
9. Least squares

• least squares problem

• solution and normal equations

• multi-objective least squares

• control

• estimation and inversion

ENGR 504 (Fall 2024) S. Alghunaim

9.1

Least squares problem

• let 𝐴 be 𝑚 × 𝑛 and consider 𝐴𝑥 = 𝑏 where 𝑏 is an 𝑚-vector

• in most applications, 𝑚 > 𝑛 and there is no 𝑥 that satisfies 𝐴𝑥 = 𝑏

Least squares problem: choose 𝑥 that minimizes the residual norm 𝑟 = 𝐴𝑥 − 𝑏:

minimize ‖𝐴𝑥 − 𝑏‖2 =
𝑚∑
𝑖=1

(
𝑛∑
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖

)2
• 𝑥 is variable, 𝐴, 𝑏 are called data, ‖𝐴𝑥 − 𝑏‖2 is the objective function

• also called regression (in data fitting context)

• 𝑥 is a solution of the least squares problem if

‖𝐴𝑥 − 𝑏‖2 ≤ ‖𝐴𝑥 − 𝑏‖2 for any 𝑛-vector 𝑥

– 𝑥 also called least-squares approximate solution of 𝐴𝑥 = 𝑏

– if 𝑟 = 𝐴𝑥 − 𝑏 = 0, then 𝑥 solves linear equation 𝐴𝑥 = 𝑏

SA — ENGR504least squares problem 9.2

Example

𝐴 =


2 0

−1 1
0 2

 , 𝑏 =


1
0

−1


0 0.5 1 1.5

0

0.5

1

𝑥

𝑓 (𝑥) + 1
𝑓 (𝑥) + 2

𝑥1

𝑥
2

• 𝐴𝑥 = 𝑏 has no solution

• least squares problem:

minimize ‖𝐴𝑥 − 𝑏‖2 = (2𝑥1 − 1)2 + (−𝑥1 + 𝑥2)2 + (2𝑥2 + 1)2

• least squares solution is 𝑥 = (1/3,−1/3)

• ‖𝐴𝑥 − 𝑏‖2 = 2/3 is smallest posible value of ‖𝐴𝑥 − 𝑏‖2

SA — ENGR504least squares problem 9.3

Example: Advertising purchases

• 𝑚 demographics groups (audiences), 𝑛 advertising channels

• 𝑣des
𝑖

is target number of views or impressions for group 𝑖

• 𝑅𝑖 𝑗 is # views in group 𝑖 per dollar spent on ads in channel 𝑗

• 𝑠 𝑗 is amount of advertising purchased in channel 𝑗

• (𝑅𝑠)𝑖 is total number of views in group 𝑖

• least squares problem: minimize ‖𝑅𝑠 − 𝑣des‖2 (ignoring 𝑠 ≥ 0 and budget)

Example: 𝑚 = 10, 𝑛 = 3, 𝑣des = 103 × 1, 𝑠̂ = (62, 100, 1443)

columns 𝑅 (1000 views per dollar)

1 2 3 4 5 6 7 8 9 10

1

2

Group

Im
pr

es
si

on

channel 1
channel 2
channel 3

𝑣des and achieved views 𝑅𝑠̂

1 2 3 4 5 6 7 8 9 10
0

500

1,000

Group

Im
pr

es
si

on
s

SA — ENGR504least squares problem 9.4

Example: Illumination

• 𝑛 lamps illuminate an area divided in 𝑚 regions
• 𝑏𝑖 is target illumination level at region 𝑖

• 𝑥 𝑗 is power of lamp 𝑗

• 𝐴𝑖 𝑗 is illumination in region 𝑖 if lamp 𝑗 is on with power 1, other lamps are off
• (𝐴𝑥)𝑖 is illumination level at region 𝑖

Example: lamp positions and heights with 𝑚 = 25 × 25, 𝑛 = 10

SA — ENGR504least squares problem 9.5

Illumination

equal lamp powers (𝑥 = 1)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

20

40

60

80

100

120

Intensity

N
um

be
ro

fp
ix

el
s

least squares solution 𝑥, with 𝑏 = 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

20

40

60

80

100

120

Intensity

N
um

be
ro

fp
ix

el
s

SA — ENGR504least squares problem 9.6

Outline

• least squares problem

• solution and normal equations

• multi-objective least squares

• control

• estimation and inversion

Least squares solution

minimize ‖𝐴𝑥 − 𝑏‖2

Normal equations: a solution 𝑥 must satisfy the normal equations:

𝐴T𝐴𝑥 = 𝐴T𝑏

and if 𝐴 has linearly independent columns, then the solution is unique

𝑥 = (𝐴T𝐴)−1𝐴T𝑏 = 𝐴†𝑏

• 𝐴† = (𝐴T𝐴)−1𝐴T is the psuedo-inverse of 𝐴, which is also a left inverse

• 𝑥 = 𝐴†𝑏 solves the linear equation 𝐴𝑥 = 𝑏 if it has a solution

• if 𝐴𝑥 = 𝑏 does not have a solution, then 𝐴𝑥 ≠ 𝑏

SA — ENGR504solution and normal equations 9.7

Proof using algebra

suppose 𝑥 satisfies the normal equations 𝐴T (𝐴𝑥 − 𝑏) = 0, then for any 𝑛-vector 𝑥

‖𝐴𝑥 − 𝑏‖2 = ‖(𝐴𝑥 − 𝐴𝑥) + (𝐴𝑥 − 𝑏)‖2

= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2 + 2(𝐴(𝑥 − 𝑥))T (𝐴𝑥 − 𝑏)
= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2 + 2(𝑥 − 𝑥)T𝐴T (𝐴𝑥 − 𝑏)
= ‖𝐴(𝑥 − 𝑥)‖2 + ‖𝐴𝑥 − 𝑏‖2

• hence for any 𝑥, ‖𝐴𝑥 − 𝑏‖2 ≥ ‖𝐴𝑥 − 𝑏‖2

• if 𝐴 has linearly independent columns, then

‖𝐴𝑥 − 𝑏‖2 > ‖𝐴𝑥 − 𝑏‖2 (unique solution)

this is because ‖𝐴(𝑥 − 𝑥)‖2 = 0 ⇒ 𝐴(𝑥 − 𝑥) = 0 ⇒ 𝑥 = 𝑥

SA — ENGR504solution and normal equations 9.8

Geometric interpretation

let 𝑎1, . . . , 𝑎𝑛 denote columns of 𝐴, then

‖𝐴𝑥 − 𝑏‖2 = ‖(𝑥1𝑎1 + ··· + 𝑥𝑛𝑎𝑛) − 𝑏‖2

• 𝐴𝑥 is the vector in range(𝐴) = span(𝑎1, . . . , 𝑎𝑛) closest to 𝑏

• 𝑟 = 𝐴𝑥 − 𝑏 is orthogonal to range(𝐴): 𝑟 ⊥ 𝐴𝑤 for any 𝑤

𝐴𝑥
𝑎2

𝑟

𝑏

𝑎1

range(𝐴)

• 𝐴𝑥 = 𝐴𝐴†𝑏 is projection on range(𝐴)

SA — ENGR504solution and normal equations 9.9

Example

given two different types of concrete:

• 1st contains 30% cement, 40% gravel, and 30% sand (percentages of weight)

• 2nd contains 10% cement, 20% gravel, and 70% sand

how many pounds of each type of concrete should you mix together so that you get a
concrete mixture that has as close as possible to a total of 5 pounds of cement, 3
pounds of gravel, and 4 pounds of sand?

SA — ENGR504solution and normal equations 9.10

• letting 𝑥1 and 𝑥2 to be the amounts of concrete of the first and second types

• the above problem can be formulated as the least squares problem:

minimize


0.3 0.1
0.4 0.2
0.3 0.7


[
𝑥1
𝑥2

]
−


5
3
4



2

= ‖𝐴𝑥 − 𝑏‖2,

where 𝑥 = (𝑥1, 𝑥2)

• since the columns of 𝐴 are linearly independent, the solution is

𝑥 = (𝐴T𝐴)−1𝐴T𝑏 =

[
10.6
0.961

]

SA — ENGR504solution and normal equations 9.11

QR factorization method

using QR factorization 𝐴 = 𝑄𝑅, we have

𝑥 = (𝐴T𝐴)−1𝐴T𝑏 =
(
(𝑄𝑅)T (𝑄𝑅)

)−1 (𝑄𝑅)T𝑏
= (𝑅T𝑄T𝑄𝑅)−1𝑅T𝑄T𝑏

= 𝑅−1𝑄T𝑏

• identical formula for solving 𝐴𝑥 = 𝑏 for square invertible 𝐴

• here 𝑥 gives least squares approximate solution to 𝐴𝑥 = 𝑏

Algorithm

1. compute QR factorization 𝐴 = 𝑄𝑅 (2𝑚𝑛2 flops if 𝐴 is 𝑚 × 𝑛)

2. matrix-vector product 𝑄T𝑏 (2𝑚𝑛 flops)

3. solve 𝑅𝑥 = 𝑄T𝑏 by back substitution (𝑛2 flops)

Complexity: 2𝑚𝑛2 flops

SA — ENGR504solution and normal equations 9.12

Example

𝐴 =


3 −6
4 −8
0 1

 , 𝑏 =


−1
7
2


1. QR factorization: 𝐴 = 𝑄𝑅 with

𝑄 =


3/5 0
4/5 0
0 1

 , 𝑅 =

[
5 −10
0 1

]
2. calculate 𝑑 = 𝑄T𝑏 = (5, 2)

3. solve 𝑅𝑥 = 𝑑 [
5 −10
0 1

] [
𝑥1
𝑥2

]
=

[
5
2

]
solution is 𝑥1 = 5, 𝑥2 = 2

SA — ENGR504solution and normal equations 9.13

Solving normal equations directly

given 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns and 𝑛-vector 𝑏

1. form 𝐵 = 𝐴T𝐴 and 𝑦 = 𝐴T𝑏

2. compute the Cholesky factorization 𝐵 = 𝑅T𝑅 (𝑅 is lower triangular)

3. solve 𝑅T𝑧 = 𝑦 for 𝑧 using forward substitution

4. solve 𝑅𝑥 = 𝑧 for 𝑥 using back substitution

Complexity: approximately 𝑚𝑛2 + 𝑛3/3 (flops)

• step 1 costs 𝑚𝑛2

• step 2 is approximately 𝑛3/3 flops

• steps 3 and 4 cost order 𝑛2 flops

• when 𝑚 � 𝑛, the main cost becomes in forming the matrix 𝐵 = 𝐴T𝐴

SA — ENGR504solution and normal equations 9.14

Comparison of the two methods

Complexity

• Cholesky method: 𝑚𝑛2 + (1/3)𝑛3 flops

• QR method: 2𝑚𝑛2 flops

• Cholesky method is faster by a factor of at most two (if 𝑚 � 𝑛)

Numerical stability: QR factorization method is more stable

• QR method computes 𝑅 without “squaring” 𝐴 (i.e., forming 𝐴T𝐴)

• this is important when the columns of 𝐴 are “almost” linearly dependent

SA — ENGR504solution and normal equations 9.15

Example

• randomly create 𝐴 and a vector 𝑏

• plot ratio of CPU times for using QR fact. over normal equations options

𝑛

C
P

U
tim

e
ra

tio

𝑚 = 𝑛 + 1

𝑚 = 3𝑛 + 1

• normal equations method is more efficient

SA — ENGR504solution and normal equations 9.16

Code

for n = 300:100:1000

% fill a rectangular matrix A and a vector b with random numbers

m = n+1; % or m= 3*n+1

A = randn(m,n); b = randn(m,1);

% solve and find execution times; first, Matlab way using QR

t0 = cputime;

xqr = A \ b;

temp = cputime;

tqr(n/100-2) = temp - t0;

% next use normal equations

t0 = temp;

B = A’*

A; y = A’*

b;

xne = B \ y;

temp = cputime;

tne(n/100-2) = temp - t0;

end

ratio = tqr./tne;

plot(300:100:1000,ratio)

SA — ENGR504solution and normal equations 9.17

Solving the normal equations

• last example shows direct method is faster

• however, QR method is more stable as illustrated next

Example: a 3 × 2 matrix with “almost linearly dependent” columns

𝐴 =


1 −1
0 10−5

0 0

 , 𝑏 =


0

10−5

1


we round intermediate results to 8 significant decimal digits

SA — ENGR504solution and normal equations 9.18

Method 1: form Gram matrix 𝐴T𝐴 and solve normal equations

𝐴T𝐴 =

[
1 −1
−1 1 + 10−10

]
{

[
1 −1

−1 1

]
, 𝐴T𝑏 =

[
0

10−10

]
after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of 𝐴 is

𝑄 =


1 0
0 1
0 0

 , 𝑅 =

[
1 −1
0 10−5

]
rounding does not change any values (in this example)

• problem with method 1 occurs when forming Gram matrix 𝐴T𝐴

• QR factorization method is more stable because it avoids forming 𝐴T𝐴

SA — ENGR504solution and normal equations 9.19

Standard methods for solving the linear least squares

Normal equations (Cholesky)

• fast, simple, intuitive

• can be unstable when columns of 𝐴 are “almost” linearly dependent

QR factorization

• this is the “standard” approach (e.g., in MATLAB)

• more robust than the normal equations approach

• more computationally expensive than the normal equations approach if 𝑚 � 𝑛

Singular value decomposition (SVD) (more on this later in course)

• used mostly when columns of 𝐴 are (almost) dependent

• very robust but more expensive than QR approach

SA — ENGR504solution and normal equations 9.20

Matrix least squares

minimize ‖𝐴𝑋 − 𝐵‖2𝐹

• variable is the 𝑛 × 𝑘 matrix 𝑋 = [𝑥1 · ·· 𝑥𝑘]

• 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑚 × 𝑘 matrix

• decouples into a set of 𝑘 ordinary least squares since

‖𝐴𝑋 − 𝐵‖2𝐹 = ‖𝐴𝑥1 − 𝑏1‖2 + ··· + ‖𝐴𝑥𝑘 − 𝑏𝑘 ‖2

where 𝑥 𝑗 is the 𝑗 th column of 𝑋 and 𝑏 𝑗 is the 𝑗 th column of 𝐵

• can choose the columns 𝑥 𝑗 independently, by minimizing ‖𝐴𝑥 𝑗 − 𝑏 𝑗 ‖2

• assuming 𝐴 has linearly independent columns, the solution is 𝑥 𝑗 = 𝐴†𝑏 𝑗 or

𝑋 = 𝐴†𝐵

SA — ENGR504solution and normal equations 9.21

Outline

• least squares problem

• solution and normal equations

• multi-objective least squares

• control

• estimation and inversion

Multi-objective least squares

choose 𝑛-vector 𝑥 so that the following objectives are all small

𝐽1 = ‖𝐴1𝑥 − 𝑏1‖2 , . . . , 𝐽𝑘 = ‖𝐴𝑘𝑥 − 𝑏𝑘 ‖2

• 𝐴𝑖 is an 𝑚𝑖 × 𝑛 matrix, 𝑏𝑖 is an 𝑚𝑖-vector, 𝑖 = 1, . . . , 𝑘

• 𝐽𝑖 are the objectives in a multi-objective (multi-criterion) optimization problem

Weighted sum objective: choose positive weights 𝜆𝑖 and find 𝑥 that minimizes

𝐽 = 𝜆1𝐽1 + ··· + 𝜆𝑘𝐽𝑘 = 𝜆1 ‖𝐴1𝑥 − 𝑏1‖2 + ··· + 𝜆𝑘 ‖𝐴𝑘𝑥 − 𝑏𝑘 ‖2

• we set 𝜆1 = 1, and call 𝐽1 the primary objective

• 𝜆𝑖 gives how much we care about 𝐽𝑖 being small, relative to 𝐽1

• terms 𝜆2𝐽2, . . . , 𝜆𝑘𝐽𝑘 are called regularization terms

SA — ENGR504multi-objective least squares 9.22

Weighted sum solution

write weighted-sum objective as

𝐽 =


√
𝜆1 (𝐴1𝑥 − 𝑏1)

...√
𝜆𝑘 (𝐴𝑘𝑥 − 𝑏𝑘)



2

so we have 𝐽 = ‖𝐴𝑥 − 𝑏‖2, with

𝐴 =


√
𝜆1𝐴1

...√
𝜆𝑘𝐴𝑘

 , 𝑏 =


√
𝜆1𝑏1
...√

𝜆𝑘𝑏𝑘


Weighted sum solution: assuming columns of 𝐴 are linearly independent,

𝑥 = (𝐴T𝐴)−1𝐴T𝑏
= (𝜆1𝐴T1𝐴1 + ··· + 𝜆𝑘𝐴

T
𝑘𝐴𝑘)−1 (𝜆1𝐴T1𝑏1 + ··· + 𝜆𝑘𝐴

T
𝑘𝑏𝑘)

(here, 𝐴𝑖 can be wide, or have dependent columns)

SA — ENGR504multi-objective least squares 9.23

Optimal trade-off curve

Bi-criterion problem: we let 𝑥(𝜆) be minimizer of bi-criterion objectives

𝐽1 + 𝜆𝐽2 = ‖𝐴1𝑥 − 𝑏1‖2 + 𝜆 ‖𝐴2𝑥 − 𝑏2‖2

Pareto optimal point

• 𝑥(𝜆) is called Pareto optimal

• there is no point 𝑧 that satisfies

𝐽1 (𝑧) < 𝐽1 (𝑥(𝜆)), 𝐽2 (𝑧) < 𝐽2 (𝑥(𝜆))

i.e., no other point beats 𝑥 on both objectives

Optimal trade-off curve (
𝐽1 (𝑥(𝜆)), 𝐽2 (𝑥(𝜆))

)
for 𝜆 > 0

SA — ENGR504multi-objective least squares 9.24

Example

𝐴1 and 𝐴2 both 10 × 5

𝐽1 (𝜆)

𝐽2 (𝜆)

𝜆

𝜆 = 0.1

𝜆 = 1

𝜆 = 10

𝐽1 (𝜆)

𝐽
2
(𝜆
)

• we can achieve a substantial reduction in 𝐽2 with only a small increase in 𝐽1

• weights are typically logarithmically spaced; for 𝑁 values of 𝜆min ≤ 𝜆 ≤ 𝜆max:

𝜆min, 𝜃𝜆min, 𝜃2𝜆min, . . . , 𝜃𝑁−1𝜆min = 𝜆max

with 𝜃 = (𝜆max/𝜆min)1/(𝑁−1)

SA — ENGR504multi-objective least squares 9.25

Tikhonov regularization

the weighted least squares problem

minimize ‖𝐴𝑥 − 𝑦‖2 + 𝜆‖𝑥‖2

is known as Tikhonov regularization

• goal is to make ‖𝐴𝑥 − 𝑦‖ small with 𝑥 that is not too big

• equivalent to solving
(𝐴T𝐴 + 𝜆𝐼)𝑥 = 𝐴T𝑦

• solution is unique (if 𝜆 > 0) even when 𝐴 has linearly dependent columns

SA — ENGR504multi-objective least squares 9.26

Outline

• least squares problem

• solution and normal equations

• multi-objective least squares

• control

• estimation and inversion

Control

𝑦 = 𝐴𝑥 + 𝑏

• 𝑛-vector 𝑥 corresponds to actions or inputs

• 𝑚-vector 𝑦 corresponds to results or outputs

• 𝐴 and 𝑏 are known (from analytical models, data fitting, ...)

• goal is to choose 𝑥, to optimize multiple objectives on 𝑥 and 𝑦

Multi-objective control

• primary objective: 𝐽1 = ‖𝑦 − 𝑦des ‖2, 𝑦des is a given desired/target output

• typical secondary objectives:
– 𝑥 is small: 𝐽2 = ‖𝑥‖2

– 𝑥 is not far from a nominal input: 𝐽2 = ‖𝑥 − 𝑥nom ‖2

SA — ENGR504control 9.27

Optimal input design

Linear dynamical system

𝑦(𝑡) = ℎ0𝑢(𝑡) + ℎ1𝑢(𝑡 − 1) + ℎ2𝑢(𝑡 − 2) + ··· + ℎ𝑡𝑢(0)

• output 𝑦(𝑡) and input 𝑢(𝑡) are scalar

• we assume input 𝑢(𝑡) is zero for 𝑡 < 0

• coefficients ℎ0, ℎ1, . . . are the impulse response coefficients

• output is convolution of input with impulse response

Optimal input design

• optimization variable is the input sequence 𝑥 = (𝑢(0), 𝑢(1), . . . , 𝑢(𝑁))

• goal is to track a desired output using a small and slowly varying input

SA — ENGR504control 9.28

Input design objectives

minimize 𝐽t (𝑥) + 𝜆v𝐽v (𝑥) + 𝜆m𝐽m (𝑥)

• primary objective: track desired output 𝑦des over an interval [0, 𝑁]:

𝐽t (𝑥) =
𝑁∑︁
𝑡=0

(
𝑦(𝑡) − 𝑦des (𝑡)

)2
• secondary objectives: use a small and slowly varying input signal:

𝐽m (𝑥) =
𝑁∑︁
𝑡=0

𝑢(𝑡)2

𝐽v (𝑥) =
𝑁−1∑︁
𝑡=0

(𝑢(𝑡 + 1) − 𝑢(𝑡))2

SA — ENGR504control 9.29

Tracking error

𝐽t (𝑥) =
𝑁∑︁
𝑡=0

(𝑦(𝑡) − 𝑦des (𝑡))2

= ‖𝐴t𝑥 − 𝑏t‖2

with

𝐴t =



ℎ0 0 0 · ·· 0 0
ℎ1 ℎ0 0 · ·· 0 0
ℎ2 ℎ1 ℎ0 · ·· 0 0
...

.

ℎ𝑁−1 ℎ𝑁−2 ℎ𝑁−3 · ·· ℎ0 0
ℎ𝑁 ℎ𝑁−1 ℎ𝑁−2 · ·· ℎ1 ℎ0


, 𝑏t =



𝑦des (0)
𝑦des (1)
𝑦des (2)

...

𝑦des (𝑁 − 1)
𝑦des (𝑁)


SA — ENGR504control 9.30

Input variation and magnitude

Input variation

𝐽v (𝑥) =
𝑁−1∑︁
𝑡=0

(𝑢(𝑡 + 1) − 𝑢(𝑡))2 = ‖𝐷𝑥‖2

where 𝐷 the 𝑁 × (𝑁 + 1) difference matrix

𝐷 =


−1 1 0 · ·· 0 0 0
0 −1 1 · ·· 0 0 0
...

0 0 0 · ·· −1 1 0
0 0 0 · ·· 0 −1 1


Input magnitude

𝐽m (𝑥) =
𝑁∑︁
𝑡=0

𝑢(𝑡)2 = ‖𝑥‖2

SA — ENGR504control 9.31

Example

𝜆v = 0, small 𝜆m

0 100 200
−6

−4

−2

0

2

4

𝑡

𝑢
(𝑡
)

0 100 200
−1

0

1

𝑡

𝑦
(𝑡
)

larger 𝜆v larger 𝜆m

0 100 200
−6

−4

−2

0

2

4

𝑡

𝑢
(𝑡
)

0 100 200
−1

0

1

𝑡

y(
t)

SA — ENGR504control 9.32

Outline

• least squares problem

• solution and normal equations

• multi-objective least squares

• control

• estimation and inversion

Estimation (inversion)

measurement model:
𝑦 = 𝐴𝑥 + 𝑣

• 𝑛-vector 𝑥 contains parameters we want to estimate

• 𝑚-vector 𝑦 contains the measurements

• 𝑚-vector 𝑣 are (unknown) noises or measurement errors

• 𝑚 × 𝑛 matrix 𝐴 connects parameters to measurements

Least squares estimation

• we guess 𝑥 by minimizing 𝐽1 = ‖𝐴𝑥 − 𝑦‖2

• when 𝑣 is nonzero or 𝐴 has dependent columns, we cannot determine 𝑥 exactly

• in this case, we add other objectives to encode prior information about 𝑥
– 𝑥 is small: 𝐽2 = ‖𝑥‖2

– 𝑥 is not far from a nominal input: 𝐽2 = ‖𝑥 − 𝑥nom ‖2

SA — ENGR504estimation and inversion 9.33

Example: estimating a periodic time series

• 𝑇 -vector 𝑦 is a (measured) time series, of a periodic time series with period 𝑃

• 𝑃-vector 𝑥 gives its values over one period, so

𝑦 = (𝑥, 𝑥, . . . , 𝑥)

where we assume here for simplicity that 𝑇 is a multiple of 𝑃

• we can express 𝑦 as 𝑦 = 𝐴𝑥, where 𝐴 is the 𝑇 × 𝑃 selector matrix

𝐴 =


𝐼
...

𝐼


• we assume that the periodic time series is smooth

𝑥1 ≈ 𝑥2, . . . , 𝑥𝑃−1 ≈ 𝑥𝑃 , 𝑥𝑃 ≈ 𝑥1

SA — ENGR504estimation and inversion 9.34

Example: estimating a periodic time series

we estimate the periodic time series by minimizing

‖𝐴𝑥 − 𝑦‖2 + 𝜆‖𝐷circ 𝑥‖2

where 𝐷circ is the 𝑃 × 𝑃 circular difference matrix

𝐷circ =



−1 1 0 · ·· 0 0 0
0 −1 1 · ·· 0 0 0
...

0 0 0 · ·· −1 1 0
0 0 0 · ·· 0 −1 1
1 0 0 · ·· 0 0 −1



SA — ENGR504estimation and inversion 9.35

Example: hourly ozone measurements

O
zo

ne
le

ve
l(

pp
m

)

• 336-vector 𝑐 of measurements with some missing values

• 𝑐24(𝑗−1)+𝑖 , 𝑖 = 1, . . . , 24, contain hourly values on day 𝑗 , 𝑗 = 1, . . . , 14

• 𝑀 𝑗 ⊆ {1, 2, . . . , 24} is set with indices of available measurements on day 𝑗

• least squares objective:

14∑︁
𝑗=1

∑︁
𝑖∈𝑀 𝑗

(
𝑥𝑖 − log

(
𝑐24(𝑗−1)+𝑖

))2 + 𝜆

(
23∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑥1 − 𝑥24)2
)

SA — ENGR504estimation and inversion 9.36

results for 𝜆 = 1 and 𝜆 = 100

O
zo

ne
le

ve
l(p

pm
)

O
zo

ne
le

ve
l(

pp
m

)

SA — ENGR504estimation and inversion 9.37

Example: least squares image deblurring

𝑦 = 𝐴𝑥 + 𝑣

• 𝑥 is unknown image, 𝑦 is observed blurred noisy image

• 𝐴 is (known) blurring matrix, 𝑣 is (unknown) noise

• images are 𝑀 × 𝑁 , stored as 𝑀𝑁-vectors

Least squares deblurring

minimize ‖𝐴𝑥 − 𝑦‖2 + 𝜆
(
‖𝐷h𝑥‖2 + ‖𝐷v𝑥‖2

)
• 1st term is “data fidelity” term: ensures 𝐴𝑥 ≈ 𝑦

• 2nd term penalizes differences between values at neighboring pixels

‖𝐷h𝑥‖2 + ‖𝐷v𝑥‖2 =

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

(
𝑋𝑖, 𝑗+1 − 𝑋𝑖 𝑗

)2 + 𝑀−1∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑋𝑖+1, 𝑗 − 𝑋𝑖 𝑗

)2
when 𝑋 is the 𝑀 × 𝑁 image stored in the 𝑀𝑁-vector 𝑥

SA — ENGR504estimation and inversion 9.38

Example: least squares image deblurring

suppose 𝑥 is the 𝑀 × 𝑁 image 𝑋 , stored column-wise as 𝑀𝑁-vector

𝑥 =
(
𝑋1:𝑀,1, 𝑋1:𝑀,2, . . . , 𝑋1:𝑀,𝑁

)
• horizontal differencing: (𝑁 − 1) × 𝑁 block matrix with 𝑀 × 𝑀 blocks

𝐷h =


−𝐼 𝐼 0 · ·· 0 0 0
0 −𝐼 𝐼 · ·· 0 0 0
...

0 0 0 · ·· 0 −𝐼 𝐼


• vertical differencing: 𝑁 × 𝑁 block matrix with (𝑀 − 1) × 𝑀 blocks

𝐷v =


𝐷 0 · ·· 0
0 𝐷 · ·· 0
... ... · ·· ...

0 0 · ·· 𝐷

 , 𝐷 =


−1 1 0 · ·· 0 0
0 −1 1 · ·· 0 0
...

0 0 0 · ·· −1 1


SA — ENGR504estimation and inversion 9.39

Example

SA — ENGR504estimation and inversion 9.40

Example: tomography

goal: reconstruct a (density) function 𝑑 : R2 → R from line integral measurements

• measurements obtained by passing a beam of radiation through region of interest,
and measuring the intensity of the beam after it exits region

• used in medicine, manufacturing, networking, geology
– common application: CAT (computer-aided tomography) scan

Line integral: parametrize line ℓ in 2-D as

𝑝(𝑡) = (𝑥0, 𝑦0) + 𝑡 (cos 𝜃, sin 𝜃)

• (𝑥0, 𝑦0) is any point on the line

• 𝜃 is angle measured from horizontal; 𝑡 is length along line

• line integral of 𝑑 on ℓ is
∫
ℓ
𝑑 =

∫ ∞
−∞ 𝑑 (𝑝(𝑡))𝑑𝑡

• can be extended to 3-D

SA — ENGR504estimation and inversion 9.41

Line integral measurements

• assume 𝑑 is constant on pixel (or voxel) 𝑖 with value 𝑥𝑖

• measurement of integral along line 𝑖 through region is

𝑦𝑖 =

∫ ∞

−∞
𝑑 (𝑝(𝑡))𝑑𝑡 + 𝑣𝑖 =

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 + 𝑣𝑖 where 𝑣𝑖 is small noise

• 𝐴𝑖 𝑗 is the length of measurement line 𝑖 in pixel 𝑗

• in matrix-vector form: 𝑦 = 𝐴𝑥 + 𝑣

𝑥1 𝑥2

𝑥6

(𝑥0, 𝑦0) 𝜃

𝑦 = 1.06𝑥16 + 0.8𝑥17 + 0.27𝑥12 + 1.06𝑥13

+ 1.06𝑥14 + 0.53𝑥15 + 0.54𝑥10 + 𝑣

SA — ENGR504estimation and inversion 9.42

Least squares tomographic reconstruction

minimize ‖𝐴𝑥 − 𝑦‖2 + 𝜆
(
‖𝐷v𝑥‖2 + ‖𝐷h𝑥‖2

)
𝐷v and 𝐷h are defined as in image deblurring example

Example

• left: 4000 lines (100 points, 40 lines per point)

• right: object placed in the square region on the left

• region of interest is divided in 10000 pixels

SA — ENGR504estimation and inversion 9.43

Regularized least squares reconstruction

SA — ENGR504estimation and inversion 9.44

Regularized least squares reconstruction

SA — ENGR504estimation and inversion 9.45

References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

SA — ENGR504references 9.46

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	least squares problem
	solution and normal equations
	multi-objective least squares
	control
	estimation and inversion
	references

