7. LU factorization

- • [triangular linear systems](#page-1-0)
- [Gaussian elimination](#page-5-0)
- [LU factorization](#page-17-0)
- [positive definite matrices](#page-35-0)
- [Cholesky factorization](#page-44-0)
- [sparse linear equations](#page-52-0)

Solution of triangular linear equations

- \bullet if \vec{A} is lower/upper triangular with nonzero diagonals
- $Ax = b$ can be solved using forward/back substitution

Forward substitution algorithm: assume A is *lower triangular*

$$
x_1 = b_1/A_{11}
$$

\n
$$
x_2 = (b_2 - A_{21}x_1) / A_{22}
$$

\n
$$
x_3 = (b_3 - A_{31}x_1 - A_{32}x_2) / A_{33}
$$

\n:
\n:
\n
$$
x_n = (b_n - A_{n1}x_1 - A_{n2}x_2 - \dots - A_{n,n-1}x_{n-1}) / A_{nn}
$$

Back substitution algorithm: assume A is *upper triangular*

$$
x_n = b_n / A_{nn}
$$

\n
$$
x_{n-1} = (b_{n-1} - A_{n-1,n}x_n) / A_{n-1,n-1}
$$

\n
$$
x_{n-2} = (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_n) / A_{n-2,n-2}
$$

\n
$$
\vdots
$$

\n
$$
x_1 = (b_1 - A_{12}x_2 - A_{13}x_3 - \dots - A_{1n}x_n) / A_{11}
$$

Complexity

$$
1 + 3 + 5 + \dots + (2n - 1) = \sum_{k=1}^{n} (2k - 1) = n^2
$$
 flops

Example

$$
5x_1 = 15
$$

\n
$$
x_1 + 2x_2 = 7
$$

\n
$$
-x_1 + 3x_2 + 2x_3 = 5
$$

\n
$$
A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 3 & 2 \end{bmatrix}, b = \begin{bmatrix} 15 \\ 7 \\ 5 \end{bmatrix}
$$

applying the forward substitution algorithm, we get

$$
x_1 = \frac{15}{5} = 3
$$

$$
x_2 = \frac{7-3}{2} = 2
$$

$$
x_3 = \frac{5+3-6}{2} = 1
$$

Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:

 $Ax = 0 \implies x = 0$

this follows from forward or back substitution applied to the equation $Ax = 0$

• inverse of A can be computed by solving $AX = I$ column by column

$$
A[x_1 \ x_2 \ \cdots \ x_n] = [e_1 \ e_2 \ \cdots \ e_n] \quad (x_i \text{ is column } i \text{ of } X)
$$

- inverse of lower triangular matrix is lower triangular
- inverse of upper triangular matrix is upper triangular
- complexity of computing inverse of $n \times n$ triangular matrix

$$
n^{2} + (n - 1)^{2} + \dots + 1 = \frac{n(n + 1)(2n + 1)}{6} \approx \frac{1}{3}n^{3}
$$
 flops

• conclusion: solving using back/forward subs. is more efficient than inverse way

Outline

- • [triangular linear systems](#page-1-0)
- **[Gaussian elimination](#page-5-0)**
- [LU factorization](#page-17-0)
- [positive definite matrices](#page-35-0)
- [Cholesky factorization](#page-44-0)
- [sparse linear equations](#page-52-0)

Elementary row operations

suppose A is an $n \times n$ invertible matrix, b is an n-vector

solution of $Ax = b$ is invariant under the elementary row operations:

- 1. *interchanging any two rows of the matrix* $\begin{bmatrix} A & | & b \end{bmatrix}$
- 2. *multiplying one of its rows by a real nonzero number*
- 3. *adding a scalar multiple of one row to another row*

Elementary elimination matrix

for n -vector u , we can zero out elements below k th entry as follows:

$$
G^{(k)}u = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & -L_{k+1,k} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -L_{n,k} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_k \\ u_{k+1} \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$

- $L_{i,k} = u_i/u_k$ for $i = k + 1, ..., n$
- \bullet the divisor u_k is called the *pivot*
- $\bullet \; G^{(k)}$ is lower triangular with unit (nonzero) diagonal, and hence nonsingular

Gaussian elimination procedure

Iteration 1

- zero out the first column below the main diagonal
- subtract $\frac{A_{i1}}{A_{11}}$ \times the first row from the *i*th row for all $i = 2, 3, ..., n$

$$
\underbrace{\begin{bmatrix} 1 & 0 \\ -L_{2:n,1} & I \end{bmatrix}}_{G^{(1)}}[A \mid b] = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} & b_1 \\ 0 & A_{22}^{(1)} & \cdots & A_{2n}^{(1)} & b_2^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & A_{n2}^{(1)} & \cdots & A_{nn}^{(1)} & b_n^{(1)} \end{bmatrix}
$$

$$
= \begin{bmatrix} A_{11} & A_{1,2:n} & b_1 \\ 0 & A_{2:n,2:n} - L_{2:n,1}A_{1,2:n} & b_{2:n} - L_{2:n,1}b_1 \end{bmatrix}
$$

where $L_{2n-1} = A_{2n-1}/A_{11} = (A_{21}/A_{11}, \ldots, A_{n1}/A_{11})$

Iteration 2:

- zero out the second column below diagonal
- subtract $\frac{A_{i2}}{A_{22}}\times$ the second row from the *i*th row for all $i=3,4,\ldots,n$

$$
\begin{bmatrix}\n1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -L_{3:n,2} & I\n\end{bmatrix}\n\begin{bmatrix}\nA^{(1)}|b^{(1)}\n\end{bmatrix} = \n\begin{bmatrix}\nA_{11} & A_{12} & \cdots & A_{1n} & b_1 \\
0 & A_{22}^{(1)} & A_{23}^{(1)} & \cdots & A_{2n}^{(1)} & b_2^{(1)} \\
\vdots & 0 & A_{33}^{(2)} & \cdots & A_{3n}^{(2)} & b_3^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & A_{n3}^{(2)} & \cdots & A_{nn}^{(2)} & b_n^{(2)}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\nA_{11} & A_{12} & A_{1,3:n} & b_1 \\
0 & A_{22}^{(1)} & A_{2,3:n}^{(1)} & b_2^{(1)} \\
0 & 0 & A_{3:n,3:n}^{(1)} - L_{3:n,2}A_{2,3:n}^{(1)} & b_2^{(1)} & b_2^{(1)} \\
0 & 0 & A_{3:n,3:n}^{(1)} - L_{3:n,2}A_{2,3:n}^{(1)} & b_{3:n}^{(1)} - L_{3:n,2}b_2^{(1)}\n\end{bmatrix}
$$
\nwhere $L_{3:n,2} = A_{3:n,2}^{(1)}/A_{22}^{(1)} = (A_{32}^{(1)}/A_{22}^{(1)}, \dots, A_{n2}^{(1)}/A_{22}^{(1)})$

Final iteration

• after $n-1$ iterations, we get the upper-triangular system

$$
[A^{(n-1)}|b^{(n-1)}] = \begin{bmatrix} A_{11} & A_{12} & \cdots & \cdots & A_{1n} & b_1 \\ 0 & A_{22}^{(1)} & A_{23}^{(1)} & \cdots & A_{2n}^{(1)} & b_2^{(1)} \\ \vdots & 0 & A_{33}^{(2)} & \cdots & A_{3n}^{(2)} & b_3^{(2)} \\ \vdots & \vdots & \cdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & A_{nn}^{(n-1)} & b_n^{(n-1)} \end{bmatrix}
$$

where

$$
U = A^{(n-1)} = G^{(n-1)} \cdots G^{(2)} G^{(1)} A
$$

$$
b^{(n-1)} = G^{(n-1)} \cdots G^{(2)} G^{(1)} b
$$

• now, we solve $Ux = b^{(n-1)}$ using back substitution

Example

$$
Ax = \begin{bmatrix} 1 & 2 & 2 \\ 4 & 4 & 2 \\ 4 & 6 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix} = b
$$

we subtract four times the first row from each of the second and third rows:

$$
G^{(1)}A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 4 & 4 & 2 \\ 4 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & -2 & -4 \end{bmatrix}
$$

$$
G^{(1)}b = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ -2 \end{bmatrix}
$$

[Gaussian elimination](#page-5-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ 5.11

Ī

Ī

we subtract 0.5 times the second row from the third row:

$$
G^{(2)}G^{(1)}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & -2 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix}
$$

$$
G^{(2)}G^{(1)}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -6 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}
$$

we have reduced the original system to the equivalent upper triangular system

$$
Ux = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}
$$

which can now be solved by back-substitution to obtain $x = (-1, 3, -1)$

Inverse of elementary matrix

$$
\begin{bmatrix}\n1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -L_{k+1,k} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -L_{n,k} & 0 & \cdots & 1\n\end{bmatrix}^{-1} = \begin{bmatrix}\n1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & L_{k+1,k} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & L_{n,k} & 0 & \cdots & 1\n\end{bmatrix} = L^{(k)}
$$

- compactly: $(I l_k e_k^T)^{-1} = I + l_k e_k^T$ where $l_k = (0, ..., 0, L_{k+1,k}, ..., L_{n,k})$
- inverse has same form as $G^{(k)}$ with subdiagonal entries negated

• for
$$
k \le j
$$
, we have $e_k^T l_j = 0$ and thus
\n
$$
L^{(1)} \cdots L^{(n-2)} L^{(n-1)} = I + l_1 e_1^T + \cdots + l_{n-1} e_{n-1}^T
$$

which is also lower triangular

[Gaussian elimination](#page-5-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ 5.13

Gaussian elimination and LU factorization

Gaussian elimination produces

$$
U=G^{(n-1)}\cdots G^{(2)}G^{(1)}A
$$

or written equivalently

$$
A = LU
$$

•
$$
L = L^{(1)} \cdots L^{(n-2)} L^{(n-1)}
$$
 where $L^{(k)} = (G^{(k)})^{-1}$

- L is lower triangular (see previous page)
- this is called *LU factorization* or *LU decomposition*
- requires pivot elements to be nonzero during the Gaussian elimination procedure

Gaussian elimination algorithm

given *Ax* = *b* with nonsingular *A* ∈
$$
\mathbb{R}^{n \times n}
$$
 and *b* ∈ \mathbb{R}^n
\n**set** *U* = *A* and *L* = *I*
\n**for** *k* = 1, . . . , *n* − 1
\n1. *L_{k+1:n,k}* = *U_{k+1:n,k}/U_{kk}* then set *U_{k+1:n,k}* = 0
\n2. *U_{k+1:n,k+1:n}* = *U_{k+1:n,k+1:n}* − *L_{k+1:n,k}U_{k,k+1:n}*
\n3. *b_{k+1:n}* = *b_{k+1:n}* − *L_{k+1:n,k}b_k*

next, apply the algorithm of back substitution to $Ux = b$

algorithm gives factorization $A = LU$

Complexity

- cost is approximately $(2/3)n^3$
- back substitution costs n^2
- cost of the Gaussian elimination phase dominates

Example

consider A from previous example

$$
A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 4 & 4 & 2 \\ 4 & 6 & 4 \end{array} \right]
$$

we have

$$
G^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, \quad G^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.5 & 1 \end{bmatrix}
$$

hence,

$$
L = (G^{(1)})^{-1} (G^{(2)})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 4 & 0.5 & 1 \end{bmatrix}
$$

we thus have

$$
A = \begin{bmatrix} 1 & 2 & 2 \\ 4 & 4 & 2 \\ 4 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 4 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix} = LU
$$

Outline

- • [triangular linear systems](#page-1-0)
- [Gaussian elimination](#page-5-0)
- **[LU factorization](#page-17-0)**
- [positive definite matrices](#page-35-0)
- [Cholesky factorization](#page-44-0)
- [sparse linear equations](#page-52-0)

LU factorization

LU factorization (no pivoting)

 $A = LU$

- L unit lower triangular, U upper triangular
- does not always exist (even if A is nonsingular)

LU factorization with row pivoting

 $P A - II$

- P permutation matrix, L unit lower triangular, U upper triangular
- always exists if A is nonsingular
- not unique; there may be several possible choices for P, L, U
- interpretation: permute the rows of A and factor $PA = LU$

LU factorization and matrix inverse

let A is nonsingular and $n \times n$, with LU factorization

$$
A = P^T L U
$$

• inverse from LU factorization

$$
A^{-1} = (P^T L U)^{-1} = U^{-1} L^{-1} P
$$

• gives interpretation of solving $Ax = b$ steps: we evaluate

$$
x = A^{-1}b = U^{-1}L^{-1}Pb
$$

in three steps

$$
z_1 = Pb
$$
, $z_2 = L^{-1}z_1$, $x = U^{-1}z_2$

Solving linear equations by LU factorization

given $Ax = b$ with nonsingular $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$

- 1. factor A as $A = P^TLU$
- 2. solve $(P^T L U)x = b$ in three steps
	- (a) permutation: $z_1 = Pb$
	- (b) forward substitution: solve $Lz_2 = z_1$
	- (c) back substitution: solve $Ux = z₂$

Complexity:

- factorization requires $(2/3)n^3$ flops
- forward and back substitution costs n^2 each
- total: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ flops

this is the standard method for solving $Ax = b$

Multiple right-hand sides

two equations with same non-singular $A\in \mathbb{R}^{n\times n}$ and different right-hand sides:

$$
Ax = b, \quad A\tilde{x} = \tilde{b}
$$

- \bullet factor \overline{A} once
- forward/back substitution to get x
- forward/back substitution to get \tilde{x}

complexity: $(2/3)n^3 + 4n^2 \approx (2/3)n^3$

Computing the inverse

solve $AX = I$ column by column:

- one LU factorization of $A: (2/3)n^3$ flops
- *n* solve steps: $2n^3$ flops
- total: $(8/3)n^3$ flops

Conclusion: do not solve $Ax = b$ by multiplying A^{-1} with b

- \bullet 3 \times more computationally expensive than using the LU factorization route
- forming A^{-1} is wasteful in storage
- it may give rise to a more pronounced presence of roundoff errors

Recursive computation of $A = LU$

$$
\begin{bmatrix}\nA_{11} & A_{1,2:n} \\
A_{2:n,1} & A_{2:n,2:n}\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 0 \\
L_{2:n,1} & L_{2:n,2:n}\n\end{bmatrix}\n\begin{bmatrix}\nU_{11} & U_{1,2:n} \\
0 & U_{2:n,2:n}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\nU_{11} & U_{1,2:n} \\
U_{11}L_{2:n,1} & L_{2:n,1}U_{1,2:n} + L_{2:n,2:n}U_{2:n,2:n}\n\end{bmatrix}
$$

1. find the first row of U and the first column of L :

$$
U_{11}=A_{11},\quad U_{1,2:n}=A_{1,2:n},\quad L_{2:n,1}=\frac{1}{A_{11}}A_{2:n,1}
$$

2. factor the $(n - 1) \times (n - 1)$ -matrix

$$
L_{2:n,2:n}U_{2:n,2:n} = A_{2:n,2:n} - L_{2:n,1}U_{1,2:n} = A_{2:n,2:n} - \frac{1}{A_{11}}A_{2:n,1}A_{1,2:n}
$$

this is an LU factorization of size $(n - 1) \times (n - 1)$

3. we can calculate $L_{2:n,2:n}$ and $U_{2:n,2:n}$ by repeating process on factored matrix (this is basically Gaussian elimination on page [7.15](#page-0-0))

[LU factorization](#page-17-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$

1

Example

$$
A = \left[\begin{array}{rrr} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{array} \right]
$$

factor as $A = LU$ with L unit lower triangular, U upper triangular

$$
A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}
$$

Solution

• first row of U , first column of L :

$$
\begin{bmatrix} 8 & 2 & 9 \ 4 & 9 & 4 \ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 1/2 & 1 & 0 \ 3/4 & L_{32} & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \ 0 & U_{22} & U_{23} \ 0 & 0 & U_{33} \end{bmatrix}
$$

• second row of U , second column of L :

$$
\begin{bmatrix} 9 & 4 \ 7 & 9 \end{bmatrix} - \begin{bmatrix} 1/2 \\ 3/4 \end{bmatrix} \begin{bmatrix} 2 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ L_{32} & 1 \end{bmatrix} \begin{bmatrix} U_{22} & U_{23} \\ 0 & U_{33} \end{bmatrix}
$$

$$
\begin{bmatrix} 8 & -1/2 \\ 11/2 & 9/4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & -1/2 \\ 0 & U_{33} \end{bmatrix}
$$

• third row of *U*:
$$
U_{33} = 9/4 + 11/32 = 83/32
$$

putting things together, we obtain

$$
A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/4 & 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \\ 0 & 8 & -1/2 \\ 0 & 0 & 83/32 \end{bmatrix}
$$

Factorization $A = LU$ may not exists

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}
$$

• first row of U , first column of L :

$$
\begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 2 \ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & L_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & U_{22} & U_{23} \ 0 & 0 & U_{33} \end{bmatrix}
$$

• second row of U , second column of L :

$$
\left[\begin{array}{cc}0&2\\1&-1\end{array}\right]=\left[\begin{array}{cc}1&0\\L_{32}&1\end{array}\right]\left[\begin{array}{cc}U_{22}&U_{23}\\0&U_{33}\end{array}\right]
$$

• issue: $U_{22} = 0$, $U_{23} = 2$, $L_{32} = 1/0$! (can be fixed via pivoting)

Effect of rounding error

$$
\begin{bmatrix} 10^{-5} & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

$$
x_1 = \frac{-1}{1 - 10^{-5}}, \quad x_2 = \frac{1}{1 - 10^{-5}}
$$

solution is:

• let us solve using LU factorization for the two possible permutations:

$$
P = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad \text{or} \quad P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]
$$

• we round intermediate results to four significant decimal digits

First choice: $P = I$ (no pivoting)

$$
\left[\begin{array}{cc} 10^{-5} & 1 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 10^{5} & 1 \end{array}\right] \left[\begin{array}{cc} 10^{-5} & 1 \\ 0 & 1 - 10^{5} \end{array}\right]
$$

• L, U rounded to 4 significant decimal digits

$$
L = \begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 10^{-5} & 1 \\ 0 & -10^5 \end{bmatrix}
$$

• forward substitution

$$
\left[\begin{array}{cc} 1 & 0 \\ 10^5 & 1 \end{array}\right] \left[\begin{array}{c} z_1 \\ z_2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \implies z_1 = 1, \quad z_2 = -10^5
$$

• back substitution

$$
\begin{bmatrix} 10^{-5} & 1 \ 0 & -10^5 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} 1 \ -10^5 \end{bmatrix} \implies x_1 = 0, \quad x_2 = 1
$$

error in x_1 is 100%

[LU factorization](#page-17-0) $\begin{array}{ccc} S\mathrm{A} & \mathrm{S}\mathrm{A} & \mathrm{S}\mathrm{A} \end{array}$

Second choice: interchange rows

$$
\left[\begin{array}{cc} 1 & 1 \\ 10^{-5} & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 10^{-5} & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 - 10^{-5} \end{array}\right]
$$

• L, U rounded to 4 significant decimal digits

$$
L = \left[\begin{array}{cc} 1 & 0 \\ 10^{-5} & 1 \end{array} \right], \quad U = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]
$$

• forward substitution

$$
\left[\begin{array}{cc} 1 & 0 \\ 10^{-5} & 1 \end{array}\right] \left[\begin{array}{c} z_1 \\ z_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \implies z_1 = 0, \quad z_2 = 1
$$

• back substitution

$$
\begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} 0 \ 1 \end{bmatrix} \implies x_1 = -1, \quad x_2 = 1
$$

error in x_1, x_2 is about 10^{-5}

[LU factorization](#page-17-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ 7.28

Conclusion: rounding error and numerical instability

- for some P , small roundoff errors can cause very large errors in the solution
- this is called numerical instability:
	- for the first choice of P in the example, the algorithm is unstable
	- for the second choice of P , it is stable
- a simple rule for selecting a good permutation is via partial pivoting (see next)

Computing LU factorization with partial pivoting

Gaussian elimination with partial pivoting to compute $PA = LU$

```
given nonsingular A \in \mathbb{R}^{n \times n}set P = I, L = 0, U = Afor k = 1, 2, ..., n - 11. select q \geq k to maximize |U_{ak}|P_{k,:} \leftrightarrow P_{q,:} (swap rows)
    U = P U (swap rows)
    L = PL (swap rows if k \ge 2)
2. set L_{kk} = 13. L_{k+1:n,k} = U_{k+1:n,k}/U_{kk} then set U_{k+1:n,k} = 0U_{k+1:n,k+1:n} = U_{k+1:n,k+1:n} - L_{k+1:n,k} U_{k,k+1:n}
```
Example

$$
A = \left[\begin{array}{rrr} 0 & 5 & 5 \\ 2 & 3 & 0 \\ 6 & 9 & 8 \end{array} \right]
$$

since $A_{11} = 0$, we swap rows 1 and 3 using

Ī

$$
U = P_1 A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 5 & 5 \\ 2 & 3 & 0 \\ 6 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 9 & 8 \\ 2 & 3 & 0 \\ 0 & 5 & 5 \end{bmatrix}
$$

set $L_{11} = 1$, $(L_{21}, L_{31}) = (\frac{2}{6}, \frac{0}{6})$, and

$$
L^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad U_{2:n,2:n}^{(1)} = \begin{bmatrix} 3 & 0 \\ 5 & 5 \end{bmatrix} - \begin{bmatrix} 1/3 \\ 0 \end{bmatrix} [9 \quad 8] = \begin{bmatrix} 0 & -8/3 \\ 5 & 5 \end{bmatrix}
$$

Ī

we swap the second and third row of $U^{\left(1\right)}$

$$
U_{2:n,2:n}^{(2)} = P_2 U_{2:n,2:n}^{(1)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -8/3 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 0 & -8/3 \end{bmatrix}
$$

we also swap the second and third rows of $L^{(1)}$ and set $L_{22}=1$

$$
L^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/3 & 0 & 0 \end{bmatrix}
$$

the matrix $U_{2:n,2:n}^{(2)}$ is upper triangular; hence $U_{3:n,3:n}^{(3)}=-8/3$ and

$$
L^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/3 & 0 & 1 \end{bmatrix}
$$

the permutation matrix is (*I* swap rows $1 \leftrightarrow 3$ then $2 \leftrightarrow 3$)

$$
P = \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix} P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
$$

the LU factorization $A = P^T L U$ can now be assembled follows

$$
\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 5 & 5 \\ 2 & 3 & 0 \\ 6 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 9 & 8 \\ 0 & 5 & 5 \\ 0 & 0 & -8/3 \end{bmatrix}
$$

Outline

- • [triangular linear systems](#page-1-0)
- [Gaussian elimination](#page-5-0)
- [LU factorization](#page-17-0)
- **[positive definite matrices](#page-35-0)**
- [Cholesky factorization](#page-44-0)
- [sparse linear equations](#page-52-0)

Positive (semi)definite matrix

 \bullet a *symmetric* matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if

 $x^T A x \geq 0$ for all x

• a *symmetric matrix* $A \in \mathbb{R}^{n \times n}$ is positive definite if

 $x^T Ax > 0$ for all $x \neq 0$

this is a subset of the positive semidefinite matrices

note: if A is symmetric and $n \times n$, then the function

$$
x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j} = \sum_{i=1}^{n} A_{ii}x_{i}^{2} + 2\sum_{i>j} A_{ij}x_{i}x_{j}
$$

is called a *quadratic form*

[positive definite matrices](#page-35-0) $\begin{array}{ccc} 7.34 \end{array}$ **7.34**

Example

$$
A = \left[\begin{array}{cc} 9 & 6 \\ 6 & a \end{array} \right]
$$

$$
x^{T}Ax = 9x_1^2 + 12x_1x_2 + ax_2^2 = (3x_1 + 2x_2)^2 + (a - 4)x_2^2
$$

• A is positive definite for $a > 4$

 $x^T A x > 0$ for all nonzero x

• A is positive semidefinite but not positive definite for $a = 4$

$$
x^T A x \ge 0 \quad \text{for all } x, \quad x^T A x = 0 \quad \text{for } x = (2, -3)
$$

• A is not positive semidefinite for $a < 4$

$$
x^T Ax < 0
$$
 for $x = (2, -3)$

Properties

• every positive definite matrix \overline{A} is nonsingular

$$
Ax = 0 \implies x^T A x = 0 \implies x = 0
$$

(last step follows from positive definiteness)

• every positive definite matrix A has positive diagonal elements

$$
A_{ii} = e_i^T A e_i > 0
$$

 \bullet every positive semidefinite matrix A has nonnegative diagonal elements

$$
A_{ii} = e_i^T A e_i \ge 0
$$

Schur complement

partition $n \times n$ symmetric matrix A as

$$
A = \left[\begin{array}{cc} A_{11} & A_{2:n,1}^T \\ A_{2:n,1} & A_{2:n,2:n} \end{array} \right]
$$

• the Schur complement of A_{11} is defined as the $(n - 1) \times (n - 1)$ matrix

$$
S = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T
$$

• if A is positive definite, then S is positive definite to see this, take any $x \neq 0$ and define $y = -(A_{2:n,1}^T x)/A_{11}$, then

$$
x^T S x = \left[\begin{array}{c} y \\ x \end{array} \right]^T \left[\begin{array}{cc} A_{11} & A_{2:n,1}^T \\ A_{2:n,1} & A_{2:n,2:n} \end{array} \right] \left[\begin{array}{c} y \\ x \end{array} \right] > 0
$$

because A is positive definite

[positive definite matrices](#page-35-0) $\begin{array}{ccc} 7.37 \end{array}$

Singular positive semidefinite matrices

if A is positive semidefinite, but not positive definite, then it is singular

to see this, suppose A is positive semidefinite but not positive definite

• there exists a nonzero x with $x^T A x = 0$

 $\ddot{}$

 \bullet since \ddot{A} is positive semidefinite the following function is nonnegative:

$$
f(t) = (x - tAx)^T A (x - tAx)
$$

= $x^T Ax - 2tx^T A^2 x + t^2 x^T A^3 x$
= $-2t ||Ax||^2 + t^2 x^T A^3 x$

- $f(t) \geq 0$ for all t is only possible if $||Ax|| = 0$; therefore $Ax = 0$
- hence there exists a nonzero x with $Ax = 0$, so A is singular

Example: resistor circuit

$$
\left[\begin{array}{c}y_1\\y_2\end{array}\right]=\left[\begin{array}{cc}R_1+R_3&R_3\\R_3&R_2+R_3\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right]
$$

show that the matrix

$$
A = \left[\begin{array}{cc} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{array} \right]
$$

is positive definite if R_1, R_2, R_3 are positive

Solution

$$
x^{T}Ax = (R_1 + R_3)x_1^2 + 2R_3x_1x_2 + (R_2 + R_3)x_2^2
$$

= R₁x₁² + R₂x₂² + R₃(x₁ + x₂)²
\ge 0

and $x^T A x = 0$ only if $x_1 = x_2 = 0$

Physics interpretation

- $x^T A x = y^T x$ is the power delivered by sources, dissipated by resistors
- power dissipated by the resistors is positive unless both currents are zero

Gram matrix

recall the definition of Gram matrix of a matrix B

$$
A=B^TB
$$

• every Gram matrix is positive semidefinite

$$
x^T A x = x^T B^T B x = ||Bx||^2 \ge 0 \quad \forall x
$$

• a Gram matrix is positive definite if

$$
x^T A x = x^T B^T B x = ||Bx||^2 > 0 \quad \forall x \neq 0,
$$

 $i.e., B$ has linearly independent columns

Outline

- • [triangular linear systems](#page-1-0)
- [Gaussian elimination](#page-5-0)
- [LU factorization](#page-17-0)
- [positive definite matrices](#page-35-0)
- **[Cholesky factorization](#page-44-0)**
- [sparse linear equations](#page-52-0)

LU factorization for positive definite matrices

LU factorization of a symmetric positive definite matrix

 $A = LU$

since U is upper triangular with diagonal elements $U_{kk} > 0$, we can write

so the LU factorization reads

 $A = L D \tilde{U}$

Symmetrizing the LU factorization

since A is symmetric, we have

$$
LD\tilde{U} = A = A^T = \tilde{U}^T D L^T
$$

since this factorization is unique, we have $L=\tilde{U}^T$ or

$$
A = LDL^T
$$

if we write $D=D^{1/2}D^{1/2}$ with

$$
D^{1/2} = \text{diag}(\sqrt{U_{11}}, \ldots, \sqrt{U_{nn}})
$$

we can express the LU as factorization

$$
A = R^T R
$$

with R^T = $LD^{1/2}$ a lower triangular matrix; this is called the *Cholesky factorization*

[Cholesky factorization](#page-44-0) $\begin{array}{ccc} 7.43 \end{array}$

Cholesky factorization

every positive definite matrix $A \in \mathbb{R}^{n \times n}$ can be factored as

$$
A = R^T R
$$

where R is upper triangular with positive diagonal elements

- complexity of computing R is $(1/3)n^3$ flops
- R is called the *Cholesky factor* of A
- can be interpreted as "square root" of a positive definite matrix

Cholesky factorization algorithm

$$
\begin{bmatrix}\nA_{11} & A_{1,2:n} \\
A_{2:n,1} & A_{2:n,2:n}\n\end{bmatrix} =\n\begin{bmatrix}\nR_{11} & 0 \\
R_{1,2:n}^T & R_{2:n,2:n}^T\n\end{bmatrix}\n\begin{bmatrix}\nR_{11} & R_{1,2:n} \\
0 & R_{2:n,2:n}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\nR_{11}^2 & R_{11}R_{1,2:n} \\
R_{11}R_{1,2:n}^T & R_{1,2:n}^T + R_{2:n,2:n}^T R_{2:n,2:n}\n\end{bmatrix}
$$

given a symmetric positive definite matrix

1. compute first row of *:*

$$
R_{11} = \sqrt{A_{11}}, \quad R_{1,2:n} = \frac{1}{R_{11}} A_{1,2:n}
$$

2. compute 2,2 block $R_{2:n,2:n}$ from

$$
A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = R_{2:n,2:n}^T R_{2:n,2:n}
$$

this is a Cholesky factorization of order $n - 1$

1

Example

$$
\left[\begin{array}{ccc} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{array}\right] = \left[\begin{array}{ccc} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{array}\right] \left[\begin{array}{ccc} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{array}\right]
$$

• first row of $$

$$
\begin{bmatrix} 25 & 15 & -5 \ 15 & 18 & 0 \ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \ 3 & R_{22} & 0 \ -1 & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \ 0 & R_{22} & R_{23} \ 0 & 0 & R_{33} \end{bmatrix}
$$

• second row of R

$$
\begin{bmatrix} 18 & 0 \ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} R_{22} & 0 \ R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{22} & R_{23} \ 0 & R_{33} \end{bmatrix}
$$

$$
\begin{bmatrix} 9 & 3 \ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \ 1 & R_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \ 0 & R_{33} \end{bmatrix}
$$

• third column of $R: 10 - 1 = R_{33}^2$, so, $R_{33} = 3$

Example

we conclude

$$
\begin{bmatrix} 25 & 15 & -5 \ 15 & 18 & 0 \ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \ R_{12} & R_{22} & 0 \ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \ 0 & R_{22} & R_{23} \ 0 & 0 & R_{33} \end{bmatrix}
$$

$$
= \begin{bmatrix} 5 & 0 & 0 \ 3 & 3 & 0 \ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \ 0 & 3 & 1 \ 0 & 0 & 3 \end{bmatrix}
$$

Solving equations with positive definite

given: $Ax = b$ with positive definite $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$

- 1. factor A as $A = R^T R$
- 2. solve $R^T R x = b$ in two steps
	- (a) forward substitution: solve $R^T y = b$
	- (b) back substitution: solve $Rx = y$

Complexity: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ flops

(half the memory space and half the flops of the general LU factorization algorithm)

Outline

- • [triangular linear systems](#page-1-0)
- [Gaussian elimination](#page-5-0)
- [LU factorization](#page-17-0)
- [positive definite matrices](#page-35-0)
- [Cholesky factorization](#page-44-0)
- **[sparse linear equations](#page-52-0)**

Sparse linear equations

if A is sparse, it is usually factored as

$$
P_1AP_2=LU
$$

- P_1 and P_2 are permutation matrices
- interpretation: permute rows and columns of A and factor $\tilde{A} = P_1 A P_2$

$$
\tilde{A} = LU
$$

- choice of P_1 and P_2 greatly affects the sparsity of L and U
- several heuristic methods exist for selecting good permutations
- in practice: #flops $\ll (2/3)n^3$; exact value depends on n, number of nonzero elements, sparsity pattern

Sparse Cholesky factorization

if \vec{A} is sparse and positive definite, it is usually factored as

$$
A = PR^T R P^T
$$

 P a permutation matrix; R upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

$$
P^T A P = R^T R
$$

- if A is very sparse, R is often (but not always) sparse
- choice of permutation greatly affects the sparsity R
- there exist several heuristic methods for choosing a good permutation
- if R is sparse, the cost of the factorization is much less than $(1/3)n^3$

Example

500

 $\overline{500}$

References and further readings

- U. M. Ascher. *A First Course on Numerical Methods*. Society for Industrial and Applied Mathematics, 2011.
- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)