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Linearly independent vectors

the set of vectors a1, . . ., a, is linearly independent if
X141 +x9a0+ - +x,a, =0 = x1=x9=:-=x,=0
e in matrix-vector notation with a; the ith column of A
Ax=0 = x=0
e listay,...,a,islinearly dependent if there exist x1, ..., x;, not all zero, with
Ax =x1a1 +x9as + - + xp,a, =0
e a set of a single vector is linearly independent only if the vector is nonzero
e linear (in)dependence is a property of the set of vectors {aq, ..., a,}

e by convention, the empty set is linearly independent

linear independence
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Example

the vectors

0.2 -0.1 0
ayp = -7 , dg = 2 , das= -1
8.6 -1 2.2

are linearly dependent
e ( can be expressed as a nontrivial linear combination of a1, as, as:
O=a1+2a2 —3a3
® @ can be expressed as a linear combination of as, as:
a, = —2as + 3as

(and similarly a5 and a3 )
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Example

the vectors

are linearly independent:

X141 +XxXoa9 +Xx3a3 =

holds only if x;1 = x2 =x3 =0

linear independence

X1 — X2
—2x1 + X3
X9 + X3

—_

=0
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Independent dimension inequality

if n vectors a1, as, ..., a, of size m are linearly independent, then

n<<m

e if an m X n matrix has linearly independent columns thenm > n

e if A is wide (n > m), the columns are linearly dependent:
the homogeneous equation Ax = 0 has nontrivial solutions (x # 0)

e if an m X n matrix has linearly independent rows thenm < n

o if Aistall (m > n), its rows are linearly dependent
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Basis

any set of n linearly independent n-vectors a, . . ., a, is called a basis for R"

e any n-vector b can be expressed as a linear combination of them:
b=piay+ - +Bpa, forsome pBi,...,0n
and these coefficients are unique
e formula above is called expansion of b in the a1, . . ., a, basis
e example: eq,. .., e, is a basis, expansion of b is

b=bie1+ - +bpe,

linear independence
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Example: single period loans

e consider cash flows over n periods

e define the single-period loan cash flow n-vectors as

0i-1
1
-(1+r) |’
On—i—l

[ =

where r > 0 is the per-period interest rate
e [; represents a $1 loan in period #, paid back in period i + 1 with interest r
e scaling /; changes the loan amount

e vectors eq,11,...,[,_1 are a basis

linear independence
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e to see this observe

B+ B2
Bz = (1+71)B2
Brer +Pali+ -+ Buly-1 = : =0
IBn - (1 + r)ﬁn—l

_(1+r)ﬁn

e working backward gives 81 =--- =8, =0
e this means that any cash flow n-vector ¢ can be expressed as
c=aieq + a’gll + -0+ Cknln_l

e it can be shown that
C2 Cn
+ coe +
1+r (1+r)n-1

a1 =cC1+

is the net present value (NPV) of the cash flow, with interest rate r

e we see that any cash flow can be replicated as an income in period 1 equal to its
NPV, plus a linear combination of one-period loans at interest rate r
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Left and right inverse
for m X n matrix A we distinguish to types of inverses
Left inverse: X is a left inverse of A if

XA =1
A is left-invertible if it has at least one left inverse
Right inverse: X is a right inverse of A if

AX =1
A is right-invertible if it has at least one right inverse

Immediate properties

e a left or right inverse of an m X n matrix must have size n X m

e X is aleft (right) inverse of A if and only if XTisa right (left) inverse of AT

left and right inverse 6.9



Examples

e A is left-invertible; the following matrices are left inverses:

9 7 8§ -11

1] -11 -10 16 0 -1/2 3
0 1/2 -2

e B is right-invertible; the following matrices are right inverses:

HAIA

e for n-vector a (n X 1 matrix), x = (1/a,-)el.T is left-inverse for any i with a; # 0

SO =
o = O
o

o

left and right inverse
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Inverse

if A has a left and a right inverse, then they are equal and unique:

XA=1, AY=1 = X=X(AY)=(XA)Y=Y

e in this case, we call X = Y the inverse of A, denoted A~1
e A is invertible if its inverse exists

e invertible matrices must be square

Properties

e (AB)~™! = B~ A~ (provided inverses exist)
o (AD)™1 = (A1) T (sometimes denoted A~T)
e negative matrix powers: (A~1)¥ is denoted A%

o with AY = I, identity AXA! = A¥* holds for any integers k, [

left and right inverse
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Examples

inverse of identity is simply the identity I''=1

A =diag(ay,...,ay,) hasinverse A = diag(é, s i ifand only if a; # 0

e 2 X 2 matrix A is invertible if and only A11Ags # A12A9;

Al = 1 Ay —An
A11Az — A1pAs | A1 An
e a non-obvious example:
1 -2 3 0 -20 -10
A=| 0 2 2|, Al= % -6 5 =2
-3 -4 -4 6 10 2

verified by checking AA™' = TorA™'A =1

left and right inverse 6.12



Column and row independence

Left inverse: a matrix is left-invertible iff its columns are linearly independent
e to see this: CA = I then
Ax=0= C(Ax) = (CA)x=x=0

e the converse is also true (shown later)

e |eft-invertible matrices are tall or square (by indep.-dimension inequality)

Right inverse: A is right-invertible iff its rows are linearly independent
e A is right-invertible if and only if AT is left-invertible:
AX =] = (AX\)T=1 = xTAT=1
e hence, A is right-invertible if and only if its rows are linearly independent

e right-invertible matrices are wide or square

left and right inverse
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Nonsingular matrix

for a square matrix A the following properties are equivalent

—_

. Ais left-invertible

2. the columns of A are linearly independent
3. A is right-invertible
4

. the rows of A are linearly independent

a square matrix A satisfying the above is called nonsingular (= invertible)

left and right inverse
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Proof
weshow1 =2=3=4=1
o if A is left-invertible with left inverse B, then
Ax=0 = BAx=0 = x=0
so the columns of A are linearly independent
e if columns of A are L.i., then they form a basis for R" and there exist solutions to
Axi=e1,...,Axp=¢, — AX=1
hence, A is right-invertible
e apply same argument to ATto showif A is right-invertible then its rows are L.i.

e apply same argument to AT to show if A has Li. rows then A is left-invertible

left and right inverse 6.15



Examples

1 -1 1 -1

1 -1 1
A= -1 1 1], B:"ll"ll
L1 4 1 1 -1 -1
-1 -1 1 1

e A is nonsingular because its columns are linearly independent:
X1 —Xx9+x3=0, —x1+x9+x3=0, x1+x0—-x3=0
is only possible if x; =x2 =x3 =0
e B s singular because its columns are linearly dependent:

Bx=0forx=1=(1,1,1,1)

left and right inverse
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Example: Vandermonde matrix

1 n o7 - !
1ty t2 o 7t

e ’ with 7; # t; fori # j
1 t, 2 - 1

the Vandermonde matrix is nonsingular

Proof

o Ax =0 implies p(t1) = p(t2) = --- = p(t,) = 0 where
p(t) = x1 +xot +x31% + - +x," 7}

p(t) is a polynomial of degree n — 1 or less

e forx # 0, p(¢) can not have more than n — 1 distinct real roots

e therefore p(t1) = --- = p(t,) = Ois only possible if x = 0

left and right inverse 6.17



Linear equations and matrix inverses

Left inverse: if X is a left inverse of A, then

Ax=b = x=XAx=Xb

o if there is a solution, it must be equal to Xb
e if A(Xb) # b, then there is no solution

Right inverse: if X is a right inverse of A, then

x=Xb = Ax=AXb=b

e there is at least one solution: x = Xb for any b

e there can be other solutions
Inverse: if A is invertible, then x = A~1b is the unique solution to Ax = b

left and right inverse 6.18



Example: polynomial interpolation

e |et’s find coefficients of a cubic polynomial

that satisfies
p(=1.1) = by,

e write as Ac = b, with

left and right inverse

p(1) = 1+ cot + c3t® + cut®
p(=0.4) = by, p(0.1) = b3,

1 -1.1 (-1.1)%2 (-1.1)3
1 -04 (-0.4)% (-0.4)3
1 01 (0.2 (0.1)3
1 08 (0.8)2 (0.8)3

p(0.8) = by
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e (unique) coefficients given by ¢ = A~1b, with

-0.0370  0.3492  0.7521 -0.0643
0.1388 -1.8651  1.6239  0.1023
0.3470  0.1984 -1.4957  0.9503

-0.5784  1.9841 -2.1368 0.7310

ATl =

® S0, e.g., ¢ is not very sensitive to by or by
e firstcolumn A~ ey gives coefficients of polynomial that satisfies
p(-1.1)=1, p(-04)=0, p(0.1)=0, p(0.8)=0

called (first) Lagrange polynomial associated with the point —1.1

left and right inverse
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Lagrange polynomials associated with points —1.1, -0.4,0.2,0.8

p(x) p(x)

left and right inverse
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Gram matrix the Gram matrix associated with A = [a1 -+ a,,] € R™*" (with

columns a;) is
T T T

ajay ajay - aja,
T T T

a,ay, a,ds -+ asdy
ATA = 2 2 2
T T T

a,ai a,as - a,dy

Nonsingular Gram matrix: ATAs nonsingular iff A has linearly indep. columns
e suppose A has linearly independent columns:
ATAx = 0= xTATAx = (Ax)T(Ax) = |JAx|’ =0 = Ax=0=x =0

thus ATA is nonsingular

e assume columns of A are linearly dependent, then
thereexists x #0, Ax =0 — ATAx =0
therefore ATA is singular

pseudo-inverse 6.22



Pseudo-inverse of matrix with independent columns

e suppose A € R™ " has linearly independent columns

e this implies that A is tall or square (m > n)

Pseudo-inverse
AT = (ATA) AT

e this matrix exists, because the Gram matrix ATA is nonsingular

e A'isaleftinverse of A:
ATA = (ATA) Y (ATA) =1

e reduces to the inverse when A is square

pseudo-inverse
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Pseudo-inverse of matrix with independent rows

e suppose A € R"™ " has linearly independent rows
e this implies that A is wide or square (m < n)

Pseudo-inverse
AT = AT(AAT) !

AT has linearly independent columns

hence its Gram matrix AA T is nonsingular, so A™ exists

AT is a right inverse of A:
AAT = (AADH(AADH =1

e reduces to the inverse when A is square

pseudo-inverse 6.24



Summary

Left invertible: the following properties are equivalent for a real matrix A
1. A s left-invertible
2. the columns of A are linearly independent

3. ATA is nonsingular

(1 = 2 from page 6.13, 2 & 3 from page 6.22, 3 = 1 since Atisa left-inverse)

Right invertible: the following properties are equivalent for a real matrix A
1. A is right-invertible
2. the rows of A are linearly independent

3. AATis nonsingular

pseudo-inverse
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Orthonormal vectors

a set of real m-vectors a1, ao, . . ., a, is orthonormal if
1 i=yj
alaj={ "'~/
0 i#]
e the vectors have unit norm: ||a;|| = 1 (normalized)

e they are mutually orthogonal: al.Taj =0ifi #J

Examples

e standard unit n-vectors ey, ..., e,

e the three vectors

matrices with orthonormal columns
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Orthonormal expansion

ifai,...,a, are orthonormal, then they are lin. indep., hence basis for R"

e therefore, for any n-vector x,
x =pyay+---+Bpa, forsome unique B;
this is called orthonormal expansion of x (in the orthonormal basis)
e multiplying by al.Ton left, we have B; = aiTx and hence

x = (a{x)al + ot (a,{x)a,,

matrices with orthonormal columns
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Matrix with orthonormal columns

A € R™*" has orthonormal columns if its Gram matrix is the identity matrix:

T T

ajay ajaz - a{an 1 0 --- 0
T T Ta 0 1 0
asa; dsdsg e adsdap

ATA = 2 2 2 _
T T T
a,ar apas - a,dp 00 - 1

there is no standard short name for “matrix with orthonormal columns”
e A is left-invertible with left inverse AT

e A has linearly independent columns: Ax =0 = ATAx =x =0
e Aistall orsquare:m > n

e if Aistallm > n, then A has no right inverse; in particular

AAT £ 1

matrices with orthonormal columns 6.28



Matrix-vector product

if A € R™*" has orthonormal columns, then the linear function f(x) = Ax
e preserves inner products:
(Ax)T(Ay) =xTATAy =xTy
® preserves norms:
1Ax]| = ((Ax)T(Ax))"? = (xTo)1/2 = ||
o preserves distances: ||Ax — Ay|| = ||lx — y||

e preserves angles:

£(Ax, Ay) = arccos (M) = arccos( X'y ) = /(x,y)

[ Axlll Ayl eyl

matrices with orthonormal columns
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Orthogonal matrix
a square real matrix with orthonormal columns is called orthogonal

Nonsingularity: if A is orthogonal, then
e A is invertible, with inverse AT:

TA
AA=I } AAT =1

A is square
T, .
e A“is also an orthogonal matrix

e rows of A are orthonormal (have norm one and are mutually orthogonal)

matrices with orthonormal columns 6.30



Example: rotation in a plane

rotation matrices are orthogonal

cosf —sinf
sin 8 cos 6

Rotation in a coordinate plane in R": for example,
cosf 0 —siné
A= 0 1 0

sinf 0 cosé

describes a rotation in the (x1, x3) plane in R3

matrices with orthonormal columns

Ax
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Example: permutation matrices

e permutation matrix is square with exactly one entry of each row/column is one
e letr = (my,mo,...,n,) be a permutation (reordering) of (1,2, ...,n)
e permutation matrix A,
Air, =1, Ay =0ifj#m
is orthogonal
e Ax is a permutation of the elements of x: Ax = (X, Xrys .- -5 Xn,)
Proof

e ATA = I because A has one element equal to one in each row and column

n
1 i=j
(ATA); =) AiAr; = /

pary 0 otherwise

e AT = A~1is the inverse permutation matrix

matrices with orthonormal columns
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Example: permutation on {1, 2, 3,4}

(ﬂl’ﬂ25 3, 71-4) = (27 49 17 3)

e corresponding permutation matrix and its inverse

Al =AT=

o= OO
o o o
_— o O O
o o = O
o O = O
_— o o o
o O o
o= OO

o ATis permutation matrix associated with the permutation

(1, 7o, w3, 74) = (3,1,4,2)

matrices with orthonormal columns 6.33



Product of orthogonal matrices

if A1,..., Ay are orthogonal matrices and of equal size, then the product
A=A1Ay-- Ay
is orthogonal:

ATA = (A1As-AR) T (A1Az-Ay)
= AT ATATA 1 Ay Ay
=1

matrices with orthonormal columns
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Linear equation with orthogonal matrix

linear equation with orthogonal coefficient matrix A of size n X n
Ax=b

solution is
x=A"b=ATp

e can be computed in 2n? flops by matrix-vector multiplication

e cost is less than order n? if A has special properties; for example,

order
permutation matrix: 0 flops
plane rotation: 1 flops

matrices with orthonormal columns 6.35
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Matrix 2-norm

a matrix norm || - || is any function satisfying the properties
e nonnegative: ||A|| > 0 for all A

e positive definiteness: ||A|| = 0 only if A =0

e homogeneity: ||BA[l = |B]|| Al

e triangle inequality: ||A + B|| < ||A]| + || B]]

the 2-norm or spectral norm is defined as

A
I ’|“|” = max || Ax||

|All2 = max ——
0 |lx llx]I=1

XF
e the norms ||Ax|| and ||x|| are Euclidean norms of vectors
e no simple explicit expression, except for special A
e in MATLAB: norm(A)

condition of linear systems 6.36



Special cases

sometimes it is easy to maximize ||Ax||/||x||
e zero matrix: ||0]]2 = 0
e identity matrix: |||z = 1

e diagonal matrix:

Ay 0 0
A=| : .| lAllz= max |Ail
0 0 - Ay

e matrix with orthonormal columns: ||A]|2 = 1

General matrices: ||A||2 must be computed by numerical algorithms

condition of linear systems
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Additional properties satisfied by the 2-norm

[[Ax]| < ||A]l2]lx]| if the product Ax exists

I|AB||2 < ||A]l2||Bl|2 if the product AB exists

if A is nonsingular: ||Al|2[|A™ ]2 > 1

if A is nonsingular: 1/[|A™! || = minyzo (|Ax|l2/]lx]|)

ATz = l|All2

condition of linear systems
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Other matrix norms

the infinity-norm is the maximum absolute row sum:
n
Allo = max a;;
Il = e s
Jj=1
the 7-norm is the maximum absolute column sum:
m
lA]l; = max E |ai;|
1<j<n % 1
i=

Example

13 7
A‘[—4 1.2725 —2]

we have
[|Alleo = max{11,7.2725} = 11

|A|l1 = max{5,4.2725,9} =9

condition of linear systems
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Condition of a set of linear equations

e assume A is nonsingular and Ax = b
e if we change b to b + Ab, the new solution is x + Ax with
A(x+Ax)=b+Ab

e the changein x is
Ax = A"'Ab

Condition

e well-conditioned if small Ab results in small Ax

e ill-conditioned if small Ab can result in large Ax

condition of linear systems
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Example of ill-conditioned equations

1- 1010
1+101°

_1 1 1 -1
A=5 1+1070 1—10—10]’ A=

e solutionforb = (1,1)isx = (1, 1)
e change in x if we change b to b + Ab:

Aby — 1010 (Aby — Abs)

— A1 —
Ax=A"Ab = Abl + 1010 (Abl - AbQ)

small Ab can lead to very large Ax

condition of linear systems

1010
_1010



Bound on absolute error

suppose A is nonsingular and define

x=A"'D, Ax=A"'Ab

Upper bound on ||Ax]|:
llAx]| < JA7 Izl AB|

e small ||[A~!||2 means that ||Ax]| is small when ||Ab|| is small
e large ||A~!||2 means that ||Ax|| can be large, even when [|Ab|| is small

e for every A, there exists nonzero Ab such that ||Ax|| = ||[A~1||2||AD||

condition of linear systems
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Bound on relative error

suppose in addition that b # 0; hence x # 0

Upper bound on ||Ax||/||x]|:

[|Ax]| 1y 1AD]
o S lAll2l[A™ 2
[l 1]

follows from [|Ax|| < [[A~[l2[|Ab]l and [[6]] < [|All2 x|

|All2]]A~1 |2 small means ||Ax||/|lx|| is small when ||Ab]|/||b]| is small

IA|l2]]A~Y||2 large means ||Ax||/||x|| can be much larger than ||Ab||/||||

for every A, there exist nonzero b, Ab such that equality holds

condition of linear systems 6.43



Condition number

the condition number of a nonsingular matrix A is

K(A) = | AllzlA™ Iz

we have 1 = ||I]| = ||[A1A]| < x(A)

e condition number is a measure of how close a matrix is to being singular

matrix is ideally conditioned if its condition number equals 1

A is a well-conditioned matrix if k(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b

A is badly conditioned or ill-conditioned if k(A) is large (nearly singular):

the relative error in x can be much larger than the relative error in b

condition of linear systems
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Example

e A is blurring matrix, nonsingular with condition number =~ 107

e we apply A to image x

blurred image blurred and noisy image

y1 = Ax y2 = Ax+ small noise

condition of linear systems 6.45



Example

we solve Ax =y for the two blurred images

e illustrates ill-conditioning of A (nearly singular)

e inverse amplifies the noise component

condition of linear systems 6.46



Residual and condition nhumber

A(x+Ax)=b+Ab
o let X be an estimate solution of Ax = b
e residual # = b — AX; zero residual mean we get exact solution
e letAx =X —xs0X=x+Ax
e we have
Ab=A(x+Ax)-b=Ax-b=-7

e hence from before
IIAXII

e error can be much larger than residual when condition number is large

7]

A0

e a small residual does not imply a small error in the solution

condition of linear systems



Example

Az[ 0.913 0.659 ] b

0.254
0.457 0.330

0.127

e consider two approximate solutions

) 0.6391 ) 0.999
=1 05 and X2 =| _j o1

the norms of their respective residuals are
I71] = 6.8721 x 107° and  ||F]| = 1.8 x 1073

e X1 has smaller residual but solution is (1, —1), so X5 is more accurate

this is due to A being ill-conditioned
e in practice we cannot expect to deliver much more than a small residual

condition of linear systems 6.48
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