
8. QR factorization

• Gram-Schmidt orthogonalization

• QR factorization

• solving linear equations

• modified Gram-Schmidt method

• Householder algorithm

ENGR 504 (Fall 2024) S. Alghunaim

8.1

Projection onto a vector

given two vectors 𝑎, 𝑏 ∈ R𝑛, with 𝑎 ≠ 0, the vector multiple 𝑡𝑎 closest to 𝑏 has

𝑡̂ =
𝑎T𝑏

𝑎T𝑎
=

𝑎T𝑏

∥𝑎∥2
line {𝑡𝑎 | 𝑡 ∈ R}

𝑏

𝑡̂𝑎

Proof
• squared distance between 𝑡𝑎 and 𝑏 is

∥𝑡𝑎 − 𝑏∥2 = (𝑡𝑎 − 𝑏)T (𝑡𝑎 − 𝑏) = 𝑡2𝑎T𝑎 − 2𝑡𝑎T𝑏 + 𝑏T𝑏

• derivative w.r.t. 𝑡 is zero for

𝑡̂ =
𝑎T𝑏

𝑎T𝑎
=

𝑎T𝑏

∥𝑎∥2

Geometric interpretation: 𝑏 − 𝑡̂𝑎 ⊥ 𝑎:

(𝑏 − 𝑡̂𝑎)T𝑎 = 0 =⇒ 𝑡̂ =
𝑎T𝑏

∥𝑎∥2

SA — ENGR504Gram-Schmidt orthogonalization 8.2

Gram-Schmidt procedure on two vectors

G-S procedure on two non-zero vectors 𝑎1 and 𝑎2

- normalize 𝑞1 = 𝑎1/∥𝑎1∥
- remove 𝑞1 component from 𝑎2:

𝑞2 = 𝑎2 − (𝑞T1𝑎2)𝑞1

- normalize 𝑞2 = 𝑞2/∥𝑞2∥

𝑎1

𝑎2

𝑞2 = 𝑎2 − (𝑞T1 𝑎2)𝑞1

𝑞1

(𝑞T1 𝑎2)𝑞1

• if 𝑞2 = 0, then the vectors 𝑎1 and 𝑎2 are linearly dependent

• if 𝑞2 ≠ 0, then 𝑞1 and 𝑞2 are orthonormal (𝑞1 and 𝑞2 are orthogonal)

𝑞T1𝑞2 = 𝑞T1 (𝑎2 − (𝑞T1𝑎2)𝑞1) = 𝑞T1𝑎2 − (𝑞T1𝑎2)𝑞T1𝑞1
= 𝑞T1𝑎2 − 𝑞T1𝑎2 = 0

thus, 𝑎1 and 𝑎2 are linearly independent

SA — ENGR504Gram-Schmidt orthogonalization 8.3

Gram-Schmidt (G-S) procedure

given vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑚

step 1a. 𝑞1 := 𝑎1

step 1b. 𝑞1 := 𝑞1/∥𝑞1∥ (normalize)

step 2a. 𝑞2 := 𝑎2 − (𝑞T1𝑎2)𝑞1 (remove 𝑞1 component from 𝑎2)

step 2b. 𝑞2 := 𝑞2/∥𝑞2∥ (normalize)

step 3a. 𝑞3 := 𝑎3 − (𝑞T1𝑎3)𝑞1 − (𝑞T2𝑎3)𝑞2 (remove 𝑞1, 𝑞2 components)

step 3b. 𝑞3 := 𝑞3/∥𝑞3∥ (normalize)

etc.

SA — ENGR504Gram-Schmidt orthogonalization 8.4

Gram-Schmidt (G-S) algorithm

given vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑚

set 𝑞1 = 𝑎1/∥𝑎1∥
for 𝑘 = 2, . . . , 𝑛

1. orthogonalization: 𝑞𝑘 = 𝑎𝑘 − (𝑞T1𝑎𝑘)𝑞1 − · · · − (𝑞T
𝑘−1𝑎𝑘)𝑞𝑘−1

2. test for linear dependence: if 𝑞𝑘 = 0 quit

3. normalization: 𝑞𝑘 = 𝑞𝑘/∥𝑞𝑘 ∥

• if 𝑞𝑘 = 0 then 𝑎1, . . . , 𝑎𝑘 are linearly dependent

• if 𝑎1, . . . , 𝑎𝑛 are linearly independent, then 𝑞1, . . . , 𝑞𝑛 are orthonormal vectors

• 𝑎𝑘 is a linear combination of 𝑞1, . . . , 𝑞𝑘

• 𝑞𝑘 is a linear combination of 𝑎1, . . . , 𝑎𝑘

SA — ENGR504Gram-Schmidt orthogonalization 8.5

Example

𝑎1 =


−1
1

−1
1

 , 𝑎2 =


−1
3

−1
3

 , 𝑎3 =


1
3
5
7


• 𝑘 = 1, ∥𝑎1∥ = 2 and

𝑞1 = 𝑎1/∥𝑎1∥ = (−1/2, 1/2,−1/2, 1/2)

• 𝑘 = 2, we have 𝑞T1𝑎2 = 4, and

𝑞2 = 𝑎2 − (𝑞T1𝑎2)𝑞1 = (1, 1, 1, 1)

normalizing, we get

𝑞2 = 𝑞2/∥𝑞2∥ = (1/2, 1/2, 1/2, 1/2)

SA — ENGR504Gram-Schmidt orthogonalization 8.6

• 𝑘 = 3; we have 𝑞T1𝑎3 = 2 and 𝑞T2𝑎3 = 8, so

𝑞3 = 𝑎3 − (𝑞T1𝑎3)𝑞1 − (𝑞T2𝑎3)𝑞2 = (−2,−2, 2, 2)

normalizing, we get

𝑞3 = 𝑞3/∥𝑞3∥ = (−1/2,−1/2, 1/2, 1/2)

• since no vector 𝑞𝑖 is zero, the vectors 𝑎1, 𝑎2, 𝑎3 are linearly independent

SA — ENGR504Gram-Schmidt orthogonalization 8.7

Matrix form for Gram-Schmidt

let 𝐴 be an 𝑚 × 𝑛 matrix with linearly independent columns

• running Gram-Schmidt on 𝐴 produces orthonormal vectors 𝑞1, . . . , 𝑞𝑛

• we know from Gram-Schmidt algorithm that

𝑎𝑘 = (𝑞T1𝑎𝑘)𝑞1 + · · · + (𝑞T𝑘−1𝑎𝑘)𝑞𝑘−1 + ∥𝑞𝑘 ∥𝑞𝑘
= 𝑅1𝑘𝑞1 + · · · + 𝑅𝑘−1,𝑘𝑞𝑘−1 + 𝑅𝑘𝑘𝑞𝑘

where 𝑅𝑖 𝑗 = 𝑞T
𝑖
𝑎 𝑗 and 𝑅𝑖𝑖 = ∥𝑞𝑖 ∥

• expressing this for each 𝑘 = 1, . . . , 𝑛,

𝑎1 = 𝑅11𝑞1

𝑎2 = 𝑅12𝑞1 + 𝑅22𝑞2

...

𝑎𝑛 = 𝑅1𝑛𝑞1 + · · · + 𝑅𝑛𝑛𝑞𝑛

𝐴 =
[
𝑞1 · ·· 𝑞𝑛

] 
𝑅11 𝑅12 . . . 𝑅1𝑛

0 𝑅22 . . . 𝑅2𝑛

... ...
.

0 0 . . . 𝑅𝑛𝑛


SA — ENGR504Gram-Schmidt orthogonalization 8.8

Outline

• Gram-Schmidt orthogonalization

• QR factorization

• solving linear equations

• modified Gram-Schmidt method

• Householder algorithm

QR factorization

if 𝐴 ∈ R𝑚×𝑛 has linearly independent columns, then it can be factored as

𝐴 =
[
𝑞1 · ·· 𝑞𝑛

] 
𝑅11 𝑅12 . . . 𝑅1𝑛

0 𝑅22 . . . 𝑅2𝑛

... ...
.

0 0 . . . 𝑅𝑛𝑛

 = 𝑄𝑅

• 𝑄 ∈ R𝑚×𝑛 has orthonormal columns (𝑄T𝑄 = 𝐼)

• if 𝐴 is square (𝑚 = 𝑛), then 𝑄 is orthogonal
(
𝑄T𝑄 = 𝑄𝑄T = 𝐼

)
• 𝑅 ∈ R𝑛×𝑛 is upper triangular with nonzero diagonal, hence invertible

SA — ENGR504QR factorization 8.9

QR factorization via Gram-Schmidt

given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛
set 𝑞1 = 𝑎1/∥𝑎1∥ and 𝑅11 = ∥𝑎1∥
for 𝑘 = 2, . . . , 𝑛

1. 𝑞𝑘 = 𝑎𝑘

2. for 𝑗 = 1, . . . , 𝑘 − 1

𝑅 𝑗𝑘 = 𝑞T
𝑗
𝑎𝑘

𝑞𝑘 = 𝑞𝑘 − 𝑅 𝑗𝑘𝑞 𝑗

3. set
𝑅𝑘𝑘 = ∥𝑞𝑘 ∥
𝑞𝑘 = 𝑞𝑘/𝑅𝑘𝑘

• 𝑅 is generated column by column

• complexity: ≈ 2𝑚𝑛2flops

SA — ENGR504QR factorization 8.10

Example

from calculations in last example, we have

𝑅11 = ∥𝑞1∥ = 2, 𝑅12 = 𝑞T1𝑎2 = 4

𝑅22 = ∥𝑞2∥ = 2, 𝑅13 = 𝑞T1𝑎3 = 2

𝑅23 = 𝑞T2𝑎3 = 8, 𝑅33 = ∥𝑞3∥ = 4

therefore, 
−1 −1 1
1 3 3

−1 −1 5
1 3 7

 =
[
𝑞1 𝑞2 𝑞3

] 
𝑅11 𝑅12 𝑅13

0 𝑅22 𝑅23

0 0 𝑅33


=


−1/2 1/2 −1/2
1/2 1/2 −1/2

−1/2 1/2 1/2
1/2 1/2 1/2



2 4 2
0 2 8
0 0 4


SA — ENGR504QR factorization 8.11

Full QR factorization

suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent columns (𝑚 ≥ 𝑛)

the full QR factorization or QR decomposition of 𝐴 is

𝐴 =
[
𝑄 𝑄

] [𝑅
0

]
• 𝐴 = 𝑄𝑅 is the (reduced) QR factorization as defined earlier

• [𝑄 𝑄] is 𝑚 × 𝑚 and orthogonal; 𝑄 has size 𝑚 × (𝑚 − 𝑛)

• the zero block has size (𝑚 − 𝑛) × 𝑛 (size of right matrix is 𝑚 × 𝑛)

• given 𝐴 = 𝑄𝑅, we can find 𝑄 as follows:

– find any matrix 𝐴 such that [𝐴 𝐴] has linearly independent columns (e.g., 𝐴 = 𝐼)

– apply Gram-Schmidt to [𝐴 𝐴] to find 𝑄

• in MATLAB’s: [Q,R]=qr(A)

SA — ENGR504QR factorization 8.12

Computing Cholesky factorization of Gram matrix

• suppose 𝐴 is an 𝑚 × 𝑛 matrix with linearly independent columns

• the Gram matrix 𝐶 = 𝐴T𝐴 is positive definite

two methods for computing the Cholesky factor of 𝐶, given 𝐴

1. compute 𝐶 = 𝐴T𝐴, then Cholesky factorization of 𝐶

𝐶 = 𝑅T𝑅

2. compute QR factorization 𝐴 = 𝑄𝑅; since

𝐶 = 𝐴T𝐴 = 𝑅T𝑄T𝑄𝑅 = 𝑅T𝑅

the matrix 𝑅 is the Cholesky factor of 𝐶

SA — ENGR504QR factorization 8.13

Example

𝐴 =


3 −6
4 −8
0 1

 , 𝐶 = 𝐴T𝐴 =

[
25 −50

−50 101

]
1. Cholesky factorization:

𝐶 =

[
5 0

−10 1

] [
5 −10
0 1

]
2. QR factorization

𝐴 =


3 −6
4 −8
0 1

 =

3/5 0
4/5 0
0 1


[
5 −10
0 1

]

SA — ENGR504QR factorization 8.14

Pseudo-inverse via QR factorization

pseudo-inverse of 𝐴 with linearly independent columns with 𝐴 = 𝑄𝑅 is

𝐴† = (𝐴T𝐴)−1𝐴T

=
(
(𝑄𝑅)T (𝑄𝑅)

)−1 (𝑄𝑅)T

= (𝑅T𝑄T𝑄𝑅)−1𝑅T𝑄T

= (𝑅T𝑅)−1𝑅T𝑄T (𝑄T𝑄 = 𝐼)
= 𝑅−1𝑅−𝑇𝑅T𝑄T (𝑅 is nonsingular)
= 𝑅−1𝑄T

• for square nonsingular 𝐴 this is the inverse: 𝐴−1 = (𝑄𝑅)−1 = 𝑅−1𝑄T

• pseudo-inverse of 𝐴 with linearly independent rows with 𝐴T = 𝑄𝑅 is

𝐴† = 𝐴T (𝐴𝐴T)−1 = 𝑄𝑅−T

SA — ENGR504QR factorization 8.15

Range of a matrix

• the span of a collection of vectors is the set of all their linear combinations:

span(𝑎1, 𝑎2, . . . , 𝑎𝑛) = {𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛 | 𝑥 ∈ R𝑛}

• the range (column space) of a matrix 𝐴 ∈ R𝑚×𝑛 is the span of its column vectors:

range(𝐴) = {𝐴𝑥 | 𝑥 ∈ R𝑛}

Example

range
©­«

1 0
1 2
0 −1

ª®¬ =



𝑥1
𝑥1 + 2𝑥2
−𝑥2

 | 𝑥1, 𝑥2 ∈ R


SA — ENGR504QR factorization 8.16

Range and QR factorization

suppose 𝐴 has linearly independent columns with QR factorization 𝐴 = 𝑄𝑅

• 𝑄 has the same range as 𝐴:

𝑦 ∈ range(𝐴) ⇐⇒ 𝑦 = 𝐴𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑅𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑧 for some 𝑧

⇐⇒ 𝑦 ∈ range(𝑄)

• columns of 𝑄 are an orthonormal basis for range(𝐴):
they are linearly independent and span(𝑞1, . . . , 𝑞𝑛) = range(𝐴)

SA — ENGR504QR factorization 8.17

Projection on range of matrix with orthonormal columns

if 𝑄 ∈ R𝑚×𝑛 has orthonormal columns 𝑞1, . . . , 𝑞𝑛, then the vector

𝑄𝑄T𝑏

is the orthogonal projection of an 𝑚-vector 𝑏 on range(𝑄)

range(𝑄)

𝑏

𝑄𝑄T𝑏

𝑥 = 𝑄T𝑏 satisfies ∥𝑄𝑥 − 𝑏∥ < ∥𝑄𝑥 − 𝑏∥ for all 𝑥 ≠ 𝑥 (proof shown next on page)

SA — ENGR504QR factorization 8.18

Proof: the squared distance of 𝑏 to an arbitrary point 𝑄𝑥 in range(𝑄) is

∥𝑄𝑥 − 𝑏∥2 = ∥𝑄(𝑥 − 𝑥) +𝑄𝑥 − 𝑏∥2 (where 𝑥 = 𝑄T𝑏)
= ∥𝑄(𝑥 − 𝑥)∥2 + ∥𝑄𝑥 − 𝑏∥2 + 2(𝑥 − 𝑥)T𝑄T (𝑄𝑥 − 𝑏)
= ∥𝑄(𝑥 − 𝑥)∥2 + ∥𝑄𝑥 − 𝑏∥2

= ∥𝑥 − 𝑥∥2 + ∥𝑄𝑥 − 𝑏∥2

≥ ∥𝑄𝑥 − 𝑏∥2

with equality only if 𝑥 = 𝑥

• line 3 follows because 𝑄T (𝑄𝑥 − 𝑏) = 𝑥 −𝑄T𝑏 = 0

• line 4 follows from 𝑄T𝑄 = 𝐼

SA — ENGR504QR factorization 8.19

Orthogonal decomposition

the vector 𝑏 is decomposed as a sum 𝑏 = 𝑧 + 𝑦 with

𝑧 ∈ range(𝑄), 𝑦 ∈ range(𝑄)⊥

range(𝑄)

𝑏

𝑧 = 𝑄𝑄T𝑏

𝑦 = 𝑏 −𝑄𝑄T𝑏

• decomposition exists and unique for every 𝑏:

𝑏 = 𝑄𝑥 + 𝑦, 𝑄T𝑦 = 0 ⇐⇒ 𝑥 = 𝑄T𝑏, 𝑦 = 𝑏 −𝑄𝑄T𝑏

• 𝑦 is orthogonal projection on range(𝑄)⊥ = {𝑢 | 𝑄T𝑢 = 0}

SA — ENGR504QR factorization 8.20

Pseudo-inverse and projection on range

• using 𝐴 = 𝑄𝑅 and 𝐴† = 𝑅−1𝑄T gives

𝐴𝐴† = 𝑄𝑅𝑅−1𝑄T = 𝑄𝑄T

note that 𝐴𝐴† and is different from 𝐴†𝐴 = 𝐼

• hence 𝐴𝐴†𝑥 = 𝑄𝑄T𝑥 is the projection of 𝑥 onto range(𝑄) = range(𝐴)

range(𝐴) = range(𝑄)

𝑥

𝐴𝐴†𝑥 = 𝑄𝑄T𝑥

SA — ENGR504QR factorization 8.21

Outline

• Gram-Schmidt orthogonalization

• QR factorization

• solving linear equations

• modified Gram-Schmidt method

• Householder algorithm

Solving linear equations

• assuming 𝐴 is nonsingular, then 𝑥 = 𝐴−1𝑏 solves 𝐴𝑥 = 𝑏

• with QR factorization 𝐴 = 𝑄𝑅, we have 𝐴−1 = (𝑄𝑅)−1 = 𝑅−1𝑄T

• compute 𝑥 = 𝑅−1 (𝑄T𝑏) by back substitution

QR factorization method: to solve 𝐴𝑥 = 𝑏 with nonsingular 𝐴 ∈ R𝑛×𝑛

1. factor 𝐴 as 𝐴 = 𝑄𝑅

2. compute 𝑄T𝑏

3. solve 𝑅𝑥 = 𝑦 by back substitution

Complexity: 2𝑛3 + 3𝑛2 ≈ 2𝑛3

• QR factorization 2𝑛3 flops

• matrix-vector product 2𝑛2

• back substitution 𝑛2

SA — ENGR504solving linear equations 8.22

Multiple right-hand sides

consider 𝑘 sets of linear equations with the same coefficient matrix 𝐴:

𝐴𝑥1 = 𝑏1, 𝐴𝑥2 = 𝑏2, . . . , 𝐴𝑥𝑘 = 𝑏𝑘

• let 𝑋 = [𝑥1 · ·· 𝑥𝑘] and 𝐵 = [𝑏1 · ·· 𝑏𝑘], each is an 𝑛 × 𝑘 matrix

• express equations as 𝐴𝑋 = 𝐵

• can be solved in 2𝑛3 + 3𝑘𝑛2 flops if we reuse the factorization 𝐴 = 𝑄𝑅

• for 𝑘 ≪ 𝑛, cost is roughly equal to cost of solving one equation (2𝑛3)

SA — ENGR504solving linear equations 8.23

Computing the inverse

solving the matrix equation 𝐴𝑋 = 𝐼 gives 𝐴−1

• equivalent to 𝑛 equations:

𝑅𝑥1 = 𝑄T𝑒1, 𝑅𝑥2 = 𝑄T𝑒2, . . . , 𝑅𝑥𝑛 = 𝑄T𝑒𝑛

• 𝑥𝑖 is 𝑖th column of 𝑋 and 𝑄T𝑒𝑖 is the 𝑖th column of 𝑄T

• complexity is 2𝑛3 + 𝑛3 = 3𝑛3

Solving linear equations by computing the inverse

• compute inverse 𝐴−1 costs 3𝑛3, then compute 𝐴−1𝑏 costs 2𝑛2

• total complexity: 3𝑛3 + 2𝑛2 ≈ 3𝑛3

• more expensive than QR factorization method, which costs 2𝑛3

• while inverse appears in many formulas, it is computed far less often

SA — ENGR504solving linear equations 8.24

Outline

• Gram-Schmidt orthogonalization

• QR factorization

• solving linear equations

• modified Gram-Schmidt method

• Householder algorithm

Numerical instability of G-S

consider the following MATLAB implementation of the G-S algorithm

[m, n] = size(A);

Q = zeros(m,n);

R = zeros(n,n);

for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’ * A(:,k);

qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);

R(k,k) = norm(qtilde);

Q(:,k) = qtilde / R(k,k);

end;

• we apply this to a square matrix 𝐴 of size 𝑚 = 𝑛 = 50

• 𝐴 is constructed as 𝐴 = 𝑈𝑆𝑉 with 𝑈,𝑉 orthogonal, 𝑆 diagonal with

𝑆𝑖𝑖 = 10−10(𝑖−1)/(𝑛−1) , 𝑖 = 1, . . . , 𝑛

SA — ENGR504modified Gram-Schmidt method 8.25

Numerical instability of G-S

plot shows deviation from orthogonality between 𝑞𝑘 and previous columns

𝑒𝑘 = max
1≤𝑖<𝑘

|𝑞T𝑖 𝑞𝑘 |, 𝑘 = 2, . . . , 𝑛

.

.

.

.

𝑘

𝑒
𝑘

loss of orthogonality is due to rounding error

SA — ENGR504modified Gram-Schmidt method 8.26

Modified Gram-Schmidt

• G-S is numerically unstable if columns of 𝐴 are almost linearly dependent

• this shortcoming can be alleviated by using 𝑞𝑘 instead of 𝑎𝑘 in the inner loop

given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛
set 𝑞1 = 𝑎1/∥𝑎1∥ and 𝑅11 = ∥𝑎1∥
for 𝑘 = 2, . . . , 𝑛

1. 𝑞𝑘 = 𝑎𝑘
2. for 𝑗 = 1, . . . , 𝑘 − 1

𝑅 𝑗𝑘 = 𝑞T
𝑗
𝑞𝑘 (reuse 𝑞𝑘 instead of 𝑎𝑘)

𝑞𝑘 = 𝑞𝑘 − 𝑅 𝑗𝑘𝑞 𝑗

3. set
𝑅𝑘𝑘 = ∥𝑞𝑘 ∥
𝑞𝑘 = 𝑞𝑘/𝑅𝑘𝑘

SA — ENGR504modified Gram-Schmidt method 8.27

Modified Gram-Schmidt implementation

• rearrangement of the computation will provide an additional numerical advantage

• compute 𝑞𝑘 then orthogonalize each of the remaining vectors against it

• generating 𝑅 by rows rather than by columns

given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛
set 𝑄 = 𝐴

for 𝑘 = 1, 2, . . . , 𝑛

1. set
𝑅𝑘𝑘 = ∥𝑞𝑘 ∥
𝑞𝑘 = 𝑞𝑘/𝑅𝑘𝑘

2. for 𝑗 = 𝑘 + 1, . . . , 𝑛

𝑅𝑘 𝑗 = 𝑞T
𝑘
𝑞 𝑗

𝑞 𝑗 = 𝑞 𝑗 − 𝑅𝑘 𝑗𝑞𝑘

SA — ENGR504modified Gram-Schmidt method 8.28

Outline

• Gram-Schmidt orthogonalization

• QR factorization

• solving linear equations

• modified Gram-Schmidt method

• Householder algorithm

Householder algorithm

• the most widely used algorithm for QR factorization (qr in MATLAB and Julia)

• less sensitive to rounding error than (modified) Gram-Schmidt algorithm

• computes a “full” QR factorization (QR decomposition)

𝐴 =
[
𝑄 𝑄

] [𝑅
0

]
, [𝑄 𝑄] orthogonal

• the full Q-factor is constructed as a product of orthogonal matrices

[𝑄 𝑄] = 𝐻1𝐻2 · ··𝐻𝑛

each 𝐻𝑖 is an 𝑚 × 𝑚 symmetric and orthogonal

SA — ENGR504Householder algorithm 8.29

Reflector

Reflector: an elementary reflector is a matrix of the form

𝐻 = 𝐼 − 2𝑣𝑣T with 𝑣 a unit-norm vector ∥𝑣∥ = 1

Properties

• a reflector matrix is symmetric

• a reflector matrix is orthogonal

𝐻T𝐻 = (𝐼 − 2𝑣𝑣T) (𝐼 − 2𝑣𝑣T) = 𝐼 − 4𝑣𝑣T + 4𝑣𝑣T𝑣𝑣T = 𝐼

• reflection of 𝑣: 𝐻𝑣 = −𝑣
• matrix-vector product 𝐻𝑥 can be computed efficiently as

𝐻𝑥 = 𝑥 − 2(𝑣T𝑥)𝑣

complexity is 4𝑝 flops if 𝑣 and 𝑥 have length 𝑝

SA — ENGR504Householder algorithm 8.30

Geometrical interpretation of reflector

𝑧 = 𝐻𝑥 = (𝐼 − 2𝑣𝑣T)𝑥

𝑆

line through 𝑣 and origin

𝑥

𝑦 = (𝐼 − 𝑣𝑣T)𝑥
0

• 𝑆 = {𝑢 | 𝑣T𝑢 = 0} is the (hyper-)plane of vectors orthogonal to 𝑣

• if ∥𝑣∥ = 1, the projection of 𝑥 on 𝑆 is given by (see page 8.20)

𝑦 = (𝐼 − 𝑣𝑣T)𝑥

• reflection of 𝑥 through the hyperplane is given by product with reflector:

𝑧 = 𝑦 + (𝑦 − 𝑥) = (𝐼 − 2𝑣𝑣T)𝑥

SA — ENGR504Householder algorithm 8.31

Reflection to multiple of first unit vector

given nonzero 𝑝-vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑝), define

𝑤 =


𝑦1 + sign(𝑦1)∥𝑦∥

𝑦2
...

𝑦𝑝

 , 𝑣 =
1

∥𝑤∥𝑤

• we define sign(0) = 1

• vector 𝑤 satisfies

∥𝑤∥2 = 2(𝑤T𝑦) = 2∥𝑦∥(∥𝑦∥ + |𝑦1 |)

• reflector 𝐻 = 𝐼 − 2𝑣𝑣T maps 𝑦 to multiple of 𝑒1 = (1, 0, . . . , 0):

𝐻𝑦 = 𝑦 − 2(𝑤T𝑦)
∥𝑤∥2 𝑤 = 𝑦 − 𝑤 = − sign(𝑦1)∥𝑦∥𝑒1

SA — ENGR504Householder algorithm 8.32

Geometry

first coordinate axis

𝑦

− sign(𝑦1)∥𝑦∥𝑒1

𝑤

hyperplane {𝑥 | 𝑤T𝑥 = 0}

the reflection through the hyperplane {𝑥 | 𝑤T𝑥 = 0} with normal vector

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1

maps 𝑦 to the vector − sign(𝑦1)∥𝑦∥𝑒1

SA — ENGR504Householder algorithm 8.33

Householder triangularization

• computes reflectors 𝐻1, . . . , 𝐻𝑛 that reduce 𝐴 to triangular form:

𝐻𝑛𝐻𝑛−1 · ··𝐻1𝐴 =

[
𝑅

0

]
• after step 𝑘 , the matrix 𝐻𝑘𝐻𝑘−1 · ··𝐻1𝐴 has the following structure:

𝑘 𝑛 − 𝑘

𝑘

𝑚 − 𝑘

(elements in positions 𝑖, 𝑗 for 𝑖 > 𝑗 and 𝑗 ≤ 𝑘 are zero)

SA — ENGR504Householder algorithm 8.34

Householder algorithm

given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛

for 𝑘 = 1, 2, . . . , 𝑛

1. define 𝑦 = 𝐴𝑘:𝑚,𝑘 and compute (𝑚 − 𝑘 + 1)-vector 𝑣𝑘 :

𝑤 = 𝑦 + sign (𝑦1) ∥𝑦∥𝑒1, 𝑣𝑘 =
1

∥𝑤∥𝑤

2. multiply 𝐴𝑘:𝑚,𝑘:𝑛 with reflector 𝐼 − 2𝑣𝑘𝑣
T
𝑘
:

𝐴𝑘:𝑚,𝑘:𝑛 := 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣T𝑘𝐴𝑘:𝑚,𝑘:𝑛)

• algorithm overwrites 𝐴 with

[
𝑅

0

]
• complexity: 2𝑚𝑛2 − 2

3𝑛
3 flops (we take 2𝑚𝑛2 for the complexity of QR

factorization)

SA — ENGR504Householder algorithm 8.35

Remarks

• step 2 is equivalent to multiplying 𝐴 with 𝑚 × 𝑚 reflector

𝐻𝑘 =

[
𝐼 0
0 𝐼 − 2𝑣𝑘𝑣

T
𝑘

]
= 𝐼 − 2

[
0
𝑣𝑘

] [
0
𝑣𝑘

]T
• algorithm returns the vectors 𝑣1, . . . , 𝑣𝑛, with 𝑣𝑘 of length 𝑚 − 𝑘 + 1

Q-factor [
𝑄 𝑄

]
= 𝐻1𝐻2 · ··𝐻𝑛

• usually there is no need to compute the matrix [𝑄 𝑄] explicitly

• the vectors 𝑣1, . . . , 𝑣𝑛 are an economical representation of [𝑄 𝑄]

• products with [𝑄 𝑄] or its transpose can be computed as[
𝑄 𝑄

]
𝑥 = 𝐻1𝐻2 · ··𝐻𝑛𝑥[

𝑄 𝑄
]T

𝑦 = 𝐻𝑛𝐻𝑛−1 · ··𝐻1𝑦

SA — ENGR504Householder algorithm 8.36

Example

𝐴 =


−1 −1 1
1 3 3

−1 −1 5
1 3 7

 = 𝐻1𝐻2𝐻3

[
𝑅

0

]

we compute reflectors 𝐻1, 𝐻2, 𝐻3 that triangularize 𝐴:

𝐻3𝐻2𝐻1𝐴 =


𝑅11 𝑅12 𝑅13

0 𝑅22 𝑅23

0 0 𝑅33

0 0 0


SA — ENGR504Householder algorithm 8.37

First column of 𝑅

• compute reflector that maps first column of 𝐴 to multiple of 𝑒1:

𝑦 =


−1
1

−1
1

 , 𝑤 = 𝑦 − ∥𝑦∥𝑒1 =


−3
1

−1
1

 , 𝑣1 =
1

∥𝑤∥𝑤 =
1

2
√
3


−3
1

−1
1


• overwrite 𝐴 with product of 𝐼 − 2𝑣1𝑣

T
1 and 𝐴

𝐴 := (𝐼 − 2𝑣1𝑣
T
1)𝐴 =


2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3


SA — ENGR504Householder algorithm 8.38

Second column of 𝑅

• compute reflector that maps 𝐴2:4,2 to multiple of 𝑒1:

𝑦 =


4/3
2/3
4/3

 , 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =


10/3
2/3
4/3

 , 𝑣2 =
1

∥𝑤∥𝑤 =
1

√
30


5
1
2


• overwrite 𝐴2:4,2:3 with product of 𝐼 − 2𝑣2𝑣

T
2 and 𝐴2:4,2:3:

𝐴 :=

[
1 0
0 𝐼 − 2𝑣2𝑣

T
2

]
𝐴 =


2 4 2
0 −2 −8
0 0 16/5
0 0 12/5



SA — ENGR504Householder algorithm 8.39

Third column of 𝑅

• compute reflector that maps 𝐴3:4,3 to multiple of 𝑒1:

𝑦 =

[
16/5
12/5

]
, 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =

[
36/5
12/5

]
, 𝑣3 =

1

∥𝑤∥𝑤 =
1

√
10

[
3
1

]
• overwrite 𝐴3:4,3 with product of 𝐼 − 2𝑣3𝑣

T
3 and 𝐴3:4,3:

𝐴 :=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

T
3

]
𝐴 =


2 4 2
0 −2 −8
0 0 −4
0 0 0



SA — ENGR504Householder algorithm 8.40

Final result

𝐻3𝐻2𝐻1𝐴 =

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

T
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

T
2

]
(𝐼 − 2𝑣1𝑣

T
1)𝐴

=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

T
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

T
2

] 
2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3


=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

T
3

] 
2 4 2
0 −2 −8
0 0 16/5
0 0 12/5


=


2 4 2
0 −2 −8
0 0 −4
0 0 0


SA — ENGR504Householder algorithm 8.41

References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, Univ. of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

• U. M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics,
2011.

SA — ENGR504references 8.42

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	Gram-Schmidt orthogonalization
	QR factorization
	solving linear equations
	modified Gram-Schmidt method
	Householder algorithm
	references

