ENGR 504 (Fall 2024) S. Alghunaim

7. LU factorization

e triangular linear systems
e Gaussian elimination

e LU factorization

e positive definite matrices
e Cholesky factorization

® sparse linear equations

71



Solution of triangular linear equations

e if A is lower/upper triangular with nonzero diagonals

e Ax = b can be solved using forward/back substitution

Forward substitution algorithm: assume A is lower triangular

X1 = bl/All
X2 = (b — Ag1x1) [Agg

x3 = (b3 — A31x1 — Asax3) [A33

Xn = (bn —Apixy — Apaxg — -+ — An,n—lxn—l) /Ann

triangular linear systems 7.2



Back substitution algorithm: assume A is upper triangular

Xpn = bn/Ann
Xp-1 = (bnfl - Anfl,nxn) /Anfl,nfl

Xn-2 = (bn—2 - An—2,n—1xn—1 - An—2,nxn) /An—2,n—2

x1 = (b1 — A1axg — Aizxg — - — A1pxy) [Ann
Complexity

1+3+5+-+(2n—1)=» (2k—1) =n" flops
k=1

triangular linear systems 7.3



Example

o5x1 =15
X1+2x9=7 A=

—X1 +3X2+2X3 =5

applying the forward substitution algorithm, we get

15
Xl—gz?)

7-3
xp= = =2

5+3-6

triangular linear systems
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Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:
Ax=0 = x=0
this follows from forward or back substitution applied to the equation Ax = 0
e inverse of A can be computed by solving AX = I column by column
Alx1 xo -+ xy] =[e1 ea -+ en] (x;is column i of X)

— inverse of lower triangular matrix is lower triangular
— inverse of upper triangular matrix is upper triangular

e complexity of computing inverse of n X n triangular matrix

+1)(2n+1 1
n2+(n—1)2+-~-+1:w%§n3f|OPS

e conclusion: solving using back/forward subs. is more efficient than inverse way

triangular linear systems
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Elementary row operations

suppose A is an n X n invertible matrix, b is an n-vector

solution of Ax = b is invariant under the elementary row operations:

1. interchanging any two rows of the matrix [A | b]
2. multiplying one of its rows by a real nonzero number

3. adding a scalar multiple of one row to another row

Gaussian elimination
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Elementary elimination matrix

for n-vector u, we can zero out elements below kth entry as follows:

(1 ... 0 o --- 01T uy 1 [ uy 1
W, _ 0 - 1 0 - 0 Uk |
G u 0 -+ —Lgge 1 - 0 uger | | O
[0+ —“Lyx 0 - 1| ux | |0

o Lip=ujfurfori=k+1,...,n
e the divisor uy is called the pivot

o G islower triangular with unit (nonzero) diagonal, and hence nonsingular

Gaussian elimination



Gaussian elimination procedure

Iteration 1
e zero out the first column below the main diagonal

e subtract 4L x the first row from the ith row for all i = 2,3,...,n

Aqq
(A1 Az A by
(1) (1) (1)
—Loy1 1 : : .. ; :
—_— (1) (1) (1)
~ 0 A Al B
_ [A1; A1,2:n by
| 0 A2y2m — Lon1Ar2:n ban — Loniby

where Loy 1 = Aoain,1/A11 = (A21/A11, ..., Ani/A11)

Gaussian elimination 7.8



Iteration 2:

e zero out the

Aiz

second column below diagonal

e subtract Ao X the second row from the ithrow foralli = 3,4, ...,n
A A A1
(1) (1) (1)
1 0 0 0 Ay A%g) A%n)
() | . 2 2
0 1 of[AWpW=|: 0 Aj A,
0 -Lznz I ; ; ; ;
—_— (2) (2)
e 0 0 Aj5 A
A1 A(12 A%,i;:n by
1) 1 (1)
ol (1) Az 5 [EONEY! o2 (1)
0 0 A3:n,3:n - L3rn,2A2,3:n b3:n - L3:n,2b2
1 1 1 1
where Ls.2 = AL ,/AS) = (AL /A, ... AL 1AS)

Gaussian elimination

iV
b(2)

by
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Final iteration

e after n — 1 iterations, we get the upper-triangular system

Ayr A e e Aqy by
(1) (1) (1) (1)
0 A22 A23 A2n b2
[A(n—1)|b(n—1)] = 0 A;g,) A:())i) bz(),2)
0 0 - 0 ArY peb

where
U=A""1 -g-D.. .20 4

p=1 — (-1 .52 My

e now, we solve Ux = ("1 using back substitution

Gaussian elimination
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Example

1 2 2 ||x 3
Ax=|4 4 2 ||x2|=]6]|=Db
4 6 4 ||x3 10

we subtract four times the first row from each of the second and third rows:

1 00]1[1 2 2 1 2 2
GMA=|-4 1 01||4 4 2|=|0 -4 -6
-4 0 1|4 6 4 0 -2 -4

1 00 3 3

GWp=| -4 1 0 6 |=| -6

-4 0 11|10 -2

Gaussian elimination
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we subtract 0.5 times the second row from the third row:

0011 2 2]

1
GPcMa=10 1 0]|l0 -4 -6
0 -3 1]]0 -2 —4 |
1 00
GP¢Wp={0 1 0]|]| -6
0 -3 1 -2 |

3]

[1 2 2
0 -4 -6
0 0 -1
[ 3
-6
1

we have reduced the original system to the equivalent upper triangular system

1 2 2 X1 3
Ux=|0 -4 -6 xo [ =] -6
0 0 -1 X3 1

which can now be solved by back-substitution to obtain x = (-1, 3, —1)

Gaussian elimination
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Inverse of elementary matrix

1 0 0 0 1 0 0 0
0 - 1 0 - 0 o - 1 0 - 0 _L®
0 - —Lggx 1 0 0 Lisg 1 - 0
|0+ —“Lyx 0 - 1] 0 - Lyx 0 - 1|

e compactly: (I — lke,{)‘1 =1+ lke,{where e =0(0,...,0, Lis1kr- > Lu k)
e inverse has same form as G K) with subdiagonal entries negated
e for k < j, we have efl; = 0 and thus
L. p@m=2)y(n-1) _y 1161T+ R ln—le,{q
which is also lower triangular

Gaussian elimination 713



Gaussian elimination and LU factorization

Gaussian elimination produces
U=G"V...ag@gM4y

or written equivalently
A=LU

o L =LW...[(n=2) [ (n=1) yhere LK) = (G(k))‘l

e L is lower triangular (see previous page)

this is called LU factorization or LU decomposition

requires pivot elements to be nonzero during the Gaussian elimination procedure

Gaussian elimination 714



Gaussian elimination algorithm

given Ax = b with nonsingular A € R"*" and b € R"
setU=Aand L =1

fork=1,...,n-1

1. Lit1:nk = Uks1:n,k/Ukk then set Ugyq:n,x = 0
2. Ursrnk1:n = Ugsinka1:n = Lie1:n, Uk ke 1:n
3. bri1:n = bratin — Lis1in,kbi

next, apply the algorithm of back substitution to Ux = b
algorithm gives factorization A = LU

Complexity

e cost is approximately (2/3)n>

e back substitution costs 7>

e cost of the Gaussian elimination phase dominates

Gaussian elimination
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Example

consider A from previous example

we have

hence,

L=(@)(6?) " -

we thus have

A:

Gaussian elimination

N
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LU factorization

LU factorization (no pivoting)
A=LU

e [ unit lower triangular, U upper triangular
e does not always exist (even if A is nonsingular)
LU factorization with row pivoting

PA=LU

P permutation matrix, L unit lower triangular, U upper triangular
e always exists if A is nonsingular

e not unique; there may be several possible choices for P, L, U

interpretation: permute the rows of A and factor PA = LU

LU factorization 717



LU factorization and matrix inverse

let A is nonsingular and n X n, with LU factorization
A=PILU
e inverse from LU factorization
Al =(PTLO) ' =U"L7tP
e gives interpretation of solving Ax = b steps: we evaluate
x=A""b=U"'L"'Pb

in three steps
z21=Pb, z3=L""'z;, x=U""z

LU factorization

7.18



Solving linear equations by LU factorization

given Ax = b with nonsingular A € R"*" and b € R"

1. factor A as A = PTLU
2. solve (PTLU)x = b in three steps
(a) permutation: z1 = Pb

(b) forward substitution: solve Lzg = z1

(c) back substitution: solve Ux = zo

Complexity:

e factorization requires (2/3)n>flops

e forward and back substitution costs n? each
o total: (2/3)n> +2n% =~ (2/3)n3 flops

this is the standard method for solving Ax = b

LU factorization
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Multiple right-hand sides

two equations with same non-singular A € R"™*"* and different right-hand sides:

Ax=b, Ai=b

e factor A once
e forward/back substitution to get x

e forward/back substitution to get x

complexity: (2/3)n® + 4n? ~ (2/3)n®

LU factorization
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Computing the inverse

solve AX = I column by column:

e one LU factorization of A: (2/3)n?> flops
e 1 solve steps: 2n3 flops
e total: (8/3)n? flops

Conclusion: do not solve Ax = b by multiplying A~! with b

e 3X more computationally expensive than using the LU factorization route
e forming A~! is wasteful in storage

e it may give rise to a more pronounced presence of roundoff errors

LU factorization
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Recursive computation of A = LU

Aqq Aron | _ 1 0 Ui Ui

Aot A2 Loy Lon2m 0 Uzpan
_ Ui Ui,2:n

U11L2:n,1 L2:n,1U1,2:n + L2:n,2:nU2:n,2:n
1. find the first row of U and the first column of L:
1
Uin = A1, Ui =Ar,2:, Lo =—Aoxn1

Aqq

2. factor the (n — 1) X (n — 1)-matrix
1
Lon2:0U2in2:n = A2in2:n — Loin,1U1,2:0 = A2:n200 — A—A2:n,1A1,2:n
11

this is an LU factorization of size (n — 1) X (n — 1)
3. we can calculate La.j 2., and Ua., 2., by repeating process on factored matrix

(this is basically Gaussian elimination on page 7.15)

LU factorization 7.22



Example

b

Il
o W 00
~ © W
© e ©

factor as A = LU with L unit lower triangular, U upper triangular

8 2 9 1 0 01[Un Usa Us
A=|4 9 4|=|Ly 1 0 0 Uy Us
6 7 9 L31 L32 1 0 0 U33

LU factorization
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Solution

o first row of U, first column of L:

8 2 9 1 0
4 9 4 |=|1/2 1
6 7 9 3/4 Lso

e second row of U, second column of L:

7l

1/2

8 -1/2
112 9/4
e third row of U: U3z = 9/4+11/32 =83/32

putting things together, we obtain

8 2 9 1 0
A=|4 9 4|=|1/2 1
6 7 9 3/4 11/16

LU factorization

0
0
1

Uza Ussg

3/4][29 [L32 H U33]
0
1

11/16

0
0
1

|

8 2 9
0 U2 U2

0 0 Uss

1

o

I o

8 2 9
0 8 -1/2
0 0 83/32
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Factorization A = LU may not exists

1 0 0 1 0 0 Uii Ui Uss
A=]10 0 2 | =| Loy 1 0 0 Uy Uss
0 1 -1 L3y L3y 1 0 0 Uss
o first row of U, first column of L:
1 0 0 1 0 0 1 0 0
00 2 1=10 1 0 0 Uz Uss
0 1 -1 0 L3z 1 0 0 Uss

e second row of U, second column of L:

0 2_ 1 0 Uz Uss
1 -1 - L32 1 0 U33
e issue: Usy =0, Uss = 2, L3o = 1/0! (can be fixed via pivoting)

LU factorization
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Effect of rounding error

solution is:

X1 X2

T1-105 ?T1-100

e let us solve using LU factorization for the two possible permutations:

10 0 1
P‘[o 1] or P‘[1 0]

e we round intermediate results to four significant decimal digits

LU factorization
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First choice: P = I (no pivoting)

105 1] [ 1 0 1075 1
1 1|7 ]10° 1 0 1-10°
e [, U rounded to 4 significant decimal digits
1 0 1073 1
S R I Y

e forward substitution

1 o[z ]_J1 _ i
[105 1”&]"[0] = a=l z=-10

e back substitution

107° 1
0 -10°

X1
X2
error in x1 is 100%

LU factorization
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Second choice: interchange rows

1 1] 1 0 1 1
107 1|7 107% 1 0 1-1075

e [, U rounded to 4 significant decimal digits

[ 1 0 11
L‘»10*5 1]’ U‘[o 1]

e forward substitution

1 0] 0
s 22 ][] = ame om

e back substitution

11
0 1

error in x1, X2 is about 107>

X1 _ 0 _ _
|:x2]—|:1:| - X1 = 1, .XQ—l

LU factorization
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Conclusion: rounding error and numerical instability

e for some P, small roundoff errors can cause very large errors in the solution

e this is called numerical instability:
— for the first choice of P in the example, the algorithm is unstable

— for the second choice of P, it is stable

e a simple rule for selecting a good permutation is via partial pivoting (see next)

LU factorization
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Computing LU factorization with partial pivoting

Gaussian elimination with partial pivoting to compute PA = LU

given nonsingular A € R™*"

setP=1,L=0,U=A

fork=1,2,...,n-1

1. select ¢ > k to maximize |Ug|
Py,. & P, . (swap rows)

U = PU (swap rows)
L = PL (swap rowsif k > 2)

2. setLyr =1

8. Lis1:n,k = Uks1in,k/ Uk then set Ugi1.0,4 =0
Ukstnkr1:n = Ukstinks1:n — Lirt:n kU ke 1in

LU factorization
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Example

A=

DN O
© W Ot
co O Ot

since A11 = 0, we swap rows 1 and 3 using

0 01 0 5 5 6
U=PiA=|0 1 0 2 3 0f=]2
1 00 6 9 8 0

LU factorization 7.31



we swap the second and third row of v

2 v _|0 1 0 -8/3 | |5 5
U2:n,2:n - P2U2:n,2:n - [ 1 0 } [ 5 5 - 0 _8/3

we also swap the second and third rows of L™ and set Lo =1

1 00

LP={0 10

1/3 0 0

772 ; . 3 __
the matrix U2:n’2:n is upper triangular; hence U3:n’3:n = —8/3 and

1 00

LP=l0 1 0

1/3 0 1

LU factorization 7.32



the permutation matrix is (I swap rows 1 <> 3 then 2 < 3)
1 0 1 0 0 0 0 1 0 0 1
P= [ ] Pi={0 0 1 01 0j=(1 00
01 0 1 0 0 01 0

the LU factorization A = PTLU can now be assembled follows

00 1][0 5 5 1 0 0][6 9 8

1 oo0fl230]|=l0o 10|05 5

0101l6 9 8 1/3 0 1|l 0 0 -8/3
P A L U

LU factorization 7.33
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Positive (semi)definite matrix

e a symmetric matrix A € R"*" is positive semidefinite if
xTAx >0 forallx
e a symmetric matrix A € R™ " is positive definite if
xTAx >0 forallx 0

this is a subset of the positive semidefinite matrices

note: if A is symmetric and n X n, then the function

TAx—ZZA,xxJ ZA”x +2ZA,xxJ

i=1 j=1 i>j

is called a quadratic form

positive definite matrices 7.34



Example

=[5 0]
xTAx = Qx% + 12x1x9 + ax% = (3x1 +2x2)% + (a — 4)x§
e A is positive definite for a > 4
xTAx > 0 for all nonzero x
e A is positive semidefinite but not positive definite for a = 4
xTAx >0 forallx, xTAx=0 forx= (2,-3)
e A is not positive semidefinite for a < 4

xTAx <0 forx = (2,-3)

positive definite matrices 7.35



Properties

e every positive definite matrix A is nonsingular
Ax=0 = xTAx=0 = x=0
(last step follows from positive definiteness)
e every positive definite matrix A has positive diagonal elements
Aii=elAe; >0
e every positive semidefinite matrix A has nonnegative diagonal elements

Aii = el-TAei >0

positive definite matrices 7.36



Schur complement

partition n X n symmetric matrix A as

T
Al A2:n,1

A =
Aon1 A2in2m

e the Schur complement of A1 is defined as the (n — 1) X (n — 1) matrix
- T
S = A2:n,2:n - A_AQ:n,lAQ:n,l
11
e if A is positive definite, then S is positive definite
to see this, take any x # 0 and define y = —(AZ, |x)/A11, then

xTSx =

T T
[ Al A2:n,1 ] >0

A2:n,1 A2:n,2:n

y
X

y
X

because A is positive definite

positive definite matrices
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Singular positive semidefinite matrices

if A is positive semidefinite, but not positive definite, then it is singular

to see this, suppose A is positive semidefinite but not positive definite
e there exists a nonzero x with x TAx = 0

e since A is positive semidefinite the following function is nonnegative:

f(0) = (x —tAx)TA(x — tAx)
=xTAx = 20xTA%x + 2xTA3x
= 2|l Ax||? + 12xTA%x
e f(t) = 0forall tis only possible if || Ax|| = 0; therefore Ax =0

e hence there exists a nonzero x with Ax = 0, so A is singular

positive definite matrices 7.38



Example: resistor circuit

Y1 R3 y2

X1

yi|_| Ri+R3 R3
X2

Y2 R3 Ry +R3

show that the matrix
A= Rl + R3 R3
- Rg R2 + Rg

is positive definite if R1, Ro, R3 are positive

positive definite matrices

7.39



Solution

)CTA_X = (Rl + R3)x% + 2R3x1x9 + (R2 + R3)x§
= Rlx% + RQX% + R3 (x1 +)C2)2
>0

and xTAx =0 onlyifx; =x9 =0

Physics interpretation

o xTAx = yTx is the power delivered by sources, dissipated by resistors
e power dissipated by the resistors is positive unless both currents are zero

positive definite matrices 7.40



Gram matrix

recall the definition of Gram matrix of a matrix B

A=B'B

e every Gram matrix is positive semidefinite
xTAx =x"BTBx = ||Bx||> >0 V«x
o a Gram matrix is positive definite if
xTAx =xTBTBx = ||Bx||> >0 Vx %0,

i.e., B has linearly independent columns

positive definite matrices
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LU factorization for positive definite matrices

LU factorization of a symmetric positive definite matrix
A=LU

since U is upper triangular with diagonal elements Uy, > 0, we can write

U 1 % vee . U
U
H 1 Yol L U
Uas Usz Usa
U = ‘. B
D _
U
so the LU factorization reads
A=LDU

Cholesky factorization 7.42



Symmetrizing the LU factorization

since A is symmetric, we have
LDU=A=AT=0"DLT
since this factorization is unique, we have L = UTor
A=LDL"
if we write D = D1/2D1/2 with
D'? = diag(\Ui1, . ... \Upnn)
we can express the LU as factorization
A=RTR

with RT = LD'/2 a lower triangular matrix; this is called the Cholesky factorization

Cholesky factorization 7.43



Cholesky factorization

every positive definite matrix A € R™*" can be factored as
A=RTR

where R is upper triangular with positive diagonal elements

e complexity of computing R is (1/3)n? flops

e R is called the Cholesky factor of A

e can be interpreted as “square root” of a positive definite matrix

Cholesky factorization 7.44



Cholesky factorization algorithm

A1 A12n | _| Ru 0 Ri1 Ri2m
A2:n,1 A2:n,2:n R1T2 n Rgn 2:n 0 R2:n,2:n
R2 R11R1,2:n

T T
R11R1 20 Ri2nR12n + R3 5., R 2in

|

given a symmetric positive definite matrix A

1. compute first row of R:
1
Ri1 = VA1, R12n— A12n
2. compute 2,2 block R2.5;, 2., from

T T
A2:n,2:n - Rl’g:an,Q:n = RQ;n’Q;nR2:n,2:n

this is a Cholesky factorization of order n — 1

Cholesky factorization
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Example

25 15 -5 Rii 0 0 Ri1 Riz Ris |
15 18 0 |=| R Ry O 0 Roy Ry
-5 0 11 Ri3 Ra3z R3s 0 0  Rsz |

o first row of R

25 15 -5 5 0 0 5 3 -1
15 18 0 |=| 3 Rw O 0 Ry Ros
-5 0 11 -1 Ras Rss 0 0 Rss |

e second row of R
18 0| 3 [ 3 1 ] | R2 O Ra2 Ras
0 11 -1 - Rs3  Rss 0 R33
9 3(_|3 0 3 1
3 10 | | 1 Rss 0 Rsj
e thirdcolumnof R:10—-1= R%S, s0, R33 =3

Cholesky factorization
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we conclude
25 15 -5
15 18 0=
-5 0 11

Cholesky factorization

Example

Ri1 0 0 Ri1 Ri2 Riz
Ri2 Ry 0 0 Rox Ros
| Ri3 Raz  Rs3 0 0 Rs3
[ 5 0 0 5 3 -1

3 3 0 0 3 1

-1 1 3 0 0 3

7.47



Solving equations with positive definite A

given: Ax = b with positive definite A € R"*" and b € R”
1. factor A as A = RTR

2. solve RTRx = b in two steps
(a) forward substitution: solve RTy =b

(b) back substitution: solve Rx =y

Complexity: (1/3)n> +2n% =~ (1/3)n? flops

(half the memory space and half the flops of the general LU factorization algorithm)

Cholesky factorization 7.48
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Sparse linear equations

if A is sparse, it is usually factored as
P1APy; = LU

P, and P> are permutation matrices

e interpretation: permute rows and columns of A and factor A= P1AP,
A=LU

e choice of Py and P greatly affects the sparsity of L and U

e several heuristic methods exist for selecting good permutations

e in practice: #flops < (2/3)n3; exact value depends on 7, number of nonzero

elements, sparsity pattern

sparse linear equations
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Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as
A= PRTRPT

P a permutation matrix; R upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

PTAP = RTR

if A is very sparse, R is often (but not always) sparse

choice of permutation greatly affects the sparsity R

there exist several heuristic methods for choosing a good permutation

if R is sparse, the cost of the factorization is much less than (1/3)n3

sparse linear equations
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sparsity pattern of A

250 "ﬁ- s e &

0 250 500

pattern of pPTAP

250

500

0 250 500

sparse linear equations

Example

Cholesky factor of A
I

250
l. |
o 250 500
(‘:‘,holesky factor of PTAP
250 -
) 250 500
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