9. Least squares

- [least squares problem](#page-1-0)
- [solution and normal equations](#page-6-0)
- [multi-objective least squares](#page-22-0)
- [control](#page-28-0)
- [estimation and inversion](#page-35-0)

Least squares problem

- • let A be $m \times n$ and consider $Ax = b$ where b is an m-vector
- in most applications, $m > n$ and there is no x that satisfies $Ax = b$

Least squares problem: choose x that minimizes the residual norm $r = Ax - b$:

minimize
$$
||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2
$$

- x is *variable*, A, b are called *data*, $||Ax b||^2$ is the *objective* function
- also called *regression* (in data fitting context)
- \hat{x} is a *solution* of the least squares problem if

$$
||A\hat{x} - b||^2 \le ||Ax - b||^2 \quad \text{for any } n\text{-vector } x
$$

 $-\hat{x}$ also called *least-squares approximate solution* of $Ax = b$

- if
$$
\hat{r} = A\hat{x} - b = 0
$$
, then \hat{x} solves linear equation $Ax = b$

Example

- $Ax = b$ has no solution
- least squares problem:

minimize $||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$

- least squares solution is $\hat{x} = (1/3, -1/3)$
- $||A\hat{x} b||^2 = 2/3$ is smallest posible value of $||Ax b||^2$

[least squares problem](#page-1-0) $SA = \text{EMGR}504$ **9.3**

Example: Advertising purchases

- m demographics groups (audiences), n advertising channels
- v_i^{des} is target number of views or impressions for group i
- R_{ij} is # views in group i per dollar spent on ads in channel j
- s_j is amount of advertising purchased in channel j
- $(Rs)_i$ is total number of views in group i
- least squares problem: minimize $||Rs v^{des}||^2$ (ignoring $s \geq 0$ and budget)

Example: $m = 10$, $n = 3$, $v^{\text{des}} = 10^3 \times 1$, $\hat{s} = (62, 100, 1443)$

Example: Illumination

- n lamps illuminate an area divided in m regions
- \bullet b_i is target illumination level at region i
- x_j is power of lamp j
- A_{ij} is illumination in region i if lamp j is on with power 1, other lamps are off
- $(Ax)_i$ is illumination level at region i

Example: lamp positions and heights with $m = 25 \times 25$, $n = 10$

Illumination

least squares solution \hat{x} , with $b = 1$

Outline

- • [least squares problem](#page-1-0)
- **[solution and normal equations](#page-6-0)**
- [multi-objective least squares](#page-22-0)
- [control](#page-28-0)
- [estimation and inversion](#page-35-0)

Least squares solution

minimize $||Ax - b||^2$

Normal equations: a solution \hat{x} must satisfy the *normal equations:*

 $A^T A \hat{x} = A^T b$

and if has *linearly independent columns*, then the solution is unique

$$
\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b
$$

- $A^{\dagger} = (A^T A)^{-1} A^T$ is the psuedo-inverse of A, which is also a left inverse
- $\hat{x} = A^{\dagger}b$ solves the linear equation $Ax = b$ if it has a solution
- if $Ax = b$ does not have a solution, then $A\hat{x} \neq b$

Proof using algebra

suppose \hat{x} satisfies the normal equations $A^T(A\hat{x}-b)=0$, then for any n-vector x

$$
||Ax - b||^2 = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^2
$$

= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 + 2(A(x - \hat{x}))^T (A\hat{x} - b)$
= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 + 2(x - \hat{x})^T A^T (A\hat{x} - b)$
= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2$

- hence for any x, $||Ax b||^2 \ge ||A\hat{x} b||^2$
- \bullet if A has linearly independent columns, then

 $||Ax - b||^2 > ||A\hat{x} - b||^2$ (unique solution)

this is because $||A(x - \hat{x})||^2 = 0 \Rightarrow A(x - \hat{x}) = 0 \Rightarrow x = \hat{x}$

Geometric interpretation

let a_1, \ldots, a_n denote columns of A, then

$$
||Ax - b||2 = ||(x1a1 + \dots + xnan) - b||2
$$

- $A\hat{x}$ is the vector in range (A) = span (a_1, \ldots, a_n) closest to b
- $\hat{r} = A\hat{x} b$ is orthogonal to range (A) : $\hat{r} \perp Aw$ for any w

• $A\hat{x} = AA^{\dagger}b$ is projection on range(A)

Example

given two different types of concrete:

- 1st contains 30% cement, 40% gravel, and 30% sand (percentages of weight)
- 2nd contains 10% cement, 20% gravel, and 70% sand

how many pounds of each type of concrete should you mix together so that you get a concrete mixture that has as close as possible to a total of 5 pounds of cement, 3 pounds of gravel, and 4 pounds of sand?

- letting x_1 and x_2 to be the amounts of concrete of the first and second types
- the above problem can be formulated as the least squares problem:

minimize
$$
\| \begin{bmatrix} 0.3 & 0.1 \\ 0.4 & 0.2 \\ 0.3 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \|^2 = \|Ax - b\|^2,
$$

where $x = (x_1, x_2)$

 \bullet since the columns of A are linearly independent, the solution is

$$
\hat{x} = (A^T A)^{-1} A^T b = \begin{bmatrix} 10.6\\ 0.961 \end{bmatrix}
$$

QR factorization method

using QR factorization $A = QR$, we have

$$
\hat{x} = (A^T A)^{-1} A^T b = ((QR)^T (QR))^{-1} (QR)^T b
$$

$$
= (R^T Q^T Q R)^{-1} R^T Q^T b
$$

$$
= R^{-1} Q^T b
$$

- identical formula for solving $Ax = b$ for square invertible A
- here \hat{x} gives least squares approximate solution to $Ax = b$

Algorithm

- 1. compute QR factorization $A = QR$ ($2mn^2$ flops if A is $m \times n$)
- 2. matrix-vector product $Q^{\mathit{T}}b$ (2mn flops)
- 3. solve $Rx = Q^Tb$ by back substitution (n^2 flops)

Complexity: $2mn^2$ flops

Example

$$
A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}
$$

1. QR factorization: $A = QR$ with

$$
Q = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}
$$

- 2. calculate $d = Q^T b = (5, 2)$
- 3. solve $Rx = d$

$$
\begin{bmatrix} 5 & -10 \ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} 5 \ 2 \end{bmatrix}
$$

solution is $x_1 = 5, x_2 = 2$

Solving normal equations directly

given $m \times n$ matrix A with linearly independent columns and n -vector b

- 1. form $B = A^T A$ and $y = A^T b$
- 2. compute the Cholesky factorization $B = R^T R$ (R is lower triangular)
- 3. solve $R^{T}z = y$ for z using forward substitution
- 4. solve $Rx = z$ for x using back substitution

Complexity: approximately $mn^2 + n^3/3$ (flops)

- step 1 costs mn^2
- step 2 is approximately $n^3/3$ flops
- steps 3 and 4 cost order n^2 flops
- when $m \gg n$, the main cost becomes in forming the matrix $B = A^T A$

Comparison of the two methods

Complexity

- Cholesky method: $mn^2 + (1/3)n^3$ flops
- QR method: $2mn^2$ flops
- Cholesky method is faster by a factor of at most two (if $m \gg n$)

Numerical stability: QR factorization method is more stable

- QR method computes R without "squaring" A (*i.e.*, forming A^TA)
- \bullet this is important when the columns of A are "almost" linearly dependent

Example

- randomly create A and a vector b
- plot **ratio** of CPU times for using QR fact. over normal equations options

• normal equations method is more efficient

Code

```
for n = 300 \cdot 100 \cdot 1000% fill a rectangular matrix A and a vector b with random numbers
m = n+1; % or m = 3*n+1A = \text{randn}(m,n); b = \text{randn}(m,1);% solve and find execution times; first, Matlab way using QR
t0 = cputime;
xqr = A \setminus b;temp = cputime;
\text{tr}(n/100-2) = \text{temp} - \text{t0};% next use normal equations
t0 = temp;B = A'*
A: v = A'*
b;
xne = B \setminus y;temp = cputime;
tne(n/100-2) = temp - t0;end
ratio = tqr./tne;
plot(300:100:1000,ratio)
```
Solving the normal equations

- last example shows direct method is faster
- however, QR method is more stable as illustrated next

Example: $a \, 3 \times 2$ matrix with "almost linearly dependent" columns

$$
A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix}
$$

we round intermediate results to 8 significant decimal digits

Method 1: form Gram matrix $A^T A$ and solve normal equations

$$
A^T A = \begin{bmatrix} 1 & -1 \\ -1 & 1 + 10^{-10} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, A^T b = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}
$$

after rounding, the Gram matrix is singular; hence method fails

Method 2: OR factorization of A is

$$
Q = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right], \quad R = \left[\begin{array}{cc} 1 & -1 \\ 0 & 10^{-5} \end{array} \right]
$$

rounding does not change any values (in this example)

- problem with method 1 occurs when forming Gram matrix $A^T A$
- QR factorization method is more stable because it avoids forming $A^T A$

Standard methods for solving the linear least squares

Normal equations (Cholesky)

- fast, simple, intuitive
- can be unstable when columns of A are "almost" linearly dependent

QR factorization

- this is the "standard" approach (*e.g.*, in MATLAB)
- more robust than the normal equations approach
- more computationally expensive than the normal equations approach if $m \gg n$

Singular value decomposition (SVD) (more on this later in course)

- used mostly when columns of A are (almost) dependent
- very robust but more expensive than QR approach

Matrix least squares

minimize $\|AX - B\|_F^2$

- variable is the $n \times k$ matrix $X = \begin{bmatrix} x_1 & \cdots & x_k \end{bmatrix}$
- A is an $m \times n$ matrix and B is an $m \times k$ matrix
- decouples into a set of k ordinary least squares since

$$
||AX - B||_F^2 = ||Ax_1 - b_1||^2 + \dots + ||Ax_k - b_k||^2
$$

where x_j is the jth column of \overline{X} and \overline{b}_j is the jth column of \overline{B}

- can choose the columns x_j independently, by minimizing $||Ax_j b_j||^2$
- assuming A has linearly independent columns, the solution is $\hat{x}_j = A^{\dagger} b_j$ or

$$
\hat{X} = A^{\dagger} B
$$

$\mathsf{solution}$ and normal equations $\mathsf{S}\mathsf{A}-\mathsf{ENGR504}$ $\mathsf{S}\mathsf{A}-\mathsf{ENGR504}$ $\mathsf{S}\mathsf{A}-\mathsf{ENGR504}$ $\mathsf{S}\mathsf{A}-\mathsf{ENGR504}$

Outline

- • [least squares problem](#page-1-0)
- [solution and normal equations](#page-6-0)
- **[multi-objective least squares](#page-22-0)**
- [control](#page-28-0)
- [estimation and inversion](#page-35-0)

Multi-objective least squares

choose n -vector x so that the following objectives are all small

$$
J_1 = ||A_1x - b_1||^2, \ldots, J_k = ||A_kx - b_k||^2
$$

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector, $i = 1, ..., k$
- J_i are the objectives in a multi-objective (multi-criterion) optimization problem

Weighted sum objective: choose positive *weights* λ_i and find x that minimizes

$$
J = \lambda_1 J_1 + \dots + \lambda_k J_k = \lambda_1 \|A_1 x - b_1\|^2 + \dots + \lambda_k \|A_k x - b_k\|^2
$$

- we set $\lambda_1 = 1$, and call J_1 the *primary objective*
- λ_i gives how much we care about J_i being small, relative to J_1
- terms $\lambda_2 J_2, \ldots, \lambda_k J_k$ are called *regularization terms*

Weighted sum solution

write weighted-sum objective as

$$
J = \left\| \left[\begin{array}{c} \sqrt{\lambda_1} \left(A_1 x - b_1 \right) \\ \vdots \\ \sqrt{\lambda_k} \left(A_k x - b_k \right) \end{array} \right] \right\|^2
$$

so we have $J = \|\tilde{A} x - \tilde{b}\|^2$, with

$$
\tilde{A} = \begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix}
$$

Weighted sum solution: assuming columns of \tilde{A} are linearly independent,

$$
\hat{x} = (\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T \tilde{b}
$$

= $(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k)^{-1} (\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k)$

(here, A_i can be wide, or have dependent columns)

[multi-objective least squares](#page-22-0) \sim 9.23

Optimal trade-off curve

Bi-criterion problem: we let $\hat{x}(\lambda)$ be minimizer of bi-criterion objectives

$$
J_1 + \lambda J_2 = ||A_1x - b_1||^2 + \lambda ||A_2x - b_2||^2
$$

Pareto optimal point

- $\hat{x}(\lambda)$ is called *Pareto optimal*
- \bullet there is no point *z* that satisfies

$$
J_1(z) < J_1(\hat{x}(\lambda)), \quad J_2(z) < J_2(\hat{x}(\lambda))
$$

i.e., no other point beats \hat{x} on both objectives

Optimal trade-off curve

$$
\big(J_1(\hat{x}(\lambda)),J_2(\hat{x}(\lambda))\big)\quad\text{for}\quad\lambda>0
$$

Example

 A_1 and A_2 both 10×5

we can achieve a substantial reduction in J_2 with only a small increase in J_1

• weights are typically logarithmically spaced; for N values of $\lambda^{\min} \leq \lambda \leq \lambda^{\max}$:

$$
\lambda^{\min}
$$
, $\theta \lambda^{\min}$, $\theta^2 \lambda^{\min}$, ..., $\theta^{N-1} \lambda^{\min} = \lambda^{\max}$

with
$$
\theta = (\lambda^{\max}/\lambda^{\min})^{1/(N-1)}
$$

[multi-objective least squares](#page-22-0) 3.25

Tikhonov regularization

the weighted least squares problem

$$
minimize \t ||Ax - y||^2 + \lambda ||x||^2
$$

is known as *Tikhonov regularization*

- goal is to make $||Ax y||$ small with x that is not too big
- equivalent to solving

$$
(A^T A + \lambda I)x = A^T y
$$

• solution is unique (if $\lambda > 0$) even when A has linearly dependent columns

Outline

- • [least squares problem](#page-1-0)
- [solution and normal equations](#page-6-0)
- [multi-objective least squares](#page-22-0)
- **[control](#page-28-0)**
- [estimation and inversion](#page-35-0)

Control

$$
y = Ax + b
$$

- *n*-vector *x* corresponds to *actions* or *inputs*
- *m*-vector *y* corresponds to *results* or *outputs*
- A and b are known (from analytical models, data fitting, ...)
- goal is to choose x, to optimize multiple objectives on x and y

Multi-objective control

- primary objective: $J_1 = ||y y^{\text{des}}||^2$, y^{des} is a given desired/target output
- typical secondary objectives:
	- x is small: $J_2 = ||x||^2$
	- $\,$ x is not far from a nominal input: $J_2 = \|x x^{\mathsf{nom}}\,\|^2$

Optimal input design

Linear dynamical system

 $y(t) = h_0u(t) + h_1u(t-1) + h_2u(t-2) + \cdots + h_tu(0)$

- output $y(t)$ and input $u(t)$ are scalar
- we assume input $u(t)$ is zero for $t < 0$
- coefficients h_0, h_1, \ldots are the impulse response coefficients
- output is convolution of input with impulse response

Optimal input design

- optimization variable is the input sequence $x = (u(0), u(1), \ldots, u(N))$
- goal is to track a desired output using a small and slowly varying input

Input design objectives

$$
\text{minimize} \quad J_{\text{t}}(x) + \lambda_{\text{v}} J_{\text{v}}(x) + \lambda_{\text{m}} J_{\text{m}}(x)
$$

• primary objective: track desired output y_{des} over an interval $[0, N]$:

$$
J_t(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2
$$

• secondary objectives: use a small and slowly varying input signal:

$$
J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^{2}
$$

$$
J_{\rm v}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^{2}
$$

Tracking error

$$
J_{t}(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^{2}
$$

$$
= ||A_{t}x - b_{t}||^{2}
$$

with

$$
A_{\rm t} = \left[\begin{array}{ccccc} h_0 & 0 & 0 & \cdots & 0 & 0 \\ h_1 & h_0 & 0 & \cdots & 0 & 0 \\ h_2 & h_1 & h_0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 & 0 \\ h_N & h_{N-1} & h_{N-2} & \cdots & h_1 & h_0 \end{array}\right], \quad b_{\rm t} = \left[\begin{array}{c} y_{\rm des}(0) \\ y_{\rm des}(1) \\ y_{\rm des}(2) \\ \vdots \\ y_{\rm des}(N-1) \\ y_{\rm des}(N) \end{array}\right]
$$

Input variation and magnitude

Input variation

$$
J_{\rm v}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^2 = ||Dx||^2
$$

where D the $N \times (N + 1)$ difference matrix

$$
D = \left[\begin{array}{ccccc} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{array} \right]
$$

Input magnitude

$$
J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^2 = ||x||^2
$$

Example

Outline

- • [least squares problem](#page-1-0)
- [solution and normal equations](#page-6-0)
- [multi-objective least squares](#page-22-0)
- [control](#page-28-0)
- **[estimation and inversion](#page-35-0)**

Estimation (inversion)

measurement model:

 $v = Ax + v$

- n -vector x contains parameters we want to estimate
- *m*-vector *y* contains the *measurements*
- *m*-vector *v* are (unknown) *noises* or *measurement errors*
- $m \times n$ matrix A connects parameters to measurements

Least squares estimation

- we guess x by minimizing $J_1 = ||Ax y||^2$
- when ν is nonzero or A has dependent columns, we cannot determine x exactly
- in this case, we add other objectives to encode prior information about x
	- x is small: $J_2 = ||x||^2$
	- x is not far from a nominal input: $J_2 = ||x x^{\text{nom}}||^2$

Example: estimating a periodic time series

- T-vector y is a (measured) time series, of a periodic time series with period P
- P-vector x gives its values over one period, so

$$
\hat{y} = (x, x, \dots, x)
$$

where we assume here for simplicity that T is a multiple of P

• we can express \hat{v} as $\hat{v} = Ax$, where A is the $T \times P$ selector matrix

$$
A = \left[\begin{array}{c} I \\ \vdots \\ I \end{array} \right]
$$

• we assume that the periodic time series is smooth

$$
x_1 \approx x_2, \quad \ldots, \quad x_{P-1} \approx x_P, \quad x_P \approx x_1
$$

Example: estimating a periodic time series

we estimate the periodic time series by minimizing

$$
||Ax - y||^2 + \lambda ||D^{\text{circ}} x||^2
$$

where D^{circ} is the $P \times P$ circular difference matrix

Ī

$$
D^{\text{circ}} = \left[\begin{array}{ccccc} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 & -1 \end{array} \right]
$$

Ī

Example: hourly ozone measurements

- 336-vector c of measurements with some missing values
- $c_{24(j-1)+i}, i = 1, ..., 24$, contain hourly values on day $j, j = 1, ..., 14$
- $M_i \subseteq \{1, 2, ..., 24\}$ is set with indices of available measurements on day j
- least squares objective:

$$
\sum_{j=1}^{14} \sum_{i \in M_j} (x_i - \log (c_{24(j-1)+i}))^2 + \lambda \left(\sum_{i=1}^{23} (x_{i+1} - x_i)^2 + (x_1 - x_{24})^2 \right)
$$

results for $\lambda = 1$ and $\lambda = 100$

Example: least squares image deblurring

 $v = Ax + v$

- x is unknown image, y is observed blurred noisy image
- A is (known) blurring matrix, v is (unknown) noise
- images are $M \times N$, stored as MN -vectors

Least squares deblurring

minimize
$$
||Ax - y||^2 + \lambda (||D_hx||^2 + ||D_vx||^2)
$$

- 1st term is "data fidelity" term: ensures $A\hat{x} \approx y$
- 2nd term penalizes differences between values at neighboring pixels

$$
||Dhx||2 + ||Dvx||2 = \sum_{i=1}^{M} \sum_{j=1}^{N-1} (X_{i,j+1} - X_{ij})2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (X_{i+1,j} - X_{ij})2
$$

when X is the $M \times N$ image stored in the MN -vector x

[estimation and inversion](#page-35-0) $\mathbf{S} = \mathbf{S}$ and $\mathbf{S} = \mathbf{S}$

Example: least squares image deblurring

suppose x is the $M \times N$ image X, stored column-wise as MN -vector

$$
x = (X_{1:M,1}, X_{1:M,2}, \ldots, X_{1:M,N})
$$

• **horizontal differencing:** $(N - 1) \times N$ block matrix with $M \times M$ blocks

$$
D_{\rm h} = \left[\begin{array}{ccccc} -I & I & 0 & \cdots & 0 & 0 & 0 \\ 0 & -I & I & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I & I \end{array} \right]
$$

• **vertical differencing:** $N \times N$ block matrix with $(M - 1) \times M$ blocks

$$
D_{\mathbf{v}} = \begin{bmatrix} D & 0 & \cdots & 0 \\ 0 & D & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & D \end{bmatrix}, \quad D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}
$$

Example

 $\lambda=10^{-6}$

 $\lambda=10^{-4}$

 $\lambda=10^{-2}$

 $\bar{\lambda}=1$

Example: tomography

goal: reconstruct a (density) function $d:\mathbb{R}^2\to\mathbb{R}$ from line integral measurements

- measurements obtained by passing a beam of radiation through region of interest, and measuring the intensity of the beam after it exits region
- used in medicine, manufacturing, networking, geology
	- common application: CAT (computer-aided tomography) scan

Line integral: parametrize line ℓ in 2-D as

$$
p(t) = (x_0, y_0) + t(\cos \theta, \sin \theta)
$$

- (x_0, y_0) is any point on the line
- \bullet θ is angle measured from horizontal; t is length along line
- line integral of d on ℓ is $\int_{\ell} d = \int_{-\infty}^{\infty} d(p(t)) dt$
- can be extended to 3-D

Line integral measurements

- assume d is constant on pixel (or voxel) i with value x_i
- measurement of integral along line i through region is

$$
y_i = \int_{-\infty}^{\infty} d(p(t))dt + v_i = \sum_{j=1}^{n} A_{ij}x_j + v_i
$$
 where v_i is small noise

- A_{ij} is the length of measurement line i in pixel j
- in matrix-vector form: $y = Ax + v$

Least squares tomographic reconstruction

minimize $||Ax - y||^2 + \lambda (||D_v x||^2 + ||D_h x||^2)$

 $D_{\rm v}$ and $D_{\rm h}$ are defined as in image deblurring example

Example

- left: 4000 lines (100 points, 40 lines per point)
- right: object placed in the square region on the left
- region of interest is divided in 10000 pixels

Regularized least squares reconstruction

 $\lambda=10^{-2}$

 $\lambda=10^{-1}$

 $\lambda=1$

Regularized least squares reconstruction

 $\lambda=1$

 $\lambda=5$

 $\lambda=100$

 $\lambda=10$

References and further readings

- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)