4. Matrices

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Matrix

a matrix is a rectangular array of elements written as

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \dots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{bmatrix}$$

- scalars in array are the elements (entries, coefficients, components)
- A_{ij} is the i, j element of A (i is row index, j is column index)
- *size* (*dimensions*) of the matrix is $m \times n = (\text{#rows}) \times (\text{#columns})$

Example

$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- $A_{23} = -0.1$
- a 3×4 matrix

matrix notation

Notes and conventions

Notes

- a matrix of size $m \times n$ is called an $m \times n$ -matrix
- $\mathbb{R}^{m \times n}$ is set of $m \times n$ matrices with real elements
- we use $A_{i,j}$ when *i* or *j* are more than one digit
- two matrices with same size are equal if corresponding entries are all equal
- sometimes A_k is a matrix; in this case, we use $(A_k)_{ij}$ to denote its *i*, *j* element

Conventions

- matrices are typically denoted by capital letters
- · parentheses are also used instead of rectangular brackets to represent a matrix
- often *a_{ij}* is used to denote the *i*, *j* element of *A*
- some authors use bold capital letter for matrices (e.g., A, A)
- · be prepared to figure out whether a symbol represents a matrix, vector, or a scalar

Matrix shapes

Scalar: a 1×1 matrix is a scalar

Row and column vectors

- a 1 × n matrix is called a row vector
- an $n \times 1$ matrix is called a column vector (or just vector)

Tall, wide, square matrices: an $m \times n$ matrix is

- tall, skinny, or thin if m > n
- wide or fat if m < n
- square if m = n

Columns and rows

an $m \times n$ matrix can be viewed as a matrix with row/column vectors

Columns representation

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

each a_j is an *m*-vector (the *j*th column of *A*)
$$a_j = \begin{bmatrix} A_{1j} \\ \vdots \\ A_{mj} \end{bmatrix}$$

Rows representation

$$A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \qquad \qquad b_i = [A_{i1} \cdots A_{in}]$$

each b_i is a $1 \times n$ row vector (the *i*th row of *A*)

Block matrix and submatrices

- a *block* matrix is a rectangular array of matrices
- elements in the array are the *blocks* or *submatrices* of the block matrix

Example: a 2×2 block matrix

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

- submatrices can be referred to by their block row and column (C is 1, 2 block of A)
- · dimensions of the blocks must be compatible
- · if the blocks are

$$B = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 2 & 3\\5 & 4 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad E = \begin{bmatrix} -1 & 6 & 0 \end{bmatrix}$$

then

$$A = \begin{bmatrix} 2 & 0 & 2 & 3 \\ 1 & 5 & 4 & 7 \\ 1 & -1 & 6 & 0 \end{bmatrix}$$

Slice of matrix

$$A_{p:q,r:s} = \begin{bmatrix} A_{pr} & A_{p,r+1} & \cdots & A_{ps} \\ A_{p+1,r} & A_{p+1,r+1} & \cdots & A_{p+1,s} \\ \vdots & \vdots & & \vdots \\ A_{qr} & A_{q,r+1} & \cdots & A_{qs} \end{bmatrix}$$

• an $(q - p + 1) \times (s - r + 1)$ matrix

- obtained by extracting from A elements in rows p to q and columns r to s
- from last page example, we have

$$A_{2:3,3:4} = \begin{bmatrix} 4 & 7\\ 6 & 0 \end{bmatrix}$$

Special matrices

Zero matrix

- matrix with $A_{ij} = 0$ for all i, j
- notation: 0 or $0_{m \times n}$ (if dimension is not clear from context)

Identity matrix

- square matrix with $A_{ij} = 1$ if i = j and $A_{ij} = 0$ if $i \neq j$
- notation: *I* or *I_n* (if dimension is not clear from context)
- columns of I_n are unit vectors e_1, e_2, \ldots, e_n ; for example,

$$I_3 = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{rrr} e_1 & e_2 & e_3 \end{array} \right]$$

Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

- square with $A_{ij} = 0$ for $i \neq j$
- represented as $A = \text{diag}(a_1, \ldots, a_n)$ where a_i are diagonal elements

$$\operatorname{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}$$

Lower triangular matrix: square with $A_{ij} = 0$ for i < j

ſ	4	0	0]	4	0	0	
	3	-1	0	,	0	-1	0	
	-1	5	-2		$\begin{bmatrix} 4\\0\\-1 \end{bmatrix}$	0	-2	

Upper triangular matrix: square with $A_{ij} = 0$ for i > j

(a triangular matrix is **unit** upper/lower triangular if $A_{ii} = 1$ for all *i*)

matrix notation

Sparse matrices

a matrix A is sparse if most (almost all) of its elements are zero

- $\mathbf{nnz}(A)$ is number of nonzero elements (typically order *n* or less)
- density is $nnz(A)/(mn) \le 1$
- densities of sparse matrices that arise in practice are typically small (e.g., 10^{-2})
- · can be stored and manipulated efficiently on a computer
- for example the triplet format:

which means $A_{11} = 2.4, A_{3,2} = 2, ...$

Transpose of a matrix

transpose of an $m \times n$ matrix A is the $n \times m$ matrix:

$$A^{T} = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{bmatrix}$$

•
$$(A^T)^T = A$$

• the transpose of a block matrix (shown for a 2×2 block matrix)

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]^T = \left[\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array}\right]$$

- A, B, C, and D are matrices with compatible sizes
- concept holds for any number of blocks

Symmetric matrices

a square matrix is symmetric if

$$A = A^T$$

•
$$A_{ij} = A_{ji}$$

• examples

$$\begin{bmatrix} 4 & 3 & -2 \\ 3 & -1 & 5 \\ -2 & 5 & 0 \end{bmatrix}, \begin{bmatrix} 4+3j & 3-2j & 0 \\ 3-2j & -j & -2j \\ 0 & -2j & 3 \end{bmatrix}$$

Outline

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Matrix addition

sum of two $m \times n$ matrices A and B

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\ \vdots & \vdots & & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + B_{mn} \end{bmatrix}$$

Properties

- commutativity: A + B = B + A
- associativity: (A + B) + C = A + (B + C)
- addition with zero matrix: A + 0 = 0 + A = A
- transpose of sum: $(A + B)^T = A^T + B^T$

Scalar-matrix multiplication

scalar-matrix product of $m \times n$ matrix A with scalar β

$$\beta A = \begin{bmatrix} \beta A_{11} & \beta A_{12} & \cdots & \beta A_{1n} \\ \beta A_{21} & \beta A_{22} & \cdots & \beta A_{2n} \\ \vdots & \vdots & & \vdots \\ \beta A_{m1} & \beta A_{m2} & \cdots & \beta A_{mn} \end{bmatrix}$$

Properties: for matrices *A*, *B*, scalars β , γ

- associativity: $(\beta \gamma)A = \beta(\gamma A)$
- *distributivity:* $(\beta + \gamma)A = \beta A + \gamma A$ and $\beta(A + B) = \beta A + \beta B$
- *transposition:* $(\beta A)^T = \beta A^T$

Matrix-vector product

product of $m \times n$ matrix A with n-vector x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1^Tx \\ \vdots \\ b_m^Tx \end{bmatrix}$$

- b_i^T is *i*th row of A
- dimensions must be compatible (number of columns of *A* equals the size of *x*)
- *Ax* is a linear combination of the columns of *A*:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

each a_i is an *m*-vector (*i*th column of *A*)

matrix operations

Properties of matrix-vector multiplication

for matrices A, B, vectors u, v and scalar β

- *associativity:* $(\beta A)u = A(\beta u) = \beta(Au)$ (we write βAu)
- *distributivity:* A(u + v) = Au + Av and (A + B)u = Au + Bu
- transposition: $(Au)^T = u^T A^T$

General examples

- 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- *Ix* = *x*, *i.e.*, multiplying by identity matrix does nothing
- inner product $a^T b$ is matrix-vector product of $1 \times n$ matrix a^T and *n*-vector *b*
- $Ae_j = a_j$, the *j*th column of $A[(A^Te_i)^T = e_i^T A$ is *i*th row]
- the product *A*1 is the sum of the columns of *A*
- for the $n \times n$ matrix

$$A = \left[\begin{array}{cccc} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \cdots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{array} \right],$$

 $\tilde{x} = Ax$ is de-meaned version of x

Difference matrix

 $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ & \ddots & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n - 1)-vector of differences of consecutive entries of *x*:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Running sum matrix

the $n \times n$ matrix

$$S = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

is called the running sum matrix

the *i*th entry of the *n*-vector *Sx* is the sum of the first *i* entries of *x*:

$$Sx = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_1 + x_2 + x_3 \\ \vdots \\ x_1 + \dots + x_n \end{bmatrix}$$

Selectors

an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

- k_1, \ldots, k_m are integers in range $1, \ldots, n$
- Ax copies the k_i th entry of x into the *i*th entry:

$$Ax = (x_{k_1}, x_{k_2}, \ldots, x_{k_m})$$

Reverser matrix

$$A = \begin{bmatrix} e_n^T \\ \vdots \\ e_1^T \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}, \quad Ax = \begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_2 \\ x_1 \end{bmatrix}$$

Circular shift matrix

$$A = \begin{bmatrix} e_n^T \\ e_1^T \\ \vdots \\ e_{n-1}^T \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad Ax = \begin{bmatrix} x_n \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

Down-sampling: the $m \times 2m$ matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad Ax = \begin{bmatrix} x_1 \\ x_3 \\ \vdots \\ x_{2m-1} \end{bmatrix}$$

'down-samples' x by 2

Permutation matrices

- an $n \times n$ permutation matrix has exactly one entry of each row/column is one
- let $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ be a *permutation* (reordering) of $(1, 2, \dots, n)$
- we associate with π the $n \times n$ permutation matrix A

$$A_{i\pi_i} = 1$$
, $A_{ij} = 0$ if $j \neq \pi_i$

- Ax is a permutation of the elements of x: $Ax = (x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n})$
- example: for permutation $\pi = (3, 1, 2)$, the associated permutation matrix is

	0	0	1
A =	1	0	0
A =	0	1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

multiplying a 3-vector by *A* re-orders its entries: $Ax = (x_3, x_1, x_2)$

Matrix multiplication

product of $m \times n$ matrix A and $n \times p$ matrix B

C = AB

is the $m \times p$ matrix with i, j element

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj}$$

- to get C_{ij} : move along *i*th row of A, *j*th column of B
- dimensions must be compatible:

#columns in A = #rows in B

• example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product $a^T b$
- matrix-vector multiplication Ax
- outer product of *m*-vector *a* and *n*-vector *b*

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

- multiplication by identity AI = A and IA = A
- matrix power: multiplication of matrix with itself p times: $A^p = AA\cdots A$

Properties of matrix-matrix product

- associativity: (AB)C = A(BC), so we write ABC
- associativity: with scalar multiplication: $(\gamma A)B = \gamma(AB) = \gamma AB$
- distributivity with sum:

$$A(B+C) = AB + AC, \quad (A+B)C = AC + BC$$

• transpose of product:

$$(AB)^T = B^T A^T$$

• **not** commutative: $AB \neq BA$ in general; for example,

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$$

there are exceptions, e.g., AI = IA for square A

Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2×2 block matrices

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} W & Y \\ X & Z \end{bmatrix} = \begin{bmatrix} AW + BX & AY + BZ \\ CW + DX & CY + DZ \end{bmatrix}$$

if the dimensions of the blocks are compatible

Column and row representations

Column representation

• A is $m \times p$, B is $p \times n$ with columns b_i

 $AB = A[b_1 \quad b_2 \quad \cdots \quad b_n] = [Ab_1 \quad Ab_2 \quad \cdots \quad Ab_n]$

• so *AB* is 'batch' multiply of *A* times columns of *B*

Row representation

• with a_i^T the rows of A

$$AB = \begin{bmatrix} a_1^T B \\ a_2^T B \\ \vdots \\ a_m^T B \end{bmatrix} = \begin{bmatrix} (B^T a_1)^T \\ (B^T a_2)^T \\ \vdots \\ (B^T a_m)^T \end{bmatrix}$$

• row i is $(B^T a_i)^T$

Inner and outer product representations

Inner product representation

• A is $m \times p$ with rows a_i^T , B is $p \times n$ with columns b_i

$$AB = \left[\begin{array}{ccccc} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_n \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_n \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_n \end{array} \right]$$

• entry
$$ij$$
 is $a_i^T b_j$

Outer product representation

- a_i columns of A, b_i^T rows of B
- then we can express the product matrix *AB* as a sum of outer products:

$$AB = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1^T \\ \vdots \\ b_n^T \end{bmatrix} = a_1 b_1^T + \cdots + a_n b_n^T$$

Frobenius norm

the *Frobenius norm* of an $m \times n$ matrix A is

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)^{1/2}$$

- agrees with vector norm when n = 1
- in MATLAB: norm(A, 'fro')
- distance between two matrices: $||A B||_F$
- satisfies norm properties:
 - $\|\alpha A\| = |\alpha| \|A\|$
 - $\|A + B\| \le \|A\| + \|B\|$
 - $\ \|A\| \geq 0$
 - $\ \|A\| = 0 \text{ only if } A = 0$
- additional properties:

$$- \|A\|_F = \|A^T\|_F = \sqrt{\|a_1\|^2 + \dots + \|a_n\|^2}, a_j \text{ is } j \text{ th column of } A$$
$$- \|AB\|_F \le \|A\|_F \|B\|_F$$

Outline

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Complexity of matrix operations

Addition and scalar multiplication

- addition A + B requires mn flops (for $m \times n$ matrices)
- scalar multiplication requires requires mn
- less for sparse matrices
- transpose requires zero flops

Matrix-vector multiplication (for *n*-vector *x* and $m \times n$ matrix *A*)

- y = Ax requires (2n 1)m flops or simply 2mn
- *m* elements in *y*; each element requires an inner product of length *n*
- approximately 2mn for large n
- flop count is lower for structured matrices
 - A diagonal: n flops
 - A lower triangular: $1 + 3 + 5 + \cdots + 2n 1 = n^2$ flops
 - A sparse: #flops $\ll 2mn$

Matrix-matrix product product of $m \times n$ matrix A and $n \times p$ matrix B:

$$C = AB$$

requires mp(2n-1) flops

- mp elements in C; each element requires an inner product of length n
- approximately 2mnp for large n

Outline

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Matrix examples

Images

- $m \times n$ matrix denote a monochrome (black and white) image
- X_{ij} is i, j pixel value in a monochrome image

Rainfall data

- $m \times n$ matrix A gives the rainfall at m different locations on n consecutive days
- A_{ij} is rainfall at location i on day j

Multiple asset returns

- $T \times n$ matrix R gives the returns of n assets over T periods
- R_{ij} is return of asset j in period i
- *j*th column of *R* is a *T*-vector that is the return time series for asset *j*

Matrix-vector product examples

Return matrix

- *R* is $T \times n$ matrix of asset returns (returns of *n* assets over *T* periods)
- R_{ij} is return of asset j in period i (say, in percentage)
- *n*-vector w gives investments in the assets (*e.g.*, $w_4 = 0.15$ means that 15% of the total portfolio value is held in asset 4)
- T-vector Rw is time series of the portfolio return over periods $1, \ldots, T$

Image cropping

- MN-vector x is image, with its entries giving the pixel values in specific order
- y is the $(M/2) \times (N/2)$ image that is the upper left corner (cropped version)
- we have y = Ax, where A is an $(MN/4) \times (MN)$ selector matrix
- *i*th row of A is $e_{k_i}^T$, k_i is index of the pixel in x that corresponds to *i*th pixel in y

Feature matrix

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- column x_j is feature *n*-vector for object or example j
- X_{ij} is value of feature *i* for example *j*
- *n*-vector *w* is weight vector
- $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$

Cost of production

production inputs (materials, parts, labor,...) are combined to make products

- *x_j* is price per unit of production of input *j*
- A_{ij} is units of production of input j required to manufacture one unit of product i
- y = Ax is production cost (y_i is production cost per unit of product i)
- *i*th row of A is bill of materials for unit of product *i*

Signal power in wireless system

- *n* transmitter/receiver pairs
- transmitter *j* transmits to receiver *j* (and, unintentionally, to the other receivers)
- *p_j* is power of *j*th transmitter
- *s_i* is received signal power of *i*th receiver
- *z_i* is received interference power of *i*th receiver
- G_{ij} is path gain from transmitter j to receiver i
- we have s = Ap, z = Bp, where

$$A_{ij} = \begin{cases} G_{ii} & i = j \\ 0 & i \neq j \end{cases} \quad B_{ij} = \begin{cases} 0 & i = j \\ G_{ij} & i \neq j \end{cases}$$

• A is diagonal; B has zero diagonal (ideally, A is 'large', B is 'small')

Vandermonde matrix

• polynomial of degree n - 1 or less with coefficients x_1, x_2, \ldots, x_n :

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-2}$$

• values of p(t) at m points t_1, \ldots, t_m :

$$\begin{bmatrix} p(t_1) \\ p(t_2) \\ \vdots \\ p(t_m) \end{bmatrix} = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= Ax$$

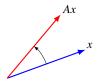
the matrix A is called a Vandermonde matrix

• Ax maps coefficients of polynomial to function values

Geometric transformations

Rotation in a plane

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$



y = Ax is x rotated counterclockwise over an angle θ

Reflection

$$y = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} x$$

y = Ax is the vector obtained by reflecting x through the line that passes through the origin, inclined θ radians with respect to horizontal

examples of matrices

Finding the geometric matrix

- when a geometric transformation is represented by matrix vector multiplication
- · a simple method to find the matrix is to find its columns
- the *i*th column is the vector $a_i = Ae_i$

Example: consider clockwise rotation by 90° in 2-D

- rotating the vector $e_1 = (1, 0)$ by 90° gives (0, -1)
- rotating $e_2 = (0, 1)$ by 90° gives (1, 0)
- so rotation by 90° is given by

$$y = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] x$$

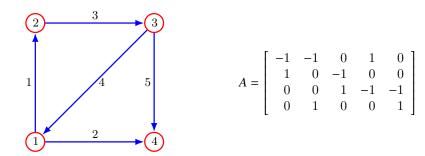
Outline

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Incidence matrix

- *directed graph* consists of *m* vertices (nodes), *n* directed edges (arcs, branches)
- *incidence matrix* is $m \times n$ matrix A with

$$A_{ij} = \begin{cases} 1 & \text{if edge } j \text{ point to node } i \\ -1 & \text{if edge } j \text{ point from node } i \\ 0 & \text{otherwise} \end{cases}$$



Flow conservation

- graph is used to represent a network
- through which some quantity such as electricity, water, or heat flows
- assume *n*-vector *x* gives flows along the edges
- $x_i > 0$ means flow follows edge direction
- Ax is *m*-vector that gives the total or net flows
- $(Ax)_i$ is the net flow into node *i* (flows in node *i* minus flows out)

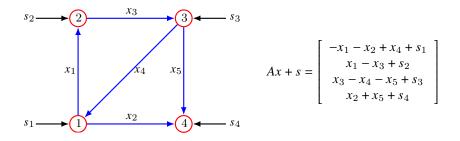
$$(Ax)_{i} = \sum_{\substack{\text{edge } j \text{ enters}\\ \text{node } i}} x_{j} - \sum_{\substack{\text{edge } j \text{ leaves}\\ \text{node } i}} x_{j}$$

• can include external source flows Ax + s, s_i is flow entering/leaving node i

Kirchhoff's current law

n-vector $x = (x_1, x_2, ..., x_n)$ with x_j the *current* through branch j

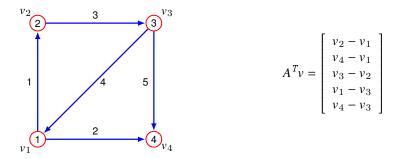
 $(Ax)_i$ = total current arriving at node *i* (excluding sources)



Node potentials

m-vector $v = (v_1, v_2, ..., v_m)$ with v_i the *potential* value at node *i*

 $(A^T v)_j = v_k - v_l$ if edge j goes from node l to k



if v_i are node voltages in a circuit, then $(A^T v)_j = (\text{negative})$ voltage across branch j

Dirichlet energy

 $||A^T v||^2$ is the sum of squared potential differences

$$\|A^T v\|^2 = \sum_{\text{edges } i \to j} (v_j - v_i)^2$$

- called *Dirichlet energy*
- $\mathcal{D}(v)$ is small when potential values of neighboring nodes are similar
- used as a measure of non-smoothness (roughness) of node potentials on a graph

Example: for the graph on the previous page

$$\|A^{T}v\|^{2} = (v_{2} - v_{1})^{2} + (v_{4} - v_{1})^{2} + (v_{3} - v_{2})^{2} + (v_{1} - v_{3})^{2} + (v_{4} - v_{3})^{2}$$

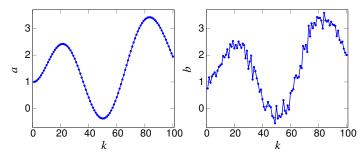
Chain graph

• the $n \times (n-1)$ incidence matrix is the transpose of the difference matrix D

• Dirichlet energy:

$$\mathcal{D}(v) = \|Dv\|^2 = (v_2 - v_1)^2 + \dots + (v_n - v_{n-1})^2$$

used as a measure of the non-smoothness time series



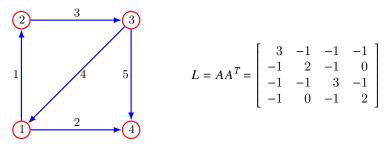
 $\mathcal{D}(a) = 1.14$ and $\mathcal{D}(b) = 8.99$

Graph Laplacian

if A is incidence matrix, matrix $L = AA^T$ is the Laplacian of the graph

$$L_{ij} = \begin{cases} \text{degree of node} & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and vertices } i \text{ and } j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

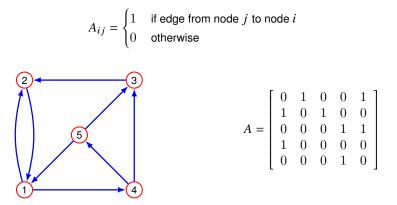
the degree of a node is the number of edges incident to it



- assume there are no self-loops and at most one edge between any two vertices
- we have $\mathcal{D}(v) = ||A^T v||^2 = v^T L v$ (sometimes called Laplacian quadratic form)

Adjacency matrix of directed graph

adjacency matrix of directed graph is the $n \times n$ matrix A with:



- can describe a *relation* between *n* objects \mathcal{R} ($A_{ij} = 1$ if $(i, j) \in \mathcal{R}$)
- can be defined in reverse; $A_{ij} = 1$ means a directed edge from $i \rightarrow j$

Paths in directed graph

square of adjacency matrix:

$$(A^2)_{ij} = \sum_{k=1}^n A_{ik} A_{kj}$$

- each term is either zero, or one when $j \rightarrow k$ and $k \rightarrow i$
- $(A^2)_{ij}$ is number of paths of length 2 from j to i
- more generally, $(A^{\ell})_{ij}$ = number of paths of length ℓ from j to i
- for the example,

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^{3} = \begin{bmatrix} 1 & 1 & 0 & 1 & 2 \\ 2 & 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

e.g., there are two paths of length two from $5\ {\rm to}\ 2$

Outline

- matrix notation
- matrix operations
- complexity
- examples of matrices
- graphs
- convolution

Convolution

convolution between *n*-vector *a* and *m*-vector *b* is the (n + m - 1)-vector

$$c_k = (a * b)_k = \sum_{\substack{\text{all } i, j \text{ with} \\ i+j=k+1}} a_i b_j, \quad k = 1, \dots, n+m-1$$

• for example with $a = (a_1, a_2, a_3, a_4)$, $b = (b_1, b_2, b_3)$, we have

$$c_{1} = a_{1}b_{1}$$

$$c_{2} = a_{1}b_{2} + a_{2}b_{1}$$

$$c_{3} = a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1}$$

$$c_{4} = a_{2}b_{3} + a_{3}b_{2} + a_{4}b_{1}$$

$$c_{5} = a_{3}b_{3} + a_{4}b_{2}$$

$$c_{6} = a_{4}b_{3}$$

- example: (1, 0, -1) * (2, 1, -1) = (2, 1, -3, -1, 1)
- · arises in many applications and contexts

convolution

Interpretation and properties

Interpretation: if a and b are the coefficients of polynomials

$$p(x) = a_1 + a_2 x + \dots + a_n x^{n-1}, \quad q(x) = b_1 + b_2 x + \dots + b_m x^{m-1}$$

then c = a * b gives the coefficients of the product polynomial

$$p(x)q(x) = c_1 + c_2x + c_3x^2 + \dots + c_{n+m-1}x^{n+m-2}$$

Properties

- symmetric: a * b = b * a
- associative: (a * b) * c = a * (b * c)
- if a * b = 0 then a = 0 or b = 0

these properties follow directly from the polynomial product interpretation

Convolution as matrix-vector product

for fixed *a* (or *b*) the convolution can be expressed as matrix-vector product of *b* (or *a*)

$$c = a * b = T(b)a = T(a)b$$

for matrices T(a) and T(b)

• example: for 4-vector *a* and a 3-vector *b*,

$$T(b) = \begin{bmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ b_3 & b_2 & b_1 & 0 \\ 0 & b_3 & b_2 & b_1 \\ 0 & 0 & b_3 & b_2 \\ 0 & 0 & 0 & b_3 \end{bmatrix}, \quad T(a) = \begin{bmatrix} a_1 & 0 & 0 \\ a_2 & a_1 & 0 \\ a_3 & a_2 & a_1 \\ a_4 & a_3 & a_2 \\ 0 & a_4 & a_3 \\ 0 & 0 & a_4 \end{bmatrix}$$

- *T*(*b*) is a *Toeplitz* matrix (values on diagonals are equal)
- columns of T(a) are shifted versions of a padded with zeros

Examples

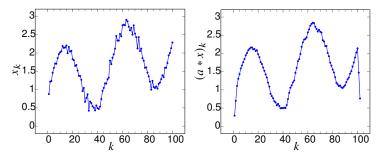
Moving average of a time series

- *n*-vector *x* represents a time series
- the 3-period moving average of the time series is the time series

 $y_k = (1/3) (x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \dots, n+2$

(with x_k interpreted as zero for k < 1 and k > n)

• can be expressed as a convolution y = a * x with a = (1/3, 1/3, 1/3)



Audio filtering

- x is audio signal
- *a* is a vector called filter coefficients
- *y* = *a* * *x* is filtered audio signal
- example: audio tone controls

Communication channel

- *u* signal transmitted over some channel (electrical, radio, optical,...)
- receiver receives y = c * u
- *c* is channel *impulse response*

Input-output convolution system

many systems with input u and output y can be modeled as convolution y = h * u

- *h* is called the *system impulse response*
- for *m*-vector *u* input, *n*-vector *h*, we can express (m + n 1)-vector *y* output,

$$y_i = \sum_{j=1}^n u_{i-j+1} h_j$$

(interpreting u_k as zero for k < n or k > n)

- interpretation: output y_i at time i is a linear combination of u_i,..., u_{i-n+1}
- h₃ determines current output's dependency on input from two time steps ago

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, University of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)