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Solution of triangular linear equations

• if 𝐴 is lower/upper triangular with nonzero diagonals

• 𝐴𝑥 = 𝑏 can be solved using forward/back substitution

Forward substitution algorithm: assume 𝐴 is lower triangular

𝑥1 = 𝑏1/𝐴11

𝑥2 = (𝑏2 − 𝐴21𝑥1) /𝐴22

𝑥3 = (𝑏3 − 𝐴31𝑥1 − 𝐴32𝑥2) /𝐴33

...

𝑥𝑛 =
(
𝑏𝑛 − 𝐴𝑛1𝑥1 − 𝐴𝑛2𝑥2 − ··· − 𝐴𝑛,𝑛−1𝑥𝑛−1

)
/𝐴𝑛𝑛
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Back substitution algorithm: assume 𝐴 is upper triangular

𝑥𝑛 = 𝑏𝑛/𝐴𝑛𝑛

𝑥𝑛−1 =
(
𝑏𝑛−1 − 𝐴𝑛−1,𝑛𝑥𝑛

)
/𝐴𝑛−1,𝑛−1

𝑥𝑛−2 =
(
𝑏𝑛−2 − 𝐴𝑛−2,𝑛−1𝑥𝑛−1 − 𝐴𝑛−2,𝑛𝑥𝑛

)
/𝐴𝑛−2,𝑛−2

...

𝑥1 = (𝑏1 − 𝐴12𝑥2 − 𝐴13𝑥3 − ··· − 𝐴1𝑛𝑥𝑛) /𝐴11

Complexity

1 + 3 + 5 + ··· + (2𝑛 − 1) =
𝑛∑︁

𝑘=1

(2𝑘 − 1) = 𝑛2 flops
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Example

5𝑥1 = 15

𝑥1 + 2𝑥2 = 7

−𝑥1 + 3𝑥2 + 2𝑥3 = 5

𝐴 =


5 0 0
1 2 0

−1 3 2

 , 𝑏 =


15
7
5


applying the forward substitution algorithm, we get

𝑥1 =
15

5
= 3

𝑥2 =
7 − 3

2
= 2

𝑥3 =
5 + 3 − 6

2
= 1
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Inverse of triangular matrix

a triangular matrix 𝐴 with nonzero diagonal elements is nonsingular:

𝐴𝑥 = 0 =⇒ 𝑥 = 0

this follows from forward or back substitution applied to the equation 𝐴𝑥 = 0

• inverse of 𝐴 can be computed by solving 𝐴𝑋 = 𝐼 column by column

𝐴[𝑥1 𝑥2 · ·· 𝑥𝑛] = [𝑒1 𝑒2 · ·· 𝑒𝑛] (𝑥𝑖 is column 𝑖 of 𝑋)

– inverse of lower triangular matrix is lower triangular
– inverse of upper triangular matrix is upper triangular

• complexity of computing inverse of 𝑛 × 𝑛 triangular matrix

𝑛2 + (𝑛 − 1)2 + ··· + 1 =
𝑛(𝑛 + 1) (2𝑛 + 1)

6
≈ 1

3
𝑛3 flops

• conclusion: solving using back/forward subs. is more efficient than inverse way
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Elementary row operations

suppose 𝐴 is an 𝑛 × 𝑛 invertible matrix, 𝑏 is an 𝑛-vector

solution of 𝐴𝑥 = 𝑏 is invariant under the elementary row operations:

1. interchanging any two rows of the matrix [𝐴 | 𝑏]

2. multiplying one of its rows by a real nonzero number

3. adding a scalar multiple of one row to another row
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Elementary elimination matrix

for 𝑛-vector 𝑢, we can zero out elements below 𝑘 th entry as follows:

𝐺 (𝑘 )𝑢 =



1 · ·· 0 0 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· 1 0 · ·· 0
0 · ·· −𝐿𝑘+1,𝑘 1 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· −𝐿𝑛,𝑘 0 · ·· 1





𝑢1
...

𝑢𝑘
𝑢𝑘+1
...

𝑢𝑛


=



𝑢1
...

𝑢𝑘
0
...

0


• 𝐿𝑖,𝑘 = 𝑢𝑖/𝑢𝑘 for 𝑖 = 𝑘 + 1, . . . , 𝑛

• the divisor 𝑢𝑘 is called the pivot

• 𝐺 (𝑘 ) is lower triangular with unit (nonzero) diagonal, and hence nonsingular
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Gaussian elimination procedure

Iteration 1

• zero out the first column below the main diagonal

• subtract 𝐴𝑖1

𝐴11
× the first row from the 𝑖th row for all 𝑖 = 2, 3, . . . , 𝑛

[
1 0

−𝐿2:𝑛,1 𝐼

]
︸           ︷︷           ︸

𝐺 (1)

[𝐴 | 𝑏] =


𝐴11 𝐴12 · ·· 𝐴1𝑛 𝑏1

0 𝐴
(1)
22 · ·· 𝐴

(1)
2𝑛 𝑏

(1)
2

... ...
. . . ... ...

0 𝐴
(1)
𝑛2 · ·· 𝐴

(1)
𝑛𝑛 𝑏

(1)
𝑛


=

[
𝐴11 𝐴1,2:𝑛 𝑏1
0 𝐴2:𝑛,2:𝑛 − 𝐿2:𝑛,1𝐴1,2:𝑛 𝑏2:𝑛 − 𝐿2:𝑛,1𝑏1

]
where 𝐿2:𝑛,1 = 𝐴2:𝑛,1/𝐴11 = (𝐴21/𝐴11, . . . , 𝐴𝑛1/𝐴11)
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Iteration 2:

• zero out the second column below diagonal

• subtract 𝐴𝑖2

𝐴22
× the second row from the 𝑖th row for all 𝑖 = 3, 4, . . . , 𝑛


1 0 0
0 1 0
0 −𝐿3:𝑛,2 𝐼

︸                ︷︷                ︸
𝐺 (2)

[𝐴(1) |𝑏 (1) ] =



𝐴11 𝐴12 · ·· · ·· 𝐴1𝑛 𝑏1

0 𝐴
(1)
22 𝐴

(1)
23 · ·· 𝐴

(1)
2𝑛 𝑏

(1)
2

... 0 𝐴
(2)
33 · ·· 𝐴

(2)
3𝑛 𝑏

(2)
3

... ... ...
. . . ... ...

0 0 𝐴
(2)
𝑛3 · ·· 𝐴

(2)
𝑛𝑛 𝑏

(2)
𝑛


=


𝐴11 𝐴12 𝐴1,3:𝑛 𝑏1

0 𝐴
(1)
22 𝐴

(1)
2,3:𝑛 𝑏

(1)
2

0 0 𝐴
(1)
3:𝑛,3:𝑛 − 𝐿3:𝑛,2𝐴

(1)
2,3:𝑛 𝑏

(1)
3:𝑛 − 𝐿3:𝑛,2𝑏

(1)
2


where 𝐿3:𝑛,2 = 𝐴

(1)
3:𝑛,2/𝐴

(1)
22 = (𝐴(1)

32 /𝐴(1)
22 , . . . , 𝐴

(1)
𝑛2 /𝐴

(1)
22 )
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Final iteration

• after 𝑛 − 1 iterations, we get the upper-triangular system

[𝐴(𝑛−1) |𝑏 (𝑛−1) ] =



𝐴11 𝐴12 · ·· · ·· 𝐴1𝑛 𝑏1

0 𝐴
(1)
22 𝐴

(1)
23 · ·· 𝐴

(1)
2𝑛 𝑏

(1)
2

... 0 𝐴
(2)
33 · ·· 𝐴

(2)
3𝑛 𝑏

(2)
3

... ... · ·· . . . ... ...

0 0 · ·· 0 𝐴
(𝑛−1)
𝑛𝑛 𝑏

(𝑛−1)
𝑛


where

𝑈 = 𝐴(𝑛−1) = 𝐺 (𝑛−1) · ··𝐺 (2)𝐺 (1) 𝐴

𝑏 (𝑛−1) = 𝐺 (𝑛−1) · ··𝐺 (2)𝐺 (1)𝑏

• now, we solve 𝑈𝑥 = 𝑏 (𝑛−1) using back substitution
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Example

𝐴𝑥 =


1 2 2
4 4 2
4 6 4



𝑥1
𝑥2
𝑥3

 =

3
6
10

 = 𝑏

we subtract four times the first row from each of the second and third rows:

𝐺 (1) 𝐴 =


1 0 0

−4 1 0
−4 0 1



1 2 2
4 4 2
4 6 4

 =

1 2 2
0 −4 −6
0 −2 −4


𝐺 (1)𝑏 =


1 0 0

−4 1 0
−4 0 1




3
6

10

 =


3
−6
−2


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we subtract 0.5 times the second row from the third row:

𝐺 (2)𝐺 (1) 𝐴 =


1 0 0
0 1 0
0 − 1

2 1



1 2 2
0 −4 −6
0 −2 −4

 =

1 2 2
0 −4 −6
0 0 −1


𝐺 (2)𝐺 (1)𝑏 =


1 0 0
0 1 0
0 − 1

2 1




3
−6
−2

 =


3
−6
1


we have reduced the original system to the equivalent upper triangular system

𝑈𝑥 =


1 2 2
0 −4 −6
0 0 −1



𝑥1
𝑥2
𝑥3

 =


3
−6
1


which can now be solved by back-substitution to obtain 𝑥 = (−1, 3,−1)
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Inverse of elementary matrix



1 · ·· 0 0 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· 1 0 · ·· 0
0 · ·· −𝐿𝑘+1,𝑘 1 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· −𝐿𝑛,𝑘 0 · ·· 1



−1

=



1 · ·· 0 0 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· 1 0 · ·· 0
0 · ·· 𝐿𝑘+1,𝑘 1 · ·· 0
...

. . . ... ...
. . . ...

0 · ·· 𝐿𝑛,𝑘 0 · ·· 1


= 𝐿 (𝑘 )

• compactly: (𝐼 − 𝑙𝑘𝑒
T
𝑘
)−1 = 𝐼 + 𝑙𝑘𝑒

T
𝑘

where 𝑙𝑘 = (0, . . . , 0, 𝐿𝑘+1,𝑘 , . . . , 𝐿𝑛,𝑘)

• inverse has same form as 𝐺 (𝑘 ) with subdiagonal entries negated

• for 𝑘 ≤ 𝑗 , we have 𝑒T
𝑘
𝑙 𝑗 = 0 and thus

𝐿 (1) · ··𝐿 (𝑛−2)𝐿 (𝑛−1) = 𝐼 + 𝑙1𝑒
T
1 + · · · + 𝑙𝑛−1𝑒

T
𝑛−1

which is also lower triangular
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Gaussian elimination and LU factorization

Gaussian elimination produces

𝑈 = 𝐺 (𝑛−1) · ··𝐺 (2)𝐺 (1) 𝐴

or written equivalently
𝐴 = 𝐿𝑈

• 𝐿 = 𝐿 (1) · ··𝐿 (𝑛−2)𝐿 (𝑛−1) where 𝐿 (𝑘 ) =
(
𝐺 (𝑘 ) )−1

• 𝐿 is lower triangular (see previous page)

• this is called LU factorization or LU decomposition

• requires pivot elements to be nonzero during the Gaussian elimination procedure
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Gaussian elimination algorithm

given 𝐴𝑥 = 𝑏 with nonsingular 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛

set 𝑈 = 𝐴 and 𝐿 = 𝐼

for 𝑘 = 1, . . . , 𝑛 − 1

1. 𝐿𝑘+1:𝑛,𝑘 = 𝑈𝑘+1:𝑛,𝑘/𝑈𝑘𝑘 then set 𝑈𝑘+1:𝑛,𝑘 = 0

2. 𝑈𝑘+1:𝑛,𝑘+1:𝑛 = 𝑈𝑘+1:𝑛,𝑘+1:𝑛 − 𝐿𝑘+1:𝑛,𝑘𝑈𝑘,𝑘+1:𝑛

3. 𝑏𝑘+1:𝑛 = 𝑏𝑘+1:𝑛 − 𝐿𝑘+1:𝑛,𝑘𝑏𝑘

next, apply the algorithm of back substitution to 𝑈𝑥 = 𝑏

algorithm gives factorization 𝐴 = 𝐿𝑈

Complexity

• cost is approximately (2/3)𝑛3
• back substitution costs 𝑛2

• cost of the Gaussian elimination phase dominates
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Example

consider 𝐴 from previous example

𝐴 =


1 2 2
4 4 2
4 6 4


we have

𝐺 (1) =


1 0 0

−4 1 0
−4 0 1

 , 𝐺 (2) =


1 0 0
0 1 0
0 −0.5 1


hence,

𝐿 =
(
𝐺 (1) )−1 (𝐺 (2) )−1 =


1 0 0
4 1 0
4 0 1



1 0 0
0 1 0
0 0.5 1

 =

1 0 0
4 1 0
4 0.5 1


we thus have

𝐴 =


1 2 2
4 4 2
4 6 4

 =

1 0 0
4 1 0
4 0.5 1



1 2 2
0 −4 −6
0 0 −1

 = 𝐿𝑈
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LU factorization

LU factorization (no pivoting)
𝐴 = 𝐿𝑈

• 𝐿 unit lower triangular, 𝑈 upper triangular

• does not always exist (even if 𝐴 is nonsingular)

LU factorization with row pivoting

𝑃𝐴 = 𝐿𝑈

• 𝑃 permutation matrix, 𝐿 unit lower triangular, 𝑈 upper triangular

• always exists if 𝐴 is nonsingular

• not unique; there may be several possible choices for 𝑃, 𝐿,𝑈

• interpretation: permute the rows of 𝐴 and factor 𝑃𝐴 = 𝐿𝑈
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LU factorization and matrix inverse

let 𝐴 is nonsingular and 𝑛 × 𝑛, with LU factorization

𝐴 = 𝑃T𝐿𝑈

• inverse from LU factorization

𝐴−1 = (𝑃T𝐿𝑈)−1 = 𝑈−1𝐿−1𝑃

• gives interpretation of solving 𝐴𝑥 = 𝑏 steps: we evaluate

𝑥 = 𝐴−1𝑏 = 𝑈−1𝐿−1𝑃𝑏

in three steps
𝑧1 = 𝑃𝑏, 𝑧2 = 𝐿−1𝑧1, 𝑥 = 𝑈−1𝑧2
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Solving linear equations by LU factorization

given 𝐴𝑥 = 𝑏 with nonsingular 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛

1. factor 𝐴 as 𝐴 = 𝑃T𝐿𝑈

2. solve (𝑃T𝐿𝑈)𝑥 = 𝑏 in three steps
(a) permutation: 𝑧1 = 𝑃𝑏

(b) forward substitution: solve 𝐿𝑧2 = 𝑧1

(c) back substitution: solve 𝑈𝑥 = 𝑧2

Complexity:

• factorization requires (2/3)𝑛3flops

• forward and back substitution costs 𝑛2 each

• total: (2/3)𝑛3 + 2𝑛2 ≈ (2/3)𝑛3 flops

this is the standard method for solving 𝐴𝑥 = 𝑏
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Multiple right-hand sides

two equations with same non-singular 𝐴 ∈ R𝑛×𝑛 and different right-hand sides:

𝐴𝑥 = 𝑏, 𝐴𝑥 = 𝑏

• factor 𝐴 once

• forward/back substitution to get 𝑥

• forward/back substitution to get 𝑥

complexity: (2/3)𝑛3 + 4𝑛2 ≈ (2/3)𝑛3
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Computing the inverse

solve 𝐴𝑋 = 𝐼 column by column:

• one LU factorization of 𝐴: (2/3)𝑛3 flops

• 𝑛 solve steps: 2𝑛3 flops

• total: (8/3)𝑛3 flops

Conclusion: do not solve 𝐴𝑥 = 𝑏 by multiplying 𝐴−1 with 𝑏

• 3× more computationally expensive than using the LU factorization route

• forming 𝐴−1 is wasteful in storage

• it may give rise to a more pronounced presence of roundoff errors

SA — ENGR504LU factorization 7.21



Recursive computation of 𝐴 = 𝐿𝑈

[
𝐴11 𝐴1,2:𝑛

𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

]
=

[
1 0

𝐿2:𝑛,1 𝐿2:𝑛,2:𝑛

] [
𝑈11 𝑈1,2:𝑛

0 𝑈2:𝑛,2:𝑛

]
=

[
𝑈11 𝑈1,2:𝑛

𝑈11𝐿2:𝑛,1 𝐿2:𝑛,1𝑈1,2:𝑛 + 𝐿2:𝑛,2:𝑛𝑈2:𝑛,2:𝑛

]
1. find the first row of 𝑈 and the first column of 𝐿:

𝑈11 = 𝐴11, 𝑈1,2:𝑛 = 𝐴1,2:𝑛, 𝐿2:𝑛,1 =
1

𝐴11
𝐴2:𝑛,1

2. factor the (𝑛 − 1) × (𝑛 − 1)-matrix

𝐿2:𝑛,2:𝑛𝑈2:𝑛,2:𝑛 = 𝐴2:𝑛,2:𝑛 − 𝐿2:𝑛,1𝑈1,2:𝑛 = 𝐴2:𝑛,2:𝑛 −
1

𝐴11
𝐴2:𝑛,1𝐴1,2:𝑛

this is an LU factorization of size (𝑛 − 1) × (𝑛 − 1)

3. we can calculate 𝐿2:𝑛,2:𝑛 and 𝑈2:𝑛,2:𝑛 by repeating process on factored matrix

(this is basically Gaussian elimination on page 7.15)
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Example

𝐴 =


8 2 9
4 9 4
6 7 9


factor as 𝐴 = 𝐿𝑈 with 𝐿 unit lower triangular, 𝑈 upper triangular

𝐴 =


8 2 9
4 9 4
6 7 9

 =


1 0 0
𝐿21 1 0
𝐿31 𝐿32 1



𝑈11 𝑈12 𝑈13

0 𝑈22 𝑈23

0 0 𝑈33


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Solution

• first row of 𝑈, first column of 𝐿:
8 2 9
4 9 4
6 7 9

 =


1 0 0
1/2 1 0
3/4 𝐿32 1



8 2 9
0 𝑈22 𝑈23

0 0 𝑈33


• second row of 𝑈, second column of 𝐿:[

9 4
7 9

]
−
[
1/2
3/4

] [
2 9

]
=

[
1 0
𝐿32 1

] [
𝑈22 𝑈23

0 𝑈33

]
[

8 −1/2
11/2 9/4

]
=

[
1 0

11/16 1

] [
8 −1/2
0 𝑈33

]
• third row of 𝑈: 𝑈33 = 9/4 + 11/32 = 83/32

putting things together, we obtain

𝐴 =


8 2 9
4 9 4
6 7 9

 =


1 0 0
1/2 1 0
3/4 11/16 1



8 2 9
0 8 −1/2
0 0 83/32


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Factorization 𝐴 = 𝐿𝑈 may not exists

𝐴 =


1 0 0
0 0 2
0 1 −1

 =


1 0 0
𝐿21 1 0
𝐿31 𝐿32 1



𝑈11 𝑈12 𝑈13

0 𝑈22 𝑈23

0 0 𝑈33


• first row of 𝑈, first column of 𝐿:

1 0 0
0 0 2
0 1 −1

 =

1 0 0
0 1 0
0 𝐿32 1



1 0 0
0 𝑈22 𝑈23

0 0 𝑈33


• second row of 𝑈, second column of 𝐿:[

0 2
1 −1

]
=

[
1 0
𝐿32 1

] [
𝑈22 𝑈23

0 𝑈33

]
• issue: 𝑈22 = 0, 𝑈23 = 2, 𝐿32 = 1/0! (can be fixed via pivoting)
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Effect of rounding error

[
10−5 1
1 1

] [
𝑥1
𝑥2

]
=

[
1
0

]
solution is:

𝑥1 =
−1

1 − 10−5
, 𝑥2 =

1

1 − 10−5

• let us solve using LU factorization for the two possible permutations:

𝑃 =

[
1 0
0 1

]
or 𝑃 =

[
0 1
1 0

]
• we round intermediate results to four significant decimal digits
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First choice: 𝑃 = 𝐼 (no pivoting)

[
10−5 1
1 1

]
=

[
1 0
105 1

] [
10−5 1
0 1 − 105

]
• 𝐿,𝑈 rounded to 4 significant decimal digits

𝐿 =

[
1 0
105 1

]
, 𝑈 =

[
10−5 1
0 −105

]
• forward substitution[

1 0
105 1

] [
𝑧1
𝑧2

]
=

[
1
0

]
=⇒ 𝑧1 = 1, 𝑧2 = −105

• back substitution[
10−5 1
0 −105

] [
𝑥1
𝑥2

]
=

[
1

−105
]

=⇒ 𝑥1 = 0, 𝑥2 = 1

error in 𝑥1 is 100%
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Second choice: interchange rows

[
1 1

10−5 1

]
=

[
1 0

10−5 1

] [
1 1
0 1 − 10−5

]
• 𝐿,𝑈 rounded to 4 significant decimal digits

𝐿 =

[
1 0

10−5 1

]
, 𝑈 =

[
1 1
0 1

]
• forward substitution[

1 0
10−5 1

] [
𝑧1
𝑧2

]
=

[
0
1

]
=⇒ 𝑧1 = 0, 𝑧2 = 1

• back substitution[
1 1
0 1

] [
𝑥1
𝑥2

]
=

[
0
1

]
=⇒ 𝑥1 = −1, 𝑥2 = 1

error in 𝑥1, 𝑥2 is about 10−5
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Conclusion: rounding error and numerical instability

• for some 𝑃, small roundoff errors can cause very large errors in the solution

• this is called numerical instability:
– for the first choice of 𝑃 in the example, the algorithm is unstable

– for the second choice of 𝑃, it is stable

• a simple rule for selecting a good permutation is via partial pivoting (see next)
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Computing LU factorization with partial pivoting

Gaussian elimination with partial pivoting to compute 𝑃𝐴 = 𝐿𝑈

given nonsingular 𝐴 ∈ R𝑛×𝑛

set 𝑃 = 𝐼 , 𝐿 = 0, 𝑈 = 𝐴

for 𝑘 = 1, 2, . . . , 𝑛 − 1

1. select 𝑞 ≥ 𝑘 to maximize |𝑈𝑞𝑘 |
𝑃𝑘,: ↔ 𝑃𝑞,: (swap rows)
𝑈 = 𝑃𝑈 (swap rows)
𝐿 = 𝑃𝐿 (swap rows if 𝑘 ≥ 2)

2. set 𝐿𝑘𝑘 = 1

3. 𝐿𝑘+1:𝑛,𝑘 = 𝑈𝑘+1:𝑛,𝑘/𝑈𝑘𝑘 then set 𝑈𝑘+1:𝑛,𝑘 = 0
𝑈𝑘+1:𝑛,𝑘+1:𝑛 = 𝑈𝑘+1:𝑛,𝑘+1:𝑛 − 𝐿𝑘+1:𝑛,𝑘𝑈𝑘,𝑘+1:𝑛
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Example

𝐴 =


0 5 5
2 3 0
6 9 8


since 𝐴11 = 0, we swap rows 1 and 3 using

𝑈 = 𝑃1𝐴 =


0 0 1
0 1 0
1 0 0



0 5 5
2 3 0
6 9 8

 =

6 9 8
2 3 0
0 5 5


set 𝐿11 = 1, (𝐿21, 𝐿31) = ( 26 ,

0
6 ), and

𝐿 (1) =


1 0 0
1/3 0 0
0 0 0

 , 𝑈
(1)
2:𝑛,2:𝑛 =

[
3 0
5 5

]
−
[
1/3
0

] [
9 8

]
=

[
0 −8/3
5 5

]
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we swap the second and third row of 𝑈 (1)

𝑈
(2)
2:𝑛,2:𝑛 = 𝑃2𝑈

(1)
2:𝑛,2:𝑛 =

[
0 1
1 0

] [
0 −8/3
5 5

]
=

[
5 5
0 −8/3

]
we also swap the second and third rows of 𝐿 (1) and set 𝐿22 = 1

𝐿 (2) =


1 0 0
0 1 0
1/3 0 0


the matrix 𝑈 (2)

2:𝑛,2:𝑛 is upper triangular; hence 𝑈 (3)
3:𝑛,3:𝑛 = −8/3 and

𝐿 (2) =


1 0 0
0 1 0
1/3 0 1


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the permutation matrix is (𝐼 swap rows 1 ↔ 3 then 2 ↔ 3)

𝑃 =

[
1 0
0 𝑃2

]
𝑃1 =


1 0 0
0 0 1
0 1 0



0 0 1
0 1 0
1 0 0

 =

0 0 1
1 0 0
0 1 0


the LU factorization 𝐴 = 𝑃T𝐿𝑈 can now be assembled follows

0 0 1
1 0 0
0 1 0


𝑃


0 5 5
2 3 0
6 9 8


𝐴

=


1 0 0
0 1 0
1/3 0 1


𝐿


6 9 8
0 5 5
0 0 −8/3


𝑈
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Outline

• triangular linear systems

• Gaussian elimination

• LU factorization

• positive definite matrices
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• sparse linear equations



Positive (semi)definite matrix

• a symmetric matrix 𝐴 ∈ R𝑛×𝑛 is positive semidefinite if

𝑥T𝐴𝑥 ≥ 0 for all 𝑥

• a symmetric matrix 𝐴 ∈ R𝑛×𝑛 is positive definite if

𝑥T𝐴𝑥 > 0 for all 𝑥 ≠ 0

this is a subset of the positive semidefinite matrices

note: if 𝐴 is symmetric and 𝑛 × 𝑛, then the function

𝑥T𝐴𝑥 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 =

𝑛∑︁
𝑖=1

𝐴𝑖𝑖𝑥
2
𝑖 + 2

∑︁
𝑖> 𝑗

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

is called a quadratic form
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Example

𝐴 =

[
9 6
6 𝑎

]
𝑥T𝐴𝑥 = 9𝑥21 + 12𝑥1𝑥2 + 𝑎𝑥22 = (3𝑥1 + 2𝑥2)2 + (𝑎 − 4)𝑥22

• 𝐴 is positive definite for 𝑎 > 4

𝑥T𝐴𝑥 > 0 for all nonzero 𝑥

• 𝐴 is positive semidefinite but not positive definite for 𝑎 = 4

𝑥T𝐴𝑥 ≥ 0 for all 𝑥, 𝑥T𝐴𝑥 = 0 for 𝑥 = (2,−3)

• 𝐴 is not positive semidefinite for 𝑎 < 4

𝑥T𝐴𝑥 < 0 for 𝑥 = (2,−3)
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Properties

• every positive definite matrix 𝐴 is nonsingular

𝐴𝑥 = 0 =⇒ 𝑥T𝐴𝑥 = 0 =⇒ 𝑥 = 0

(last step follows from positive definiteness)

• every positive definite matrix 𝐴 has positive diagonal elements

𝐴𝑖𝑖 = 𝑒T𝑖 𝐴𝑒𝑖 > 0

• every positive semidefinite matrix 𝐴 has nonnegative diagonal elements

𝐴𝑖𝑖 = 𝑒T𝑖 𝐴𝑒𝑖 ≥ 0
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Schur complement

partition 𝑛 × 𝑛 symmetric matrix 𝐴 as

𝐴 =

[
𝐴11 𝐴T2:𝑛,1
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

]
• the Schur complement of 𝐴11 is defined as the (𝑛 − 1) × (𝑛 − 1) matrix

𝑆 = 𝐴2:𝑛,2:𝑛 −
1

𝐴11
𝐴2:𝑛,1𝐴

T
2:𝑛,1

• if 𝐴 is positive definite, then 𝑆 is positive definite

to see this, take any 𝑥 ≠ 0 and define 𝑦 = −(𝐴T2:𝑛,1𝑥)/𝐴11, then

𝑥T𝑆𝑥 =

[
𝑦

𝑥

]T [
𝐴11 𝐴T2:𝑛,1
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

] [
𝑦

𝑥

]
> 0

because 𝐴 is positive definite
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Singular positive semidefinite matrices

if 𝐴 is positive semidefinite, but not positive definite, then it is singular

to see this, suppose 𝐴 is positive semidefinite but not positive definite

• there exists a nonzero 𝑥 with 𝑥T𝐴𝑥 = 0

• since 𝐴 is positive semidefinite the following function is nonnegative:

𝑓 (𝑡) = (𝑥 − 𝑡𝐴𝑥)T𝐴(𝑥 − 𝑡𝐴𝑥)
= 𝑥T𝐴𝑥 − 2𝑡𝑥T𝐴2𝑥 + 𝑡2𝑥T𝐴3𝑥

= −2𝑡∥𝐴𝑥∥2 + 𝑡2𝑥T𝐴3𝑥

• 𝑓 (𝑡) ≥ 0 for all 𝑡 is only possible if ∥𝐴𝑥∥ = 0; therefore 𝐴𝑥 = 0

• hence there exists a nonzero 𝑥 with 𝐴𝑥 = 0, so 𝐴 is singular
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Example: resistor circuit

−
+

𝑦1

𝑥1

𝑅1 𝑅2

𝑅3 −
+

𝑦2

𝑥2

[
𝑦1
𝑦2

]
=

[
𝑅1 + 𝑅3 𝑅3

𝑅3 𝑅2 + 𝑅3

] [
𝑥1
𝑥2

]
show that the matrix

𝐴 =

[
𝑅1 + 𝑅3 𝑅3

𝑅3 𝑅2 + 𝑅3

]
is positive definite if 𝑅1, 𝑅2, 𝑅3 are positive
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Solution

𝑥T𝐴𝑥 = (𝑅1 + 𝑅3) 𝑥21 + 2𝑅3𝑥1𝑥2 + (𝑅2 + 𝑅3) 𝑥22
= 𝑅1𝑥

2
1 + 𝑅2𝑥

2
2 + 𝑅3 (𝑥1 + 𝑥2)2

≥ 0

and 𝑥T𝐴𝑥 = 0 only if 𝑥1 = 𝑥2 = 0

Physics interpretation

• 𝑥T𝐴𝑥 = 𝑦T𝑥 is the power delivered by sources, dissipated by resistors

• power dissipated by the resistors is positive unless both currents are zero
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Gram matrix

recall the definition of Gram matrix of a matrix 𝐵

𝐴 = 𝐵T𝐵

• every Gram matrix is positive semidefinite

𝑥T𝐴𝑥 = 𝑥T𝐵T𝐵𝑥 = ∥𝐵𝑥∥2 ≥ 0 ∀ 𝑥

• a Gram matrix is positive definite if

𝑥T𝐴𝑥 = 𝑥T𝐵T𝐵𝑥 = ∥𝐵𝑥∥2 > 0 ∀ 𝑥 ≠ 0,

i.e., 𝐵 has linearly independent columns
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Outline

• triangular linear systems
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• LU factorization
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LU factorization for positive definite matrices

LU factorization of a symmetric positive definite matrix

𝐴 = 𝐿𝑈

since 𝑈 is upper triangular with diagonal elements 𝑈𝑘𝑘 > 0, we can write

𝑈 =


𝑈11

𝑈22
. . .

. . .

𝑈𝑛𝑛


𝐷



1 𝑈12

𝑈11
· ·· ·· · 𝑈1𝑛

𝑈11

1 𝑈23

𝑈22
· ·· 𝑈2𝑛

𝑈22
. . . ...

. . . ...

1


𝑈̃

so the LU factorization reads
𝐴 = 𝐿𝐷𝑈

SA — ENGR504Cholesky factorization 7.42



Symmetrizing the LU factorization

since 𝐴 is symmetric, we have

𝐿𝐷𝑈 = 𝐴 = 𝐴T = 𝑈T𝐷𝐿T

since this factorization is unique, we have 𝐿 = 𝑈T or

𝐴 = 𝐿𝐷𝐿T

if we write 𝐷 = 𝐷1/2𝐷1/2 with

𝐷1/2 = diag(
√︁
𝑈11, . . . ,

√︁
𝑈𝑛𝑛)

we can express the LU as factorization

𝐴 = 𝑅T𝑅

with 𝑅T = 𝐿𝐷1/2 a lower triangular matrix; this is called the Cholesky factorization
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Cholesky factorization

every positive definite matrix 𝐴 ∈ R𝑛×𝑛 can be factored as

𝐴 = 𝑅T𝑅

where 𝑅 is upper triangular with positive diagonal elements

• complexity of computing 𝑅 is (1/3)𝑛3 flops

• 𝑅 is called the Cholesky factor of 𝐴

• can be interpreted as “square root” of a positive definite matrix
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Cholesky factorization algorithm

[
𝐴11 𝐴1,2:𝑛

𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

]
=

[
𝑅11 0

𝑅T1,2:𝑛 𝑅T2:𝑛,2:𝑛

] [
𝑅11 𝑅1,2:𝑛

0 𝑅2:𝑛,2:𝑛

]
=

[
𝑅2
11 𝑅11𝑅1,2:𝑛

𝑅11𝑅
T
1,2:𝑛 𝑅T1,2:𝑛𝑅1,2:𝑛 + 𝑅T2:𝑛,2:𝑛𝑅2:𝑛,2:𝑛

]
given a symmetric positive definite matrix 𝐴

1. compute first row of 𝑅:

𝑅11 =
√︁
𝐴11, 𝑅1,2:𝑛 =

1

𝑅11
𝐴1,2:𝑛

2. compute 2,2 block 𝑅2:𝑛,2:𝑛 from

𝐴2:𝑛,2:𝑛 − 𝑅T1,2:𝑛𝑅1,2:𝑛 = 𝑅T2:𝑛,2:𝑛𝑅2:𝑛,2:𝑛

this is a Cholesky factorization of order 𝑛 − 1
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Example


25 15 −5
15 18 0
−5 0 11

 =

𝑅11 0 0
𝑅12 𝑅22 0
𝑅13 𝑅23 𝑅33



𝑅11 𝑅12 𝑅13

0 𝑅22 𝑅23

0 0 𝑅33


• first row of 𝑅

25 15 −5
15 18 0
−5 0 11

 =


5 0 0
3 𝑅22 0

−1 𝑅23 𝑅33



5 3 −1
0 𝑅22 𝑅23

0 0 𝑅33


• second row of 𝑅[

18 0
0 11

]
−
[

3
−1

] [
3 −1

]
=

[
𝑅22 0
𝑅23 𝑅33

] [
𝑅22 𝑅23

0 𝑅33

]
[
9 3
3 10

]
=

[
3 0
1 𝑅33

] [
3 1
0 𝑅33

]
• third column of 𝑅 : 10 − 1 = 𝑅2

33, so, 𝑅33 = 3
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Example

we conclude
25 15 −5
15 18 0
−5 0 11

 =

𝑅11 0 0
𝑅12 𝑅22 0
𝑅13 𝑅23 𝑅33



𝑅11 𝑅12 𝑅13

0 𝑅22 𝑅23

0 0 𝑅33


=


5 0 0
3 3 0

−1 1 3



5 3 −1
0 3 1
0 0 3



SA — ENGR504Cholesky factorization 7.47



Solving equations with positive definite 𝐴

given: 𝐴𝑥 = 𝑏 with positive definite 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛

1. factor 𝐴 as 𝐴 = 𝑅T𝑅

2. solve 𝑅T𝑅𝑥 = 𝑏 in two steps
(a) forward substitution: solve 𝑅T𝑦 = 𝑏

(b) back substitution: solve 𝑅𝑥 = 𝑦

Complexity: (1/3)𝑛3 + 2𝑛2 ≈ (1/3)𝑛3 flops

(half the memory space and half the flops of the general LU factorization algorithm)
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Outline

• triangular linear systems

• Gaussian elimination

• LU factorization

• positive definite matrices

• Cholesky factorization

• sparse linear equations



Sparse linear equations

if 𝐴 is sparse, it is usually factored as

𝑃1𝐴𝑃2 = 𝐿𝑈

𝑃1 and 𝑃2 are permutation matrices

• interpretation: permute rows and columns of 𝐴 and factor 𝐴 = 𝑃1𝐴𝑃2

𝐴 = 𝐿𝑈

• choice of 𝑃1 and 𝑃2 greatly affects the sparsity of 𝐿 and 𝑈

• several heuristic methods exist for selecting good permutations

• in practice: #flops ≪ (2/3)𝑛3; exact value depends on 𝑛, number of nonzero
elements, sparsity pattern
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Sparse Cholesky factorization

if 𝐴 is sparse and positive definite, it is usually factored as

𝐴 = 𝑃𝑅T𝑅𝑃T

𝑃 a permutation matrix; 𝑅 upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of 𝐴 and factor

𝑃T𝐴𝑃 = 𝑅T𝑅

• if 𝐴 is very sparse, 𝑅 is often (but not always) sparse

• choice of permutation greatly affects the sparsity 𝑅

• there exist several heuristic methods for choosing a good permutation

• if 𝑅 is sparse, the cost of the factorization is much less than (1/3)𝑛3
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Example

sparsity pattern of 𝐴 Cholesky factor of 𝐴

pattern of 𝑃T𝐴𝑃 Cholesky factor of 𝑃T𝐴𝑃
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