8. QR factorization

- Gram-Schmidt orthogonalization
- QR factorization
- solving linear equations
- modified Gram-Schmidt method
- Householder algorithm

Projection onto a vector

given two vectors $a, b \in \mathbb{R}^n$, with $a \neq 0$, the vector multiple ta closest to b has

Proof

• squared distance between *ta* and *b* is

$$||ta - b||^2 = (ta - b)^T (ta - b) = t^2 a^T a - 2ta^T b + b^T b$$

derivative w.r.t. t is zero for

$$\hat{t} = \frac{a^T b}{a^T a} = \frac{a^T b}{\|a\|^2}$$

Geometric interpretation: $b - \hat{t}a \perp a$:

$$(b - \hat{t}a)^T a = 0 \Longrightarrow \hat{t} = \frac{a^T b}{\|a\|^2}$$

Gram-Schmidt procedure on two vectors

G-S procedure on two non-zero vectors a_1 and a_2

- normalize $q_1 = a_1 / ||a_1||$
- remove q_1 component from a_2 :

$$\tilde{q}_2 = a_2 - (q_1^T a_2) q_1$$

- normalize $q_2 = \tilde{q}_2 / \|\tilde{q}_2\|$

- if $\tilde{q}_2 = 0$, then the vectors a_1 and a_2 are linearly dependent
- if $\tilde{q}_2 \neq 0$, then q_1 and q_2 are orthonormal (q_1 and \tilde{q}_2 are orthogonal)

$$q_1^T \tilde{q}_2 = q_1^T (a_2 - (q_1^T a_2)q_1) = q_1^T a_2 - (q_1^T a_2)q_1^T q_1$$
$$= q_1^T a_2 - q_1^T a_2 = 0$$

thus, a_1 and a_2 are linearly independent

Gram-Schmidt orthogonalization

Gram-Schmidt (G-S) procedure

given vectors $a_1, \ldots, a_n \in \mathbb{R}^m$ step 1a. $\tilde{q}_1 := a_1$ step 1b. $q_1 := \tilde{q}_1 / \|\tilde{q}_1\|$ (normalize) step 2a. $\tilde{q}_2 := a_2 - (q_1^T a_2) q_1$ (remove q_1 component from a_2) step 2b. $q_2 := \tilde{q}_2 / \|\tilde{q}_2\|$ (normalize) step 3a. $\tilde{q}_3 := a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2$ (remove q_1, q_2 components) step 3b. $q_3 := \tilde{q}_3 / \|\tilde{q}_3\|$ (normalize) etc.

Gram-Schmidt (G-S) algorithm

given vectors $a_1, \ldots, a_n \in \mathbb{R}^m$ set $q_1 = a_1/||a_1||$ for $k = 2, \ldots, n$ 1. orthogonalization: $\tilde{q}_k = a_k - (q_1^T a_k)q_1 - \cdots - (q_{k-1}^T a_k)q_{k-1}$ 2. test for linear dependence: if $\tilde{q}_k = 0$ quit 3. normalization: $q_k = \tilde{q}_k/||\tilde{q}_k||$

- if $\tilde{q}_k = 0$ then a_1, \ldots, a_k are linearly dependent
- if a_1, \ldots, a_n are linearly independent, then q_1, \ldots, q_n are orthonormal vectors
- a_k is a linear combination of q_1, \ldots, q_k
- q_k is a linear combination of a_1, \ldots, a_k

Example

$$a_{1} = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}, \quad a_{2} = \begin{bmatrix} -1\\3\\-1\\3 \end{bmatrix}, \quad a_{3} = \begin{bmatrix} 1\\3\\5\\7 \end{bmatrix}$$

• $k = 1, ||a_1|| = 2$ and

$$q_1 = a_1/||a_1|| = (-1/2, 1/2, -1/2, 1/2)$$

•
$$k = 2$$
, we have $q_1^T a_2 = 4$, and

$$\tilde{q}_2 = a_2 - (q_1^T a_2)q_1 = (1, 1, 1, 1)$$

normalizing, we get

$$q_2 = \tilde{q}_2 / \|\tilde{q}_2\| = (1/2, 1/2, 1/2, 1/2)$$

•
$$k = 3$$
; we have $q_1^T a_3 = 2$ and $q_2^T a_3 = 8$, so

$$\tilde{q}_3 = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2 = (-2, -2, 2, 2)$$

normalizing, we get

$$q_3 = \tilde{q}_3 / \|\tilde{q}_3\| = (-1/2, -1/2, 1/2, 1/2)$$

• since no vector \tilde{q}_i is zero, the vectors a_1, a_2, a_3 are linearly independent

Matrix form for Gram-Schmidt

let A be an $m \times n$ matrix with linearly independent columns

- running Gram-Schmidt on A produces orthonormal vectors q_1, \ldots, q_n
- we know from Gram-Schmidt algorithm that

$$a_{k} = (q_{1}^{T}a_{k})q_{1} + \dots + (q_{k-1}^{T}a_{k})q_{k-1} + \|\tilde{q}_{k}\|q_{k}$$
$$= R_{1k}q_{1} + \dots + R_{k-1,k}q_{k-1} + R_{kk}q_{k}$$

where
$$R_{ij} = q_i^T a_j$$
 and $R_{ii} = \|\tilde{q}_i\|$

• expressing this for each $k = 1, \ldots, n$,

$$\begin{array}{c} a_1 = R_{11}q_1 \\ a_2 = R_{12}q_1 + R_{22}q_2 \\ \vdots \\ a_n = R_{1n}q_1 + \dots + R_{nn}q_n \end{array} A = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & R_{nn} \end{bmatrix}$$

Outline

- Gram-Schmidt orthogonalization
- QR factorization
- solving linear equations
- modified Gram-Schmidt method
- Householder algorithm

QR factorization

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, then it can be factored as

$$A = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix} = QR$$

- $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns ($Q^T Q = I$)
- if A is square (m = n), then Q is orthogonal $(Q^T Q = Q Q^T = I)$
- $R \in \mathbb{R}^{n \times n}$ is upper triangular with nonzero diagonal, hence invertible

QR factorization via Gram-Schmidt

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n set $q_1 = a_1/||a_1||$ and $R_{11} = ||a_1||$ for $k = 2, \ldots, n$ 1. $q_k = a_k$ 2. for $j = 1, \ldots, k - 1$ $R_{jk} = q_j^T a_k$ $q_k = q_k - R_{jk}q_j$ 3. set $R_{kk} = ||q_k||$ $q_k = q_k/R_{kk}$

- *R* is generated column by column
- complexity: $\approx 2mn^2$ flops

Example

from calculations in last example, we have

$$R_{11} = \|\tilde{q}_1\| = 2, \quad R_{12} = q_1^T a_2 = 4$$
$$R_{22} = \|\tilde{q}_2\| = 2, \quad R_{13} = q_1^T a_3 = 2$$
$$R_{23} = q_2^T a_3 = 8, \quad R_{33} = \|\tilde{q}_3\| = 4$$

therefore,

$$\begin{bmatrix} -1 & -1 & 1\\ 1 & 3 & 3\\ -1 & -1 & 5\\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13}\\ 0 & R_{22} & R_{23}\\ 0 & 0 & R_{33} \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & 1/2 & -1/2\\ 1/2 & 1/2 & -1/2\\ -1/2 & 1/2 & 1/2\\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2\\ 0 & 2 & 8\\ 0 & 0 & 4 \end{bmatrix}$$

Full QR factorization

suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent columns $(m \ge n)$

the full QR factorization or QR decomposition of A is

$$A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$$

- A = QR is the (reduced) QR factorization as defined earlier
- $[Q \quad \tilde{Q}]$ is $m \times m$ and orthogonal; \tilde{Q} has size $m \times (m n)$
- the zero block has size $(m n) \times n$ (size of right matrix is $m \times n$)
- given A = QR, we can find \tilde{Q} as follows:
 - find any matrix \tilde{A} such that $[A \ \tilde{A}]$ has linearly independent columns (e.g., $\tilde{A} = I$)
 - apply Gram-Schmidt to $[A \ \tilde{A}]$ to find \tilde{Q}
- in MATLAB's: [Q,R]=qr(A)

Computing Cholesky factorization of Gram matrix

- suppose A is an $m \times n$ matrix with linearly independent columns
- the Gram matrix $C = A^T A$ is positive definite

two methods for computing the Cholesky factor of C, given A

1. compute $C = A^T A$, then Cholesky factorization of C

$$C = R^T R$$

2. compute QR factorization A = QR; since

$$C = A^T A = R^T Q^T Q R = R^T R$$

the matrix R is the Cholesky factor of C

Example

$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad C = A^{T}A = \begin{bmatrix} 25 & -50 \\ -50 & 101 \end{bmatrix}$$

1. Cholesky factorization:

$$C = \left[\begin{array}{cc} 5 & 0 \\ -10 & 1 \end{array} \right] \left[\begin{array}{cc} 5 & -10 \\ 0 & 1 \end{array} \right]$$

2. QR factorization

$$A = \begin{bmatrix} 3 & -6\\ 4 & -8\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3/5 & 0\\ 4/5 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10\\ 0 & 1 \end{bmatrix}$$

Pseudo-inverse via QR factorization

pseudo-inverse of A with linearly independent columns with A = QR is

$$A^{\dagger} = (A^{T}A)^{-1}A^{T}$$

= $((QR)^{T}(QR))^{-1}(QR)^{T}$
= $(R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}$
= $(R^{T}R)^{-1}R^{T}Q^{T}$ $(Q^{T}Q = I)$
= $R^{-1}R^{-T}R^{T}Q^{T}$ (*R* is nonsingular)
= $R^{-1}Q^{T}$

- for square nonsingular A this is the inverse: $A^{-1} = (QR)^{-1} = R^{-1}Q^T$
- pseudo-inverse of A with linearly independent rows with $A^T = \tilde{Q}\tilde{R}$ is

$$A^{\dagger} = A^T (AA^T)^{-1} = \tilde{Q}\tilde{R}^{-T}$$

Range of a matrix

• the span of a collection of vectors is the set of all their linear combinations:

$$span(a_1, a_2, \dots, a_n) = \{x_1a_1 + x_2a_2 + \dots + x_na_n \mid x \in \mathbb{R}^n\}$$

• the *range* (column space) of a matrix $A \in \mathbb{R}^{m \times n}$ is the span of its column vectors:

$$range(A) = \{Ax \mid x \in \mathbb{R}^n\}$$

Example

$$\mathsf{range} \left(\left[\begin{array}{cc} 1 & 0 \\ 1 & 2 \\ 0 & -1 \end{array} \right] \right) = \left\{ \left[\begin{array}{c} x_1 \\ x_1 + 2x_2 \\ -x_2 \end{array} \right] \mid x_1, x_2 \in \mathbb{R} \right\}$$

Range and QR factorization

suppose A has linearly independent columns with QR factorization A = QR

• *Q* has the same range as *A*:

$$y \in \operatorname{range}(A) \iff y = Ax \text{ for some } x$$
$$\iff y = QRx \text{ for some } x$$
$$\iff y = Qz \text{ for some } z$$
$$\iff y \in \operatorname{range}(Q)$$

columns of Q are an orthonormal basis for range(A):
 they are linearly independent and span(q₁,...,q_n) = range(A)

Projection on range of matrix with orthonormal columns

if $Q \in \mathbb{R}^{m imes n}$ has orthonormal columns q_1, \ldots, q_n , then the vector

 $QQ^T b$

is the *orthogonal projection* of an *m*-vector b on range(Q)

 $\hat{x} = Q^T b$ satisfies $||Q\hat{x} - b|| < ||Qx - b||$ for all $x \neq \hat{x}$ (proof shown next on page)

Proof: the squared distance of b to an arbitrary point Qx in range(Q) is

$$\begin{aligned} \|Qx - b\|^2 &= \|Q(x - \hat{x}) + Q\hat{x} - b\|^2 \quad (\text{where } \hat{x} = Q^T b) \\ &= \|Q(x - \hat{x})\|^2 + \|Q\hat{x} - b\|^2 + 2(x - \hat{x})^T Q^T (Q\hat{x} - b) \\ &= \|Q(x - \hat{x})\|^2 + \|Q\hat{x} - b\|^2 \\ &= \|x - \hat{x}\|^2 + \|Q\hat{x} - b\|^2 \\ &\ge \|Q\hat{x} - b\|^2 \end{aligned}$$

with equality only if $x = \hat{x}$

- line 3 follows because $Q^T(Q\hat{x} b) = \hat{x} Q^T b = 0$
- line 4 follows from $Q^T Q = I$

Orthogonal decomposition

• decomposition exists and unique for every b:

$$b = Qx + y, \quad Q^T y = 0 \quad \Longleftrightarrow \quad x = Q^T b, \quad y = b - QQ^T b$$

• *y* is orthogonal projection on range $(Q)^{\perp} = \{u \mid Q^{T}u = 0\}$

QR factorization

Pseudo-inverse and projection on range

• using
$$A = QR$$
 and $A^{\dagger} = R^{-1}Q^{T}$ gives

$$AA^{\dagger} = QRR^{-1}Q^T = QQ^T$$

note that AA^{\dagger} and is different from $A^{\dagger}A = I$

• hence $AA^{\dagger}x = QQ^{T}x$ is the projection of x onto range(Q) = range(A)

Outline

- Gram-Schmidt orthogonalization
- QR factorization
- solving linear equations
- modified Gram-Schmidt method
- Householder algorithm

Solving linear equations

- assuming *A* is nonsingular, then $x = A^{-1}b$ solves Ax = b
- with QR factorization A = QR, we have $A^{-1} = (QR)^{-1} = R^{-1}Q^{T}$
- compute $x = R^{-1}(Q^T b)$ by back substitution

QR factorization method: to solve Ax = b with nonsingular $A \in \mathbb{R}^{n \times n}$

- 1. factor A as A = QR
- 2. compute $Q^T b$
- 3. solve Rx = y by back substitution

Complexity: $2n^3 + 3n^2 \approx 2n^3$

- QR factorization $2n^3$ flops
- matrix-vector product $2n^2$
- back substitution n^2

Multiple right-hand sides

consider k sets of linear equations with the same coefficient matrix A:

$$Ax_1 = b_1, \quad Ax_2 = b_2, \quad \dots, \quad Ax_k = b_k$$

- let $X = [x_1 \cdots x_k]$ and $B = [b_1 \cdots b_k]$, each is an $n \times k$ matrix
- express equations as AX = B
- can be solved in $2n^3 + 3kn^2$ flops if we reuse the factorization A = QR
- for $k \ll n$, cost is roughly equal to cost of solving one equation $(2n^3)$

Computing the inverse

solving the matrix equation AX = I gives A^{-1}

• equivalent to *n* equations:

$$Rx_1 = Q^T e_1, \quad Rx_2 = Q^T e_2, \quad \dots, \quad Rx_n = Q^T e_n$$

- x_i is *i*th column of X and $Q^T e_i$ is the *i*th column of Q^T
- complexity is $2n^3 + n^3 = 3n^3$

Solving linear equations by computing the inverse

- compute inverse A^{-1} costs $3n^3$, then compute $A^{-1}b$ costs $2n^2$
- total complexity: $3n^3 + 2n^2 \approx 3n^3$
- more expensive than QR factorization method, which costs $2n^3$
- while inverse appears in many formulas, it is computed far less often

Outline

- Gram-Schmidt orthogonalization
- QR factorization
- solving linear equations
- modified Gram-Schmidt method
- Householder algorithm

Numerical instability of G-S

consider the following MATLAB implementation of the G-S algorithm

```
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
R(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
R(k,k) = norm(qtilde);
Q(:,k) = qtilde / R(k,k);
end;
```

- we apply this to a square matrix A of size m = n = 50
- A is constructed as A = USV with U, V orthogonal, S diagonal with

$$S_{ii} = 10^{-10(i-1)/(n-1)}, \quad i = 1, \dots, n$$

Numerical instability of G-S

plot shows deviation from orthogonality between q_k and previous columns

loss of orthogonality is due to rounding error

Modified Gram-Schmidt

- G-S is numerically unstable if columns of A are almost linearly dependent
- this shortcoming can be alleviated by using q_k instead of a_k in the inner loop

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n set $q_1 = a_1/||a_1||$ and $R_{11} = ||a_1||$ for $k = 2, \ldots, n$ 1. $q_k = a_k$ 2. for $j = 1, \ldots, k - 1$ $R_{jk} = q_j^T q_k$ (reuse q_k instead of a_k) $q_k = q_k - R_{jk}q_j$ 3. set $R_{kk} = ||q_k||$ $q_k = q_k/R_{kk}$

Modified Gram-Schmidt implementation

- rearrangement of the computation will provide an additional numerical advantage
- compute q_k then orthogonalize each of the remaining vectors against it
- generating *R* by rows rather than by columns

```
given: m \times n matrix A with linearly independent columns a_1, \ldots, a_n

set Q = A

for k = 1, 2, \ldots, n

1. set

R_{kk} = ||q_k||

q_k = q_k/R_{kk}

2. for j = k + 1, \ldots, n

R_{kj} = q_k^T q_j

q_j = q_j - R_{kj} q_k
```

Outline

- Gram-Schmidt orthogonalization
- QR factorization
- solving linear equations
- modified Gram-Schmidt method
- Householder algorithm

Householder algorithm

- the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
- · less sensitive to rounding error than (modified) Gram-Schmidt algorithm
- computes a "full" QR factorization (QR decomposition)

$$A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}, \quad \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \text{ orthogonal}$$

• the full Q-factor is constructed as a product of orthogonal matrices

$$[Q \ \tilde{Q}] = H_1 H_2 \cdots H_n$$

each H_i is an $m \times m$ symmetric and orthogonal

Reflector

Reflector: an elementary reflector is a matrix of the form

$$H = I - 2vv^T$$
 with v a unit-norm vector $||v|| = 1$

Properties

- a reflector matrix is symmetric
- a reflector matrix is orthogonal

$$H^{T}H = (I - 2vv^{T})(I - 2vv^{T}) = I - 4vv^{T} + 4vv^{T}vv^{T} = I$$

- reflection of v: Hv = -v
- matrix-vector product Hx can be computed efficiently as

$$Hx = x - 2(v^T x)v$$

complexity is 4p flops if v and x have length p

Householder algorithm

Geometrical interpretation of reflector

- $S = \{u \mid v^T u = 0\}$ is the (hyper-)plane of vectors orthogonal to v
- if ||v|| = 1, the projection of x on S is given by (see page 8.20)

$$y = (I - vv^T)x$$

• reflection of *x* through the hyperplane is given by product with reflector:

$$z = y + (y - x) = (I - 2vv^{T})x$$

Householder algorithm

Reflection to multiple of first unit vector

given nonzero *p*-vector $y = (y_1, y_2, \dots, y_p)$, define

$$w = \begin{bmatrix} y_1 + \text{sign}(y_1) \|y\| \\ y_2 \\ \vdots \\ y_p \end{bmatrix}, \quad v = \frac{1}{\|w\|} w$$

- we define sign(0) = 1
- vector w satisfies

$$||w||^{2} = 2(w^{T}y) = 2||y||(||y|| + |y_{1}|)$$

• reflector $H = I - 2vv^T$ maps y to multiple of $e_1 = (1, 0, \dots, 0)$:

$$Hy = y - \frac{2(w^T y)}{\|w\|^2} w = y - w = -\operatorname{sign}(y_1) \|y\| e_1$$

the reflection through the hyperplane $\{x \mid w^T x = 0\}$ with normal vector

```
w = y + \operatorname{sign}(y_1) \|y\| e_1
```

maps y to the vector $-\operatorname{sign}(y_1) \|y\| e_1$

Householder algorithm

Householder triangularization

• computes reflectors H_1, \ldots, H_n that reduce A to triangular form:

$$H_n H_{n-1} \cdots H_1 A = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

• after step k, the matrix $H_k H_{k-1} \cdots H_1 A$ has the following structure:

(elements in positions i, j for i > j and $j \le k$ are zero)

Householder algorithm

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n for $k = 1, 2, \ldots, n$

1. define $y = A_{k:m,k}$ and compute (m - k + 1)-vector v_k :

$$w = y + \operatorname{sign}(y_1) ||y|| e_1, \quad v_k = \frac{1}{||w||} w$$

2. multiply $A_{k:m,k:n}$ with reflector $I - 2v_k v_k^T$:

$$A_{k:m,k:n} := A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})$$

- algorithm overwrites A with $\begin{bmatrix} R \\ 0 \end{bmatrix}$
- **complexity:** $2mn^2 \frac{2}{3}n^3$ flops (we take $2mn^2$ for the complexity of QR factorization)

Remarks

• step 2 is equivalent to multiplying A with $m \times m$ reflector

$$H_k = \begin{bmatrix} I & 0 \\ 0 & I - 2v_k v_k^T \end{bmatrix} = I - 2 \begin{bmatrix} 0 \\ v_k \end{bmatrix} \begin{bmatrix} 0 \\ v_k \end{bmatrix}^T$$

• algorithm returns the vectors v_1, \ldots, v_n , with v_k of length m - k + 1

Q-factor

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} = H_1 H_2 \cdots H_n$$

- usually there is no need to compute the matrix $[Q \ \tilde{Q}]$ explicitly
- the vectors v_1, \ldots, v_n are an economical representation of $[Q \ \tilde{Q}]$
- products with $[Q \ \ { ilde Q}]$ or its transpose can be computed as

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} x = H_1 H_2 \cdots H_n x$$
$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}^T y = H_n H_{n-1} \cdots H_1 y$$

Example

$$A = \begin{bmatrix} -1 & -1 & 1\\ 1 & 3 & 3\\ -1 & -1 & 5\\ 1 & 3 & 7 \end{bmatrix} = H_1 H_2 H_3 \begin{bmatrix} R\\ 0 \end{bmatrix}$$

we compute reflectors H_1, H_2, H_3 that triangularize A:

$$H_3H_2H_1A = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \end{bmatrix}$$

First column of R

• compute reflector that maps first column of A to multiple of e_1 :

$$y = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}, \quad w = y - \|y\|e_1 = \begin{bmatrix} -3\\1\\-1\\1 \end{bmatrix}, \quad v_1 = \frac{1}{\|w\|}w = \frac{1}{2\sqrt{3}}\begin{bmatrix} -3\\1\\-1\\1 \end{bmatrix}$$

• overwrite A with product of $I - 2v_1v_1^T$ and A

$$A := (I - 2v_1v_1^T)A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}$$

Second column of R

• compute reflector that maps A_{2:4,2} to multiple of e₁:

$$y = \begin{bmatrix} 4/3\\2/3\\4/3 \end{bmatrix}, \quad w = y + \|y\|e_1 = \begin{bmatrix} 10/3\\2/3\\4/3 \end{bmatrix}, \quad v_2 = \frac{1}{\|w\|}w = \frac{1}{\sqrt{30}} \begin{bmatrix} 5\\1\\2 \end{bmatrix}$$

• overwrite $A_{2:4,2:3}$ with product of $I - 2v_2v_2^T$ and $A_{2:4,2:3}$:

$$A := \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2v_2^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$

Third column of R

• compute reflector that maps $A_{3:4,3}$ to multiple of e_1 :

$$y = \begin{bmatrix} 16/5\\12/5 \end{bmatrix}, \quad w = y + ||y||e_1 = \begin{bmatrix} 36/5\\12/5 \end{bmatrix}, \quad v_3 = \frac{1}{||w||}w = \frac{1}{\sqrt{10}} \begin{bmatrix} 3\\1 \end{bmatrix}$$

• overwrite $A_{3:4,3}$ with product of $I - 2v_3v_3^T$ and $A_{3:4,3}$:

$$A := \begin{bmatrix} I & 0 \\ 0 & I - 2v_3v_3^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

Final result

$$H_{3}H_{2}H_{1}A = \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} (I - 2v_{1}v_{1}^{T})A$$
$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}$$
$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)
- U. M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics, 2011.