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8. QR factorization

e Gram-Schmidt orthogonalization
o QR factorization

e solving linear equations

o modified Gram-Schmidt method

e Householder algorithm
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Projection onto a vector

given two vectors a, b € R", with a # 0, the vector multiple ta closest to b has

b
‘e a’b a’b

aTa = Jla|l?

line {ta | t € R}

~Y _

Proof
e squared distance between ta and b is

llta = b||? = (ta — b)¥(ta — b) = *aTa — 2ta™b + b7
e derivative w.r.t. ¢ is zero for

. a’b _ a’b

ala  |lal?
Geometric interpretation: b —fa L a:
a’b

(b-ta)la=0=1i=—>
llall?

Gram-Schmidt orthogonalization
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Gram-Schmidt procedure on two vectors
G-S procedure on two non-zero vectors a; and as

- normalize g1 = ay/||a1||

- remove g1 component from as:

~ T
G2 = az — (q1a2)q1 waz

- normalize g2 = G2/ || G|l

o = az - (qTaz)q
e if go = 0, then the vectors a; and as are linearly dependent
e if go # 0, then g1 and g2 are orthonormal (g1 and g2 are orthogonal)

T~ T T T T T
q142 = q;(az — (g1a2)q1) = g1a2 — (giaz2)q, 91
=glas—qlas =0

thus, a; and as are linearly independent

Gram-Schmidt orthogonalization
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Gram-Schmidt (G-S) procedure

given vectors a1, .. .,a, € R™
step 1a. g1 := a1
step 1b. g1 := G1/1141 1l
step 2a. §o = az — (qTas)q1
step 2b. g2 := G2/||Gal|
step 3a. §3 == a3 — (qlas)q1 — (qlas)q-
step 3b. g3 := G3/||g3ll

etc.

Gram-Schmidt orthogonalization

(normalize)

(remove g1 component from as)
(normalize)

(remove g1, g2 components)

(normalize)
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Gram-Schmidt (G-S) algorithm

given vectors ai,...,a, € R™

set g1 = ai/lla1l|

fork=2,...,n

1. orthogonalization: gy = ay — (qlTak)ql — = (q,{_lak)qk_l

2. test for linear dependence: if g = 0 quit
3. normalization: qx = Gr./||Gkl|

o if g =0thenay,...,ax are linearly dependent

e ifay,...,a, arelinearly independent, then ¢, . . ., g, are orthonormal vectors

® qay is a linear combination of g1, ..., gk

® gy is alinear combination of a1, ..., ax

Gram-Schmidt orthogonalization 8.5



Example

-1 -1 1
1 3 3
ar=|_y|» a=|_ |, a=|;
1 3 7

e k=1,|a]|=2and
g1 = ar/llaall = (-1/2,1/2,-1/2,1/2)
e k =2, we have q{ag =4, and
G2 =az - (qiaz)q1 = (1,1,1,1)
normalizing, we get

q2 = 42/l1g2ll = (1/2,1/2,1/2,1/2)

Gram-Schmidt orthogonalization
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e k =3;wehave gTa; = 2and glas = 8, so

s = az — (qlaz)q1 — (glaz)g2 = (-2,-2,2,2)

normalizing, we get

g3 = q3/l1gsll = (-1/2,-1/2,1/2,1/2)

e since no vector ¢; is zero, the vectors a1, as, as are linearly independent

Gram-Schmidt orthogonalization 8.7



Matrix form for Gram-Schmidt

let A be an m X n matrix with linearly independent columns

e running Gram-Schmidt on A produces orthonormal vectors g1, . . .

e we know from Gram-Schmidt algorithm that

»qn

ar = (qTap)qi + -+ (g} ap)qe-1 + 1Gxllgx

=Rikg1+- -+ Rr_1xkqr-1 + Rrrqk

where R;; = g7a; and R;; = |G|
e expressing thisforeach k = 1,...,n,
ar =Riiqq Ry
az = Ri2q1 + Ra2q2 0
A= [Q1 Qn]

an = Rinq1+- -+ Rungn

Gram-Schmidt orthogonalization

Ry
Ra2

Rln
R2n
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e Gram-Schmidt orthogonalization
* QR factorization

e solving linear equations

o modified Gram-Schmidt method

e Householder algorithm

Outline



QR factorization

if A € R™ " has linearly independent columns, then it can be factored as

Rll R12 PPN Rln
0 Ry ... Ro

A:[ql qn] : ) . :n :QR
0 0 ... Ry

e O € R™ " has orthonormal columns (Q7Q = I)
e if A is square (m = n), then Q is orthogonal (070 = QQT = 1)

e R € R™™ is upper triangular with nonzero diagonal, hence invertible

QR factorization 8.9



QR factorization via Gram-Schmidt

given: m X n matrix A with linearly independent columns a1, ..., a,
setq; = ay/llai|l and Ry1 = [lay||
fork=2,...,n
1. gk = ag
2. forj=1,...,k-1
Rjp = quak
qk =49k — Rjrqj
3. set

Rik = llgkll
9k = 9k / Rk

e R is generated column by column

e complexity: ~ 2mn>flops

QR factorization
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Example

from calculations in last example, we have
Rii =41l =2, Riz=qlas=4
Roz = |lGall =2, Riz=qlaz =2
Ray = gqjas =8, Raz=|Gall =4

therefore,

-1 -1 1

1 3 3 Ri1 Ri2 Riz

-1 -1 5 = [ql q2 43] 0 Roa  Ros

1 3 7 0 0 Rs3
—1/2 1/2 -1/2

12 12 12 (2) ‘21 2

-2 12 12| o g .
/2 1/2  1/2

QR factorization 8.11



Full QR factorization

suppose A € R™*" has linearly independent columns (m > n)

the full QR factorization or QR decomposition of A is

reto ol

A = QR is the (reduced) QR factorization as defined earlier

[0 Q] is m x m and orthogonal; Q has size m X (m — n)

the zero block has size (m — n) X n (size of right matrix is m X n)

given A = QR, we can find Q as follows:

— find any matrix A such that [A /i] has linearly independent columns (e.g., A = I)
— apply Gram-Schmidt to [ A A] to find O

e in MATLAB's: [Q,R]=qr(A)

QR factorization
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Computing Cholesky factorization of Gram matrix

e suppose A is an m X n matrix with linearly independent columns

e the Gram matrix C = ATA is positive definite
two methods for computing the Cholesky factor of C, given A

1. compute C = ATA, then Cholesky factorization of C
C=R'R
2. compute QR factorization A = QR; since
C=ATA=RTQTQOR = R™R

the matrix R is the Cholesky factor of C

QR factorization 8.13
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1. Cholesky factorization:

2. QR factorization

QR factorization
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|
oo O

Example
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Pseudo-inverse via QR factorization

pseudo-inverse of A with linearly independent columns with A = QR is
-1
= ((@RT(eR) (@R
= (R'Q"OR)"'R'Q"
= (R'™R)T'RTQT (@70 =1)
=R IRTRTQT (R is nonsingular)
— R—lQT
e for square nonsingular A this is the inverse: A™! = (QR)™! = R71QT

e pseudo-inverse of A with linearly independent rows with AT = QI? is

AT = AT(AAT) P =0ORT

QR factorization
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Range of a matrix

e the span of a collection of vectors is the set of all their linear combinations:
span(ai,as,...,a,) = {x1a1 + xodo + -+ + x,a, | x € R"}
e the range (column space) of a matrix A € R"*" is the span of its column vectors:

range(A) = {Ax | x € R"}

Example
1 0 X1
range| | 1 2 =90x1+2x2| |x1,x20 € R
0 -1 —X92

QR factorization 8.16



Range and QR factorization

suppose A has linearly independent columns with QR factorization A = OR

e () has the same range as A:

y € range(A) & y = Ax for some x
&= y = QRx for some x
&= y = Qz for some z
< y € range(Q)

e columns of Q are an orthonormal basis for range(A):

they are linearly independent and span(q1, . . ., g,) = range(A)

QR factorization
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Projection on range of matrix with orthonormal columns

if O € R™*" has orthonormal columns g1, . . ., ¢, then the vector
T
Q0'b
is the orthogonal projection of an m-vector b on range(Q)

b

007
range(Q)

% = Q7D satisfies ||Q% — b|| < ||Qx — b]| for all x # X (proof shown next on page)

QR factorization 8.18



Proof: the squared distance of b to an arbitrary point Qx in range(Q) is
10x = bl = |Q(x — £) + Q% = b||> (where £ = Q7b)
= 10(x = )I1* + 1Q% - bII* +2(x - £) QT (Q% - b)
= l0(x - )II* +11Q% - bl
= [lx - 2[1* +10% - b||?
> ||Q% - bl
with equality only if x = X

e line 3 follows because QT(Q% - b) =3 - Q0Tb =0
e line 4 follows from QTQ = I

QR factorization
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Orthogonal decomposition

the vector b is decomposed as a sum b = z + y with

z €range(Q), y € range(Q)*

y=b-00"b

> T
range(Q) =007
e decomposition exists and unique for every b:
— T, _ _ T _ T
b=0x+y, Q'y=0 < x=0°b, y=b-00°D
e y is orthogonal projection on range(Q)* = {u | QTu = 0}

QR factorization
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Pseudo-inverse and projection on range

e using A =QRand A" = R-'Q7 gives
AAT = QRR'QT = 007*
note that AA™ and is different from ATA = 1

e hence AATx = QQ7x is the projection of x onto range(Q) = range(A)

X

AATx = 00 Ty

range(A) = range(Q)

QR factorization
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e Gram-Schmidt orthogonalization
® QR factorization

e solving linear equations

o modified Gram-Schmidt method

e Householder algorithm
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Solving linear equations

e assuming A is nonsingular, then x = A™!b solves Ax = b
e with QR factorization A = QR, we have A™! = (QR)™' = R~1QT
e compute x = R~1(Q7Tb) by back substitution

QR factorization method: to solve Ax = b with nonsingular A € R"™*"
1. factor Aas A = OR

2. compute Q7b

3. solve Rx =y by back substitution

Complexity: 212 + 3n? ~ 2n°
e QR factorization 2n3 flops
e matrix-vector product 2>

e back substitution n2

solving linear equations 8.22



Multiple right-hand sides

consider k sets of linear equations with the same coefficient matrix A:

Ax1=b1, Ax2=b2, ey Axkzbk

let X = [x1 -+~ xx] and B = [by -+ by], each is an n X k matrix

e express equationsas AX = B

can be solved in 21 + 3kn? flops if we reuse the factorization A = QR

for k < n, cost is roughly equal to cost of solving one equation (2n3)

solving linear equations
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Computing the inverse

solving the matrix equation AX = I gives A~}
e equivalent to n equations:
Rx; = QTel, Rxs = QTeg, eery, Rx, = QTen

e x; is ith column of X and Q7e; is the ith column of QT

o complexity is 2n° + n3 = 3n3

Solving linear equations by computing the inverse

e compute inverse A~ costs 3n3, then compute A~'b costs 2n?
e total complexity: 3n3 + 2n? ~ 3n3
e more expensive than QR factorization method, which costs 21>

e while inverse appears in many formulas, it is computed far less often

solving linear equations



e Gram-Schmidt orthogonalization
® QR factorization

e solving linear equations

o modified Gram-Schmidt method

e Householder algorithm
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Numerical instability of G-S

consider the following MATLAB implementation of the G-S algorithm

[m, n] = size(A);

Q = zeros(m,n);

R = zeros(n,n);

for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’ * A(:,k);

qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
R(k,k) = norm(qtilde);

QC:,k) = qtilde / R(k,k);

end;

e we apply this to a square matrix A of size m = n = 50

e A is constructed as A = USV with U, V orthogonal, S diagonal with

S;; =107106=D/n=1) 1 p

modified Gram-Schmidt method
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Numerical instability of G-S

plot shows deviation from orthogonality between g and previous columns

T
ex = max |q;qx|, k=2,...,n
1<i<k

0.8 F

0.6

€k

0.4}

0.2+

loss of orthogonality is due to rounding error

modified Gram-Schmidt method
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Modified Gram-Schmidt

e G-S is numerically unstable if columns of A are almost linearly dependent
e this shortcoming can be alleviated by using g instead of ay in the inner loop

given: m X n matrix A with linearly independent columns a1, ..., a,
set g1 = ai/lla1]l and R11 = [la1]|

fork=2,...,n

1. qr = ag

2. forj=1,...,k-1
Rk = q}qk (reuse gy instead of ay)
9k =49k — Rjrqj

3. set
Rik =gkl
qk = 9K/ Rk

modified Gram-Schmidt method
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Modified Gram-Schmidt implementation

e rearrangement of the computation will provide an additional numerical advantage
e compute g then orthogonalize each of the remaining vectors against it

e generating R by rows rather than by columns

given: m X n matrix A with linearly independent columns a1, ..., ay
setQ=A
fork=1,2,...,n
1. set
Ry =gkl
Gk = 9k / Rk
2. forj=k+1,...,n
Rij=qiq;

qj =9 — Rrjqr

modified Gram-Schmidt method 8.28



e Gram-Schmidt orthogonalization
® QR factorization

e solving linear equations

o modified Gram-Schmidt method

e Householder algorithm
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Householder algorithm

the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
o |ess sensitive to rounding error than (modified) Gram-Schmidt algorithm

e computes a “full” QR factorization (QR decomposition)

A=[0 0] [g], [0 Q] orthogonal

the full Q-factor is constructed as a product of orthogonal matrices

[Q Q] = H\Hy-+Hy,

each H; is an m X m symmetric and orthogonal

Householder algorithm
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Reflector

Reflector: an elementary reflector is a matrix of the form

H=1-2vwT with v a unit-norm vector ||v|| = 1

Properties
e a reflector matrix is symmetric

e a reflector matrix is orthogonal
HTH = (I -20vDHI -2wwD) =T —anwT+anTwl=1

e reflection of vi Hv = —v

e matrix-vector product Hx can be computed efficiently as
Hx =x-2(vTx)v

complexity is 4p flops if v and x have length p

Householder algorithm
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Geometrical interpretation of reflector

S y=T-vwhix

line through v and origin

z=Hx=(I-2w0)x

e S ={u|vTu=0}is the (hyper-)plane of vectors orthogonal to v

e if ||v|]| = 1, the projection of x on S is given by (see page 8.20)
y=(I-whx

o reflection of x through the hyperplane is given by product with reflector:

z=y+(y—x) = -2vwhHx

Householder algorithm
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Reflection to multiple of first unit vector

given nonzero p-vector y = (y1,¥2,...,Yp), define

y1 +sign(yy) Iyl

Y2 1
w= , V= ——w
: [lwll

Yp

e we define sign(0) =1

e vector w satisfies

Iwli? = 20w Ty) = 20yl Iyl + [y1])

e reflector H = I — 2vvT maps y to multiple of e; = (1,0, .. .,0):

2wt :
Hy=y— ﬁw_”yw =y—w=—sign(y)llylle:

Householder algorithm



Geometry

first coordinate axis

<
—sign(y1)llylle:

hyperplane {x | wix = 0}
the reflection through the hyperplane {x | wTx = 0} with normal vector
w =y +sign(yi)llylle:

maps y to the vector —sign(y1)||y|le1

Householder algorithm
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Householder triangularization

e computes reflectors H1, . . ., H, that reduce A to triangular form:

H,H,_,---H A= [g]

e after step k, the matrix Hy Hy_1---H1 A has the following structure:

k n—k
(elements in positions 7, j fori > j and j < k are zero)

Householder algorithm
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Householder algorithm

given: m X n matrix A with linearly independent columns a1, ..., ad,
fork=1,2,...,n
1. define y = Ag.m r and compute (m — k + 1)-vector vi:

. 1
w=y+sign(y1) llyller, vk =-—w
[lwl|

2. multiply Ag.m k:n With reflector I — 2vkv,7;:

— T
Ak:m,k:n = Ak:m,k:n - 2vk(VkAk:m,k:n)

R
e algorithm overwrites A with [0]

e complexity: 2mn? — 2n® flops (we take 2mn? for the complexity of QR
factorization)

Householder algorithm 8.35



Remarks

e step 2 is equivalent to multiplying A with m X m reflector

T
1 0 0]f0
Hk - [0 I - QVkV]{] =1-2 [Vk] [Vk]

e algorithm returns the vectors vy, ..., v,, with vi of lengthm — k + 1

Q-factor B
[0 Q| =HiH,--H,

e usually there is no need to compute the matrix [Q Q] explicitly
e the vectors vy, ..., v, are an economical representation of [Q Q]
e products with [Q Q] or its transpose can be computed as
[0 Q]x=HiHyHyx
~4T
[0 O] y=HuHy1Hiy

Householder algorithm
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Example

-1 -1 1
1 33 R
A=| | ] s _HngHg[O]
1 37

we compute reflectors Hy, Ho, H3 that triangularize A:

Ri1 Ri2 Ri3

0 Roo Ros

HsH>H A = 0 0 Rss
0 0 0

Householder algorithm 8.37



First column of R

e compute reflector that maps first column of A to multiple of e1:

-1 -3
S| | oweyle=| | ==
y= -1 } =)y yilelr = -1 5 1= ”W” =
1 1
e overwrite A with product of I — 2v1v1Tand A
2 4 2
0 4/3 8/3
(] _ TN 4 —
A= (I-2viv])A 0 2/3 16/3
0 4/3 20/3

Householder algorithm

1

2v3
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Second column of R

e compute reflector that maps As.4,2 to multiple of e;:

4/3 10/3 1 1 5
y=12/31, w=y+|yller=| 2/3 |, vo=—w=——|1
4/3 4/3 [lwl| V30 )
e overwrite As.4 2.3 with product of I — 2vzv2T and Ag.4.2:3:

2 4 2

1 0 0 -2 -8

A"[o 1—2vzv;’]A‘ 0 0 16/5

0 0 12/5

Householder algorithm

8.39



Third column of R

e compute reflector that maps As.4 3 to multiple of e;:

[ 16/5 ) 1 36/ s
11275 | w=y+|yller = 19/5 |° V3_mw_\/_1_0 X

e overwrite As.4 3 with product of I — 2\/3v§ and Asz.43:

2 4 2

I 0 0 -2 -8
A"[o 1—2v3v§]A‘ 0 0 -4
0 0 0

Householder algorithm 8.40



Final result

i 0 [1 0 T
HsHyH A = [0 I—QV3V§] 0 1—2vag} (I = 2vivp)A
) 2 4 2
| 0 1 0 0 4/3 8/3
10 1-2vpvl] |0 T-2vvI|| O 2/3 16/3
0 4/3 20/3
[2 4 2
| 0 0 -2 -8
[0 I—QV3V3T 0 0 16/5
|0 0 12/5
[2 4 2
10 -2 -8
10 0 -4
10 0 O

Householder algorithm 8.41
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