6. Matrix inverses

- • [linear independence](#page-1-0)
- [left and right inverse](#page-8-0)
- [pseudo-inverse](#page-22-0)
- [matrices with orthonormal columns](#page-27-0)
- [condition of linear systems](#page-38-0)

Linearly independent vectors

the set of vectors a_1, \ldots, a_n is *linearly independent* if

 $x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = 0 \implies x_1 = x_2 = \cdots = x_n = 0$

• in matrix-vector notation with a_i the *i*th column of A

$$
Ax = 0 \quad \Longrightarrow \quad x = 0
$$

• list a_1, \ldots, a_n is linearly dependent if there exist x_1, \ldots, x_n , not all zero, with

$$
Ax = x_1a_1 + x_2a_2 + \dots + x_na_n = 0
$$

- a set of a single vector is linearly independent only if the vector is nonzero
- linear (in)dependence is a property of the *set* of vectors $\{a_1, \ldots, a_n\}$
- by convention, the empty set is linearly independent

[linear independence](#page-1-0) $\begin{array}{ccc} 6.2 \end{array}$

Example

the vectors

$$
a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}
$$

are linearly dependent

• 0 can be expressed as a nontrivial linear combination of a_1, a_2, a_3 :

$$
0 = a_1 + 2a_2 - 3a_3
$$

• a_1 can be expressed as a linear combination of a_2, a_3 :

$$
a_1 = -2a_2 + 3a_3
$$

(and similarly a_2 and a_3)

Example

the vectors

$$
a_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
$$

are linearly independent:

$$
x_1a_1 + x_2a_2 + x_3a_3 = \begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_3 \\ x_2 + x_3 \end{bmatrix} = 0
$$

holds only if $x_1 = x_2 = x_3 = 0$

Independent dimension inequality

if *n* vectors a_1, a_2, \ldots, a_n of size *m* are linearly independent, then

 $n \leq m$

- if an $m \times n$ matrix has linearly independent columns then $m \geq n$
- if A is wide $(n > m)$, the columns are linearly dependent: the homogeneous equation $Ax = 0$ has nontrivial solutions $(x \neq 0)$
- if an $m \times n$ matrix has linearly independent rows then $m \leq n$
- if A is tall $(m > n)$, its rows are linearly dependent

Basis

any set of *n* linearly independent *n*-vectors a_1, \ldots, a_n is called a *basis* for \mathbb{R}^n

• any *n*-vector b can be expressed as a linear combination of them:

$$
b = \beta_1 a_1 + \dots + \beta_n a_n
$$
 for some β_1, \dots, β_n

and these coefficients are unique

- formula above is called *expansion* of b in the a_1, \ldots, a_n basis
- example: e_1, \ldots, e_n is a basis, expansion of b is

$$
b = b_1 e_1 + \dots + b_n e_n
$$

Example: single period loans

- consider cash flows over n periods
- \bullet define the single-period loan cash flow *n*-vectors as

$$
l_i = \begin{bmatrix} 0_{i-1} \\ 1 \\ -(1+r) \\ 0_{n-i-1} \end{bmatrix}, \quad i = 1, ..., n-1,
$$

where $r \geq 0$ is the per-period interest rate

- l_i represents a \$1 loan in period i, paid back in period $i + 1$ with interest r
- scaling l_i changes the loan amount
- vectors $e_1, l_1, \ldots, l_{n-1}$ are a basis

• to see this observe

$$
\beta_1 e_1 + \beta_2 l_1 + \dots + \beta_n l_{n-1} = \begin{bmatrix} \beta_1 + \beta_2 \\ \beta_3 - (1+r)\beta_2 \\ \vdots \\ \beta_n - (1+r)\beta_{n-1} \\ -(1+r)\beta_n \end{bmatrix} = 0
$$

- working backward gives $\beta_1 = \cdots = \beta_n = 0$
- \bullet this means that any cash flow *n*-vector c can be expressed as

$$
c=\alpha_1e_1+\alpha_2l_1+\cdots+\alpha_n l_{n-1}
$$

• it can be shown that

$$
\alpha_1 = c_1 + \frac{c_2}{1+r} + \dots + \frac{c_n}{(1+r)^{n-1}}
$$

is the net present value (NPV) of the cash flow, with interest rate r

• we see that any cash flow can be replicated as an income in period 1 equal to its NPV, plus a linear combination of one-period loans at interest rate r

Outline

- • [linear independence](#page-1-0)
- **[left and right inverse](#page-8-0)**
- [pseudo-inverse](#page-22-0)
- [matrices with orthonormal columns](#page-27-0)
- [condition of linear systems](#page-38-0)

Left and right inverse

for $m \times n$ matrix A we distinguish to types of inverses

Left inverse: X is a *left inverse* of A if

 $XA = I$

A is *left-invertible* if it has at least one left inverse

Right inverse: X is a *right inverse* of A if

 $AX = I$

A is *right-invertible* if it has at least one right inverse

Immediate properties

- a left or right inverse of an $m \times n$ matrix must have size $n \times m$
- $\bullet~~ X$ is a left (right) inverse of A if and only if X^T is a right (left) inverse of A^T

Examples

$$
A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}
$$

 \bullet A is left-invertible; the following matrices are left inverses:

$$
\frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \begin{bmatrix} 0 & -1/2 & 3 \\ 0 & 1/2 & -2 \end{bmatrix}
$$

 \bullet B is right-invertible; the following matrices are right inverses:

$$
\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

• for *n*-vector a ($n \times 1$ matrix), $x = (1/a_i)e_i^T$ is left-inverse for any i with $a_i \neq 0$

Inverse

if \vec{A} has a left **and** a right inverse, then they are equal and unique:

 $XA = I$, $AY = I$ \implies $X = X(AY) = (XA)Y = Y$

- in this case, we call $X = Y$ the inverse of A, denoted A^{-1}
- A is *invertible* if its inverse exists
- invertible matrices must be square

Properties

- $(AB)^{-1} = B^{-1}A^{-1}$ (provided inverses exist)
- $(A^T)^{-1} = (A^{-1})^T$ (sometimes denoted A^{-T})
- negative matrix powers: $(A^{-1})^k$ is denoted A^{-k}
- with $A^0 = I$, identity $A^k A^l = A^{k+l}$ holds for any integers k, l

Examples

- inverse of identity is simply the identity $I^{-1} = I$
- $A = \text{diag}(a_1, \ldots, a_n)$ has inverse $A = \text{diag}(\frac{1}{a_1}, \ldots, \frac{1}{a_n})$ if and only if $a_i \neq 0$
- 2×2 matrix A is invertible if and only $A_{11}A_{22} \neq A_{12}A_{21}$

$$
A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}
$$

• a non-obvious example:

$$
A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 2 \\ -3 & -4 & -4 \end{bmatrix}, \qquad A^{-1} = \frac{1}{30} \begin{bmatrix} 0 & -20 & -10 \\ -6 & 5 & -2 \\ 6 & 10 & 2 \end{bmatrix}
$$

verified by checking $AA^{-1} = I$ or $A^{-1}A = I$

Column and row independence

Left inverse: a matrix is left-invertible iff its **columns** are linearly independent

• to see this: $CA = I$ then

$$
Ax = 0 \Longrightarrow C(Ax) = (CA)x = x = 0
$$

- the converse is also true (shown later)
- left-invertible matrices are tall or square (by indep.-dimension inequality)

Right inverse: A is right-invertible iff its **rows** are linearly independent

• A is right-invertible if and only if A^T is left-invertible:

$$
AX = I \Longleftrightarrow (AX)^{T} = I \Longleftrightarrow X^{T}A^{T} = I
$$

- \bullet hence, Λ is right-invertible if and only if its rows are linearly independent
- right-invertible matrices are wide or square

Nonsingular matrix

for a **square** matrix A the following properties are equivalent

- 1. \overline{A} is left-invertible
- 2. the columns of A are linearly independent
- 3. A is right-invertible
- 4. the rows of A are linearly independent

a square matrix A satisfying the above is called *nonsingular* (\equiv invertible)

Proof

we show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$

• if A is left-invertible with left inverse B , then

 $Ax = 0 \implies BAx = 0 \implies x = 0$

so the columns of A are linearly independent

 \bullet if columns of A are l.i., then they form a basis for \mathbb{R}^n and there exist solutions to

$$
Ax_1 = e_1, \ldots, Ax_n = e_n \implies AX = I
$$

hence, A is right-invertible

- apply same argument to A^T to show if A is right-invertible then its rows are l.i.
- apply same argument to A^T to show if A has l.i. rows then A is left-invertible

[left and right inverse](#page-8-0) $\begin{array}{ccc} 6.15 & 6.15 \end{array}$

Examples

$$
A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \end{bmatrix}
$$

Ξ \bullet A is nonsingular because its columns are linearly independent:

$$
x_1 - x_2 + x_3 = 0, \quad -x_1 + x_2 + x_3 = 0, \quad x_1 + x_2 - x_3 = 0
$$

is only possible if $x_1 = x_2 = x_3 = 0$

 \bullet B is singular because its columns are linearly dependent:

$$
Bx = 0
$$
 for $x = 1 = (1, 1, 1, 1)$

Ī

Example: Vandermonde matrix

$$
A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{bmatrix} \text{ with } t_i \neq t_j \text{ for } i \neq j
$$

the Vandermonde matrix is nonsingular

Proof

•
$$
Ax = 0
$$
 implies $p(t_1) = p(t_2) = \cdots = p(t_n) = 0$ where

$$
p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}
$$

 $p(t)$ is a polynomial of degree $n-1$ or less

- for $x \neq 0$, $p(t)$ can not have more than $n-1$ distinct real roots
- therefore $p(t_1) = \cdots = p(t_n) = 0$ is only possible if $x = 0$

[left and right inverse](#page-8-0) $\begin{array}{ccc} 6.17 \end{array}$

Linear equations and matrix inverses

Left inverse: if X is a left inverse of A , then

$$
Ax = b \implies x = XAx = Xb
$$

- if there is a solution, it must be equal to Xb
- if $A(Xb) \neq b$, then there is no solution

Right inverse: if X is a right inverse of A , then

$$
x = Xb \implies Ax = AXb = b
$$

- there is at least one solution: $x = Xb$ for any b
- there can be other solutions

Inverse: if A is invertible, then $x = A^{-1}b$ is the *unique* solution to $Ax = b$

[left and right inverse](#page-8-0) $\begin{array}{ccc} 6.18 \end{array}$

Example: polynomial interpolation

• let's find coefficients of a cubic polynomial

$$
p(t) = c_1 + c_2t + c_3t^2 + c_4t^3
$$

that satisfies

$$
p(-1.1) = b_1
$$
, $p(-0.4) = b_2$, $p(0.1) = b_3$, $p(0.8) = b_4$

• write as $Ac = b$, with

$$
A = \begin{bmatrix} 1 & -1.1 & (-1.1)^2 & (-1.1)^3 \\ 1 & -0.4 & (-0.4)^2 & (-0.4)^3 \\ 1 & 0.1 & (0.1)^2 & (0.1)^3 \\ 1 & 0.8 & (0.8)^2 & (0.8)^3 \end{bmatrix}
$$

• (unique) coefficients given by $c = A^{-1}b$, with

$$
A^{-1} = \begin{bmatrix} -0.0370 & 0.3492 & 0.7521 & -0.0643 \\ 0.1388 & -1.8651 & 1.6239 & 0.1023 \\ 0.3470 & 0.1984 & -1.4957 & 0.9503 \\ -0.5784 & 1.9841 & -2.1368 & 0.7310 \end{bmatrix}
$$

- so, *e.g.*, c_1 is not very sensitive to b_1 or b_4
- first column $A^{-1}e_1$ gives coefficients of polynomial that satisfies

$$
p(-1.1) = 1
$$
, $p(-0.4) = 0$, $p(0.1) = 0$, $p(0.8) = 0$

called (first) *Lagrange polynomial* associated with the point −1.1

Lagrange polynomials associated with points −1.1, −0.4, 0.2, 0.8

Outline

- • [linear independence](#page-1-0)
- [left and right inverse](#page-8-0)
- **[pseudo-inverse](#page-22-0)**
- [matrices with orthonormal columns](#page-27-0)
- [condition of linear systems](#page-38-0)

Gram matrix the *Gram matrix* associated with $A = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix} \in \mathbb{R}^{m \times n}$ (with columns a_i) is

$$
A^{T}A = \begin{bmatrix} a_1^{T}a_1 & a_1^{T}a_2 & \cdots & a_1^{T}a_n \\ a_2^{T}a_1 & a_2^{T}a_2 & \cdots & a_2^{T}a_n \\ \vdots & \vdots & & \vdots \\ a_n^{T}a_1 & a_n^{T}a_2 & \cdots & a_n^{T}a_n \end{bmatrix}
$$

Nonsingular Gram matrix: $A^T A$ is nonsingular iff A has linearly indep. columns

 \bullet suppose A has linearly independent columns:

$$
A^T A x = 0 \Longrightarrow x^T A^T A x = (Ax)^T (Ax) = ||Ax||^2 = 0 \Longrightarrow Ax = 0 \Longrightarrow x = 0
$$

thus $A^T A$ is nonsingular

-
- assume columns of A are linearly dependent, then

there exists
$$
x \neq 0
$$
, $Ax = 0 \implies A^T A x = 0$

therefore A^TA is singular

[pseudo-inverse](#page-22-0) 6.22 $\text{S-A}-\text{EMGR504}$ 6.22

Pseudo-inverse of matrix with independent columns

- suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent columns
- this implies that A is tall or square $(m \ge n)$

Pseudo-inverse

$$
A^{\dagger} = (A^T A)^{-1} A^T
$$

- this matrix exists, because the Gram matrix $A^T A$ is nonsingular
- A^{\dagger} is a left inverse of A :

$$
A^{\dagger} A = (A^T A)^{-1} (A^T A) = I
$$

• reduces to the inverse when Λ is square

Pseudo-inverse of matrix with independent rows

- suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent rows
- this implies that A is wide or square $(m \leq n)$

Pseudo-inverse

$$
A^{\dagger} = A^{T} (AA^{T})^{-1}
$$

- \bullet A^T has linearly independent columns
- hence its Gram matrix AA^T is nonsingular, so A^{\dagger} exists
- A^{\dagger} is a right inverse of A :

$$
AA^{\dagger} = (AA^T)(AA^T)^{-1} = I
$$

• reduces to the inverse when Λ is square

Summary

Left invertible: the following properties are equivalent for a real matrix A

- 1. \overline{A} is left-invertible
- 2. the columns of A are linearly independent
- 3. A^TA is nonsingular

(1 \Rightarrow 2 from page [6.13](#page-0-0), 2 \Leftrightarrow 3 from page [6.22](#page-0-0), 3 \Rightarrow 1 since A^{\dagger} is a left-inverse)

Right invertible: the following properties are equivalent for a real matrix A

- 1. A is right-invertible
- 2. the rows of A are linearly independent
- 3. $\,AA^{\,T}$ is nonsingular

Outline

- • [linear independence](#page-1-0)
- [left and right inverse](#page-8-0)
- [pseudo-inverse](#page-22-0)
- **[matrices with orthonormal columns](#page-27-0)**
- [condition of linear systems](#page-38-0)

Orthonormal vectors

a set of real *m*-vectors a_1, a_2, \ldots, a_n is *orthonormal* if

$$
a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$

- the vectors have unit norm: $||a_i|| = 1$ (normalized)
- they are mutually orthogonal: $a_i^Ta_j = 0$ if $i \neq j$

Examples

- standard unit *n*-vectors e_1, \ldots, e_n
- the three vectors

$$
\left[\begin{array}{c}0\\0\\-1\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\1\\0\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\-1\\0\end{array}\right]
$$

Orthonormal expansion

if a_1, \ldots, a_n are orthonormal, then they are lin. indep., hence basis for \mathbb{R}^n

• therefore, for any *n*-vector x ,

$$
x = \beta_1 a_1 + \dots + \beta_n a_n \quad \text{for some unique } \beta_i
$$

this is called *orthonormal expansion* of x (in the orthonormal basis)

• multiplying by a_i^T on left, we have $\beta_i = a_i^T x$ and hence

$$
x = (a_1^T x)a_1 + \dots + (a_n^T x)a_n
$$

Matrix with orthonormal columns

 $A \in \mathbb{R}^{m \times n}$ has orthonormal columns if its Gram matrix is the identity matrix:

$$
A^{T}A = \begin{bmatrix} a_1^{T}a_1 & a_1^{T}a_2 & \cdots & a_1^{T}a_n \\ a_2^{T}a_1 & a_2^{T}a_2 & \cdots & a_2^{T}a_n \\ \vdots & \vdots & & \vdots \\ a_n^{T}a_1 & a_n^{T}a_2 & \cdots & a_n^{T}a_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}
$$

there is no standard short name for "matrix with orthonormal columns"

- A is left-invertible with left inverse A^T
- A has linearly independent columns: $Ax = 0 \Longrightarrow A^T Ax = x = 0$
- A is tall or square: $m \geq n$
- if A is tall $m > n$, then A has no right inverse; in particular

$$
AA^T\neq I
$$

Matrix-vector product

if $A \in \mathbb{R}^{m \times n}$ has orthonormal columns, then the linear function $f(x) = Ax$

• preserves inner products:

$$
(Ax)^{T}(Ay) = x^{T}A^{T}Ay = x^{T}y
$$

• preserves norms:

$$
||Ax|| = ((Ax)^{T}(Ax))^{1/2} = (x^{T}x)^{1/2} = ||x||
$$

- preserves distances: $||Ax Ay|| = ||x y||$
- preserves angles:

$$
\angle(Ax, Ay) = \arccos\left(\frac{(Ax)^T(Ay)}{\|Ax\| \|Ay\|}\right) = \arccos\left(\frac{x^T y}{\|x\| \|y\|}\right) = \angle(x, y)
$$

Orthogonal matrix

a **square** real matrix with orthonormal columns is called *orthogonal*

Nonsingularity: if A is orthogonal, then

• A is invertible, with inverse A^T :

$$
\begin{array}{c}\nA^T A = I \\
A \text{ is square}\n\end{array}\n\right\} \implies AA^T = I
$$

- A^T is also an orthogonal matrix
- rows of A are orthonormal (have norm one and are mutually orthogonal)

Example: rotation in a plane

rotation matrices are orthogonal

Rotation in a coordinate plane in \mathbb{R}^n **:** for example,

$$
A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}
$$

describes a rotation in the (x_1, x_3) plane in \mathbb{R}^3

Example: permutation matrices

- permutation matrix is square with exactly one entry of each row/column is one
- let $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ be a *permutation* (reordering) of $(1, 2, \ldots, n)$
- permutation matrix A ,

$$
A_{i\pi_i} = 1, \quad A_{ij} = 0 \text{ if } j \neq \pi_i
$$

is orthogonal

• Ax is a permutation of the elements of x : $Ax = (x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n})$

Proof

• $A^T A = I$ because A has one element equal to one in each row and column

$$
(ATA)ij = \sum_{k=1}^{n} A_{ki} A_{kj} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}
$$

• $A^T = A^{-1}$ is the inverse permutation matrix

Example: permutation on $\{1, 2, 3, 4\}$

$$
(\pi_1, \pi_2, \pi_3, \pi_4) = (2, 4, 1, 3)
$$

• corresponding permutation matrix and its inverse

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}
$$

 \bullet A^T is permutation matrix associated with the permutation

$$
(\tilde{\pi}_1, \tilde{\pi}_2, \tilde{\pi}_3, \tilde{\pi}_4) = (3, 1, 4, 2)
$$

Product of orthogonal matrices

if A_1, \ldots, A_k are orthogonal matrices and of equal size, then the product

$$
A = A_1 A_2 \cdots A_k
$$

is orthogonal:

$$
ATA = (A1A2...Ak)T (A1A2...Ak)
$$

= $AkT... A2T A1T A1 A2...Ak$
= I

Linear equation with orthogonal matrix

linear equation with orthogonal coefficient matrix A of size $n \times n$

 $Ax = b$

solution is

$$
x = A^{-1}b = A^Tb
$$

- can be computed in $2n^2$ flops by matrix-vector multiplication
- cost is less than order n^2 if A has special properties; for example,

order permutation matrix: 0 flops plane rotation: 1 flops

Outline

- • [linear independence](#page-1-0)
- [left and right inverse](#page-8-0)
- [pseudo-inverse](#page-22-0)
- [matrices with orthonormal columns](#page-27-0)
- **[condition of linear systems](#page-38-0)**

Matrix 2-norm

a matrix norm $\|\cdot\|$ is any function satisfying the properties

- nonnegative: $||A|| \geq 0$ for all A
- positive definiteness: $||A|| = 0$ only if $A = 0$
- homogeneity: $||\beta A|| = |\beta| ||A||$
- triangle inequality: $||A + B|| \le ||A|| + ||B||$

the **2-norm** or **spectral norm** is defined as

$$
||A||_2 = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||
$$

- the norms $||Ax||$ and $||x||$ are Euclidean norms of vectors
- \bullet no simple explicit expression, except for special \overline{A}
- \bullet in MATI AB: norm(A)

Special cases

sometimes it is easy to maximize $||Ax||/||x||$

- zero matrix: $||0||_2 = 0$
- identity matrix: $||I||_2 = 1$
- diagonal matrix:

$$
A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix}, \quad ||A||_2 = \max_{i=1,\ldots,n} |A_{ii}|
$$

• matrix with orthonormal columns: $||A||_2 = 1$

General matrices: $||A||_2$ must be computed by numerical algorithms

Additional properties satisfied by the 2-norm

- $||Ax|| \le ||A||_2 ||x||$ if the product Ax exists
- $||AB||_2 \le ||A||_2 ||B||_2$ if the product AB exists
- if A is nonsingular: $||A||_2 ||A^{-1}||_2 \geq 1$
- if A is nonsingular: $1/||A^{-1}||_2 = \min_{x \neq 0} (||Ax||_2/||x||)$
- $||A^T||_2 = ||A||_2$

Other matrix norms

the *infinity-norm* is the maximum absolute row sum:

$$
||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|
$$

the *1-norm* is the maximum absolute column sum:

$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|
$$

Example

$$
A = \left[\begin{array}{rrr} 1 & 3 & 7 \\ -4 & 1.2725 & -2 \end{array} \right]
$$

we have

$$
||A||_{\infty} = \max\{11, 7.2725\} = 11
$$

$$
||A||_1 = \max\{5, 4.2725, 9\} = 9
$$

Condition of a set of linear equations

- assume A is nonsingular and $Ax = b$
- if we change b to $b + \Delta b$, the new solution is $x + \Delta x$ with

$$
A(x + \Delta x) = b + \Delta b
$$

• the change in x is

$$
\Delta x = A^{-1} \Delta b
$$

Condition

- well-conditioned if small Δb results in small Δx
- ill-conditioned if small Δb can result in large Δx

Example of ill-conditioned equations

$$
A = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 + 10^{-10} & 1 - 10^{-10} \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1 - 10^{10} & 10^{10} \\ 1 + 10^{10} & -10^{10} \end{bmatrix}
$$

- solution for $b = (1, 1)$ is $x = (1, 1)$
- change in x if we change b to $b + \Delta b$:

$$
\Delta x = A^{-1} \Delta b = \begin{bmatrix} \Delta b_1 - 10^{10} (\Delta b_1 - \Delta b_2) \\ \Delta b_1 + 10^{10} (\Delta b_1 - \Delta b_2) \end{bmatrix}
$$

small Δb can lead to very large Δx

Bound on absolute error

suppose A is nonsingular and define

$$
x = A^{-1}b, \quad \Delta x = A^{-1}\Delta b
$$

Upper bound on ∥Δ∥:

$$
\|\Delta x\| \le \|A^{-1}\|_2 \|\Delta b\|
$$

- small $\|A^{-1}\|_2$ means that $\|\Delta x\|$ is small when $\|\Delta b\|$ is small
- large $\|A^{-1}\|_2$ means that $\|\Delta x\|$ can be large, even when $\|\Delta b\|$ is small
- for every A, there exists nonzero Δb such that $\|\Delta x\| = \|A^{-1}\|_2 \|\Delta b\|$

Bound on relative error

suppose in addition that $b \neq 0$; hence $x \neq 0$

Upper bound on $||\Delta x||/||x||$:

$$
\frac{\|\Delta x\|}{\|x\|}\leq \|A\|_2\|A^{-1}\|_2\frac{\|\Delta b\|}{\|b\|}
$$

- follows from $\|\Delta x\| \le \|A^{-1}\|_2 \|\Delta b\|$ and $\|b\| \le \|A\|_2 \|x\|$
- $\bullet \ \|A\|_2 \|A^{-1}\|_2$ small means $\|\Delta x\|/\|x\|$ is small when $\|\Delta b\|/\|b\|$ is small
- $\bullet \ \|A\|_2 \|A^{-1}\|_2$ large means $\|\Delta x\|/\|x\|$ can be much larger than $\|\Delta b\|/\|b\|$
- for every A, there exist nonzero $b, \Delta b$ such that equality holds

Condition number

the *condition number* of a nonsingular matrix \vec{A} is

 $\kappa(A) = ||A||_2 ||A^{-1}||_2$

- we have $1 = ||I|| = ||A^{-1}A|| \le \kappa(A)$
- condition number is a measure of how close a matrix is to being singular
- matrix is ideally conditioned if its condition number equals 1
- A is a well-conditioned matrix if $\kappa(A)$ is small (close to 1): the relative error in x is not much larger than the relative error in b
- A is badly conditioned or ill-conditioned if $\kappa(A)$ is large (nearly singular): the relative error in x can be much larger than the relative error in b

Example

- A is blurring matrix, nonsingular with condition number $\approx 10^9$
- we apply A to image x

blurred image

blurred and noisy image

 $y_2 = Ax + \text{ small noise}$

Example

we solve $Ax = y$ for the two blurred images

 $^{-1}y_2$

- \bullet illustrates ill-conditioning of A (nearly singular)
- inverse amplifies the noise component

Residual and condition number

$$
A(x + \Delta x) = b + \Delta b
$$

- let \hat{x} be an estimate solution of $Ax = b$
- residual $\hat{r} = b A\hat{x}$; zero residual mean we get exact solution
- let $\Delta x = \hat{x} x$ so $\hat{x} = x + \Delta x$
- we have

$$
\Delta b = A(x + \Delta x) - b = A\hat{x} - b = -\hat{r}
$$

• hence from before

$$
\frac{\|\Delta x\|}{\|x\|} \le \kappa(A) \frac{\|\hat{r}\|}{\|b\|}
$$

- error can be much larger than residual when condition number is large
- a small residual does not imply a small error in the solution

Example

$$
A = \left[\begin{array}{cc} 0.913 & 0.659 \\ 0.457 & 0.330 \end{array} \right], \quad b = \left[\begin{array}{c} 0.254 \\ 0.127 \end{array} \right]
$$

• consider two approximate solutions

$$
\hat{x}_1 = \begin{bmatrix} 0.6391 \\ -0.5 \end{bmatrix} \quad \text{and} \quad \hat{x}_2 = \begin{bmatrix} 0.999 \\ -1.001 \end{bmatrix}
$$

the norms of their respective residuals are

$$
||\hat{r}_1|| = 6.8721 \times 10^{-5}
$$
 and $||\hat{r}_2|| = 1.8 \times 10^{-3}$

- \hat{x}_1 has smaller residual but solution is $(1, -1)$, so \hat{x}_2 is more accurate
- \bullet this is due to A being ill-conditioned
- in practice we cannot expect to deliver much more than a small residual

References and further readings

- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)
- M. T. Heath. *Scientific Computing: An Introductory Survey* (revised second edition). Society for Industrial and Applied Mathematics, 2018.