
5. Linear models

• linear and affine functions

• Taylor approximation

• regression model

• linear equations

• linear dynamical systems

ENGR 504 (Fall 2024) S. Alghunaim

5.1

Linear functions

• 𝑓 : R𝑛 → R𝑚 means 𝑓 is a function mapping 𝑛-vectors to 𝑚-vectors

• value is an 𝑚-vector 𝑓 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥))

• example: 𝑓 (𝑥) = (𝑥21, 𝑥2 − 𝑥1, 𝑥2) is 𝑓 : R2 → R3

Linear functions: 𝑓 is linear if it satisfies the superposition property

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all numbers 𝛼, 𝛽, and all 𝑛-vectors 𝑥, 𝑦

Extension: if 𝑓 is linear, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + ··· + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + ··· + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚

SA — ENGR504linear and affine functions 5.2

Matrix-vector product function

define a function 𝑓 : R𝑛 → R𝑚 as 𝑓 (𝑥) = 𝐴𝑥 for fixed 𝐴 ∈ R𝑚×𝑛

• any function of this type is linear: 𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼(𝐴𝑥) + 𝛽(𝐴𝑦)

• every linear function 𝑓 can be written as 𝑓 (𝑥) = 𝐴𝑥:

𝑓 (𝑥) = 𝑓 (𝑥1𝑒1 + 𝑥2𝑒2 + ··· + 𝑥𝑛𝑒𝑛)
= 𝑥1 𝑓 (𝑒1) + 𝑥2 𝑓 (𝑒2) + ··· + 𝑥𝑛 𝑓 (𝑒𝑛)

= [𝑓 (𝑒1) 𝑓 (𝑒2) ··· 𝑓 (𝑒𝑛)]

𝑥1
...

𝑥𝑛

 = 𝐴𝑥
where 𝐴 = [𝑓 (𝑒1) 𝑓 (𝑒2) ··· 𝑓 (𝑒𝑛)] and 𝑓 (𝑒𝑖) is an 𝑚-vector

• for 𝑓 : R𝑛 → R, we get inner product function 𝑓 (𝑥) = 𝑎T𝑥

• for any linear function 𝑓 there is only one 𝐴 for which 𝑓 (𝑥) = 𝐴𝑥 for all 𝑥

SA — ENGR504linear and affine functions 5.3

Examples (𝑓 : R3 → R3)

Linear

• 𝑓 reverses the order of the components of 𝑥 is linear

𝐴 =


0 0 1
0 1 0
1 0 0


• 𝑓 scales 𝑥1 by a given number 𝑑1, 𝑥2 by 𝑑2, 𝑥3 by 𝑑3 is linear

𝐴 =


𝑑1 0 0
0 𝑑2 0
0 0 𝑑3


Nonlinear

• 𝑓 sorts the components of 𝑥 in decreasing order: not linear

• 𝑓 replaces each 𝑥𝑖 by its absolute value |𝑥𝑖 | : not linear

SA — ENGR504linear and affine functions 5.4

Composition of linear functions

• 𝐴 is an 𝑚 × 𝑝 matrix

• 𝐵 is 𝑝 × 𝑛

• define linear functions 𝑓 : R𝑝 → R𝑚 and 𝑔 : R𝑛 → R𝑝 as

𝑓 (𝑢) = 𝐴𝑢, 𝑔(𝑣) = 𝐵𝑣

• composition of 𝑓 and 𝑔 is ℎ : R𝑛 → R𝑚

ℎ(𝑥) = 𝑓 (𝑔(𝑥)) = 𝐴(𝐵𝑥) = (𝐴𝐵)𝑥

• composition of linear functions is linear

• associated matrix is product of matrices of the functions

SA — ENGR504linear and affine functions 5.5

Example: second difference matrix

• 𝐷𝑛 is (𝑛 − 1) × 𝑛 difference matrix:

𝐷𝑛𝑥 = (𝑥2 − 𝑥1, 𝑥3 − 𝑥2, . . . , 𝑥𝑛 − 𝑥𝑛−1)

• 𝐷𝑛−1 is (𝑛 − 2) × (𝑛 − 1) difference matrix:

𝐷𝑛𝑦 = (𝑦2 − 𝑦1, 𝑦3 − 𝑦2, . . . , 𝑦𝑛−1 − 𝑦𝑛−2)

• Δ = 𝐷𝑛−1𝐷𝑛 is (𝑛 − 2) × 𝑛 is called second difference matrix:

Δ𝑥 = (𝑥1 − 2𝑥2 + 𝑥3, 𝑥2 − 2𝑥3 + 𝑥4, . . . , 𝑥𝑛−2 − 2𝑥𝑛−1 + 𝑥𝑛)

• for 𝑛 = 5,Δ = 𝐷𝑛−1𝐷𝑛 is


−1 1 0 0
0 −1 1 0
0 0 −1 1



−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 =

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1


SA — ENGR504linear and affine functions 5.6

Affine function

a function 𝑓 : R𝑛 → R𝑚 is affine if it satisfies

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

Extension: if 𝑓 is affine, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + ··· + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + ··· + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚 with

𝛼1 + 𝛼2 + ··· + 𝛼𝑚 = 1

SA — ENGR504linear and affine functions 5.7

Affine functions and matrix-vector product

𝑓 : R𝑛 → R𝑚 is affine, if and only if it can be expressed as

𝑓 (𝑥) = 𝐴𝑥 + 𝑏

for some 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

• to see it is affine, let 𝛼 + 𝛽 = 1 then

𝐴(𝛼𝑥 + 𝛽𝑦) + 𝑏 = 𝛼(𝐴𝑥 + 𝑏) + 𝛽(𝐴𝑦 + 𝑏)

• using the definition, we can show

𝐴 = [𝑓 (𝑒1) − 𝑓 (0) 𝑓 (𝑒2) − 𝑓 (0) ··· 𝑓 (𝑒𝑛) − 𝑓 (0)] , 𝑏 = 𝑓 (0)

• for 𝑓 : R𝑛 → R the above becomes 𝑓 (𝑥) = 𝑎T𝑥 + 𝑏

SA — ENGR504linear and affine functions 5.8

Example: motion of a mass

𝐹 (𝑡)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑡

𝐹 (𝑡)

0 1 2 3 4 5 6 7 8 9 10

• a unit mass with zero initial position and velocity

• we apply piecewise-constant force 𝐹 (𝑡) during interval [0, 10):

𝐹 (𝑡) = 𝑥 𝑗 for 𝑡 ∈ [𝑗 − 1, 𝑗), 𝑗 = 1, . . . , 10

• define 𝑓 (𝑥) as position at 𝑡 = 10, 𝑔(𝑥) as velocity at 𝑡 = 10

find 𝑓 and 𝑔 and determine whether they are linear or affine in 𝑥?

SA — ENGR504linear and affine functions 5.9

Solution

• from Newton’s law 𝑝′′ (𝑡) = 𝐹 (𝑡) where 𝑝(𝑡) is the position at time 𝑡

• integrate to get final velocity and position

𝑔(𝑥) = 𝑝′ (10) =
∫ 10

0

𝐹 (𝑡)𝑑𝑡

= 𝑥1 + 𝑥2 + ··· + 𝑥10

𝑓 (𝑥) = 𝑝(10) =
∫ 10

0

𝑝′ (𝑡)𝑑𝑡

=
19

2
𝑥1 +

17

2
𝑥2 +

15

2
𝑥3 + ··· + 1

2
𝑥10

• the two functions are linear: 𝑓 (𝑥) = 𝑎T𝑥 and 𝑔(𝑥) = 𝑏T𝑥 with

𝑎 =

(
19

2
,
17

2
, . . . ,

3

2
,
1

2

)
, 𝑏 = (1, 1, . . . , 1)

SA — ENGR504linear and affine functions 5.10

Outline

• linear and affine functions

• Taylor approximation

• regression model

• linear equations

• linear dynamical systems

First-order Taylor (affine) approximation

first-order Taylor approximation of 𝑓 : R𝑛 → R, near point 𝑧:

𝑓 (𝑥) = 𝑓 (𝑧) + 𝜕 𝑓

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + ··· + 𝜕 𝑓

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛)

= 𝑓 (𝑧) + ∇ 𝑓 (𝑧)T (𝑥 − 𝑧)

• 𝑛-vector ∇ 𝑓 (𝑧) is the gradient of 𝑓 at 𝑧,

∇ 𝑓 (𝑧) =
(
𝜕 𝑓

𝜕𝑥1
(𝑧), . . . , 𝜕 𝑓

𝜕𝑥𝑛
(𝑧)

)
• 𝑓 (𝑥) is very close to 𝑓 (𝑥) when 𝑥𝑖 are all near 𝑧𝑖

• sometimes written 𝑓 (𝑥; 𝑧), to indicate that 𝑧 where the approximation appear

• 𝑓 is an affine function of 𝑥

• often called linear approximation of 𝑓 near 𝑧, even though it is in general affine

SA — ENGR504Taylor approximation 5.11

Example with one variable

𝑧

𝑓 (𝑥)

𝑓

𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′ (𝑧) (𝑥 − 𝑧)

SA — ENGR504Taylor approximation 5.12

Example with two variables

𝑓 (𝑥1, 𝑥2) = 𝑥1 − 3𝑥2 + 𝑒2𝑥1+𝑥2−1

• gradient:

∇ 𝑓 (𝑥) =
[
1 + 2𝑒2𝑥1+𝑥2−1

−3 + 𝑒2𝑥1+𝑥2−1
]

• Taylor approximation around 𝑧 = 0:

𝑓 (𝑥) = 𝑓 (0) + ∇ 𝑓 (0)T (𝑥 − 0)
= 𝑒−1 + (1 + 2𝑒−1)𝑥1 + (−3 + 𝑒−1)𝑥2

SA — ENGR504Taylor approximation 5.13

Taylor approximation for vector-valued functions

first-order Taylor approximation of differentiable 𝑓 : R𝑛 → R𝑚 around 𝑧:

𝑓̂𝑖 (𝑥) = 𝑓𝑖 (𝑧) +
𝜕 𝑓𝑖

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + ··· + 𝜕 𝑓𝑖

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛) , 𝑖 = 1, . . . , 𝑚

in matrix-vector notation: 𝑓 (𝑥) = 𝑓 (𝑧) + 𝐷 𝑓 (𝑧) (𝑥 − 𝑧) where

𝐷 𝑓 (𝑧) =


𝜕 𝑓1
𝜕𝑥1

(𝑧) 𝜕 𝑓1
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓1
𝜕𝑥𝑛

(𝑧)
𝜕 𝑓2
𝜕𝑥1

(𝑧) 𝜕 𝑓2
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓2
𝜕𝑥𝑛

(𝑧)
...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑧) 𝜕 𝑓𝑚
𝜕𝑥2

(𝑧) ··· 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑧)


=


∇ 𝑓1 (𝑧)T
∇ 𝑓2 (𝑧)T

...

∇ 𝑓𝑚 (𝑧)T


• 𝐷 𝑓 (𝑧) is called the derivative or Jacobian matrix of 𝑓 at 𝑧

• 𝑓 is a local affine approximation of 𝑓 around 𝑧

SA — ENGR504Taylor approximation 5.14

Example

𝑓 (𝑥) =
[
𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
𝑒2𝑥1+𝑥2 − 𝑥1
𝑥21 − 𝑥2

]

• derivative matrix:

𝐷 𝑓 (𝑥) =
[
2𝑒2𝑥1+𝑥2 − 1 𝑒2𝑥1+𝑥2

2𝑥1 −1

]
• first order approximation of 𝑓 around 𝑧 = 0:

𝑓 (𝑥) =
[
𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
1
0

]
+
[
1 1
0 −1

] [
𝑥1
𝑥2

]

SA — ENGR504Taylor approximation 5.15

Outline

• linear and affine functions

• Taylor approximation

• regression model

• linear equations

• linear dynamical systems

Regression model

a regression model is the affine function:

𝑦 = 𝑥T𝛽 + 𝑣 = 𝛽1𝑥1 + ··· + 𝛽𝑛𝑥𝑛 + 𝑣

• 𝑦 is prediction of true value 𝑦 called the dependent variable, outcome, or label

• 𝑥 is regressor or feature vector (entries called regressors)

• 𝛽 is weight or coefficient vector (𝛽𝑖 are model parameters)

• 𝑣 is offset parameter or intercept

• together 𝛽 and 𝑣 are called the parameters

• interpretation: 𝛽𝑖 is amount 𝑦 changes when 𝑥𝑖 increases by one with all 𝑥 𝑗 fixed

SA — ENGR504regression model 5.16

House price regression model

𝑦: selling price (in 1000 dollars) of a house in some neighborhood, over a time period

• 𝑥1 is the area (1000 square feet)

• 𝑥2 is the number of bedrooms

the regression model
𝑦 = 54.4 + 148.73𝑥1 − 18.85𝑥2

predicts the price in terms of attributes or features (𝑦 is predicted selling price)

house 𝑥1 (area) 𝑥2 (beds) 𝑦 (price) 𝑦 (prediction)
1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.037 4 528.00 430.67
5 3.984 5 572.50 552.66

SA — ENGR504regression model 5.17

Example: house sale prices

House 1

House 2
House 3

House 4

House 5

Actual price 𝑦

P
re

di
ct

ed
pr

ic
e
𝑦

• scatter plot shows sale prices for 774 houses in Sacramento

• in practice, regression models for house prices use many regressors and are
more accurate

SA — ENGR504regression model 5.18

Regression model in matrix form

given 𝑁 features (examples, samples) 𝑥 (1) , . . . , 𝑥 (𝑁) and outcomes 𝑦 (1) , . . . , 𝑦 (𝑁)

• associated predictions are 𝑦 (𝑖) = (𝑥 (𝑖))T𝛽 + 𝑣

• write as

𝑦d = 𝑋T𝛽 + 𝑣1 =

[
1T

𝑋

]T [
𝑣

𝛽

]
– 𝑋 is feature matrix with columns 𝑥 (1) , . . . , 𝑥 (𝑁)

– 𝑦d = (𝑦 (1) , . . . , 𝑦 (𝑁)) is 𝑁-vector of predictions

• vector of prediction errors or residuals

𝑟d = 𝑦d − 𝑦d = 𝑦d − 𝑋T𝛽 − 𝑣1

𝑦d = (𝑦 (1) , . . . , 𝑦 (𝑁)) is 𝑁-vector of responses (true outcomes if known)

SA — ENGR504regression model 5.19

Outline

• linear and affine functions

• Taylor approximation

• regression model

• linear equations

• linear dynamical systems

Systems of linear equations

set (system) of 𝑚 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝐴11𝑥1 + 𝐴12𝑥2 + ··· + 𝐴1𝑛𝑥𝑛 = 𝑏1

𝐴21𝑥1 + 𝐴22𝑥2 + ··· + 𝐴2𝑛𝑥𝑛 = 𝑏2

...

𝐴𝑚1𝑥1 + 𝐴𝑚2𝑥2 + ··· + 𝐴𝑚𝑛𝑥𝑛 = 𝑏𝑚

• compact representation: 𝐴𝑥 = 𝑏

• 𝐴𝑖 𝑗 are the coefficients; 𝐴 is the coefficient matrix

• 𝑏 is the right-hand side

• may have no solution, a unique solution, or infinitely many solutions

Classification
• under-determined if 𝑚 < 𝑛 (𝐴 is wide; less equations than unknowns)

• square if 𝑚 = 𝑛 (𝐴 is square)

• over-determined if 𝑚 > 𝑛 (𝐴 is tall; more equations than unknowns)

SA — ENGR504linear equations 5.20

Example: polynomial interpolation

• polynomial of degree at most 𝑛 − 1 with coefficients 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡2 + ··· + 𝑥𝑛𝑡𝑛−1

• fit polynomial to 𝑚 given points (𝑡1, 𝑦1), . . . (𝑡𝑚, 𝑦𝑚)

• this is a system of linear equations:

𝐴𝑥 =


1 𝑡1 · ·· 𝑡𝑛−11

1 𝑡2 · ·· 𝑡𝑛−12
...

1 𝑡𝑚 · ·· 𝑡𝑛−1𝑚



𝑥1
𝑥2
...

𝑥𝑛

 =

𝑦1
𝑦2
...

𝑦𝑚


here 𝐴 is the Vandermonde matrix

SA — ENGR504linear equations 5.21

Example: recovery of function from derivative

consider finding a function 𝑣(𝑡) from its second derivative −𝑔(𝑡) on interval [0, 1]

• this problem arises in many applications such as the heat equation in one variable

• for any 𝑣 with − 𝑑2𝑣
𝑑𝑡2

(𝑡) = 𝑔(𝑡), the function 𝑤(𝑡) = 𝑣(𝑡) + 𝛼 + 𝛽𝑡 has the same
second derivative for any constants 𝛼 and 𝛽

• to fix these constants we need two additional constraints

• we assume 𝑣(0) = 𝑣(1) = 0

• this yields a differential equation, − 𝑑2𝑣
𝑑𝑡2

(𝑡) = 𝑔(𝑡), with boundary conditions

SA — ENGR504linear equations 5.22

• let ℎ = 1/𝑁 be sampling interval (subdivides [0, 1] into 𝑁 subintervals)

• define 𝑣𝑘 = 𝑣(𝑘ℎ) and 𝑔𝑘 = 𝑔(𝑘ℎ) for 𝑘 = 0, 1, . . . , 𝑁

• discrete approximation of − 𝑑2𝑣
𝑑𝑡2

(𝑡) = − lim
ℎ→0

𝑣 (𝑡+ℎ)−2𝑣 (𝑡)+𝑣 (𝑡−ℎ)
ℎ2

= 𝑔(𝑡) is

−𝑑
2𝑣

𝑑𝑡2
(𝑘ℎ) ≈ −𝑣𝑘+1 − 2𝑣𝑘 + 𝑣𝑘−1

ℎ2
= 𝑔𝑘 , 𝑘 = 1, 2, . . . , 𝑁 − 1

• for boundary conditions 𝑣(0) = 0, 𝑣(1) = 0, we write 𝑣0 = 0, 𝑣𝑁 = 0

• rewriting the equations in matrix-vector form, we get 𝐴𝑣 = 𝑔, where

𝑣 =


𝑣1
𝑣2
...

𝑣𝑁−1

 , 𝑔 =


𝑔1
𝑔2
...

𝑔𝑁−1

 , 𝐴 =
1

ℎ2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


SA — ENGR504linear equations 5.23

Example: diffusion system

diffusion system is a model that arises in physics to describe flows and potentials

Flows
• consider a directed graph with 𝑛 nodes and 𝑚 edges

• 𝑓 𝑗 is flow across edge 𝑗 (e.g., electricity, heat, energy, or mass)

• 𝑠𝑖 is source flow at node 𝑖

• in diffusion system, flows satisfy flow conservation (sum of flows equal zero)

• example:

𝑓1 + 𝑓2 − 𝑓3 + 𝑠1 = 0 1
𝑠1

1

2

3

• flow conservation at every node is 𝐴 𝑓 + 𝑠 = 0 where 𝐴 is the incidence matrix

SA — ENGR504linear equations 5.24

Potentials

• 𝑣𝑖 is potential of node 𝑖 (e.g., temperature in thermal model, voltage in an
electrical circuit)

• flow on an edge is proportional to the potential difference across its adjacent
nodes 𝑟 𝑗 𝑓 𝑗 = 𝑣𝑘 − 𝑣𝑙 where 𝑟 𝑗 is resistance of edge 𝑗

• example:

𝑟8 𝑓8 = 𝑣2 − 𝑣3 2 3
8

• edge flow equations: 𝑅 𝑓 = −𝐴T𝑣, where 𝑅 = diag(𝑟) is called resistance matrix

Diffusion model [
𝐴 𝐼 0
𝑅 0 𝐴𝑇

] 
𝑓

𝑠

𝑣

 = 0

• a set of 𝑛 + 𝑚 homogeneous equations in 𝑚 + 2𝑛 variables

• to these underdetermined equations we can specify some entries of 𝑓 , 𝑠, 𝑣

SA — ENGR504linear equations 5.25

Outline

• linear and affine functions

• Taylor approximation

• regression model

• linear equations

• linear dynamical systems

Linear dynamical system

sequence of 𝑛-vectors 𝑥1, 𝑥2, . . .

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 , 𝑡 = 1, 2, . . .

• 𝐴𝑡 are 𝑛 × 𝑛 dynamics matrices

• 𝑡 denotes the time or period

• 𝑥𝑡 is state at time 𝑡; sequence is called (state) trajectory

• 𝑥𝑡 is current state, 𝑥𝑡−1 is previous state, 𝑥𝑡+1 is next state

• examples: 𝑥𝑡 represents
– mechanical variables (positions or velocities)
– age distribution in a population
– portfolio that changes daily

• system is time-invariant if 𝐴𝑡 = 𝐴 (doesn’t depend on time)

• for time-invariant system 𝑥𝑡+ℓ = 𝐴ℓ𝑥𝑡 (𝐴ℓ propagates the state forward ℓ times)

SA — ENGR504linear dynamical systems 5.26

Linear dynamical system

(Linear) 𝐾-Markov model

𝑥𝑡+1 = 𝐴1𝑥𝑡 + 𝐴2𝑥𝑡−1 + ··· + 𝐴𝐾𝑥𝑡−𝐾+1, 𝑡 = 𝐾, 𝐾 + 1, . . .

• next state depends on current state and 𝐾 − 1 previous states

• also known as auto-regressive model

• for 𝐾 = 1, this is the standard linear dynamical system 𝑥𝑡+1 = 𝐴𝑥𝑡

Linear dynamical system with input

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑐𝑡 , 𝑡 = 1, 2, . . .

• 𝑢𝑡 is an input 𝑚-vector (or exogenous variable)

• 𝐵𝑡 is 𝑛 × 𝑚 input matrix

• 𝑐𝑡 is offset (or noise)

• for fixed 𝐴, 𝐵, and 𝑐𝑡 = 0,

𝑥𝑡+ℓ = 𝐴
ℓ𝑥𝑡 + 𝐴ℓ−1𝐵𝑢𝑡 + 𝐴ℓ−2𝐵𝑢𝑡+1 + ··· + 𝐵𝑢𝑡+ℓ−1

SA — ENGR504linear dynamical systems 5.27

Linear dynamical system with state feedback

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 , 𝑡 = 1, 2,

• the input 𝑢𝑡 is something we can manipulate, e.g., the control

• in state feedback control, input 𝑢𝑡 is a linear function of the state,

𝑢𝑡 = 𝐾𝑥𝑡

where 𝐾 is the 𝑚 × 𝑛 state-feedback gain matrix

• with state feedback, we have

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 = (𝐴 + 𝐵𝐾)𝑥𝑡 , 𝑡 = 1, 2, . . .

• recursion is the closed-loop system (𝑥𝑡+1 = 𝐴𝑥𝑡 is open-loop system)

• matrix 𝐴 + 𝐵𝐾 is called the closed-loop dynamics matrix

• widely used in many applications (we will see methods for choosing 𝐾)

SA — ENGR504linear dynamical systems 5.28

Example: population distribution

model the evolution of age distribution in some population over time by linear
dynamical system

• 𝑥𝑡 ∈ R100 gives population distribution in year 𝑡 = 1, . . . , 𝑇

• (𝑥𝑡)𝑖 is the number of people with age 𝑖 − 1 in year 𝑡 (say, on January 1)
– total population in year 𝑡 is 1T𝑥𝑡
– number of people age 70 or older in year 𝑡 is (070, 130)T 𝑥𝑡

• birth rate 𝑏 ∈ R100

– 𝑏𝑖 is average number of births per person with age 𝑖 − 1

• death (or mortality) rate 𝑑 ∈ R100

– 𝑑𝑖 is the portion of those aged 𝑖 − 1 who will die this year (we’ll take 𝑑100 = 1)

• 𝑏 and 𝑑 can vary with time, but we’ll assume they are constant

let’s find next year’s population distribution 𝑥𝑡+1 (ignoring immigration)

SA — ENGR504linear dynamical systems 5.29

Population distribution dynamics

• number of 0-year-olds next year is total births this year:

(𝑥𝑡+1)1 = 𝑏T𝑥𝑡

• no. of 𝑖-year-olds next year is no. of (𝑖 − 1)-year-olds this year, minus deaths:

(𝑥𝑡+1)𝑖+1 = (1 − 𝑑𝑖) (𝑥𝑡)𝑖 , 𝑖 = 1, . . . , 99

• hence, 𝑥𝑡+1 = 𝐴𝑥𝑡 , where

𝐴 =


𝑏1 𝑏2 · ·· 𝑏99 𝑏100

1 − 𝑑1 0 · ·· 0 0
0 1 − 𝑑2 · ·· 0 0
... ...

.

0 0 · ·· 1 − 𝑑99 0


• we can use this model to predict the total population in future

SA — ENGR504linear dynamical systems 5.30

population distribution, birth, and death rates in the U.S. in 2010

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

Age

Po
pu

la
tio

n(
m

ill
io

ns
)

0 10 20 30 40 50 60 70 80 90 100

0

2

4

Age

B
irt

h
ra

te
(%

)

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

Age

D
ea

th
ra

te
(%

)

SA — ENGR504linear dynamical systems 5.31

predicting U.S. 2020 distribution from 2010 (ignoring immigration) with initial value 𝑥1
given by the 2010 age distribution

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

Age

Po
pu

la
tio

n(
m

ill
io

ns
)

SA — ENGR504linear dynamical systems 5.32

Example: epidemic dynamics

4-vector 𝑥𝑡 gives proportion of population in 4 infection states

• susceptible: (𝑥𝑡)1 can acquire the disease the next day

• infected: (𝑥𝑡)2 have the disease

• recovered: (𝑥𝑡)3 had the disease, recovered, now immune

• deceased: (𝑥𝑡)4 had the disease, and unfortunately died

Example: 𝑥𝑡 = (0.75, 0.10, 0.10, 0.05) means in day 𝑡

• 75% of the population is susceptible

• 10% is infected

• 10% is recovered and immune

• 5% has died from the disease

SA — ENGR504linear dynamical systems 5.33

Model assumption: suppose over each day

• 5% of susceptible acquires the disease (95% remain susceptible)

• 1% of infected dies

• 10% of infected recovers with immunity

• 4% of infected recover without immunity (i.e., become susceptible)

• 85% remain infected

• 100% of immune and dead people remain in their state

SA — ENGR504linear dynamical systems 5.34

Epidemic dynamics as linear dynamical system

• susceptible portion in the next day

(𝑥𝑡+1)1 = 0.95 (𝑥𝑡)1 + 0.04 (𝑥𝑡)2
– 0.95 (𝑥𝑡)1 is susceptible individuals from today, who did not become infected,

– 0.04 (𝑥𝑡)2 is infected individuals today who recovered without immunity

• infected portion in the next day

(𝑥𝑡+1)2 = 0.85 (𝑥𝑡)2 + 0.05 (𝑥𝑡)1
– first term counts those who are infected and remain infected

– second term counts those who are susceptible and acquire disease

• using similar arguments for (𝑥𝑡+1)3 and (𝑥𝑡+1)4, we get

𝑥𝑡+1 =


0.95 0.04 0 0
0.05 0.85 0 0
0 0.10 1 0
0 0.01 0 1

 𝑥𝑡
SA — ENGR504linear dynamical systems 5.35

simulation from 𝑥1 = (1, 0, 0, 0)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Susceptible

Infected

Recovered

Deceased

Time 𝑡

𝑥
𝑡

SA — ENGR504linear dynamical systems 5.36

Example: motion of a mass

• linear dynamical systems can be used to (approximately) describe the motion of
many mechanical systems

• for example, an airplane (that is not undergoing extreme maneuvers)

Example: motion of mass in 1-D

𝑚
𝑑2𝑝

𝑑𝜏2
(𝜏) = −𝜂 𝑑𝑝

𝑑𝜏
(𝜏) + 𝑓 (𝜏) 𝑚

𝑝

𝑓

0
• 𝑚 > 0 is the mass

• 𝑓 (𝜏) is the external force acting on the mass at time 𝜏

• 𝜂 > 0 is the drag coefficient

• introducing the velocity of the mass, 𝑣(𝜏) = 𝑑𝑝(𝜏)/𝑑𝜏, we can write

𝑑𝑝

𝑑𝜏
(𝜏) = 𝑣(𝜏), 𝑚

𝑑𝑣

𝑑𝜏
(𝜏) = −𝜂𝑣(𝜏) + 𝑓 (𝜏)

SA — ENGR504linear dynamical systems 5.37

Discretization

• let ℎ > 0 be a small time interval (called the sampling interval)

• define the continuous quantities ‘sampled’ at multiples of ℎ seconds

𝑝𝑘 = 𝑝(𝑘ℎ), 𝑣𝑘 = 𝑣(𝑘ℎ), 𝑓𝑘 = 𝑓 (𝑘ℎ)

• we now use the approximations

𝑑𝑝

𝑑𝜏
(𝑘ℎ) ≈ 𝑝𝑘+1 − 𝑝𝑘

ℎ
,

𝑑𝑣

𝑑𝜏
(𝑘ℎ) ≈ 𝑣𝑘+1 − 𝑣𝑘

ℎ

• this leads to the (approximate) equations

𝑝𝑘+1 − 𝑝𝑘
ℎ

= 𝑣𝑘 , 𝑚
𝑣𝑘+1 − 𝑣𝑘

ℎ
= 𝑓𝑘 − 𝜂𝑣𝑘

Motion of mass dynamics: using state 𝑥𝑘 = (𝑝𝑘 , 𝑣𝑘), we write this as

𝑥𝑘+1 =

[
1 ℎ

0 1 − ℎ𝜂/𝑚

]
𝑥𝑘 +

[
0
ℎ/𝑚

]
𝑓𝑘 , 𝑘 = 1, 2, . . .

SA — ENGR504linear dynamical systems 5.38

References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, University of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

SA — ENGR504references 5.39

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	linear and affine functions
	Taylor approximation
	regression model
	linear equations
	linear dynamical systems
	references

