize ||Ax - b|> =3 ( S Agxj - bi)
i=1\ j=1
e x is variable, A, b are called data, |Ax — b||? is the objective function
e also called regression (in data fitting context)

e X is a solution of the least squares problem if

lAx — b||? < ||Ax — b||* for any n-vector x

— X also called least-squares approximate solution of Ax = b

— if 7= Ax — b = 0, then X solves linear equation Ax = b

least squares problem 9.2



Example
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e Ax = b has no solution
e |east squares problem:
minimize ||Ax — b2 = (2x1 — 1)% + (=x1 +x2)% + (2x9 + 1)?
e least squares solution is X = (1/3,-1/3)
e ||A% — b||? = 2/3 is smallest posible value of ||Ax — b||?

least squares problem



Example: Advertising purchases

e m demographics groups (audiences), n advertising channels

des

is target number of views or impressions for group i

° R,-j is # views in group i per dollar spent on ads in channel j

e s; is amount of advertising purchased in channel j
e (Rs); is total number of views in group i
e least squares problem: minimize ||Rs — v

des”2

Example: m = 10, n = 3, vdes = 103 x 1, § = (62, 100, 1443)

columns R (1 000 V|ews per dollar)
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Example: lllumination

n lamps illuminate an area divided in m regions

e b, is target illumination level at region i

e x; is power of lamp j

e A;; isillumination in region i if lamp j is on with power 1, other lamps are off
e (Ax); is illumination level at region i

Example: lamp positions and heights with m = 25 X 25, n = 10

25m
.1 (4.0m) .2 (3,5m)
B (6.0m)
6 (6.0m)
4 (4.0m) i
. 5 (4.0m) J7(5:5m)
Bom) & (6.0m) 10 (4.5m)
00 25m
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lllumination

equal lamp powers (x = 1)
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Least squares solution

minimize  ||Ax — b||?
Normal equations: a solution X must satisfy the normal equations:
ATAx = ATh
and if A has linearly independent columns, then the solution is unique

£=(ATA) AT = ATp

e AT = (ATA) ' AT s the psuedo-inverse of A, which is also a left inverse
e & = ATb solves the linear equation Ax = b if it has a solution

e if Ax = b does not have a solution, then Ax # b

solution and normal equations
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Proof using algebra

suppose X satisfies the normal equations AT(Ax — b) = 0, then for any n-vector x

| Ax = b||* = [|(Ax — A%) + (A% - b)|?
= |A(x = D)II” + [|A% = B||* + 2(A(x - £)) (A% - b)
=|A(x = 2)|1? + |A% - b2 + 2(x — %) TAT(A% - b)
= [|A(x = ®)|1* + || A% - b|?

e hence for any x, ||Ax — b||% > ||A% — b]?
e if A has linearly independent columns, then
|Ax — b||? > ||A% — b||* (unique solution)

this is because [[A(x —%)||? =0 = A(x -%)=0=>x =%

solution and normal equations 9.8



Geometric interpretation

letay,...,a, denote columns of A, then

[ Ax = b||% = || (x1a1 + -+ +Xpan) — b2

e Ax is the vector in range(A) = span(aq, . ..,a,) closest to b

e 7 = Ax — b is orthogonal to range(A): 7 L Aw for any w
b

ya

az

P range(A)

ai

=

e A% = AATD is projection on range(A)

solution and normal equations
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Example

given two different types of concrete:

e 1st contains 30% cement, 40% gravel, and 30% sand (percentages of weight)
e 2nd contains 10% cement, 20% gravel, and 70% sand

how many pounds of each type of concrete should you mix together so that you get a
concrete mixture that has as close as possible to a total of 5 pounds of cement, 3
pounds of gravel, and 4 pounds of sand?

solution and normal equations 9.10



e |etting x1 and x5 to be the amounts of concrete of the first and second types

e the above problem can be formulated as the least squares problem:

03 0.1 51|17
minimize 0.4 0.2 xl]_ = ||Ax - b||?,
0.3 0.7 4

where x = (x1, x2)

e since the columns of A are linearly independent, the solution is

i=(ATA) 1 ATh = [018661]

solution and normal equations

9.11



QR factorization method

using QR factorization A = QR, we have

&= (ATA)ATh = ((QR)T(QR)) " (QR) "D
e identical formula for solving Ax = b for square invertible A
e here X gives least squares approximate solution to Ax = b

Algorithm
1. compute QR factorization A = QR (2mn? flops if A is m X n)
2. matrix-vector product QTb (2mn flops)

3. solve Rx = QTb by back substitution (12 flops)

Complexity: 2mn? flops

solution and normal equations
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Example

3 -6 -1
A=|4 -8, b= 7
0 1 2

1. QR factorization: A = QR with

2. calculate d = Qb = (5,2)

3. solve Rx =d

solutionis x; = 5,x0 = 2

solution and normal equations 9.13



Solving normal equations directly

given m X n matrix A with linearly independent columns and n-vector b

1.
2.
3.
4.

form B=ATAandy = ATb

compute the Cholesky factorization B = RTR (R is lower triangular)
solve RTz = y for z using forward substitution

solve Rx = z for x using back substitution

Complexity: approximately mn? + n3/3 (flops)

e step 1 costs mn

2

e step 2 is approximately n3/3 flops

e steps 3 and 4 cost order n? flops

e when m > n, the main cost becomes in forming the matrix B = ATA

solution and normal equations
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Comparison of the two methods

Complexity
e Cholesky method: mn? + (1/3)n® flops
e QR method: 2mn? flops

e Cholesky method is faster by a factor of at most two (if m > n)

Numerical stability: QR factorization method is more stable
e QR method computes R without “squaring” A (i.e., forming ATA)

e this is important when the columns of A are “almost” linearly dependent

solution and normal equations
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Example

e randomly create A and a vector b

e plot ratio of CPU times for using QR fact. over normal equations options
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15
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e normal equations method is more efficient

solution and normal equations



Code

for n = 300:100:1000

% £ill a rectangular matrix A and a vector b with random numbers
m = n+l; % or m= 3*n+1

A = randn(m,n); b = randn(m,1);

% solve and find execution times; first, Matlab way using QR

t0 = cputime;

xqr = A \ b;

temp = cputime;

tqr(n/100-2) = temp - tO;

% next use normal equations

t0 = temp;
B = A%

A; y = Ax
b;

xne = B \ y;

temp = cputime;
tne(n/100-2) = temp - tO;
end

ratio = tqr./tne;
plot(300:100:1000,ratio)

solution and normal equations
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Solving the normal equations

e |ast example shows direct method is faster

e however, QR method is more stable as illustrated next

Example: a 3 X 2 matrix with “almost linearly dependent” columns

1 -1 0
A=|0 107 [, b= 107
0 0 1

we round intermediate results to 8 significant decimal digits

solution and normal equations
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Method 1: form Gram matrix ATA and solve normal equations

o [ 1 -1 1 -1 O
AA_[—l 14100 |V o1 1| AP a0

after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of A is
1 0
1 -1
Q=10 14 Rz[o 105]
0 0
rounding does not change any values (in this example)

e problem with method 1 occurs when forming Gram matrix ATA

e QR factorization method is more stable because it avoids forming ATA

solution and normal equations
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Standard methods for solving the linear least squares

Normal equations (Cholesky)
e fast, simple, intuitive

e can be unstable when columns of A are “almost” linearly dependent

QR factorization
e this is the “standard” approach (e.g., in MATLAB)

e more robust than the normal equations approach

e more computationally expensive than the normal equations approach if m > n

Singular value decomposition (SVD) (more on this later in course)
e used mostly when columns of A are (almost) dependent

e very robust but more expensive than QR approach

solution and normal equations
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Matrix least squares

minimize |[AX — B||2f

e variable is the n X k matrix X = [x1 -+ xg]
e Alisanm X n matrix and B is an m X k matrix
e decouples into a set of k ordinary least squares since
IAX = BI7 = lAx1 = bull* + - + || Axg = byl
where x; is the jth column of X and b; is the jth column of B
e can choose the columns x; independently, by minimizing [|Ax; — bj||2
e assuming A has linearly independent columns, the solution is X; = Afbj or

X=A'B

solution and normal equations
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Multi-objective least squares

choose n-vector x so that the following objectives are all small
Ji = |Ax = by|? Ji = | Arx — b
1= [[Ax = balI”, ..., T = [[Agx = bl
e A;isan m; X n matrix, b; is an m;-vector,i = 1,...,k
e J; are the objectives in a multi-objective (multi-criterion) optimization problem

Weighted sum objective: choose positive weights A; and find x that minimizes

J=J1 + o+ Adie = A [JA1x = by ||® + -+ + A [ Agx = by

e we set A1 = 1, and call J; the primary objective
e ; gives how much we care about J; being small, relative to J;

o terms AoJo, ..., AxJi are called regularization terms

multi-objective least squares

9.22



Weighted sum solution

write weighted-sum objective as

VI (Arx = by) |
J= :
VA (Agx — by)

so we have J = ||Ax — b]|2, with

) VA1 A, ) VAiby
A= : , b= :
\//l_kAk \//l_kbk

Weighted sum solution: assuming columns of A are linearly independent,
%= (ATA) AT
= (L ATA + - + L AT A T (1 ATDy + - + AT DY)
(here, A; can be wide, or have dependent columns)

multi-objective least squares
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Optimal trade-off curve
Bi-criterion problem: we let x(1) be minimizer of bi-criterion objectives
Ji+ Az = [|Arx = by||* + 4[| Aox — bal|?

Pareto optimal point

e %(A) is called Pareto optimal

e there is no point z that satisfies
J1(2) < 1(Z(),  J2(2) < J2(x(1))

i.e., no other point beats X on both objectives

Optimal trade-off curve

(J1(2(2)), J2(2(2))) for 2>0

multi-objective least squares
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Example

A1 and As both 10 X 5

14 -12(/1)

J2(2)

J1 ()

L Il L Il L Il L
1074 1072 100 102 104 6 B 10
1 J1 ()

12 14

e we can achieve a substantial reduction in Jo with only a small increase in J;
e weights are typically logarithmically spaced; for N values of A™" < 1 < Amax:

/lmin, gﬂmin’ 02/lrnin, L gN—l/lmin — max
with 8 = (/lmax//lmin)l/(N—l)

multi-objective least squares 9.25



Tikhonov regularization

the weighted least squares problem
A 2 2
minimize ||Ax — y||* + A||x]|

is known as Tikhonov regularization

e goal is to make ||Ax — y|| small with x that is not too big

e equivalent to solving
(ATA+ADx = ATy

e solution is unique (if A > 0) even when A has linearly dependent columns

multi-objective least squares
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Control

y=Ax+b

e n-vector x corresponds to actions or inputs

e m-vector y corresponds to results or outputs

A and b are known (from analytical models, data fitting, ...)

goal is to choose x, to optimize multiple objectives on x and y

Multi-objective control
e primary objective: J; = ||y — y9 ||2, y%° is a given desired/target output
e typical secondary objectives:

- xissmall: Jo = ||x||?

— xis not far from a nominal input: Jo = |jx — x"™ ||2

control
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Optimal input design

Linear dynamical system
y(t) = hou(t) + hyu(t = 1) + hou(t = 2) + -+ + hu(0)

e output y(#) and input u(¢) are scalar
e we assume input u(t) is zero fort < 0
e coefficients hg, h1, . .. are the impulse response coefficients

e output is convolution of input with impulse response
Optimal input design
e optimization variable is the input sequence x = (1(0), u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input

control 9.28



Input design objectives

minimize J;(x) + A, Jo (x) + A (%)

e primary objective: track desired output yges Over an interval [0, N]:

N

Jo(x) = (3(8) = yaes (1)

=0

e secondary objectives: use a small and slowly varying input signal:

N

T (x) = u(t)®
v

Jo(x) = (u(t+1) —u(t))”
t=0

control 9.29



Tracking error

N
Jo(x) =Y (3() = yaes (1)

=0
= || Agx — be?
with
ho 0 0 - 0 0 Ydes(0)
hq ho 0 0 0 ydes(l)
h h h -+ 0 0 (2
A, = '2 .1 -0 . . by = Yde%( )
hn-1 hy—2 hy-z -+ hy O Ydes(N = 1)

hy  hy-i hn—2 - hi hg Ydes(N)
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Input variation and magnitude

Input variation
N-1

Jo(x) =Y (u(t+1) —u(1)* = | Dx])?

=0

where D the N X (N + 1) difference matrix

-1 1 0 - 0 0 0
o -1 1 - 0 0 0
D = : S : i
o o0 0 - -1 1 0
0 0 O 0 -1 1

Input magnitude
N

Jn(x) =Y u(0)? = ||x|>

t=0

control
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Ay =0, small A,
4

2

u(t)

larger A larger Ay

100

4

21

u(t)

control
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Estimation (inversion)

measurement model:
y=Ax+v

e n-vector x contains parameters we want to estimate
e m-vector y contains the measurements
e m-vector v are (unknown) noises or measurement errors

e m X n matrix A connects parameters to measurements

Least squares estimation
e we guess x by minimizing J; = ||Ax — y||?
e when v is nonzero or A has dependent columns, we cannot determine x exactly

e in this case, we add other objectives to encode prior information about x
— xissmall: Jo = ||x||?
— x is not far from a nominal input: Jo = ||x — x"°™ ||2

estimation and inversion 9.33



Example: estimating a periodic time series

T-vector y is a (measured) time series, of a periodic time series with period P

e P-vector x gives its values over one period, so
y= (-xv-x’~ . -7-x)

where we assume here for simplicity that 7" is a multiple of P

we can express y as y = Ax, where A is the T X P selector matrix

1
A= :
1

e we assume that the periodic time series is smooth

X1 = X2, ceey Xp1®XpP, XpRX]

estimation and inversion 9.34



Example: estimating a periodic time series

we estimate the periodic time series by minimizing
[[Ax = yII” + 2] D" x|?

where D™ is the P X P circular difference matrix

-1 10 - 0 0 O
o -1 1 - 0 0 O
Do — H
0 0 -1 1 0
0 0 0 0 - 1
1 0 0 0 0 -1

estimation and inversion
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Example: hourly ozone measurements

L\/W

Ozone level (ppm)
»

:*i?l
.
=
T

e m % v e = % e 5 - o . = =
T =T
22 2 2222282232333

e 336-vector ¢ of measurements with some missing values

® Ca4(j-1)+i-i =1,...,24, contain hourly valuesonday j, j = 1,...,14

e M; C {1,2,...,24} is set with indices of available measurements on day j

[ ]

least squares objective:

23
2
Z Z log C24(j- 1)+1 +4 Z (riv1 = xi)? + (X1 — x24)°

j=1ieM; i=1

estimation and inversion
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results for A =1 and A = 100
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Example: least squares image deblurring

y=Ax+v
e x is unknown image, y is observed blurred noisy image
e A is (known) blurring matrix, v is (unknown) noise

e images are M X N, stored as M N-vectors
Least squares deblurring

minimize  [|Ax — y||? + A (|[Dux]|* + || Dyx]|?)

e 1stterm is “data fidelity” term: ensures AX ~ y

e 2nd term penalizes differences between values at neighboring pixels

M N-1 M-1 N
Dl + 1Dex? =D (Xijur = Xip)* + > D (Xewr -
i=1 j=1 i=1 j=1

when X is the M X N image stored in the M N-vector x

estimation and inversion

Xij)*
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Example: least squares image deblurring

suppose x is the M X N image X, stored column-wise as M N-vector

x = (X1m,1 X1m,20 - X1:M.N)

¢ horizontal differencing: (N — 1) X N block matrix with M X M blocks

I 1 0 - 0 00
0O I I - 0 0 0
Dy={
0 00 - 0 —I I

e vertical differencing: N X N block matrix with (M — 1) x M blocks

D 0 - 0 -1 10 - 00
0O D - 0 0o -11 - 00
V: . . . ’ D: . . . . .
0o 0 - D o 00 - -11

estimation and inversion
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estimation and inversion

Example
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Example: tomography

goal: reconstruct a (density) function d : R? — R from line integral measurements

e measurements obtained by passing a beam of radiation through region of interest,
and measuring the intensity of the beam after it exits region

e used in medicine, manufacturing, networking, geology
— common application: CAT (computer-aided tomography) scan

Line integral: parametrize line £ in 2-D as
p(t) = (xg, yo) +t(cos 8, sin §)

e (xg, yo) is any point on the line
e 0 is angle measured from horizontal; ¢ is length along line
e line integral of d on £ is /[ d= /_0; d(p(t))dt

e can be extended to 3-D

estimation and inversion 9.41



Line integral measurements

e assume d is constant on pixel (or voxel) i with value x;

e measurement of integral along line i through region is

0 n
Vi =/ d(p(t)dt +v; = Z A;jx;j+v; wherev; is small noise

[oe]

Jj=1

A, ; is the length of measurement line i in pixel j

e in matrix-vector form: y = Ax +v

X1

X2

X6

/

(Xo,%)ﬂﬁ

+ 1.06)(14 + 0.53X15 + 0.54X10 +v

estimation and inversion

y= 1.06)61(; + 0.8X17 + 0.27)612 + 1.06)613
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Least squares tomographic reconstruction

minimize || Ax — y||? + 2 (| Dyx||* + || Dnx||?)

D, and Dy, are defined as in image deblurring example

Example

e |eft: 4000 lines (100 points, 40 lines per point)
e right: object placed in the square region on the left
e region of interest is divided in 10000 pixels

estimation and inversion 9.43



estimation and inversion

Regularized least squares reconstruction
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estimation and inversion

Regularized least squares reconstruction
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