
4. Matrices

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

ENGR 504 (Fall 2024) S. Alghunaim

4.1

Matrix

a matrix is a rectangular array of elements written as

𝐴 =


𝐴11 𝐴12 . . . 𝐴1𝑛

𝐴21 𝐴22 . . . 𝐴2𝑛

...

𝐴𝑚1 𝐴𝑚2 . . . 𝐴𝑚𝑛


• scalars in array are the elements (entries, coefficients, components)

• 𝐴𝑖 𝑗 is the 𝑖, 𝑗 element of 𝐴 (𝑖 is row index, 𝑗 is column index)

• size (dimensions) of the matrix is 𝑚 × 𝑛 = (#rows) × (#columns)

Example

𝐴 =


0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7


• 𝐴23 = −0.1
• a 3 × 4 matrix

SA — ENGR504matrix notation 4.2

Notes and conventions

Notes

• a matrix of size 𝑚 × 𝑛 is called an 𝑚 × 𝑛-matrix

• R𝑚×𝑛 is set of 𝑚 × 𝑛 matrices with real elements

• we use 𝐴𝑖, 𝑗 when 𝑖 or 𝑗 are more than one digit

• two matrices with same size are equal if corresponding entries are all equal

• sometimes 𝐴𝑘 is a matrix; in this case, we use (𝐴𝑘)𝑖 𝑗 to denote its 𝑖, 𝑗 element

Conventions

• matrices are typically denoted by capital letters

• parentheses are also used instead of rectangular brackets to represent a matrix

• often 𝑎𝑖 𝑗 is used to denote the 𝑖, 𝑗 element of 𝐴

• some authors use bold capital letter for matrices (e.g., A, 𝑨)

• be prepared to figure out whether a symbol represents a matrix, vector, or a scalar

SA — ENGR504matrix notation 4.3

Matrix shapes

Scalar: a 1 × 1 matrix is a scalar

Row and column vectors

• a 1 × 𝑛 matrix is called a row vector

• an 𝑛 × 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an 𝑚 × 𝑛 matrix is

• tall, skinny, or thin if 𝑚 > 𝑛

• wide or fat if 𝑚 < 𝑛

• square if 𝑚 = 𝑛

SA — ENGR504matrix notation 4.4

Columns and rows

an 𝑚 × 𝑛 matrix can be viewed as a matrix with row/column vectors

Columns representation

𝐴 = [𝑎1 𝑎2 · ·· 𝑎𝑛]

each 𝑎 𝑗 is an 𝑚-vector (the 𝑗 th column of 𝐴)
𝑎 𝑗 =


𝐴1 𝑗

...

𝐴𝑚𝑗


Rows representation

𝐴 =


𝑏1
𝑏2
...

𝑏𝑚


each 𝑏𝑖 is a 1 × 𝑛 row vector (the 𝑖th row of 𝐴)

𝑏𝑖 = [𝐴𝑖1 · ·· 𝐴𝑖𝑛]

SA — ENGR504matrix notation 4.5

Block matrix and submatrices

• a block matrix is a rectangular array of matrices

• elements in the array are the blocks or submatrices of the block matrix

Example: a 2 × 2 block matrix

𝐴 =

[
𝐵 𝐶

𝐷 𝐸

]
• submatrices can be referred to by their block row and column (𝐶 is 1, 2 block of 𝐴)

• dimensions of the blocks must be compatible

• if the blocks are

𝐵 =

[
2
1

]
, 𝐶 =

[
0 2 3
5 4 7

]
, 𝐷 =

[
1

]
, 𝐸 =

[
−1 6 0

]
then

𝐴 =


2 0 2 3
1 5 4 7
1 −1 6 0


SA — ENGR504matrix notation 4.6

Slice of matrix

𝐴𝑝:𝑞,𝑟 :𝑠 =


𝐴𝑝𝑟 𝐴𝑝,𝑟+1 · ·· 𝐴𝑝𝑠

𝐴𝑝+1,𝑟 𝐴𝑝+1,𝑟+1 · ·· 𝐴𝑝+1,𝑠
...

𝐴𝑞𝑟 𝐴𝑞,𝑟+1 · ·· 𝐴𝑞𝑠


• an (𝑞 − 𝑝 + 1) × (𝑠 − 𝑟 + 1) matrix

• obtained by extracting from 𝐴 elements in rows 𝑝 to 𝑞 and columns 𝑟 to 𝑠

• from last page example, we have

𝐴2:3,3:4 =

[
4 7
6 0

]

SA — ENGR504matrix notation 4.7

Special matrices

Zero matrix

• matrix with 𝐴𝑖 𝑗 = 0 for all 𝑖, 𝑗

• notation: 0 or 0𝑚×𝑛 (if dimension is not clear from context)

Identity matrix

• square matrix with 𝐴𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝐴𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗

• notation: 𝐼 or 𝐼𝑛 (if dimension is not clear from context)

• columns of 𝐼𝑛 are unit vectors 𝑒1, 𝑒2, . . . , 𝑒𝑛; for example,

𝐼3 =


1 0 0
0 1 0
0 0 1

 =
[
𝑒1 𝑒2 𝑒3

]

SA — ENGR504matrix notation 4.8

Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

• square with 𝐴𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗

• represented as 𝐴 = diag(𝑎1, . . . , 𝑎𝑛) where 𝑎𝑖 are diagonal elements

diag(0.2,−3, 1.2) =

0.2 0 0
0 −3 0
0 0 1.2


Lower triangular matrix: square with 𝐴𝑖 𝑗 = 0 for 𝑖 < 𝑗

4 0 0
3 −1 0

−1 5 −2

 ,


4 0 0
0 −1 0

−1 0 −2


Upper triangular matrix: square with 𝐴𝑖 𝑗 = 0 for 𝑖 > 𝑗

(a triangular matrix is unit upper/lower triangular if 𝐴𝑖𝑖 = 1 for all 𝑖)

SA — ENGR504matrix notation 4.9

Sparse matrices

a matrix 𝐴 is sparse if most (almost all) of its elements are zero

• nnz(𝐴) is number of nonzero elements (typically order 𝑛 or less)

• density is nnz(𝐴)/(𝑚𝑛) ≤ 1

• densities of sparse matrices that arise in practice are typically small (e.g., 10−2)

• can be stored and manipulated efficiently on a computer

• for example the triplet format:

(1, 1) 2.4000
(1, 2) −3.0000
(3, 2) 2.0000
(2, 3) 1.3000
(3, 3) −6.0000

which means 𝐴11 = 2.4, 𝐴3,2 = 2, ...

SA — ENGR504matrix notation 4.10

Transpose of a matrix

transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix:

𝐴T =


𝐴11 𝐴21 · ·· 𝐴𝑚1

𝐴12 𝐴22 · ·· 𝐴𝑚2

...

𝐴1𝑛 𝐴2𝑛 · ·· 𝐴𝑚𝑛


• (𝐴T)T = 𝐴

• the transpose of a block matrix (shown for a 2 × 2 block matrix)[
𝐴 𝐵

𝐶 𝐷

]T
=

[
𝐴T 𝐶T

𝐵T 𝐷T

]
– 𝐴, 𝐵, 𝐶, and 𝐷 are matrices with compatible sizes
– concept holds for any number of blocks

SA — ENGR504matrix notation 4.11

Symmetric matrices

a square matrix is symmetric if
𝐴 = 𝐴T

• 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖

• examples 
4 3 −2
3 −1 5

−2 5 0

 ,

4 + 3j 3 − 2j 0
3 − 2j −j −2j
0 −2j 3



SA — ENGR504matrix notation 4.12

Outline

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

Matrix addition

sum of two 𝑚 × 𝑛 matrices 𝐴 and 𝐵

𝐴 + 𝐵 =


𝐴11 + 𝐵11 𝐴12 + 𝐵12 · ·· 𝐴1𝑛 + 𝐵1𝑛

𝐴21 + 𝐵21 𝐴22 + 𝐵22 · ·· 𝐴2𝑛 + 𝐵2𝑛

...

𝐴𝑚1 + 𝐵𝑚1 𝐴𝑚2 + 𝐵𝑚2 · ·· 𝐴𝑚𝑛 + 𝐵𝑚𝑛


Properties

• commutativity: 𝐴 + 𝐵 = 𝐵 + 𝐴

• associativity: (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)

• addition with zero matrix: 𝐴 + 0 = 0 + 𝐴 = 𝐴

• transpose of sum: (𝐴 + 𝐵)T = 𝐴T + 𝐵T

SA — ENGR504matrix operations 4.13

Scalar-matrix multiplication

scalar-matrix product of 𝑚 × 𝑛 matrix 𝐴 with scalar 𝛽

𝛽𝐴 =


𝛽𝐴11 𝛽𝐴12 · ·· 𝛽𝐴1𝑛

𝛽𝐴21 𝛽𝐴22 · ·· 𝛽𝐴2𝑛

...

𝛽𝐴𝑚1 𝛽𝐴𝑚2 · ·· 𝛽𝐴𝑚𝑛


Properties: for matrices 𝐴, 𝐵, scalars 𝛽, 𝛾

• associativity: (𝛽𝛾)𝐴 = 𝛽(𝛾𝐴)
• distributivity: (𝛽 + 𝛾)𝐴 = 𝛽𝐴 + 𝛾𝐴 and 𝛽(𝐴 + 𝐵) = 𝛽𝐴 + 𝛽𝐵

• transposition: (𝛽𝐴)T = 𝛽𝐴T

SA — ENGR504matrix operations 4.14

Matrix-vector product

product of 𝑚 × 𝑛 matrix 𝐴 with 𝑛-vector 𝑥

𝐴𝑥 =


𝐴11𝑥1 + 𝐴12𝑥2 + ··· + 𝐴1𝑛𝑥𝑛
𝐴21𝑥1 + 𝐴22𝑥2 + ··· + 𝐴2𝑛𝑥𝑛

...

𝐴𝑚1𝑥1 + 𝐴𝑚2𝑥2 + ··· + 𝐴𝑚𝑛𝑥𝑛

 =

𝑏T1𝑥
...

𝑏T𝑚𝑥


• 𝑏T

𝑖
is 𝑖th row of 𝐴

• dimensions must be compatible (number of columns of 𝐴 equals the size of 𝑥)

• 𝐴𝑥 is a linear combination of the columns of 𝐴:

𝐴𝑥 =
[
𝑎1 𝑎2 · ·· 𝑎𝑛

] 
𝑥1
𝑥2
...

𝑥𝑛

 = 𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛

each 𝑎𝑖 is an 𝑚-vector (𝑖th column of 𝐴)

SA — ENGR504matrix operations 4.15

Properties of matrix-vector multiplication

for matrices 𝐴, 𝐵, vectors 𝑢, 𝑣 and scalar 𝛽

• associativity: (𝛽𝐴)𝑢 = 𝐴(𝛽𝑢) = 𝛽(𝐴𝑢) (we write 𝛽𝐴𝑢)

• distributivity: 𝐴(𝑢 + 𝑣) = 𝐴𝑢 + 𝐴𝑣 and (𝐴 + 𝐵)𝑢 = 𝐴𝑢 + 𝐵𝑢

• transposition: (𝐴𝑢)T = 𝑢T𝐴T

SA — ENGR504matrix operations 4.16

General examples

• 0𝑥 = 0, i.e., multiplying by zero matrix gives zero

• 𝐼𝑥 = 𝑥, i.e., multiplying by identity matrix does nothing

• inner product 𝑎T𝑏 is matrix-vector product of 1 × 𝑛 matrix 𝑎T and 𝑛-vector 𝑏

• 𝐴𝑒 𝑗 = 𝑎 𝑗 , the 𝑗 th column of 𝐴 [(𝐴T𝑒𝑖)T = 𝑒T
𝑖
𝐴 is 𝑖th row]

• the product 𝐴1 is the sum of the columns of 𝐴

• for the 𝑛 × 𝑛 matrix

𝐴 =


1 − 1/𝑛 −1/𝑛 · ·· −1/𝑛
−1/𝑛 1 − 1/𝑛 · ·· −1/𝑛
... · ·· ...

−1/𝑛 −1/𝑛 · ·· 1 − 1/𝑛

 ,
𝑥 = 𝐴𝑥 is de-meaned version of 𝑥

SA — ENGR504matrix operations 4.17

Difference matrix

(𝑛 − 1) × 𝑛 difference matrix is

𝐷 =



−1 1 0 · ·· 0 0 0
0 −1 1 · ·· 0 0 0

. . .
. . .
. . .

. . .

0 0 0 · ·· −1 1 0
0 0 0 · ·· 0 −1 1


𝑦 = 𝐷𝑥 is (𝑛 − 1)-vector of differences of consecutive entries of 𝑥:

𝐷𝑥 =


𝑥2 − 𝑥1
𝑥3 − 𝑥2

...

𝑥𝑛 − 𝑥𝑛−1


SA — ENGR504matrix operations 4.18

Running sum matrix

the 𝑛 × 𝑛 matrix

𝑆 =



1 0 0 · ·· 0 0
1 1 0 · ·· 0 0

. . .
. . .
. . .

. . .

1 1 1 · ·· 1 0
1 1 1 · ·· 1 1


is called the running sum matrix

the 𝑖th entry of the 𝑛-vector 𝑆𝑥 is the sum of the first 𝑖 entries of 𝑥:

𝑆𝑥 =


𝑥1

𝑥1 + 𝑥2
𝑥1 + 𝑥2 + 𝑥3

...

𝑥1 + ··· + 𝑥𝑛


SA — ENGR504matrix operations 4.19

Selectors

an 𝑚 × 𝑛 selector matrix: each row is a unit vector (transposed)

𝐴 =


𝑒T
𝑘1
...

𝑒T
𝑘𝑚


• 𝑘1, . . . , 𝑘𝑚 are integers in range 1, . . . , 𝑛

• 𝐴𝑥 copies the 𝑘𝑖 th entry of 𝑥 into the 𝑖th entry:

𝐴𝑥 =
(
𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑚

)
Reverser matrix

𝐴 =


𝑒T𝑛
...

𝑒T1

 =

0 0 · ·· 0 1
0 0 · ·· 1 0
...

0 1 · ·· 0 0
1 0 · ·· 0 0


, 𝐴𝑥 =


𝑥𝑛
𝑥𝑛−1
...

𝑥2
𝑥1


SA — ENGR504matrix operations 4.20

Circular shift matrix

𝐴 =


𝑒T𝑛
𝑒T1
...

𝑒T𝑛−1

 =

0 0 · ·· 0 1
1 0 · ·· 0 0
0 1 · ·· 0 0
...

0 0 · ·· 1 0


, 𝐴𝑥 =


𝑥𝑛
𝑥1
𝑥2
...

𝑥𝑛−1


Down-sampling: the 𝑚 × 2𝑚 matrix

𝐴 =


1 0 0 0 · ·· 0 0
0 0 1 0 · ·· 0 0
...

0 0 0 0 · ·· 1 0

 , 𝐴𝑥 =


𝑥1
𝑥3
...

𝑥2𝑚−1


‘down-samples’ 𝑥 by 2

SA — ENGR504matrix operations 4.21

Permutation matrices

• an 𝑛 × 𝑛 permutation matrix has exactly one entry of each row/column is one

• let 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑛) be a permutation (reordering) of (1, 2, . . . , 𝑛)

• we associate with 𝜋 the 𝑛 × 𝑛 permutation matrix 𝐴

𝐴𝑖 𝜋𝑖 = 1, 𝐴𝑖 𝑗 = 0 if 𝑗 ≠ 𝜋𝑖

• 𝐴𝑥 is a permutation of the elements of 𝑥: 𝐴𝑥 = (𝑥𝜋1
, 𝑥𝜋2

, . . . , 𝑥𝜋𝑛)

• example: for permutation 𝜋 = (3, 1, 2), the associated permutation matrix is

𝐴 =


0 0 1
1 0 0
0 1 0


multiplying a 3-vector by 𝐴 re-orders its entries: 𝐴𝑥 = (𝑥3, 𝑥1, 𝑥2)

SA — ENGR504matrix operations 4.22

Matrix multiplication

product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵

𝐶 = 𝐴𝐵

is the 𝑚 × 𝑝 matrix with 𝑖, 𝑗 element

𝐶𝑖 𝑗 = 𝐴𝑖1𝐵1 𝑗 + 𝐴𝑖2𝐵2 𝑗 + ··· + 𝐴𝑖𝑛𝐵𝑛 𝑗

• to get 𝐶𝑖 𝑗 : move along 𝑖th row of 𝐴, 𝑗 th column of 𝐵

• dimensions must be compatible:

#columns in 𝐴 = #rows in 𝐵

• example: [
−1.5 3 2

1 −1 0

] 
−1 −1
0 −2
1 0

 =
[
3.5 −4.5
−1 1

]
SA — ENGR504matrix operations 4.23

Special cases of matrix multiplication

• scalar-vector product (with scalar on right!) 𝑥𝛼

• inner product 𝑎T𝑏

• matrix-vector multiplication 𝐴𝑥

• outer product of 𝑚-vector 𝑎 and 𝑛-vector 𝑏

𝑎𝑏T =


𝑎1𝑏1 𝑎1𝑏2 · ·· 𝑎1𝑏𝑛
𝑎2𝑏1 𝑎2𝑏2 · ·· 𝑎2𝑏𝑛
...

𝑎𝑚𝑏1 𝑎𝑚𝑏2 · ·· 𝑎𝑚𝑏𝑛


• multiplication by identity 𝐴𝐼 = 𝐴 and 𝐼 𝐴 = 𝐴

• matrix power: multiplication of matrix with itself 𝑝 times: 𝐴𝑝 = 𝐴𝐴· ··𝐴

SA — ENGR504matrix operations 4.24

Properties of matrix-matrix product

• associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), so we write 𝐴𝐵𝐶

• associativity: with scalar multiplication: (𝛾𝐴)𝐵 = 𝛾(𝐴𝐵) = 𝛾𝐴𝐵

• distributivity with sum:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

• transpose of product:
(𝐴𝐵)T = 𝐵T𝐴T

• not commutative: 𝐴𝐵 ≠ 𝐵𝐴 in general; for example,[
−1 0
0 1

] [
0 1
1 0

]
≠

[
0 1
1 0

] [
−1 0
0 1

]
there are exceptions, e.g., 𝐴𝐼 = 𝐼 𝐴 for square 𝐴

SA — ENGR504matrix operations 4.25

Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 × 2 block matrices[
𝐴 𝐵

𝐶 𝐷

] [
𝑊 𝑌

𝑋 𝑍

]
=

[
𝐴𝑊 + 𝐵𝑋 𝐴𝑌 + 𝐵𝑍

𝐶𝑊 + 𝐷𝑋 𝐶𝑌 + 𝐷𝑍

]
if the dimensions of the blocks are compatible

SA — ENGR504matrix operations 4.26

Column and row representations

Column representation

• 𝐴 is 𝑚 × 𝑝, 𝐵 is 𝑝 × 𝑛 with columns 𝑏𝑖

𝐴𝐵 = 𝐴[𝑏1 𝑏2 · ·· 𝑏𝑛] = [𝐴𝑏1 𝐴𝑏2 · ·· 𝐴𝑏𝑛]

• so 𝐴𝐵 is ‘batch’ multiply of 𝐴 times columns of 𝐵

Row representation

• with 𝑎T
𝑖

the rows of 𝐴

𝐴𝐵 =


𝑎T1𝐵

𝑎T2𝐵
...

𝑎T𝑚𝐵

 =


(𝐵T𝑎1)T
(𝐵T𝑎2)T

...

(𝐵T𝑎𝑚)T


• row 𝑖 is (𝐵T𝑎𝑖)T

SA — ENGR504matrix operations 4.27

Inner and outer product representations

Inner product representation

• 𝐴 is 𝑚 × 𝑝 with rows 𝑎T
𝑖
, 𝐵 is 𝑝 × 𝑛 with columns 𝑏𝑖

𝐴𝐵 =


𝑎T1𝑏1 𝑎T1𝑏2 · ·· 𝑎T1𝑏𝑛

𝑎T2𝑏1 𝑎T2𝑏2 · ·· 𝑎T2𝑏𝑛
...

𝑎T𝑚𝑏1 𝑎T𝑚𝑏2 · ·· 𝑎T𝑚𝑏𝑛


• entry 𝑖 𝑗 is 𝑎T

𝑖
𝑏 𝑗

Outer product representation

• 𝑎𝑖 columns of 𝐴, 𝑏T
𝑖

rows of 𝐵

• then we can express the product matrix 𝐴𝐵 as a sum of outer products:

𝐴𝐵 =
[
𝑎1 · ·· 𝑎𝑛

] 
𝑏T1
...

𝑏T𝑛

 = 𝑎1𝑏
T
1 + · · · + 𝑎𝑛𝑏

T
𝑛

SA — ENGR504matrix operations 4.28

Frobenius norm

the Frobenius norm of an 𝑚 × 𝑛 matrix 𝐴 is

∥𝐴∥𝐹 =
©­«

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴2
𝑖 𝑗

ª®¬
1/2

• agrees with vector norm when 𝑛 = 1

• in MATLAB: norm(A,’fro’)

• distance between two matrices: ∥𝐴 − 𝐵∥𝐹

• satisfies norm properties:
– ∥𝛼𝐴∥ = |𝛼 |∥𝐴∥
– ∥𝐴 + 𝐵∥ ≤ ∥𝐴∥ + ∥𝐵∥
– ∥𝐴∥ ≥ 0
– ∥𝐴∥ = 0 only if 𝐴 = 0

• additional properties:
– ∥𝐴∥𝐹 = ∥𝐴T∥𝐹 =

√︁
∥𝑎1∥2 + · · · + ∥𝑎𝑛∥2, 𝑎 𝑗 is 𝑗 th column of 𝐴

– ∥𝐴𝐵∥𝐹 ≤ ∥𝐴∥𝐹 ∥𝐵∥𝐹

SA — ENGR504matrix operations 4.29

Outline

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

Complexity of matrix operations

Addition and scalar multiplication

• addition 𝐴 + 𝐵 requires 𝑚𝑛 flops (for 𝑚 × 𝑛 matrices)

• scalar multiplication requires requires 𝑚𝑛

• less for sparse matrices

• transpose requires zero flops

Matrix-vector multiplication (for 𝑛-vector 𝑥 and 𝑚 × 𝑛 matrix 𝐴)

• 𝑦 = 𝐴𝑥 requires (2𝑛 − 1)𝑚 flops or simply 2𝑚𝑛

• 𝑚 elements in 𝑦; each element requires an inner product of length 𝑛

• approximately 2𝑚𝑛 for large 𝑛

• flop count is lower for structured matrices
– 𝐴 diagonal: 𝑛 flops

– 𝐴 lower triangular: 1 + 3 + 5 + · · · + 2𝑛 − 1 = 𝑛2 flops

– 𝐴 sparse: #flops ≪ 2𝑚𝑛

SA — ENGR504complexity 4.30

Matrix-matrix product product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵:

𝐶 = 𝐴𝐵

requires 𝑚𝑝(2𝑛 − 1) flops

• 𝑚𝑝 elements in 𝐶; each element requires an inner product of length 𝑛

• approximately 2𝑚𝑛𝑝 for large 𝑛

SA — ENGR504complexity 4.31

Outline

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

Matrix examples

Images

• 𝑚 × 𝑛 matrix denote a monochrome (black and white) image

• 𝑋𝑖 𝑗 is 𝑖, 𝑗 pixel value in a monochrome image

Rainfall data

• 𝑚 × 𝑛 matrix 𝐴 gives the rainfall at 𝑚 different locations on 𝑛 consecutive days

• 𝐴𝑖 𝑗 is rainfall at location 𝑖 on day 𝑗

Multiple asset returns

• 𝑇 × 𝑛 matrix 𝑅 gives the returns of 𝑛 assets over 𝑇 periods

• 𝑅𝑖 𝑗 is return of asset 𝑗 in period 𝑖

• 𝑗 th column of 𝑅 is a 𝑇 -vector that is the return time series for asset 𝑗

SA — ENGR504examples of matrices 4.32

Matrix-vector product examples

Return matrix

• 𝑅 is 𝑇 × 𝑛 matrix of asset returns (returns of 𝑛 assets over 𝑇 periods)

• 𝑅𝑖 𝑗 is return of asset 𝑗 in period 𝑖 (say, in percentage)

• 𝑛-vector 𝑤 gives investments in the assets (e.g., 𝑤4 = 0.15 means that 15% of
the total portfolio value is held in asset 4)

• 𝑇 -vector 𝑅𝑤 is time series of the portfolio return over periods 1, . . . , 𝑇

Image cropping

• 𝑀𝑁-vector 𝑥 is image, with its entries giving the pixel values in specific order

• 𝑦 is the (𝑀/2) × (𝑁/2) image that is the upper left corner (cropped version)

• we have 𝑦 = 𝐴𝑥, where 𝐴 is an (𝑀𝑁/4) × (𝑀𝑁) selector matrix

• 𝑖th row of 𝐴 is 𝑒T
𝑘𝑖

, 𝑘𝑖 is index of the pixel in 𝑥 that corresponds to 𝑖th pixel in 𝑦

SA — ENGR504examples of matrices 4.33

Feature matrix

• 𝑋 = [𝑥1 · ·· 𝑥𝑁] is 𝑛 × 𝑁 feature matrix

• column 𝑥 𝑗 is feature 𝑛-vector for object or example 𝑗

• 𝑋𝑖 𝑗 is value of feature 𝑖 for example 𝑗

• 𝑛-vector 𝑤 is weight vector

• 𝑠 = 𝑋T𝑤 is vector of scores for each example; 𝑠 𝑗 = 𝑥T
𝑗
𝑤

Cost of production

production inputs (materials, parts, labor,...) are combined to make products

• 𝑥 𝑗 is price per unit of production of input 𝑗

• 𝐴𝑖 𝑗 is units of production of input 𝑗 required to manufacture one unit of product 𝑖

• 𝑦 = 𝐴𝑥 is production cost (𝑦𝑖 is production cost per unit of product 𝑖)

• 𝑖th row of 𝐴 is bill of materials for unit of product 𝑖

SA — ENGR504examples of matrices 4.34

Signal power in wireless system

• 𝑛 transmitter/receiver pairs

• transmitter 𝑗 transmits to receiver 𝑗 (and, unintentionally, to the other receivers)

• 𝑝 𝑗 is power of 𝑗 th transmitter

• 𝑠𝑖 is received signal power of 𝑖th receiver

• 𝑧𝑖 is received interference power of 𝑖th receiver

• 𝐺𝑖 𝑗 is path gain from transmitter 𝑗 to receiver 𝑖

• we have 𝑠 = 𝐴𝑝, 𝑧 = 𝐵𝑝, where

𝐴𝑖 𝑗 =

{
𝐺𝑖𝑖 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
𝐵𝑖 𝑗 =

{
0 𝑖 = 𝑗

𝐺𝑖 𝑗 𝑖 ≠ 𝑗

• 𝐴 is diagonal; 𝐵 has zero diagonal (ideally, 𝐴 is ‘large’, 𝐵 is ‘small’)

SA — ENGR504examples of matrices 4.35

Vandermonde matrix

• polynomial of degree 𝑛 − 1 or less with coefficients 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + ··· + 𝑥𝑛𝑡

𝑛−1

• values of 𝑝(𝑡) at 𝑚 points 𝑡1, . . . , 𝑡𝑚:
𝑝 (𝑡1)
𝑝 (𝑡2)
...

𝑝 (𝑡𝑚)

 =

1 𝑡1 · ·· 𝑡𝑛−11

1 𝑡2 · ·· 𝑡𝑛−12
...

1 𝑡𝑚 · ·· 𝑡𝑛−1𝑚



𝑥1
𝑥2
...

𝑥𝑛


= 𝐴𝑥

the matrix 𝐴 is called a Vandermonde matrix

• 𝐴𝑥 maps coefficients of polynomial to function values

SA — ENGR504examples of matrices 4.36

Geometric transformations

Rotation in a plane

𝐴 =

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
𝑥

𝐴𝑥

𝑦 = 𝐴𝑥 is 𝑥 rotated counterclockwise over an angle 𝜃

Reflection

𝑦 =

[
cos(2𝜃) sin(2𝜃)
sin(2𝜃) − cos(2𝜃)

]
𝑥

𝑥

𝐴𝑥

𝑦 = 𝐴𝑥 is the vector obtained by reflecting 𝑥 through the line that passes through the
origin, inclined 𝜃 radians with respect to horizontal

SA — ENGR504examples of matrices 4.37

Finding the geometric matrix

• when a geometric transformation is represented by matrix vector multiplication

• a simple method to find the matrix is to find its columns

• the 𝑖th column is the vector 𝑎𝑖 = 𝐴𝑒𝑖

Example: consider clockwise rotation by 90◦ in 2-D

• rotating the vector 𝑒1 = (1, 0) by 90◦ gives (0,−1)

• rotating 𝑒2 = (0, 1) by 90◦ gives (1, 0)

• so rotation by 90◦ is given by

𝑦 =

[
0 1

−1 0

]
𝑥

SA — ENGR504examples of matrices 4.38

Outline

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

Incidence matrix

• directed graph consists of 𝑚 vertices (nodes), 𝑛 directed edges (arcs, branches)

• incidence matrix is 𝑚 × 𝑛 matrix 𝐴 with

𝐴𝑖 𝑗 =


1 if edge 𝑗 point to node 𝑖

−1 if edge 𝑗 point from node 𝑖

0 otherwise

1

2 3

4

1 54

2

3

𝐴 =


−1 −1 0 1 0
1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1


SA — ENGR504graphs 4.39

Flow conservation

• graph is used to represent a network

• through which some quantity such as electricity, water, or heat flows

• assume 𝑛-vector 𝑥 gives flows along the edges

• 𝑥 𝑗 > 0 means flow follows edge direction

• 𝐴𝑥 is 𝑚-vector that gives the total or net flows

• (𝐴𝑥)𝑖 is the net flow into node 𝑖 (flows in node 𝑖 minus flows out)

(𝐴𝑥)𝑖 =
∑︁

edge 𝑗 enters
node 𝑖

𝑥 𝑗 −
∑︁

edge 𝑗 leaves
node 𝑖

𝑥 𝑗

• can include external source flows 𝐴𝑥 + 𝑠, 𝑠𝑖 is flow entering/leaving node 𝑖

SA — ENGR504graphs 4.40

Kirchhoff’s current law

𝑛-vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) with 𝑥 𝑗 the current through branch 𝑗

(𝐴𝑥)𝑖 = total current arriving at node 𝑖 (excluding sources)

1

2 3

4

𝑥1 𝑥5𝑥4

𝑥2

𝑥3

𝑠1

𝑠2 𝑠3

𝑠4

𝐴𝑥 + 𝑠 =


−𝑥1 − 𝑥2 + 𝑥4 + 𝑠1

𝑥1 − 𝑥3 + 𝑠2
𝑥3 − 𝑥4 − 𝑥5 + 𝑠3

𝑥2 + 𝑥5 + 𝑠4



SA — ENGR504graphs 4.41

Node potentials

𝑚-vector 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) with 𝑣𝑖 the potential value at node 𝑖

(𝐴T𝑣) 𝑗 = 𝑣𝑘 − 𝑣𝑙 if edge 𝑗 goes from node 𝑙 to 𝑘

1

2 3

4
𝑣1

𝑣2 𝑣3

𝑣4

1 54

2

3

𝐴T𝑣 =


𝑣2 − 𝑣1
𝑣4 − 𝑣1
𝑣3 − 𝑣2
𝑣1 − 𝑣3
𝑣4 − 𝑣3



if 𝑣𝑖 are node voltages in a circuit, then (𝐴T𝑣) 𝑗 = (negative) voltage across branch 𝑗

SA — ENGR504graphs 4.42

Dirichlet energy

∥𝐴T𝑣∥2 is the sum of squared potential differences

∥𝐴T𝑣∥2 =
∑︁

edges 𝑖→ 𝑗

(𝑣 𝑗 − 𝑣𝑖)2

• called Dirichlet energy

• D(𝑣) is small when potential values of neighboring nodes are similar

• used as a measure of non-smoothness (roughness) of node potentials on a graph

Example: for the graph on the previous page

∥𝐴T𝑣∥2 = (𝑣2 − 𝑣1)2 + (𝑣4 − 𝑣1)2 + (𝑣3 − 𝑣2)2 + (𝑣1 − 𝑣3)2 + (𝑣4 − 𝑣3)2

SA — ENGR504graphs 4.43

Chain graph

1 2 3 𝑛
1 2 3 𝑛

• the 𝑛 × (𝑛 − 1) incidence matrix is the transpose of the difference matrix 𝐷

• Dirichlet energy:

D(𝑣) = ∥𝐷𝑣∥2 = (𝑣2 − 𝑣1)2 + ··· + (𝑣𝑛 − 𝑣𝑛−1)2

• used as a measure of the non-smoothness time series

0 20 40 60 80 100

0

1

2

3

𝑘

𝑎

0 20 40 60 80 100

0

1

2

3

𝑘

𝑏

D(𝑎) = 1.14 and D(𝑏) = 8.99

SA — ENGR504graphs 4.44

Graph Laplacian

if 𝐴 is incidence matrix, matrix 𝐿 = 𝐴𝐴T is the Laplacian of the graph

𝐿𝑖 𝑗 =


degree of node if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗 and vertices 𝑖 and 𝑗 are adjacent
0 otherwise

the degree of a node is the number of edges incident to it

1

2 3

4

1 54

2

3

𝐿 = 𝐴𝐴T =


3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


• assume there are no self-loops and at most one edge between any two vertices
• we have D(𝑣) = ∥𝐴T𝑣∥2 = 𝑣T𝐿𝑣 (sometimes called Laplacian quadratic form)

SA — ENGR504graphs 4.45

Adjacency matrix of directed graph

adjacency matrix of directed graph is the 𝑛 × 𝑛 matrix 𝐴 with:

𝐴𝑖 𝑗 =

{
1 if edge from node 𝑗 to node 𝑖

0 otherwise

1

2 3

4

5 𝐴 =


0 1 0 0 1
1 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 0 1 0


• can describe a relation between 𝑛 objects R (𝐴𝑖 𝑗 = 1 if (𝑖, 𝑗) ∈ R)

• can be defined in reverse; 𝐴𝑖 𝑗 = 1 means a directed edge from 𝑖 → 𝑗

SA — ENGR504graphs 4.46

Paths in directed graph

square of adjacency matrix:

(𝐴2)𝑖 𝑗 =
𝑛∑︁

𝑘=1

𝐴𝑖𝑘𝐴𝑘 𝑗

• each term is either zero, or one when 𝑗 → 𝑘 and 𝑘 → 𝑖

• (𝐴2)𝑖 𝑗 is number of paths of length 2 from 𝑗 to 𝑖

• more generally, (𝐴ℓ)𝑖 𝑗 = number of paths of length ℓ from 𝑗 to 𝑖

• for the example,

𝐴2 =


1 0 1 1 0
0 1 0 1 2
1 0 0 1 0
0 1 0 0 1
1 0 0 0 0


, 𝐴3 =


1 1 0 1 2
2 0 1 2 0
1 1 0 0 1
1 0 1 1 0
0 1 0 0 1


e.g., there are two paths of length two from 5 to 2

SA — ENGR504graphs 4.47

Outline

• matrix notation

• matrix operations

• complexity

• examples of matrices

• graphs

• convolution

Convolution

convolution between 𝑛-vector 𝑎 and 𝑚-vector 𝑏 is the (𝑛 + 𝑚 − 1)-vector

𝑐𝑘 = (𝑎 ∗ 𝑏)𝑘 =
∑︁

all 𝑖, 𝑗 with
𝑖+ 𝑗=𝑘+1

𝑎𝑖𝑏 𝑗 , 𝑘 = 1, . . . , 𝑛 + 𝑚 − 1

• for example with 𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑏 = (𝑏1, 𝑏2, 𝑏3), we have

𝑐1 = 𝑎1𝑏1

𝑐2 = 𝑎1𝑏2 + 𝑎2𝑏1

𝑐3 = 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎3𝑏1

𝑐4 = 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎4𝑏1

𝑐5 = 𝑎3𝑏3 + 𝑎4𝑏2

𝑐6 = 𝑎4𝑏3

• example: (1, 0,−1) ∗ (2, 1,−1) = (2, 1,−3,−1, 1)

• arises in many applications and contexts

SA — ENGR504convolution 4.48

Interpretation and properties

Interpretation: if 𝑎 and 𝑏 are the coefficients of polynomials

𝑝(𝑥) = 𝑎1 + 𝑎2𝑥 + ··· + 𝑎𝑛𝑥
𝑛−1, 𝑞(𝑥) = 𝑏1 + 𝑏2𝑥 + ··· + 𝑏𝑚𝑥

𝑚−1

then 𝑐 = 𝑎 ∗ 𝑏 gives the coefficients of the product polynomial

𝑝(𝑥)𝑞(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 + ··· + 𝑐𝑛+𝑚−1𝑥

𝑛+𝑚−2

Properties

• symmetric: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎
• associative: (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)
• if 𝑎 ∗ 𝑏 = 0 then 𝑎 = 0 or 𝑏 = 0

these properties follow directly from the polynomial product interpretation

SA — ENGR504convolution 4.49

Convolution as matrix-vector product

for fixed 𝑎 (or 𝑏) the convolution can be expressed as matrix-vector product of 𝑏 (or 𝑎)

𝑐 = 𝑎 ∗ 𝑏 = 𝑇 (𝑏)𝑎 = 𝑇 (𝑎)𝑏

for matrices 𝑇 (𝑎) and 𝑇 (𝑏)

• example: for 4-vector 𝑎 and a 3-vector 𝑏,

𝑇 (𝑏) =



𝑏1 0 0 0
𝑏2 𝑏1 0 0
𝑏3 𝑏2 𝑏1 0
0 𝑏3 𝑏2 𝑏1
0 0 𝑏3 𝑏2
0 0 0 𝑏3


, 𝑇 (𝑎) =



𝑎1 0 0
𝑎2 𝑎1 0
𝑎3 𝑎2 𝑎1
𝑎4 𝑎3 𝑎2
0 𝑎4 𝑎3
0 0 𝑎4


• 𝑇 (𝑏) is a Toeplitz matrix (values on diagonals are equal)

• columns of 𝑇 (𝑎) are shifted versions of 𝑎 padded with zeros

SA — ENGR504convolution 4.50

Examples

Moving average of a time series
• 𝑛-vector 𝑥 represents a time series

• the 3-period moving average of the time series is the time series

𝑦𝑘 = (1/3) (𝑥𝑘 + 𝑥𝑘−1 + 𝑥𝑘−2) , 𝑘 = 1, 2, . . . , 𝑛 + 2

(with 𝑥𝑘 interpreted as zero for 𝑘 < 1 and 𝑘 > 𝑛)

• can be expressed as a convolution 𝑦 = 𝑎 ∗ 𝑥 with 𝑎 = (1/3, 1/3, 1/3)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

𝑘

𝑥
𝑘

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

𝑘

(𝑎
∗𝑥

) 𝑘

SA — ENGR504convolution 4.51

Audio filtering

• 𝑥 is audio signal

• 𝑎 is a vector called filter coefficients

• 𝑦 = 𝑎 ∗ 𝑥 is filtered audio signal

• example: audio tone controls

Communication channel

• 𝑢 signal transmitted over some channel (electrical, radio, optical,...)

• receiver receives 𝑦 = 𝑐 ∗ 𝑢
• 𝑐 is channel impulse response

SA — ENGR504convolution 4.52

Input-output convolution system

many systems with input 𝑢 and output 𝑦 can be modeled as convolution 𝑦 = ℎ ∗ 𝑢

• ℎ is called the system impulse response

• for 𝑚-vector 𝑢 input, 𝑛-vector ℎ, we can express (𝑚 + 𝑛 − 1)-vector 𝑦 output,

𝑦𝑖 =

𝑛∑︁
𝑗=1

𝑢𝑖− 𝑗+1ℎ 𝑗

(interpreting 𝑢𝑘 as zero for 𝑘 < 𝑛 or 𝑘 > 𝑛)

• interpretation: output 𝑦𝑖 at time 𝑖 is a linear combination of 𝑢𝑖 , . . . , 𝑢𝑖−𝑛+1

• ℎ3 determines current output’s dependency on input from two time steps ago

SA — ENGR504convolution 4.53

References and further readings

• S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

• L. Vandenberghe. EE133A lecture notes, University of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

SA — ENGR504references 4.54

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	matrix notation
	matrix operations
	complexity
	examples of matrices
	graphs
	convolution
	references

