ENGR 504 (Fall 2024) S. Alghunaim

5. Linear models

e linear and affine functions
e Taylor approximation

® regression model

e linear equations

e linear dynamical systems
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Linear functions

e f:R" — R™ means f is a function mapping n-vectors to m-vectors

e value is an m-vector f(x) = (f1(x),..., fin(x))

e example: f(x) = (x%,xg —x1,x9)is f: R%2 = R3

Linear functions: f is linear if it satisfies the superposition property

flax+By) = af(x)+Bf(y)
for all numbers a, 3, and all n-vectors x, y
Extension: if f is linear, then
[ (aiuy + agug + - + apityy) = a1 f (ur) + asf (ug) + -+ + am f ()

for all n-vectors u1, ..., u,, and all scalars a1, ..., a;
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Matrix-vector product function

define a function f : R" — R™ as f(x) = Ax for fixed A € R™*"

e any function of this type is linear: A(ax + By) = a(Ax) + B(Ay)

e every linear function f can be written as f(x) = Ax:

fx) = f(x1e1 +xzea+ -+ +xpey)
=x1f(er) +xaf(ez) + - +x,f(en)

X1

=[f(e1) fle2) - flen)]| + | =Ax

Xn

where A = [f(e1) f(e2) - f(en)] and f(e;) is an m-vector
e for f: R" — R, we get inner product function f(x) = a’x

e for any linear function f there is only one A for which f(x) = Ax for all x
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Examples (f : R? — R?)

Linear

o f reverses the order of the components of x is linear

A=

_ o O
o~ O
O O =

e f scales x1 by a given number d1, X2 by da, x3 by d3 is linear

d 0 0
A= 0 dy O
0 0 ds

Nonlinear
e f sorts the components of x in decreasing order: not linear

e f replaces each x; by its absolute value |x;| : not linear

linear and affine functions
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Composition of linear functions

e Aisanm X p matrix
e BispXn
e define linear functions f : R? — R™ and g : R” — R?” as

f(u) =Au, g(v)=Bv

compositionof f and gis h : R" — R™

h(x) = f(g(x)) = A(Bx) = (AB)x
e composition of linear functions is linear

e associated matrix is product of matrices of the functions

linear and affine functions
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Example: second difference matrix

D, is (n — 1) x n difference matrix:

Dux = (X2 = X1,X3 = X2,...,Xp — Xp_1)

D, 1 is (n—2) x (n - 1) difference matrix:
Dpy = (y2 = y1,¥3 = Y2:+-+sYn-1— Yn-2)
e A=D,_ 1D, is (n—2) X nis called second difference matrix:

Ax = (x1 — 2x0 + X3,X0 — 2X3 + Xg, ..., Xp_2 — 2Xp_1 + Xp)

forn=5,A=D,_1D,is

1 1 o]t P 0O 00 1 -2 1
0 -1 1 00

0 -1 10 =0 1 -2

0 0 -1 1 0 0 -1 10 0 1
0 0 0 -1 1

linear and affine functions
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Affine function

a function f : R" — R™ is affineif it satisfies

flax+By) = af(x)+Bf(y)

for all n-vectors x, y and all scalars a, Bwitha + 5 =1

Extension: if f is affine, then
faguy + agug + -+ + apity) = a1 f (uy) +aof (ug) + - + amf (Um)
for all n-vectors uq, ..., u,, and all scalars a1, .. ., a,, with

ay+as+ - ta, =1

linear and affine functions
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Affine functions and matrix-vector product

[ R"™ — R™ is affine, if and only if it can be expressed as
f(x)=Ax+b

for some A € R™" ph ¢ R™

e to see itis affine, let &« + 5 = 1 then
Alax+By)+b=a(Ax+b) + B(Ay + b)
e using the definition, we can show

A =[f(er) = f(0) flez) = f(0) - flen) = f(O)], b=f(0)

e for f : R” — R the above becomes f(x) = a’x + b

linear and affine functions
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Example: motion of a mass

F(1)

’7_4 F 1)

012345676910

e a unit mass with zero initial position and velocity

e we apply piecewise-constant force F () during interval [0, 10):
F(t)=x; forte[j-1,7), j=1,...,10

e define f(x) as position at = 10, g(x) as velocity at t = 10

find f and g and determine whether they are linear or affine in x?

linear and affine functions



Solution

e from Newton’s law p”/(t) = F(t) where p(t) is the position at time ¢

e integrate to get final velocity and position

10
g(0) = p'(10) = /0 F(o)di
=X1+X2+ - +X10

10
F(x) = p(10) = /0 P (1) di

_lo T s
—2x1 2x2 2x3 2x10

e the two functions are linear: f(x) = a’x and g(x) = b%x with

(1917 31
=\ ey

), b=(11,...,1)

linear and affine functions
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e linear and affine functions
o Taylor approximation

e regression model

e linear equations

e linear dynamical systems

Outline



First-order Taylor (affine) approximation

first-order Taylor approximation of f : R" — R, near point z:

F = f0)+ j—i(z) -z 4+ L) (= 20)

ox,
= f(2)+Vf(2)(x-2)

n-vector V f (z) is the gradient of f at z,

d 4
Vf(z) = a_i(Z)""’axf (2)

f(x) is very close to f(x) when x; are all near z;

e sometimes written f(x; z), to indicate that z where the approximation appear

f is an affine function of x

often called linear approximation of f near z, even though it is in general affine

Taylor approximation
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Example with one variable

Far

Z

f) =f@)+f(2)(x-2)
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Example with two variables

f(x1,x2) = x1 = 3xp + VP07

e gradient:

Vi) =

_3 + 82x1+x2—1

1+ 2€2x1+x2—1 ]

e Taylor approximation around z = 0:

fx) = £(0)+V£(0)(x-0)

e+ (1+2e Hxy +(-3+e HHxy

Taylor approximation
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Taylor approximation for vector-valued functions

first-order Taylor approximation of differentiable f : R” — R™ around z:

—-zn), i=1,....m

i = i)+ 550 -2 ek
x1

in matrix-vector notation: f(x) = f(2) + Df(2)(x — z) where

%(z) %(z) "”f‘;m V()T
D) = ﬁ(z) ﬁ(z) ax() _ VfQ;(Z)T
‘Zf:;‘(z) Zﬁt(z) "’f'"(z> Vfn(2)T

e D f(z) is called the derivative or Jacobian matrix of f at z

° f is a local affine approximation of f around z
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Example

_[ A [ e -
FO= b | 7] 2-x
e derivative matrix:
282x1+x2 -1 e2x1+x2
pro=| 2

o first order approximation of f around z = 0:
o | A ][ 1
fo=[  ]- 15

Taylor approximation
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e linear and affine functions
e Taylor approximation

e regression model

e linear equations

e linear dynamical systems
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Regression model

a regression model is the affine function:

J=xTB+v=B1x1+ - +Bpxn+v

y is prediction of true value y called the dependent variable, outcome, or label

e Xx is regressor or feature vector (entries called regressors)

B is weight or coefficient vector (3; are model parameters)

v is offset parameter or intercept

together 8 and v are called the parameters

interpretation: ; is amount  changes when x; increases by one with all x; fixed
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House price regression model

y: selling price (in 1000 dollars) of a house in some neighborhood, over a time period
e x1 is the area (1000 square feet)

® xo is the number of bedrooms

the regression model

y =54.4+148.73x1 — 18.85x2

predicts the price in terms of attributes or features (7 is predicted selling price)

house x (area) x (beds) y (price) ¥ (prediction)

1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.037 4 528.00 430.67
5 3.984 5 572.50 552.66
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Example: house sale prices

800

600 B " House 5
-

House 4

400

Predicted price ¥

200

0 200 400 600 800
Actual price y

e scatter plot shows sale prices for 774 houses in Sacramento
e in practice, regression models for house prices use many regressors and are
more accurate

regression model



Regression model in matrix form

given N features (examples, samples) x(1), ..., x(™) and outcomes y(», ..., y(™)

e associated predictions are 3 = (x()T8 + v

e write as T
17 %
~d _ vT _
revmon [ 4]
— X is feature matrix with columns x(l), - ,x(N)

- yd= ()7(1), e ,5)<N>) is N-vector of predictions

e vector of prediction errors or residuals
rd:yd_yd:yd_XTlB_vl

yd = (y(l), .. .,y(N)) is N-vector of responses (true outcomes if known)
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e linear and affine functions
e Taylor approximation

e regression model

e linear equations

e linear dynamical systems
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Systems of linear equations

set (system) of m linear equations in n variables x1, . . ., xy,:
A11x1 + A12.XQ + -+ Alnxn = bl

Ao1X1 + AgoXxo + -+ + AgpXy = bg

Apix1 + Apaxo + -+ ApnXn = bm

e compact representation: Ax = b
e A;; are the coefficients; A is the coefficient matrix
e b is the right-hand side

e may have no solution, a unique solution, or infinitely many solutions

Classification

e under-determined if m < n (A is wide; less equations than unknowns)
e square if m = n (A is square)

e over-determined if m > n (A is tall; more equations than unknowns)

linear equations 5.20



Example: polynomial interpolation

e polynomial of degree at most n — 1 with coefficients x1, x2, . .., X!

p(1) = x1 +xof +x31% + - +x,t" !
e fit polynomial to m given points (f1, ¥1), - - - (t41> Yim)
e this is a system of linear equations:
1 - ti‘_l X1 V1
A= 1 g - 7t X | | ¥2
i t,:n tf,:_l x:n Ym

here A is the Vandermonde matrix

linear equations
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Example: recovery of function from derivative

consider finding a function v(#) from its second derivative —g(¢) on interval [0, 1]

e this problem arises in many applications such as the heat equation in one variable

e for any v with — dﬂ 3 (1) = g(1), the function w(t) = v(t) + a + Bt has the same
second derivative for any constants @ and 8

e to fix these constants we need two additional constraints
e weassume v(0) =v(1) =0

e this yields a differential equation, — dﬂ ¥ (t) = g(t), with boundary conditions
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let h = 1/N be sampling interval (subdivides [0, 1] into N subintervals)

e define v = v(kh) and gy = g(kh) fork =0,1,...,N

e discrete approximation of — (t) lim im v(e+h)- 2V(t)+v(t M = g(t)is
d%v — g + Vi
d[2 (kh) = ket }:)gk kol =gk, k=1,2,....N-1

for boundary conditions v(0) = 0, v(1) = 0, we write vg = 0, vy =0

rewriting the equations in matrix-vector form, we get Av = g, where

Vi 81 2 -1
-1 2 -1
Vo 82 1 . .
V= , 8= . , A= ﬁ ‘. .
’ -1 2 -1
VN-1 EN-1 -1 2
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Example: diffusion system

diffusion system is a model that arises in physics to describe flows and potentials

Flows
e consider a directed graph with n nodes and m edges

e f;isflow across edge j (e.g., electricity, heat, energy, or mass)
e s; is source flow at node i

e in diffusion system, flows satisfy flow conservation (sum of flows equal zero)

example:

S1 2
f1+f2—f3+51:0 >(1)<

e flow conservation at every node is A f + s = 0 where A is the incidence matrix

linear equations



Potentials

e v; is potential of node i (e.g., temperature in thermal model, voltage in an
electrical circuit)

o flow on an edge is proportional to the potential difference across its adjacent
nodes r; f; = vy — v; where r; is resistance of edge j
e example:

rsfs = vo — v3 %9_8>@D:

e edge flow equations: Rf = —ATv, where R = diag(r) is called resistance matrix
Diffusion model

AT 0 f
R o AT || * |70
v

e a set of n + m homogeneous equations in m + 2n variables

e to these underdetermined equations we can specify some entries of f, s, v
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e linear and affine functions
e Taylor approximation

e regression model

e linear equations
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Linear dynamical system

sequence of n-vectors x1, xa, . . .

Xt+1 =A,xt, t= 1,2,...

e A, are n X n dynamics matrices

e ¢ denotes the time or period

e X, is state at time ¢; sequence is called (state) trajectory

e X, is current state, x;_1 is previous state, x;.1 is next state

e examples: x; represents

— mechanical variables (positions or velocities)
— age distribution in a population
— portfolio that changes daily

e system is time-invariantif A; = A (doesn’t depend on time)

e for time-invariant system x,+, = A’x; (A propagates the state forward ¢ times)
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Linear dynamical system

(Linear) K-Markov model

Xep1 = A1xp + Aoxp1+ -+ AgX—gi1, =K, K+1,...

e next state depends on current state and K — 1 previous states
e also known as auto-regressive model
e for K = 1, this is the standard linear dynamical system x;.1 = Ax;
Linear dynamical system with input
X411 =Atx,+B,ut+C,, t:1,2,...

® 1, is an input m-vector (or exogenous variable)

B; is n X m input matrix

c; is offset (or noise)

for fixed A, B, and ¢; = 0,

Xtyl = Af.xt + Af_lBM[ + A[_QBMI+1 + -+ Bl/lt+[’_1

linear dynamical systems
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Linear dynamical system with state feedback

Xt+1 = A.xt + But, t= ]., 2, ......

e the input u; is something we can manipulate, e.g., the control
e in state feedback control, input u; is a linear function of the state,
u; = Kx;
where K is the m X n state-feedback gain matrix

o with state feedback, we have

Xp41 = Ax; +Bu, = (A+BK)x,, t=1,2,...
e recursion is the closed-loop system (x;+1 = Ax; is open-loop system)
e matrix A + BK is called the closed-loop dynamics matrix

e widely used in many applications (we will see methods for choosing K)

linear dynamical systems
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Example: population distribution

model the evolution of age distribution in some population over time by linear
dynamical system
RlOO

e x; € gives population distributioninyeart =1,...,T

(x7); is the number of people with age i — 1 in year ¢ (say, on January 1)
— total population in year ¢ is lTxt
— number of people age 70 or older in year ¢ is (07¢, 130) Ty,

birth rate b € R1%0
— b is average number of births per person with age i — 1

death (or mortality) rate d € R199
— d; is the portion of those aged i — 1 who will die this year (we'll take d1gg = 1)

e b and d can vary with time, but we’ll assume they are constant

let’s find next year’s population distribution x,.; (ignoring immigration)

linear dynamical systems
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Population distribution dynamics
e number of 0-year-olds next year is total births this year:

(Xz+1)1 =b Txt

e no. of i-year-olds next year is no. of (i — 1)-year-olds this year, minus deaths:

(xt+1)i+1 =(1-4d;) (xt)i , i=1,...,99

e hence, x;41 = Ax;, where

by bay bog  bino

1-d; 0 0
A= 0 1-dy - 0 0
0 0 o l-dg 0

e we can use this model to predict the total population in future

linear dynamical systems
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population distribution, birth, and death rates in the U.S. in 2010

5F

Population(millions)

oF

10 20 30 40 50 60 70 80 90 100

Age

Birth rate(%)

0

Death rate(%)

linear dynamical systems
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Age
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predicting U.S. 2020 distribution from 2010 (ignoring immigration) with initial value x;
given by the 2010 age distribution

Population(millions)

0 10 20 30 40 50 60 70 80 90 100
Age
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Example: epidemic dynamics

4-vector x; gives proportion of population in 4 infection states

e susceptible: (x;)1 can acquire the disease the next day
e infected: (x;)o have the disease
e recovered: (x;)3 had the disease, recovered, now immune

e deceased: (x;)4 had the disease, and unfortunately died

Example: x; = (0.75,0.10,0.10, 0.05) means in day ¢
e 75% of the population is susceptible

e 10% is infected

e 10% is recovered and immune

e 5% has died from the disease

linear dynamical systems
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Model assumption: suppose over each day
e 5% of susceptible acquires the disease (95% remain susceptible)
e 1% of infected dies

10% of infected recovers with immunity

4% of infected recover without immunity (i.e., become susceptible)

85% remain infected

100% of immune and dead people remain in their state

linear dynamical systems
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Epidemic dynamics as linear dynamical system
e susceptible portion in the next day
(xr+1)1 = 0.95 (x;)1 +0.04 (x7)

— 0.95 (x7) is susceptible individuals from today, who did not become infected,
— 0.04 (x)4 is infected individuals today who recovered without immunity

o infected portion in the next day
(xr+1)2 = 0.85 (x; )5 + 0.05 (x1)4

— first term counts those who are infected and remain infected
— second term counts those who are susceptible and acquire disease

e using similar arguments for (x;41)5 and (x;4+1)4, we get

095 0.04 0 O

0.05 085 0 0
=00 010 1 0 |
0 001l 0 1
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simulation from x; = (1,0, 0, 0)

1 T
Susceptible Recovered
0.8
0.6
=
0.4
0.2
Deceased
0 ‘ ‘
0 50 100 150 200

Time t

linear dynamical systems
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Example: motion of a mass

e linear dynamical systems can be used to (approximately) describe the motion of
many mechanical systems

o for example, an airplane (that is not undergoing extreme maneuvers)

Example: motion of mass in 1-D

d? d
m=5 (1) = 02 (1) + f(7) ——

m > 0 is the mass

f(7) is the external force acting on the mass at time 7

n > 0 is the drag coefficient
e introducing the velocity of the mass, v(1) = dp(7)/d7, we can write

Dy = v, mI @ =@+ 1)

linear dynamical systems 5.37



Discretization
e let & > 0 be a small time interval (called the sampling interval)
e define the continuous quantities ‘sampled’ at multiples of & seconds

pk = p(kh), vi=v(kh), fic=f(kh)

e we now use the approximations

dp Pk+1— Pk dv Vsl = Vi
—(kh) x ——, —(kh)  ——
d‘r( ) h dT( ) h
e this leads to the (approximate) equations
Pk+1_Pk=v ka+1_Vk:f_ v
—n ks — Kk~ NVk

Motion of mass dynamics: using state x; = (px, Vi), we write this as

1 h

0
Ml = [ 0 1-hn/m

X + h/m]fk’ k=1,2,...

linear dynamical systems
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