8. QR factorization

- • [Gram-Schmidt orthogonalization](#page-1-0)
- [QR factorization](#page-8-0)
- [solving linear equations](#page-22-0)
- [modified Gram-Schmidt method](#page-26-0)
- [Householder algorithm](#page-31-0)

Projection onto a vector

given two vectors $a, b \in \mathbb{R}^n$, with $a \neq 0$, the vector multiple ta closest to b has

Proof

• squared distance between ta and b is

$$
||ta - b||2 = (ta - b)T(ta - b) = t2aTa - 2taTb + bTb
$$

 \bullet derivative w.r.t. t is zero for

$$
\hat{t} = \frac{a^T b}{a^T a} = \frac{a^T b}{\|a\|^2}
$$

Geometric interpretation: $b - \hat{t}a \perp a$:

$$
(b - \hat{t}a)^T a = 0 \Longrightarrow \hat{t} = \frac{a^T b}{\|a\|^2}
$$

Gram-Schmidt procedure on two vectors

G-S procedure on two non-zero vectors a_1 and a_2

- normalize $q_1 = a_1 / ||a_1||$
- remove q_1 component from q_2 :

$$
\tilde{q}_2 = a_2 - (q_1^T a_2) q_1
$$

- normalize $q_2 = \tilde{q}_2 / ||\tilde{q}_2||$

- if $\tilde{q}_2 = 0$, then the vectors a_1 and a_2 are linearly dependent
- if $\tilde{q}_2 \neq 0$, then q_1 and q_2 are orthonormal $(q_1$ and \tilde{q}_2 are orthogonal)

$$
q_1^T \tilde{q}_2 = q_1^T (a_2 - (q_1^T a_2) q_1) = q_1^T a_2 - (q_1^T a_2) q_1^T q_1
$$

= $q_1^T a_2 - q_1^T a_2 = 0$

thus, a_1 and a_2 are linearly independent

[Gram-Schmidt orthogonalization](#page-1-0) 8.3

Gram-Schmidt (G-S) procedure

given vectors $a_1, \ldots, a_n \in \mathbb{R}^m$ step 1a. $\tilde{q}_1 := a_1$ step 1b. $q_1 := \tilde{q}_1 / ||\tilde{q}_1 ||$ (normalize) step 2a. $\tilde{q}_2 := a_2 - (q_1^T)$ (remove q_1 component from a_2) step 2b. $q_2 := \tilde{q}_2 / ||\tilde{q}_2||$ (normalize) step 3a. $\tilde{q}_3 := a_3 - (q_1^Ta_3)q_1 - (q_2^T)$ (remove q_1, q_2 components) step 3b. $q_3 := \tilde{q}_3 / ||\tilde{q}_3||$ (normalize) etc.

Gram-Schmidt (G-S) algorithm

given vectors $a_1, \ldots, a_n \in \mathbb{R}^m$ **set** $q_1 = a_1 / ||a_1||$ **for** $k = 2, \ldots, n$ 1. *orthogonalization:* $\tilde{q}_k = a_k - (q_1^Ta_k)q_1 - \cdots - (q_{k-1}^Ta_k)q_{k-1}$ 2. *test for linear dependence:* if $\tilde{q}_k = 0$ quit 3. *normalization:* $q_k = \tilde{q}_k / ||\tilde{q}_k||$

- if $\tilde{q}_k = 0$ then a_1, \ldots, a_k are linearly dependent
- if a_1, \ldots, a_n are linearly independent, then q_1, \ldots, q_n are orthonormal vectors
- a_k is a linear combination of q_1, \ldots, q_k
- q_k is a linear combination of a_1, \ldots, a_k

Example

$$
a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 3 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 7 \end{bmatrix}
$$

• $k = 1$, $||a_1|| = 2$ and

$$
q_1=a_1/\|a_1\|=(-1/2,1/2,-1/2,1/2)
$$

•
$$
k = 2
$$
, we have $q_1^T a_2 = 4$, and

$$
\tilde{q}_2 = a_2 - (q_1^T a_2) q_1 = (1, 1, 1, 1)
$$

normalizing, we get

$$
q_2 = \tilde{q}_2 / ||\tilde{q}_2|| = (1/2, 1/2, 1/2, 1/2)
$$

[Gram-Schmidt orthogonalization](#page-1-0) 8.6

•
$$
k = 3
$$
; we have $q_1^T a_3 = 2$ and $q_2^T a_3 = 8$, so

$$
\tilde{q}_3 = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2 = (-2, -2, 2, 2)
$$

normalizing, we get

$$
q_3=\tilde{q}_3/\|\tilde{q}_3\| = (-1/2, -1/2, 1/2, 1/2)
$$

• since no vector \tilde{q}_i is zero, the vectors a_1, a_2, a_3 are linearly independent

Matrix form for Gram-Schmidt

let A be an $m \times n$ matrix with linearly independent columns

- running Gram-Schmidt on A produces orthonormal vectors q_1, \ldots, q_n
- we know from Gram-Schmidt algorithm that

$$
a_k = (q_1^T a_k)q_1 + \dots + (q_{k-1}^T a_k)q_{k-1} + ||\tilde{q}_k||q_k
$$

= $R_{1k}q_1 + \dots + R_{k-1,k}q_{k-1} + R_{kk}q_k$

where
$$
R_{ij} = q_i^T a_j
$$
 and $R_{ii} = ||\tilde{q}_i||$

• expressing this for each $k = 1, \ldots, n$,

$$
a_1 = R_{11}q_1
$$

\n
$$
a_2 = R_{12}q_1 + R_{22}q_2
$$

\n
$$
\vdots
$$

\n
$$
a_n = R_{1n}q_1 + \dots + R_{nn}q_n
$$

\n
$$
A = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & R_{nn} \end{bmatrix}
$$

Outline

- • [Gram-Schmidt orthogonalization](#page-1-0)
- **[QR factorization](#page-8-0)**
- [solving linear equations](#page-22-0)
- [modified Gram-Schmidt method](#page-26-0)
- [Householder algorithm](#page-31-0)

QR factorization

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, then it can be factored as

$$
A = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix} = QR
$$

- $\bullet \ \ Q \in \mathbb{R}^{m \times n}$ has orthonormal columns ($Q^TQ = I)$
- if A is square $(m = n)$, then Q is orthogonal $(Q^TQ = QQ^T = I)$
- $R \in \mathbb{R}^{n \times n}$ is upper triangular with nonzero diagonal, hence invertible

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n **set** $q_1 = a_1 / ||a_1||$ and $R_{11} = ||a_1||$ **for** $k = 2, \ldots, n$ 1. $q_k = a_k$ 2. **for** $j = 1, ..., k - 1$ $R_{jk} = q_{j}^{T}a_{k}$ $q_k = q_k - R_{ik}q_i$ 3. set $R_{kk} = ||q_k||$ $q_k = q_k/R_{kk}$

- R is generated column by column
- **complexity:** $\approx 2mn^2$ flops

Example

from calculations in last example, we have

$$
R_{11} = ||\tilde{q}_1|| = 2, \quad R_{12} = q_1^T a_2 = 4
$$

\n
$$
R_{22} = ||\tilde{q}_2|| = 2, \quad R_{13} = q_1^T a_3 = 2
$$

\n
$$
R_{23} = q_2^T a_3 = 8, \quad R_{33} = ||\tilde{q}_3|| = 4
$$

therefore,

$$
\begin{bmatrix} -1 & -1 & 1 \ 1 & 3 & 3 \ -1 & -1 & 5 \ 1 & 3 & 7 \ \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}
$$

$$
= \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}
$$

Full QR factorization

suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent columns $(m \geq n)$

the *full QR factorization* or *QR decomposition* of is

$$
A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}
$$

- $A = QR$ is the (reduced) QR factorization as defined earlier
- $[Q \ \tilde{Q}]$ is $m \times m$ and orthogonal; \tilde{Q} has size $m \times (m n)$
- the zero block has size $(m n) \times n$ (size of right matrix is $m \times n$)
- given $A = QR$, we can find \tilde{Q} as follows:
	- find any matrix \tilde{A} such that $[A \tilde{A}]$ has linearly independent columns (*e.g.*, $\tilde{A} = I$)
	- apply Gram-Schmidt to $[A \ \tilde{A}]$ to find \tilde{Q}
- in MATLAB's: $[Q, R] = qr(A)$

Computing Cholesky factorization of Gram matrix

- suppose A is an $m \times n$ matrix with linearly independent columns
- the Gram matrix $C = A^T A$ is positive definite

two methods for computing the Cholesky factor of C , given A

1. compute $C = A^T A$, then Cholesky factorization of C

$$
C = R^T R
$$

2. compute QR factorization $A = QR$; since

$$
C = A^T A = R^T Q^T Q R = R^T R
$$

the matrix R is the Cholesky factor of C

Example

$$
A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad C = A^{T}A = \begin{bmatrix} 25 & -50 \\ -50 & 101 \end{bmatrix}
$$

1. Cholesky factorization:

$$
C = \left[\begin{array}{rr} 5 & 0 \\ -10 & 1 \end{array} \right] \left[\begin{array}{rr} 5 & -10 \\ 0 & 1 \end{array} \right]
$$

2. QR factorization

$$
A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}
$$

Pseudo-inverse via QR factorization

pseudo-inverse of A with linearly independent columns with $A = QR$ is

$$
A^{\dagger} = (A^T A)^{-1} A^T
$$

=
$$
((QR)^T (QR))^{-1} (QR)^T
$$

=
$$
(R^T Q^T Q R)^{-1} R^T Q^T
$$

=
$$
(R^T R)^{-1} R^T Q^T \quad (Q^T Q = I)
$$

=
$$
R^{-1} R^{-T} R^T Q^T \quad (R \text{ is nonsingular})
$$

=
$$
R^{-1} Q^T
$$

- for square nonsingular A this is the inverse: $A^{-1} = (QR)^{-1} = R^{-1}Q^T$
- pseudo-inverse of A with linearly independent rows with $A^T = \tilde{Q}\tilde{R}$ is

$$
A^{\dagger} = A^{T} (AA^{T})^{-1} = \tilde{Q} \tilde{R}^{-T}
$$

Range of a matrix

• the *span* of a collection of vectors is the set of all their linear combinations:

$$
\text{span}(a_1, a_2, \dots, a_n) = \{x_1a_1 + x_2a_2 + \dots + x_na_n \mid x \in \mathbb{R}^n\}
$$

• the *range* (column space) of a matrix $A \in \mathbb{R}^{m \times n}$ is the span of its column vectors:

$$
\text{range}(A) = \{Ax \mid x \in \mathbb{R}^n\}
$$

Example

$$
\text{range}\left(\left[\begin{array}{cc} 1 & 0 \\ 1 & 2 \\ 0 & -1 \end{array}\right]\right) = \left\{\left[\begin{array}{c} x_1 \\ x_1 + 2x_2 \\ -x_2 \end{array}\right] \middle| \ x_1, x_2 \in \mathbb{R}\right\}
$$

Range and QR factorization

suppose A has linearly independent columns with QR factorization $A = QR$

• Q has the same range as A :

$$
y \in \text{range}(A) \iff y = Ax \text{ for some } x
$$

$$
\iff y = QRx \text{ for some } x
$$

$$
\iff y = Qz \text{ for some } z
$$

$$
\iff y \in \text{range}(Q)
$$

• columns of O are an orthonormal *basis* for range (A) : they are linearly independent and span (q_1, \ldots, q_n) = range(A)

Projection on range of matrix with orthonormal columns

if $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns $q_1, \ldots, q_n,$ then the vector

 OO^Tb

is the *orthogonal projection* of an *m*-vector *b* on range(Q)

 $\hat{x} = Q^Tb$ satisfies $\|Q\hat{x} - b\| < \|Qx - b\|$ for all $x \neq \hat{x}$ (proof shown next on page)

Proof: the squared distance of b to an arbitrary point Qx in range(Q) is

$$
||Qx - b||^2 = ||Q(x - \hat{x}) + Q\hat{x} - b||^2 \quad \text{(where } \hat{x} = Q^T b)
$$

= $||Q(x - \hat{x})||^2 + ||Q\hat{x} - b||^2 + 2(x - \hat{x})^T Q^T (Q\hat{x} - b)$
= $||Q(x - \hat{x})||^2 + ||Q\hat{x} - b||^2$
= $||x - \hat{x}||^2 + ||Q\hat{x} - b||^2$
 $\ge ||Q\hat{x} - b||^2$

with equality only if $x = \hat{x}$

- line 3 follows because $Q^T(Q\hat{x}-b) = \hat{x} Q^Tb = 0$
- line 4 follows from $Q^TQ = I$

Orthogonal decomposition

• decomposition exists and unique for every b :

$$
b = Qx + y
$$
, $Q^T y = 0$ \iff $x = Q^T b$, $y = b - QQ^T b$

• y is orthogonal projection on range $(Q)^{\perp} = \{u \mid Q^{T}u = 0\}$

[QR factorization](#page-8-0) $\begin{array}{ccc} 8.20 \end{array}$

Pseudo-inverse and projection on range

• using
$$
A = QR
$$
 and $A^{\dagger} = R^{-1}Q^{T}$ gives

$$
AA^{\dagger} = QRR^{-1}Q^{T} = QQ^{T}
$$

note that AA^\dagger and is different from $A^\dagger A=I$

• hence $AA^{\dagger}x = QQ^{T}x$ is the projection of x onto range (Q) = range (A)

Outline

- • [Gram-Schmidt orthogonalization](#page-1-0)
- [QR factorization](#page-8-0)
- **[solving linear equations](#page-22-0)**
- [modified Gram-Schmidt method](#page-26-0)
- [Householder algorithm](#page-31-0)

Solving linear equations

- assuming A is nonsingular, then $x = A^{-1}b$ solves $Ax = b$
- with QR factorization $A = QR$, we have $A^{-1} = (QR)^{-1} = R^{-1}Q^T$
- compute $x = R^{-1}(Q^Tb)$ by back substitution

QR factorization method: to solve $Ax = b$ with nonsingular $A \in \mathbb{R}^{n \times n}$

- 1. factor A as $A = QR$
- 2. compute Q^Tb
- 3. solve $Rx = y$ by back substitution

Complexity: $2n^3 + 3n^2 \approx 2n^3$

- QR factorization $2n^3$ flops
- matrix-vector product $2n^2$
- back substitution n^2

Multiple right-hand sides

consider k sets of linear equations with the same coefficient matrix A :

$$
Ax_1 = b_1, \quad Ax_2 = b_2, \quad \dots, \quad Ax_k = b_k
$$

- let $X = [x_1 \cdots x_k]$ and $B = [b_1 \cdots b_k]$, each is an $n \times k$ matrix
- express equations as $AX = B$
- can be solved in $2n^3 + 3kn^2$ flops if we reuse the factorization $A = QR$
- for $k \ll n$, cost is roughly equal to cost of solving one equation $(2n^3)$

Computing the inverse

solving the matrix equation $AX = I$ gives A^{-1}

 \bullet equivalent to n equations:

$$
Rx_1 = Q^T e_1
$$
, $Rx_2 = Q^T e_2$, ..., $Rx_n = Q^T e_n$

- $\bullet \;$ x_i is i th column of X and Q^Te_i is the i th column of Q^T
- complexity is $2n^3 + n^3 = 3n^3$

Solving linear equations by computing the inverse

- compute inverse A^{-1} costs $3n^3$, then compute $A^{-1}b$ costs $2n^2$
- total complexity: $3n^3 + 2n^2 \approx 3n^3$
- more expensive than QR factorization method, which costs $2n^3$
- while inverse appears in many formulas, it is computed far less often

Outline

- • [Gram-Schmidt orthogonalization](#page-1-0)
- [QR factorization](#page-8-0)
- [solving linear equations](#page-22-0)
- **[modified Gram-Schmidt method](#page-26-0)**
- [Householder algorithm](#page-31-0)

Numerical instability of G-S

consider the following MATLAB implementation of the G-S algorithm

```
[m, n] = size(A);Q = zeros(m,n);R = zeros(n, n):
for k = 1:nR(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);R(k, k) = norm(qtilde);Q(:,k) = qtilde / R(k,k);
end;
```
- we apply this to a square matrix A of size $m = n = 50$
- A is constructed as $A = USV$ with U, V orthogonal, S diagonal with

$$
S_{ii} = 10^{-10(i-1)/(n-1)}, \quad i = 1, \ldots, n
$$

Numerical instability of G-S

plot shows deviation from orthogonality between q_k and previous columns

loss of orthogonality is due to rounding error

Modified Gram-Schmidt

- G-S is numerically unstable if columns of A are almost linearly dependent
- this shortcoming can be alleviated by using q_k instead of a_k in the inner loop

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n **set** $q_1 = a_1 / ||a_1||$ and $R_{11} = ||a_1||$ **for** $k = 2, \ldots, n$ 1. $q_k = q_k$ 2. **for** $j = 1, ..., k - 1$ $R_{jk} = q_{j}^{T} q_{k}$ (reuse q_{k} instead of a_{k}) $q_k = q_k - R_{ik} q_i$ 3. set $R_{kk} = || q_k ||$ $q_k = q_k/R_{kk}$

Modified Gram-Schmidt implementation

- rearrangement of the computation will provide an additional numerical advantage
- compute q_k then orthogonalize each of the remaining vectors against it
- generating R by rows rather than by columns

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n $\text{set } Q = A$ **for** $k = 1, 2, ..., n$ 1. set $R_{kk} = || q_k ||$ $q_k = q_k/R_{kk}$ 2. **for** $j = k + 1, ..., n$ $R_{kj} = q_k^T q_j$ $q_i = q_i - R_{ki}q_k$

Outline

- • [Gram-Schmidt orthogonalization](#page-1-0)
- [QR factorization](#page-8-0)
- [solving linear equations](#page-22-0)
- [modified Gram-Schmidt method](#page-26-0)
- **[Householder algorithm](#page-31-0)**

Householder algorithm

- the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
- less sensitive to rounding error than (modified) Gram-Schmidt algorithm
- computes a "full" QR factorization (QR decomposition)

$$
A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}, \quad \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \text{ orthogonal}
$$

• the full Q-factor is constructed as a product of orthogonal matrices

$$
[Q \ \tilde{Q}] = H_1 H_2 \cdots H_n
$$

each H_i is an $m \times m$ symmetric and orthogonal

Reflector

Reflector: an *elementary reflector* is a matrix of the form

$$
H = I - 2vv^T
$$
 with v a unit-norm vector $||v|| = 1$

Properties

- a reflector matrix is symmetric
- a reflector matrix is orthogonal

$$
H^{T}H = (I - 2vv^{T})(I - 2vv^{T}) = I - 4vv^{T} + 4vv^{T}vv^{T} = I
$$

- reflection of $v: Hv = -v$
- matrix-vector product Hx can be computed efficiently as

$$
Hx = x - 2(v^T x)v
$$

complexity is $4p$ flops if v and x have length p

[Householder algorithm](#page-31-0) 8.30

Geometrical interpretation of reflector

- $S = \{u \mid v^T u = 0\}$ is the (hyper-)plane of vectors orthogonal to v
- if $||y|| = 1$, the projection of x on S is given by (see page [8.20](#page-0-0))

$$
y = (I - \nu v^T)x
$$

• reflection of x through the hyperplane is given by product with reflector:

$$
z = y + (y - x) = (I - 2vv^{T})x
$$

Reflection to multiple of first unit vector

given nonzero p-vector $y = (y_1, y_2, \ldots, y_p)$, define

$$
w = \begin{bmatrix} y_1 + \operatorname{sign}(y_1) ||y|| \\ y_2 \\ \vdots \\ y_p \end{bmatrix}, \quad v = \frac{1}{||w||} w
$$

- we define $sign(0) = 1$
- $\bullet\$ vector w satisfies

$$
||w||^2 = 2(w^T y) = 2||y||(||y|| + |y_1|)
$$

• reflector $H = I - 2vv^T$ maps y to multiple of $e_1 = (1, 0, \ldots, 0)$:

$$
Hy = y - \frac{2(w^T y)}{\|w\|^2} w = y - w = -\operatorname{sign}(y_1) \|y\| e_1
$$

the reflection through the hyperplane $\{x\mid w^Tx=0\}$ with normal vector

```
w = y + sign(y_1) ||y||e_1
```
maps y to the vector $-\operatorname{sign}(y_1) ||y||e_1$

[Householder algorithm](#page-31-0) 8.33 and the entry of the ent

Householder triangularization

• computes reflectors H_1, \ldots, H_n that reduce A to triangular form:

$$
H_n H_{n-1} \cdots H_1 A = \begin{bmatrix} R \\ 0 \end{bmatrix}
$$

• after step k, the matrix $H_k H_{k-1} \cdots H_1 A$ has the following structure:

(elements in positions i, j for $i > j$ and $j \leq k$ are zero)

Householder algorithm

given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n **for** $k = 1, 2, ..., n$

1. define $y = A_{k:m,k}$ and compute $(m - k + 1)$ -vector v_k :

$$
w = y + sign(y_1) ||y||e_1, \quad v_k = \frac{1}{||w||}w
$$

2. multiply $A_{k:m,k:n}$ with reflector $I - 2 v_k v_k^T$:

$$
A_{k:m,k:n} := A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})
$$

- algorithm overwrites A with $\begin{bmatrix} R \\ 0 \end{bmatrix}$ θ
- **complexity:** $2mn^2 \frac{2}{3}n^3$ flops (we take $2mn^2$ for the complexity of QR factorization)

1

Remarks

• step 2 is equivalent to multiplying A with $m \times m$ reflector

$$
H_k = \begin{bmatrix} I & 0 \\ 0 & I - 2v_kv_k^T \end{bmatrix} = I - 2 \begin{bmatrix} 0 \\ v_k \end{bmatrix} \begin{bmatrix} 0 \\ v_k \end{bmatrix}^T
$$

• algorithm returns the vectors v_1, \ldots, v_n , with v_k of length $m - k + 1$

Q-factor

$$
\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} = H_1 H_2 \cdots H_n
$$

- usually there is no need to compute the matrix $[Q \ Q]$ explicitly
- the vectors v_1, \ldots, v_n are an economical representation of $[O, O]$
- products with $[O, \tilde{O}]$ or its transpose can be computed as

$$
[Q \quad \tilde{Q}] x = H_1 H_2 \cdots H_n x
$$

$$
[Q \quad \tilde{Q}]^T y = H_n H_{n-1} \cdots H_1 y
$$

Example

$$
A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = H_1 H_2 H_3 \begin{bmatrix} R \\ 0 \end{bmatrix}
$$

we compute reflectors H_1, H_2, H_3 that triangularize A :

$$
H_3H_2H_1A = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \end{bmatrix}
$$

First column of

• compute reflector that maps first column of A to multiple of e_1 :

$$
y = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad w = y - ||y||e_1 = \begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_1 = \frac{1}{||w||}w = \frac{1}{2\sqrt{3}} \begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}
$$

• overwrite A with product of $I - 2v_1v_1^T$ and A

$$
A := (I - 2v_1v_1^T)A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}
$$

Second column of

• compute reflector that maps $A_{2:4,2}$ to multiple of e_1 :

$$
y = \begin{bmatrix} 4/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad w = y + ||y||e_1 = \begin{bmatrix} 10/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad v_2 = \frac{1}{||w||} w = \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}
$$

• overwrite $A_{2:4,2:3}$ with product of $I - 2v_2v_2^T$ and $A_{2:4,2:3}$:

$$
A := \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2v_2^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}
$$

Third column of

• compute reflector that maps $A_{3:4,3}$ to multiple of e_1 :

$$
y = \begin{bmatrix} 16/5 \\ 12/5 \end{bmatrix}, \quad w = y + ||y||e_1 = \begin{bmatrix} 36/5 \\ 12/5 \end{bmatrix}, \quad v_3 = \frac{1}{||w||} w = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}
$$

• overwrite $A_{3:4,3}$ with product of $I - 2v_3v_3^T$ and $A_{3:4,3}$:

$$
A := \begin{bmatrix} I & 0 \\ 0 & I - 2v_3v_3^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}
$$

Final result

$$
H_3 H_2 H_1 A = \begin{bmatrix} I & 0 \\ 0 & I - 2v_3 v_3^T \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2 v_2^T \end{bmatrix} (I - 2v_1 v_1^T) A
$$

\n
$$
= \begin{bmatrix} I & 0 \\ 0 & I - 2v_3 v_3^T \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2 v_2^T \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} I & 0 \\ 0 & I - 2v_3 v_3^T \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 12/5 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}
$$

Ĩ

Ī

References and further readings

- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)
- U. M. Ascher. *A First Course on Numerical Methods*. Society for Industrial and Applied Mathematics, 2011.