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Linearly independent vectors

the set of vectors 𝑎1, . . . , 𝑎𝑛 is linearly independent if

𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛 = 0 =⇒ 𝑥1 = 𝑥2 = · ·· = 𝑥𝑛 = 0

• in matrix-vector notation with 𝑎𝑖 the 𝑖th column of 𝐴

𝐴𝑥 = 0 =⇒ 𝑥 = 0

• list 𝑎1, . . . , 𝑎𝑛 is linearly dependent if there exist 𝑥1, . . . , 𝑥𝑛, not all zero, with

𝐴𝑥 = 𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛 = 0

• a set of a single vector is linearly independent only if the vector is nonzero

• linear (in)dependence is a property of the set of vectors {𝑎1, . . . , 𝑎𝑛}

• by convention, the empty set is linearly independent
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Example

the vectors

𝑎1 =


0.2
−7
8.6

 , 𝑎2 =


−0.1
2
−1

 , 𝑎3 =


0
−1
2.2


are linearly dependent

• 0 can be expressed as a nontrivial linear combination of 𝑎1, 𝑎2, 𝑎3:

0 = 𝑎1 + 2𝑎2 − 3𝑎3

• 𝑎1 can be expressed as a linear combination of 𝑎2, 𝑎3:

𝑎1 = −2𝑎2 + 3𝑎3

(and similarly 𝑎2 and 𝑎3 )
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Example

the vectors

𝑎1 =


1

−2
0

 , 𝑎2 =


−1
0
1

 , 𝑎3 =


0
1
1


are linearly independent:

𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3 =


𝑥1 − 𝑥2

−2𝑥1 + 𝑥3
𝑥2 + 𝑥3

 = 0

holds only if 𝑥1 = 𝑥2 = 𝑥3 = 0
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Independent dimension inequality

if 𝑛 vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 of size 𝑚 are linearly independent, then

𝑛 ≤ 𝑚

• if an 𝑚 × 𝑛 matrix has linearly independent columns then 𝑚 ≥ 𝑛

• if 𝐴 is wide (𝑛 > 𝑚), the columns are linearly dependent:
the homogeneous equation 𝐴𝑥 = 0 has nontrivial solutions (𝑥 ≠ 0)

• if an 𝑚 × 𝑛 matrix has linearly independent rows then 𝑚 ≤ 𝑛

• if 𝐴 is tall (𝑚 > 𝑛), its rows are linearly dependent
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Basis

any set of 𝑛 linearly independent 𝑛-vectors 𝑎1, . . . , 𝑎𝑛 is called a basis for R𝑛

• any 𝑛-vector 𝑏 can be expressed as a linear combination of them:

𝑏 = 𝛽1𝑎1 + ··· + 𝛽𝑛𝑎𝑛 for some 𝛽1, . . . , 𝛽𝑛

and these coefficients are unique

• formula above is called expansion of 𝑏 in the 𝑎1, . . . , 𝑎𝑛 basis

• example: 𝑒1, . . . , 𝑒𝑛 is a basis, expansion of 𝑏 is

𝑏 = 𝑏1𝑒1 + ··· + 𝑏𝑛𝑒𝑛
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Example: single period loans

• consider cash flows over 𝑛 periods

• define the single-period loan cash flow 𝑛-vectors as

𝑙𝑖 =


0𝑖−1
1

−(1 + 𝑟)
0𝑛−𝑖−1

 , 𝑖 = 1, . . . , 𝑛 − 1,

where 𝑟 ≥ 0 is the per-period interest rate

• 𝑙𝑖 represents a $1 loan in period 𝑖, paid back in period 𝑖 + 1 with interest 𝑟

• scaling 𝑙𝑖 changes the loan amount

• vectors 𝑒1, 𝑙1, . . . , 𝑙𝑛−1 are a basis
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• to see this observe

𝛽1𝑒1 + 𝛽2𝑙1 + ··· + 𝛽𝑛𝑙𝑛−1 =


𝛽1 + 𝛽2

𝛽3 − (1 + 𝑟)𝛽2
...

𝛽𝑛 − (1 + 𝑟)𝛽𝑛−1
−(1 + 𝑟)𝛽𝑛


= 0

• working backward gives 𝛽1 = · · · = 𝛽𝑛 = 0

• this means that any cash flow 𝑛-vector 𝑐 can be expressed as

𝑐 = 𝛼1𝑒1 + 𝛼2𝑙1 + ··· + 𝛼𝑛𝑙𝑛−1

• it can be shown that

𝛼1 = 𝑐1 +
𝑐2

1 + 𝑟
+ ··· + 𝑐𝑛

(1 + 𝑟)𝑛−1

is the net present value (NPV) of the cash flow, with interest rate 𝑟

• we see that any cash flow can be replicated as an income in period 1 equal to its
NPV, plus a linear combination of one-period loans at interest rate 𝑟
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Left and right inverse

for 𝑚 × 𝑛 matrix 𝐴 we distinguish to types of inverses

Left inverse: 𝑋 is a left inverse of 𝐴 if

𝑋𝐴 = 𝐼

𝐴 is left-invertible if it has at least one left inverse

Right inverse: 𝑋 is a right inverse of 𝐴 if

𝐴𝑋 = 𝐼

𝐴 is right-invertible if it has at least one right inverse

Immediate properties

• a left or right inverse of an 𝑚 × 𝑛 matrix must have size 𝑛 × 𝑚

• 𝑋 is a left (right) inverse of 𝐴 if and only if 𝑋T is a right (left) inverse of 𝐴T
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Examples

𝐴 =


−3 −4
4 6
1 1

 , 𝐵 =

[
1 0 1
0 1 1

]
• 𝐴 is left-invertible; the following matrices are left inverses:

1

9

[
−11 −10 16

7 8 −11

]
,

[
0 −1/2 3
0 1/2 −2

]
• 𝐵 is right-invertible; the following matrices are right inverses:

1

2


1 −1

−1 1
1 1

 ,

1 0
0 1
0 0

 ,

1 −1
0 0
0 1


• for 𝑛-vector 𝑎 (𝑛 × 1 matrix), 𝑥 = (1/𝑎𝑖)𝑒T𝑖 is left-inverse for any 𝑖 with 𝑎𝑖 ≠ 0
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Inverse

if 𝐴 has a left and a right inverse, then they are equal and unique:

𝑋𝐴 = 𝐼, 𝐴𝑌 = 𝐼 =⇒ 𝑋 = 𝑋 (𝐴𝑌 ) = (𝑋𝐴)𝑌 = 𝑌

• in this case, we call 𝑋 = 𝑌 the inverse of 𝐴, denoted 𝐴−1

• 𝐴 is invertible if its inverse exists

• invertible matrices must be square

Properties

• (𝐴𝐵)−1 = 𝐵−1𝐴−1 (provided inverses exist)

• (𝐴T)−1 = (𝐴−1)T (sometimes denoted 𝐴−T )

• negative matrix powers: (𝐴−1)𝑘 is denoted 𝐴−𝑘

• with 𝐴0 = 𝐼 , identity 𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙 holds for any integers 𝑘, 𝑙
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Examples

• inverse of identity is simply the identity 𝐼−1 = 𝐼

• 𝐴 = diag(𝑎1, . . . , 𝑎𝑛) has inverse 𝐴 = diag( 1
𝑎1
, . . . , 1

𝑎𝑛
) if and only if 𝑎𝑖 ≠ 0

• 2 × 2 matrix 𝐴 is invertible if and only 𝐴11𝐴22 ≠ 𝐴12𝐴21

𝐴−1 =
1

𝐴11𝐴22 − 𝐴12𝐴21

[
𝐴22 −𝐴12

−𝐴21 𝐴11

]
• a non-obvious example:

𝐴 =


1 −2 3
0 2 2

−3 −4 −4

 , 𝐴−1 =
1

30


0 −20 −10

−6 5 −2
6 10 2


verified by checking 𝐴𝐴−1 = 𝐼 or 𝐴−1𝐴 = 𝐼
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Column and row independence

Left inverse: a matrix is left-invertible iff its columns are linearly independent

• to see this: 𝐶𝐴 = 𝐼 then

𝐴𝑥 = 0 =⇒ 𝐶 (𝐴𝑥) = (𝐶𝐴)𝑥 = 𝑥 = 0

• the converse is also true (shown later)

• left-invertible matrices are tall or square (by indep.-dimension inequality)

Right inverse: 𝐴 is right-invertible iff its rows are linearly independent

• 𝐴 is right-invertible if and only if 𝐴T is left-invertible:

𝐴𝑋 = 𝐼 ⇐⇒ (𝐴𝑋)T = 𝐼 ⇐⇒ 𝑋T𝐴T = 𝐼

• hence, 𝐴 is right-invertible if and only if its rows are linearly independent

• right-invertible matrices are wide or square
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Nonsingular matrix

for a square matrix 𝐴 the following properties are equivalent

1. 𝐴 is left-invertible

2. the columns of 𝐴 are linearly independent

3. 𝐴 is right-invertible

4. the rows of 𝐴 are linearly independent

a square matrix 𝐴 satisfying the above is called nonsingular (≡ invertible)
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Proof

we show 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1

• if 𝐴 is left-invertible with left inverse 𝐵, then

𝐴𝑥 = 0 =⇒ 𝐵𝐴𝑥 = 0 =⇒ 𝑥 = 0

so the columns of 𝐴 are linearly independent

• if columns of 𝐴 are l.i., then they form a basis for R𝑛 and there exist solutions to

𝐴𝑥1 = 𝑒1, . . . , 𝐴𝑥𝑛 = 𝑒𝑛 =⇒ 𝐴𝑋 = 𝐼

hence, 𝐴 is right-invertible

• apply same argument to 𝐴T to show if 𝐴 is right-invertible then its rows are l.i.

• apply same argument to 𝐴T to show if 𝐴 has l.i. rows then 𝐴 is left-invertible
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Examples

𝐴 =


1 −1 1

−1 1 1
1 1 −1

 , 𝐵 =


1 −1 1 −1

−1 1 −1 1
1 1 −1 −1

−1 −1 1 1


• 𝐴 is nonsingular because its columns are linearly independent:

𝑥1 − 𝑥2 + 𝑥3 = 0, −𝑥1 + 𝑥2 + 𝑥3 = 0, 𝑥1 + 𝑥2 − 𝑥3 = 0

is only possible if 𝑥1 = 𝑥2 = 𝑥3 = 0

• 𝐵 is singular because its columns are linearly dependent:

𝐵𝑥 = 0 for 𝑥 = 1 = (1, 1, 1, 1)
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Example: Vandermonde matrix

𝐴 =


1 𝑡1 𝑡21 · ·· 𝑡𝑛−11

1 𝑡2 𝑡22 · ·· 𝑡𝑛−12
... ... ... · ·· ...

1 𝑡𝑛 𝑡2𝑛 · ·· 𝑡𝑛−1𝑛

 with 𝑡𝑖 ≠ 𝑡 𝑗 for 𝑖 ≠ 𝑗

the Vandermonde matrix is nonsingular

Proof

• 𝐴𝑥 = 0 implies 𝑝(𝑡1) = 𝑝(𝑡2) = · ·· = 𝑝(𝑡𝑛) = 0 where

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + ··· + 𝑥𝑛𝑡

𝑛−1

𝑝(𝑡) is a polynomial of degree 𝑛 − 1 or less

• for 𝑥 ≠ 0, 𝑝(𝑡) can not have more than 𝑛 − 1 distinct real roots

• therefore 𝑝(𝑡1) = · ·· = 𝑝(𝑡𝑛) = 0 is only possible if 𝑥 = 0
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Linear equations and matrix inverses

Left inverse: if 𝑋 is a left inverse of 𝐴, then

𝐴𝑥 = 𝑏 =⇒ 𝑥 = 𝑋𝐴𝑥 = 𝑋𝑏

• if there is a solution, it must be equal to 𝑋𝑏

• if 𝐴(𝑋𝑏) ≠ 𝑏, then there is no solution

Right inverse: if 𝑋 is a right inverse of 𝐴, then

𝑥 = 𝑋𝑏 =⇒ 𝐴𝑥 = 𝐴𝑋𝑏 = 𝑏

• there is at least one solution: 𝑥 = 𝑋𝑏 for any 𝑏

• there can be other solutions

Inverse: if 𝐴 is invertible, then 𝑥 = 𝐴−1𝑏 is the unique solution to 𝐴𝑥 = 𝑏
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Example: polynomial interpolation

• let’s find coefficients of a cubic polynomial

𝑝(𝑡) = 𝑐1 + 𝑐2𝑡 + 𝑐3𝑡
2 + 𝑐4𝑡

3

that satisfies

𝑝(−1.1) = 𝑏1, 𝑝(−0.4) = 𝑏2, 𝑝(0.1) = 𝑏3, 𝑝(0.8) = 𝑏4

• write as 𝐴𝑐 = 𝑏, with

𝐴 =


1 −1.1 (−1.1)2 (−1.1)3
1 −0.4 (−0.4)2 (−0.4)3
1 0.1 (0.1)2 (0.1)3
1 0.8 (0.8)2 (0.8)3


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• (unique) coefficients given by 𝑐 = 𝐴−1𝑏, with

𝐴−1 =


−0.0370 0.3492 0.7521 −0.0643
0.1388 −1.8651 1.6239 0.1023
0.3470 0.1984 −1.4957 0.9503

−0.5784 1.9841 −2.1368 0.7310


• so, e.g., 𝑐1 is not very sensitive to 𝑏1 or 𝑏4

• first column 𝐴−1𝑒1 gives coefficients of polynomial that satisfies

𝑝(−1.1) = 1, 𝑝(−0.4) = 0, 𝑝(0.1) = 0, 𝑝(0.8) = 0

called (first) Lagrange polynomial associated with the point −1.1
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Lagrange polynomials associated with points −1.1,−0.4, 0.2, 0.8

-1 0 1

0

1

𝑥

𝑝(𝑥)

-1 0 1

0

1

𝑥

𝑝(𝑥)

-1 0 1

0

1

𝑥

𝑝(𝑥)

-1 0 1

0

1

𝑥

𝑝(𝑥)
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Gram matrix the Gram matrix associated with 𝐴 = [𝑎1 · ·· 𝑎𝑚] ∈ R𝑚×𝑛 (with
columns 𝑎𝑖) is

𝐴T𝐴 =


𝑎T1𝑎1 𝑎T1𝑎2 · ·· 𝑎T1𝑎𝑛

𝑎T2𝑎1 𝑎T2𝑎2 · ·· 𝑎T2𝑎𝑛
... ... ...

𝑎T𝑛𝑎1 𝑎T𝑛𝑎2 · ·· 𝑎T𝑛𝑎𝑛


Nonsingular Gram matrix: 𝐴T𝐴 is nonsingular iff 𝐴 has linearly indep. columns

• suppose 𝐴 has linearly independent columns:

𝐴T𝐴𝑥 = 0 =⇒ 𝑥T𝐴T𝐴𝑥 = (𝐴𝑥)T (𝐴𝑥) = ∥𝐴𝑥∥2 = 0 =⇒ 𝐴𝑥 = 0 =⇒ 𝑥 = 0

thus 𝐴T𝐴 is nonsingular

• assume columns of 𝐴 are linearly dependent, then

there exists 𝑥 ≠ 0, 𝐴𝑥 = 0 =⇒ 𝐴T𝐴𝑥 = 0

therefore 𝐴T𝐴 is singular
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Pseudo-inverse of matrix with independent columns

• suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent columns

• this implies that 𝐴 is tall or square (𝑚 ≥ 𝑛)

Pseudo-inverse
𝐴† = (𝐴T𝐴)−1𝐴T

• this matrix exists, because the Gram matrix 𝐴T𝐴 is nonsingular

• 𝐴† is a left inverse of 𝐴:

𝐴†𝐴 = (𝐴T𝐴)−1 (𝐴T𝐴) = 𝐼

• reduces to the inverse when 𝐴 is square
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Pseudo-inverse of matrix with independent rows

• suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent rows

• this implies that 𝐴 is wide or square (𝑚 ≤ 𝑛)

Pseudo-inverse
𝐴† = 𝐴T (𝐴𝐴T)−1

• 𝐴T has linearly independent columns

• hence its Gram matrix 𝐴𝐴T is nonsingular, so 𝐴† exists

• 𝐴† is a right inverse of 𝐴:

𝐴𝐴† = (𝐴𝐴T) (𝐴𝐴T)−1 = 𝐼

• reduces to the inverse when 𝐴 is square
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Summary

Left invertible: the following properties are equivalent for a real matrix 𝐴

1. 𝐴 is left-invertible

2. the columns of 𝐴 are linearly independent

3. 𝐴T𝐴 is nonsingular

(1 ⇒ 2 from page 6.13, 2 ⇔ 3 from page 6.22, 3 ⇒ 1 since 𝐴† is a left-inverse)

Right invertible: the following properties are equivalent for a real matrix 𝐴

1. 𝐴 is right-invertible

2. the rows of 𝐴 are linearly independent

3. 𝐴𝐴T is nonsingular
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Orthonormal vectors

a set of real 𝑚-vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 is orthonormal if

𝑎T𝑖 𝑎 𝑗 =

{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗

• the vectors have unit norm: ∥𝑎𝑖 ∥ = 1 (normalized)

• they are mutually orthogonal: 𝑎T
𝑖
𝑎 𝑗 = 0 if 𝑖 ≠ 𝑗

Examples

• standard unit 𝑛-vectors 𝑒1, . . . , 𝑒𝑛

• the three vectors 
0
0

−1

 ,
1
√
2


1
1
0

 ,
1
√
2


1

−1
0


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Orthonormal expansion

if 𝑎1, . . . , 𝑎𝑛 are orthonormal, then they are lin. indep., hence basis for R𝑛

• therefore, for any 𝑛-vector 𝑥,

𝑥 = 𝛽1𝑎1 + · · · + 𝛽𝑛𝑎𝑛 for some unique 𝛽𝑖

this is called orthonormal expansion of 𝑥 (in the orthonormal basis)

• multiplying by 𝑎T
𝑖

on left, we have 𝛽𝑖 = 𝑎T
𝑖
𝑥 and hence

𝑥 = (𝑎T1𝑥)𝑎1 + ··· + (𝑎T𝑛𝑥)𝑎𝑛
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Matrix with orthonormal columns

𝐴 ∈ R𝑚×𝑛 has orthonormal columns if its Gram matrix is the identity matrix:

𝐴T𝐴 =


𝑎T1𝑎1 𝑎T1𝑎2 · ·· 𝑎T1𝑎𝑛
𝑎T2𝑎1 𝑎T2𝑎2 · ·· 𝑎T2𝑎𝑛
... ... ...

𝑎T𝑛𝑎1 𝑎T𝑛𝑎2 · ·· 𝑎T𝑛𝑎𝑛

 =

1 0 · ·· 0
0 1 · ·· 0
... ... ...

0 0 · ·· 1


there is no standard short name for “matrix with orthonormal columns”

• 𝐴 is left-invertible with left inverse 𝐴T

• 𝐴 has linearly independent columns: 𝐴𝑥 = 0 =⇒ 𝐴T𝐴𝑥 = 𝑥 = 0

• 𝐴 is tall or square: 𝑚 ≥ 𝑛

• if 𝐴 is tall 𝑚 > 𝑛, then 𝐴 has no right inverse; in particular

𝐴𝐴T ≠ 𝐼
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Matrix-vector product

if 𝐴 ∈ R𝑚×𝑛 has orthonormal columns, then the linear function 𝑓 (𝑥) = 𝐴𝑥

• preserves inner products:

(𝐴𝑥)T (𝐴𝑦) = 𝑥T𝐴T𝐴𝑦 = 𝑥T𝑦

• preserves norms:

∥𝐴𝑥∥ =
(
(𝐴𝑥)T (𝐴𝑥)

)1/2
= (𝑥T𝑥)1/2 = ∥𝑥∥

• preserves distances: ∥𝐴𝑥 − 𝐴𝑦∥ = ∥𝑥 − 𝑦∥

• preserves angles:

∠(𝐴𝑥, 𝐴𝑦) = arccos

(
(𝐴𝑥)T (𝐴𝑦)
∥𝐴𝑥∥∥𝐴𝑦∥

)
= arccos

(
𝑥T𝑦

∥𝑥∥∥𝑦∥

)
= ∠(𝑥, 𝑦)
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Orthogonal matrix

a square real matrix with orthonormal columns is called orthogonal

Nonsingularity: if 𝐴 is orthogonal, then

• 𝐴 is invertible, with inverse 𝐴T:

𝐴T𝐴 = 𝐼

𝐴 is square

}
=⇒ 𝐴𝐴T = 𝐼

• 𝐴T is also an orthogonal matrix

• rows of 𝐴 are orthonormal (have norm one and are mutually orthogonal)
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Example: rotation in a plane

rotation matrices are orthogonal

𝐴 =

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
𝑥

𝐴𝑥

Rotation in a coordinate plane in R𝑛: for example,

𝐴 =


cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃


describes a rotation in the (𝑥1, 𝑥3) plane in R3
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Example: permutation matrices

• permutation matrix is square with exactly one entry of each row/column is one

• let 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑛) be a permutation (reordering) of (1, 2, . . . , 𝑛)

• permutation matrix 𝐴,

𝐴𝑖 𝜋𝑖 = 1, 𝐴𝑖 𝑗 = 0 if 𝑗 ≠ 𝜋𝑖

is orthogonal

• 𝐴𝑥 is a permutation of the elements of 𝑥: 𝐴𝑥 = (𝑥𝜋1
, 𝑥𝜋2

, . . . , 𝑥𝜋𝑛 )

Proof

• 𝐴T𝐴 = 𝐼 because 𝐴 has one element equal to one in each row and column

(𝐴T𝐴)𝑖 𝑗 =
𝑛∑︁

𝑘=1

𝐴𝑘𝑖𝐴𝑘 𝑗 =

{
1 𝑖 = 𝑗

0 otherwise

• 𝐴T = 𝐴−1 is the inverse permutation matrix
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Example: permutation on {1, 2, 3, 4}

(𝜋1, 𝜋2, 𝜋3, 𝜋4) = (2, 4, 1, 3)

• corresponding permutation matrix and its inverse

𝐴 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 , 𝐴−1 = 𝐴T =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


• 𝐴T is permutation matrix associated with the permutation

(𝜋1, 𝜋2, 𝜋3, 𝜋4) = (3, 1, 4, 2)
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Product of orthogonal matrices

if 𝐴1, . . . , 𝐴𝑘 are orthogonal matrices and of equal size, then the product

𝐴 = 𝐴1𝐴2 · ··𝐴𝑘

is orthogonal:

𝐴T𝐴 = (𝐴1𝐴2 · ··𝐴𝑘)T (𝐴1𝐴2 · ··𝐴𝑘)
= 𝐴T𝑘 · ··𝐴

T
2𝐴

T
1𝐴1𝐴2 · ··𝐴𝑘

= 𝐼
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Linear equation with orthogonal matrix

linear equation with orthogonal coefficient matrix 𝐴 of size 𝑛 × 𝑛

𝐴𝑥 = 𝑏

solution is
𝑥 = 𝐴−1𝑏 = 𝐴T𝑏

• can be computed in 2𝑛2 flops by matrix-vector multiplication

• cost is less than order 𝑛2 if 𝐴 has special properties; for example,

order
permutation matrix: 0 flops
plane rotation: 1 flops
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Outline

• linear independence

• left and right inverse

• pseudo-inverse

• matrices with orthonormal columns

• condition of linear systems



Matrix 2-norm

a matrix norm ∥ · ∥ is any function satisfying the properties

• nonnegative: ∥𝐴∥ ≥ 0 for all 𝐴

• positive definiteness: ∥𝐴∥ = 0 only if 𝐴 = 0

• homogeneity: ∥𝛽𝐴∥ = |𝛽 |∥𝐴∥

• triangle inequality: ∥𝐴 + 𝐵∥ ≤ ∥𝐴∥ + ∥𝐵∥

the 2-norm or spectral norm is defined as

∥𝐴∥2 = max
𝑥≠0

∥𝐴𝑥∥
∥𝑥∥ = max

∥𝑥 ∥=1
∥𝐴𝑥∥

• the norms ∥𝐴𝑥∥ and ∥𝑥∥ are Euclidean norms of vectors

• no simple explicit expression, except for special 𝐴

• in MATLAB: norm(A)
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Special cases

sometimes it is easy to maximize ∥𝐴𝑥∥/∥𝑥∥

• zero matrix: ∥0∥2 = 0

• identity matrix: ∥𝐼 ∥2 = 1

• diagonal matrix:

𝐴 =


𝐴11 0 · ·· 0
0 𝐴22 · ·· 0
... ...

. . . ...

0 0 · ·· 𝐴𝑛𝑛

 , ∥𝐴∥2 = max
𝑖=1,...,𝑛

|𝐴𝑖𝑖 |

• matrix with orthonormal columns: ∥𝐴∥2 = 1

General matrices: ∥𝐴∥2 must be computed by numerical algorithms
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Additional properties satisfied by the 2-norm

• ∥𝐴𝑥∥ ≤ ∥𝐴∥2∥𝑥∥ if the product 𝐴𝑥 exists

• ∥𝐴𝐵∥2 ≤ ∥𝐴∥2∥𝐵∥2 if the product 𝐴𝐵 exists

• if 𝐴 is nonsingular: ∥𝐴∥2∥𝐴−1∥2 ≥ 1

• if 𝐴 is nonsingular: 1/∥𝐴−1∥2 = min𝑥≠0 (∥𝐴𝑥∥2/∥𝑥∥)

• ∥𝐴T∥2 = ∥𝐴∥2
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Other matrix norms

the infinity-norm is the maximum absolute row sum:

∥𝐴∥∞ = max
1≤𝑖≤𝑚

𝑛∑︁
𝑗=1

��𝑎𝑖 𝑗 ��
the 1-norm is the maximum absolute column sum:

∥𝐴∥1 = max
1≤ 𝑗≤𝑛

𝑚∑︁
𝑖=1

��𝑎𝑖 𝑗 ��
Example

𝐴 =

[
1 3 7

−4 1.2725 −2

]
we have

∥𝐴∥∞ = max{11, 7.2725} = 11

∥𝐴∥1 = max{5, 4.2725, 9} = 9
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Condition of a set of linear equations

• assume 𝐴 is nonsingular and 𝐴𝑥 = 𝑏

• if we change 𝑏 to 𝑏 + Δ𝑏, the new solution is 𝑥 + Δ𝑥 with

𝐴(𝑥 + Δ𝑥) = 𝑏 + Δ𝑏

• the change in 𝑥 is
Δ𝑥 = 𝐴−1Δ𝑏

Condition

• well-conditioned if small Δ𝑏 results in small Δ𝑥

• ill-conditioned if small Δ𝑏 can result in large Δ𝑥
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Example of ill-conditioned equations

𝐴 =
1

2

[
1 1

1 + 10−10 1 − 10−10

]
, 𝐴−1 =

[
1 − 1010 1010

1 + 1010 −1010
]

• solution for 𝑏 = (1, 1) is 𝑥 = (1, 1)

• change in 𝑥 if we change 𝑏 to 𝑏 + Δ𝑏:

Δ𝑥 = 𝐴−1Δ𝑏 =

[
Δ𝑏1 − 1010 (Δ𝑏1 − Δ𝑏2)
Δ𝑏1 + 1010 (Δ𝑏1 − Δ𝑏2)

]
small Δ𝑏 can lead to very large Δ𝑥
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Bound on absolute error

suppose 𝐴 is nonsingular and define

𝑥 = 𝐴−1𝑏, Δ𝑥 = 𝐴−1Δ𝑏

Upper bound on ∥Δ𝑥∥:
∥Δ𝑥∥ ≤ ∥𝐴−1∥2∥Δ𝑏∥

• small ∥𝐴−1∥2 means that ∥Δ𝑥∥ is small when ∥Δ𝑏∥ is small

• large ∥𝐴−1∥2 means that ∥Δ𝑥∥ can be large, even when ∥Δ𝑏∥ is small

• for every 𝐴, there exists nonzero Δ𝑏 such that ∥Δ𝑥∥ = ∥𝐴−1∥2∥Δ𝑏∥
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Bound on relative error

suppose in addition that 𝑏 ≠ 0; hence 𝑥 ≠ 0

Upper bound on ∥Δ𝑥∥/∥𝑥∥:

∥Δ𝑥∥
∥𝑥∥ ≤ ∥𝐴∥2∥𝐴−1∥2

∥Δ𝑏∥
∥𝑏∥

• follows from ∥Δ𝑥∥ ≤ ∥𝐴−1∥2∥Δ𝑏∥ and ∥𝑏∥ ≤ ∥𝐴∥2∥𝑥∥

• ∥𝐴∥2∥𝐴−1∥2 small means ∥Δ𝑥∥/∥𝑥∥ is small when ∥Δ𝑏∥/∥𝑏∥ is small

• ∥𝐴∥2∥𝐴−1∥2 large means ∥Δ𝑥∥/∥𝑥∥ can be much larger than ∥Δ𝑏∥/∥𝑏∥

• for every 𝐴, there exist nonzero 𝑏,Δ𝑏 such that equality holds
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Condition number

the condition number of a nonsingular matrix 𝐴 is

𝜅(𝐴) = ∥𝐴∥2∥𝐴−1∥2

• we have 1 = ∥𝐼 ∥ = ∥𝐴−1𝐴∥ ≤ 𝜅(𝐴)

• condition number is a measure of how close a matrix is to being singular

• matrix is ideally conditioned if its condition number equals 1

• 𝐴 is a well-conditioned matrix if 𝜅(𝐴) is small (close to 1):

the relative error in 𝑥 is not much larger than the relative error in 𝑏

• 𝐴 is badly conditioned or ill-conditioned if 𝜅(𝐴) is large (nearly singular):

the relative error in 𝑥 can be much larger than the relative error in 𝑏
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Example

• 𝐴 is blurring matrix, nonsingular with condition number ≈ 109

• we apply 𝐴 to image 𝑥

blurred image

𝑦1 = 𝐴𝑥

blurred and noisy image

𝑦2 = 𝐴𝑥+ small noise
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Example

we solve 𝐴𝑥 = 𝑦 for the two blurred images

𝐴−1𝑦1 𝐴−1𝑦2

• illustrates ill-conditioning of 𝐴 (nearly singular)

• inverse amplifies the noise component
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Residual and condition number

𝐴(𝑥 + Δ𝑥) = 𝑏 + Δ𝑏

• let 𝑥 be an estimate solution of 𝐴𝑥 = 𝑏

• residual 𝑟 = 𝑏 − 𝐴𝑥; zero residual mean we get exact solution

• let Δ𝑥 = 𝑥 − 𝑥 so 𝑥 = 𝑥 + Δ𝑥

• we have

Δ𝑏 = 𝐴(𝑥 + Δ𝑥) − 𝑏 = 𝐴𝑥 − 𝑏 = −𝑟

• hence from before
∥Δ𝑥∥
∥𝑥∥ ≤ 𝜅(𝐴) ∥𝑟 ∥∥𝑏∥

• error can be much larger than residual when condition number is large

• a small residual does not imply a small error in the solution
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Example

𝐴 =

[
0.913 0.659
0.457 0.330

]
, 𝑏 =

[
0.254
0.127

]
• consider two approximate solutions

𝑥1 =

[
0.6391
−0.5

]
and 𝑥2 =

[
0.999

−1.001

]
the norms of their respective residuals are

∥𝑟1∥ = 6.8721 × 10−5 and ∥𝑟2∥ = 1.8 × 10−3

• 𝑥1 has smaller residual but solution is (1,−1), so 𝑥2 is more accurate

• this is due to 𝐴 being ill-conditioned

• in practice we cannot expect to deliver much more than a small residual
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