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Matrix

a matrix is a rectangular array of elements written as

Air A ... Ay,
A= A21 A22 . AQn
Aml Am2 e Amn

e scalars in array are the elements (entries, coefficients, components)
e A;jisthei, j element of A (i is row index, j is column index)

e size (dimensions) of the matrix is m X n = (#rows) X (#columns)

Example
0 1 -23 0.1
A=]113 4 -01 O
4.1 -1 0 1.7
° A23 =-0.1

e a 3 X 4 matrix
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Notes and conventions

Notes

e a matrix of size m X n is called an m X n-matrix

o R™*" ig set of m X n matrices with real elements

e we use A; ; when i or j are more than one digit

e two matrices with same size are equal if corresponding entries are all equal

e sometimes Ay is a matrix; in this case, we use (Ag);; to denote its 7, j element
Conventions

e matrices are typically denoted by capital letters

e parentheses are also used instead of rectangular brackets to represent a matrix
e often a;; is used to denote the 7, j element of A

e some authors use bold capital letter for matrices (e.g., A, A)

e be prepared to figure out whether a symbol represents a matrix, vector, or a scalar
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Matrix shapes

Scalar: a 1 X 1 matrix is a scalar

Row and column vectors
e a1 X n matrix is called a row vector

e an n X 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an m X n matrix is
e tall, skinny, or thinifm > n
e wideorfatifm <n

e squareifm=n

matrix notation 4.4



Columns and rows

an m X n matrix can be viewed as a matrix with row/column vectors

Columns representation

A=lajas - an] Ayj

each a; is an m-vector (the jth column of A)

Rows representation

by

b
A=| "7
b;n bi =[Aj1 - Ajn]

each b; is a 1 X n row vector (the ith row of A)
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Block matrix and submatrices

e a block matrix is a rectangular array of matrices

e clements in the array are the blocks or submatrices of the block matrix

ln ]

e submatrices can be referred to by their block row and column (C'is 1, 2 block of A)

Example: a 2 X 2 block matrix

e dimensions of the blocks must be compatible

e if the blocks are

matrix notation 4.6



Slice of matrix

Apr Ap,r+1 Aps
A _ Ap+1,r Ap+1,r+1 e Ap+1,s
p:q,r:s —
Aqr Aq,r+1 e Aqs

e an(g—p+1)x(s—r+1) matrix
e obtained by extracting from A elements in rows p to ¢ and columns r to s
o from last page example, we have
4 7
Ag.33.4 =
2:3,3:4 [6 0]
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Special matrices

Zero matrix
e matrix with A;; = 0 for all i, j

e notation: 0 or 0, (if dimension is not clear from context)

Identity matrix

e square matrix with A;; = 1ifi=jand A;; =0ifi # j

e notation: I or I, (if dimension is not clear from context)

e columns of I, are unit vectors eq, eo, . . ., e,; for example,
1 0 0
L=|0 1 0|=[e e e3]
0 0 1

matrix notation
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Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

e square with A;; =0 fori # j

e represented as A = diag(ay, ..., a,) where a; are diagonal elements
02 0 0
diag(0.2,-3,1.2) = 0 -3 0
0 0 12

4 0 0 4 0 0
3 -1 01, 0 -1 0
-1 5 =2 -1 0 -2

Upper triangular matrix: square with A;; = 0 fori > j
(a triangular matrix is unit upper/lower triangular if A;; = 1 for all i)

matrix notation
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Sparse matrices

a matrix A is sparse if most (almost all) of its elements are zero

densityis nnz(A)/(mn) < 1

e can be stored and manipulated efficiently on a computer

for example the triplet format:

(1’ 1)
(1,2)
(3,2)
(25 3)
(3.3)

whichmeans A1; =2.4,A32 =2, ...

matrix notation

nnz(A) is number of nonzero elements (typically order n or less)

2.4000
-3.0000
2.0000
1.3000
—6.0000

densities of sparse matrices that arise in practice are typically small (e.g., 10‘2)
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Transpose of a matrix

transpose of an m X n matrix A is the n X m matrix:

Ayr Ao - A
AT = Az Az 0 Ame
Aln A2n Amn

o (ANT=4
e the transpose of a block matrix (shown for a 2 X 2 block matrix)

A BT [ AT cT
¢ D| | BT DT

— A, B,C, and D are matrices with compatible sizes
— concept holds for any number of blocks

matrix notation 4.11



Symmetric matrices

a square matrix is symmetric if

A=AT
[ ] All = Ajl
e examples
4 3 -2 4+ 3j
3 -1 51, 3-2j
-2 5 0 0

matrix notation

3-2j 0
A
—2i 3
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Matrix addition

sum of two m X n matrices A and B

A1 +Bir App+Big - A+ By,

As1 + B Ax + B -+ A9, +B
A+B= 21. 21 22. 22 2n. 2n

Aml + Bml Am2 + Bm2 Amn + an

Properties
e commutativity: A+ B=B+ A

e associativity: (A+B)+C=A+ (B+C)
e addition with zero matrix: A+0=0+A=A

e transpose of sum: (A + B)T = AT+ BT
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Scalar-matrix multiplication

scalar-matrix product of m X n matrix A with scalar 8

BA11 BA2 - BAL
A = BA21  BA - BAy,
ﬁA.ml :8A'm2 ﬁA.mn

Properties: for matrices A, B, scalars 3,y

e associativity: (8y)A = B(vA)

o distributivity: (8 +7y)A = A +vyAand B(A+ B) =5A+ BB
e transposition: (BA)T = BAT

matrix operations
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Matrix-vector product

product of m X n matrix A with n-vector x

Auxl + A12X2 + -+ Alnxn

bTx

A21x1 + AQQ.XQ + -+ Agn_xn 1

A_x = . = :
: bTx

Ap1xy + Apaxe + - + Apnxp m

° bl.Tis ith row of A
e dimensions must be compatible (number of columns of A equals the size of x)

e Ax is alinear combination of the columns of A:

Ax:[ a, as -+ a4y ] ) =X1a1 +Xoas + -+ +X,a,
Xn
each a; is an m-vector (ith column of A)
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Properties of matrix-vector multiplication

for matrices A, B, vectors u, v and scalar 8
e associativity: (BA)u = A(Bu) = B(Au) (we write BAu)
e distributivity: A(u +v) = Au+ Av and (A + B)u = Au+ Bu

e transposition: (Au)T = uTAT

matrix operations

4.16



General examples

e Ox =0, i.e,, multiplying by zero matrix gives zero

e [x = x, i.e., multiplying by identity matrix does nothing

e inner product a Th is matrix-vector product of 1 x n matrix a and n-vector b
e Aej=aj the jthcolumnof A [(ATe;)T = el A s ith row]

e the product A1 is the sum of the columns of A

e for the n X n matrix

1-1/n -1/n - =1/n
A —1./n 1-1/n - —1-/n ’
—1/n -1/n - 1—'1/n

X = Ax is de-meaned version of x

matrix operations
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Difference matrix

(n = 1) X n difference matrix is

-1 1 0 - 0 0 0
o -1 1 - 0 00
D=
0 0 O -1 1 0
0o 0 O 0 -1 1

y = Dx is (n — 1)-vector of differences of consecutive entries of x:

X2 —X1

X3 — X2
Dx =

Xn —Xn-1

matrix operations
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Running sum matrix

the n X n matrix

10 0 0 0
11 0 0 0

S = ' N
111 10
11 1 11

is called the running sum matrix
the ith entry of the n-vector Sx is the sum of the first i entries of x:
X1

X1+ X9
Sx=1| X1 +Xx2+Xx3

X1+ Xy

matrix operations 4.19



Selectors

an m X n selector matrix: each row is a unit vector (transposed)

T

€,

A= :

T
€kom

e ki,...,k, areintegersinrange 1,...,n

e Ax copies the k;th entry of x into the ith entry:

Ax = (X, Xpys - - - XKy,
Reverser matrix
0 0 0 1 Xn
el 0 0 10 Xno1
A = H = : , Ax =
elT 0 1 0 0 X9
1 0 0 X1

matrix operations 4.20



Circular shift matrix

0 0
T
e
e’}r 1 0
A= .1 =0 1
T :
en—l O O

‘down-samples’ x by 2

matrix operations

o

o o

o O

Ax =

Ax =

Xn
X1
X2

Xn-1

X1
X3

X2m—-1
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Permutation matrices

e ann X n permutation matrix has exactly one entry of each row/column is one
o letm = (my,mo,...,m,) be a permutation (reordering) of (1,2, ...,n)
e we associate with 71 the n X n permutation matrix A
Air, =1, A;=0 if j#m
e Ax is a permutation of the elements of x: Ax = (X, Xnp, ..., Xx,)

e example: for permutation 7 = (3, 1, 2), the associated permutation matrix is

A:

o = O
= o O
O O =

multiplying a 3-vector by A re-orders its entries: Ax = (x3,x1,X2)

matrix operations



Matrix multiplication

product of m X n matrix A and n X p matrix B
C=AB
is the m X p matrix with 7, j element
Cij = Ai1B1j+ AiaBaj + - + Aijp By
e to get C;; : move along ith row of A, jth column of B
e dimensions must be compatible:
#columns in A = #rows in B

e example:

0 -2 o

[—1.5 3 2} -l _[3.5
1 0

matrix operations

-4.5
1

|
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Special cases of matrix multiplication

e scalar-vector product (with scalar on right!) xa
e inner product aTh
e matrix-vector multiplication Ax

e outer product of m-vector a and n-vector b

a1b1 a1b2 alb,,
abT— LZle a2b2 agbn
ambl ame ambn

e multiplication by identity Al = Aand IA = A

e matrix power: multiplication of matrix with itself p times: A? = AA---

matrix operations
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Properties of matrix-matrix product

e associativity: (AB)C = A(BC), so we write ABC
e associativity: with scalar multiplication: (yA)B = y(AB) = yAB
e distributivity with sum:

A(B+C)=AB+AC, (A+B)C=AC+BC

e transpose of product:
(AB)T = BTAT

e not commutative: AB # BA in general; for example,
-1 0 0 1 4 0 1 -1 0
0 1 1 0 1 0 0 1
there are exceptions, e.g., AI = I A for square A

matrix operations
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Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 X 2 block matrices
A B
C D

if the dimensions of the blocks are compatible

WY]

AW + BX
X Z

CW+DX

matrix operations

AY + BZ
CY+DZ
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Column and row representations

Column representation

e Aism X p, Bis p X n with columns b;
AB=A[ by by -+ b, |=[ Aby Abs
e so AB is ‘batch’ multiply of A times columns of B

Row representation

e with al.Tthe rows of A

aliB (Bial);

aB B a
AB = 2 _ ( 2)

a,{LB (BTa,)T

o rowiis (BTa;)T

matrix operations

Aby ]
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Inner and outer product representations

Inner product representation

e Aism X p with rows al, B is p X n with columns b;
p i P

T T T
aiby ajby - ajby

T T T
abi1 a>bs - azb,

AB=| 2 2 2
ambi apby - anby

e entryijisalb;

Outer product representation
e a; columns of A, biT rows of B
e then we can express the product matrix AB as a sum of outer products:
T
by
AB:[a1 an] : =a1b1T+---+anb,{
bT

n

matrix operations 4.28



Frobenius norm
the Frobenius norm of an m X n matrix A is

1/2

m n

lAllF=|> > A%

i=1 j=1
e agrees with vector norm whenn = 1
e in MATLAB: norm(A, ’fro?’)
e distance between two matrices: ||A — B||F

e satisfies norm properties:

= lleAll = |lllAll
- 1A+ Bl < [|[All +[IB]l
- [lAll=0

- |All=0onlyif A=0

e additional properties:
— lAllF = IATIlF = Vlla1ll? +- - + llanl|%, a; is jth column of A
- IABllF < IAllFlIBllF

matrix operations
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Complexity of matrix operations

Addition and scalar multiplication
e addition A + B requires mn flops (for m X n matrices)

e scalar multiplication requires requires mn
e less for sparse matrices

e transpose requires zero flops

Matrix-vector multiplication (for n-vector x and m X n matrix A)

e y = Ax requires (2n — 1)m flops or simply 2mn

e m elements in y; each element requires an inner product of length n
e approximately 2mn for large n

o flop count is lower for structured matrices
— A diagonal: n flops
— Alower triangular: 1+ 3+5+---+2n — 1 = n? flops
— A sparse: #flops < 2mn

complexity 4.30



Matrix-matrix product product of m X n matrix A and n X p matrix B:
C=AB

requires mp (2n — 1) flops

e mp elements in C; each element requires an inner product of length n

e approximately 2mnp for large n

complexity
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Matrix examples

Images
e m X n matrix denote a monochrome (black and white) image

e X;jisi, j pixel value in a monochrome image

Rainfall data
e m X n matrix A gives the rainfall at m different locations on n consecutive days

e A;j is rainfall at location i on day j

Multiple asset returns
e T X n matrix R gives the returns of n assets over T periods
e R;; is return of asset j in period i

e jth column of R is a T-vector that is the return time series for asset j

examples of matrices 4.32



Matrix-vector product examples

Return matrix
e RisT X n matrix of asset returns (returns of n assets over T periods)
e R;jisreturn of asset j in period i (say, in percentage)

e n-vector w gives investments in the assets (e.g., w4 = 0.15 means that 15% of
the total portfolio value is held in asset 4)

e T-vector Rw is time series of the portfolio return over periods 1,...,T

Image cropping

e M N-vector x is image, with its entries giving the pixel values in specific order
e yisthe (M/2) X (N/2) image that is the upper left corner (cropped version)
e we have y = Ax, where Aisan (MN/4) X (M N) selector matrix

e jthrowof A is e};, k; is index of the pixel in x that corresponds to ith pixel in y

examples of matrices 4.33



Feature matrix
e X =[x1 .- xn]isn X N feature matrix

e column x; is feature n-vector for object or example j

X;j is value of feature i for example j

e n-vector w is weight vector

e 5= X"w is vector of scores for each example; 5; = xJw

Cost of production

production inputs (materials, parts, labor,...) are combined to make products

e x; is price per unit of production of input j

e A;; is units of production of input j required to manufacture one unit of product i
e y = Ax is production cost (y; is production cost per unit of product 7)

e jth row of A is bill of materials for unit of product i

examples of matrices 4.34



Signal power in wireless system

n transmitter/receiver pairs

transmitter j transmits to receiver j (and, unintentionally, to the other receivers)
pj is power of jth transmitter

s; is received signal power of ith receiver

z; is received interference power of ith receiver

G is path gain from transmitter j to receiver i

we have s = Ap, z = Bp, where

Aij: Bij:

Gii i=] 0 i=j
0 i:ﬁj Gij l'¢].

A is diagonal; B has zero diagonal (ideally, A is ‘large’, B is ‘small’)

examples of matrices
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Vandermonde matrix

e polynomial of degree n — 1 or less with coefficients x1, xa, . . ., X;:
— 2 n-1
p(t) = x1 +xot +x3t° + -+ + xpt

e values of p(z) at m points t1, . . ., t,:

p(t1) I ST X1

p(t2) 1 12 - lg_l X2

P ([m) 1t - t;ln_l Xn
= Ax

the matrix A is called a Vandermonde matrix

e Ax maps coefficients of polynomial to function values

examples of matrices



Geometric transformations

Rotation in a plane

Ax

_ | cosf —sind

| sinf  cosé x
y = Ax is x rotated counterclockwise over an angle 6
Reflection

Ax
| cos(20) sin(26) .
sin(26) —cos(20) x

y = Ax is the vector obtained by reflecting x through the line that passes through the
origin, inclined 6 radians with respect to horizontal

examples of matrices 4.37



Finding the geometric matrix

e when a geometric transformation is represented by matrix vector multiplication
e a simple method to find the matrix is to find its columns

e the ith column is the vector a; = Ae;

Example: consider clockwise rotation by 90° in 2-D
e rotating the vector e¢; = (1, 0) by 90° gives (0, —1)
e rotating eo = (0, 1) by 90° gives (1, 0)

e so rotation by 90° is given by

examples of matrices 4.38
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Incidence matrix

e directed graph consists of m vertices (nodes), n directed edges (arcs, branches)
e incidence matrixis m X n matrix A with
1 if edge j point to node i

A;; =1-1 ifedge j point from node i
0  otherwise

-1 -1 0 1 O

1 0 -1 0 O

A= o o0 1 -1 -1
o 1 0 0 1

graphs 4.39



Flow conservation

e graph is used to represent a network

e through which some quantity such as electricity, water, or heat flows
e assume n-vector x gives flows along the edges

e x; > 0 means flow follows edge direction

e Ax is m-vector that gives the total or net flows

e (Ax); is the net flow into node i (flows in node i minus flows out)

(Ax)i = E Xj— E Xj
edge j enters edge j leaves

node i node i

e can include external source flows Ax + s, s; is flow entering/leaving node i

graphs
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Kirchhoff’s current law

n-vector x = (x1, X2, ...,Xx,) with x; the current through branch J

(Ax); = total current arriving at node i (excluding sources)

X3
SQ—»@—» «—— 53

—X1 — X2 +X4+ 51

X1 —X3+S
X1 4 x5 Ax+s= oA
X3 —X4 — X5+ 83
X2 + X5+ 854
X2
s1—»(1 @4—54

graphs 4.41



Node potentials

m-vector v = (v, va, ..., V) With v; the potential value at node i

(A Tv).,» = vg — v; if edge j goes from node [ to k

V2 3 V3

® ~(3)
A Vo — V1
Va—W1
ATV = V3 — V2

1 4 5

Vi—V3
Vqa — V3

Y

2
V1® > \‘DV4

if v; are node voltages in a circuit, then (ATv)j = (negative) voltage across branch j

graphs
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Dirichlet energy

|ATv||? is the sum of squared potential differences

AP = > (vj—vi)?

edges i— j

e called Dirichlet energy
e D(v) is small when potential values of neighboring nodes are similar

e used as a measure of non-smoothness (roughness) of node potentials on a graph

Example: for the graph on the previous page

IATVIIZ = (va = vi)? + (va = v1)? + (v3 = v2)? + (v1 = v3)? + (v — v3)?

graphs 4.43



Chain graph

@ 1 =@ 2 =@ 3 ...n_>@

e the n X (n — 1) incidence matrix is the transpose of the difference matrix D

o Dirichlet energy:
D) = [IDV]]> = (v2 = v1)* + - + (v = V1)

e used as a measure of the non-smoothness time series

3 3

2 2
S <

1 1

0 0

D(a) = 1.14 and D(b) = 8.99

graphs 4.44



Graph Laplacian

if A is incidence matrix, matrix L = AAT is the Laplacian of the graph

degree of node ifi=j
Lij=4 -1 if i # j and vertices i and j are adjacent
0 otherwise

the degree of a node is the number of edges incident to it

3 -1 -1 -1
-1 2 -1 0

— T_
L=AA"= -1 -1 3 -1

-1 0 -1 2

e assume there are no self-loops and at most one edge between any two vertices
e we have D(v) = ||[ATv||? = vILv (sometimes called Laplacian quadratic form)

graphs 4.45



Adjacency matrix of directed graph

adjacency matrix of directed graph is the n X n matrix A with:

A= 1 if edge from node j to node i
Y 0 otherwise

b

Il
o OO
o oo
coor O
—Oo R~ OO

e can describe a relation between n objects R (A;; = 1if (i, j) € R)

e can be defined in reverse; A;; = 1 means a directed edge fromi — j

graphs

SO = O

4.46



Paths in directed graph

square of adjacency matrix:

n
(A%)ij = AiAxj

k=1

each term is either zero, or one when j — kand k — i

(A?);; is number of paths of length 2 from j to i

e more generally, (Ag)ij = number of paths of length £ from j to i

for the example,

10110 11 0 1
01 01 2 2 0 1 2
A2=1 0 0 1 0|, A®>=|1 1 0 0
01 001 1 0 1 1
1 00 0 0 01 00

e.g., there are two paths of length two from 5 to 2

graphs

— O R O N
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Convolution
convolution between n-vector a and m-vector b is the (n + m — 1)-vector

cr=(axb) = Z aibj, k=1,....,n+m-1

all i,j with
i+j=k+1

e for example with a = (a1, as, as,as), b = (b1, b, b3), we have
C1 = a1b1
co =aibs +ashy
Cc3 = a1b3 + a2b2 + a3b1
Cy = a2b3 + a3b2 + a4b1
c5 = asbz +aybs
Cg = a4b3
e example: (1,0,-1) % (2,1,-1) =(2,1,-3,-1,1)

e arises in many applications and contexts

convolution
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Interpretation and properties

Interpretation: if « and b are the coefficients of polynomials

1

p(x)=ai+asx+ - +a,x"" ", q(x)=by+box+ - +bx"

then ¢ = a = b gives the coefficients of the product polynomial
n+m-2

p(x)g(x) =c1 +cox + C3x2 + o+ Cramo1X

Properties

e symmetric:axb =b*a

e associative: (a xb) xc=a* (b *c)
e ifaxb=0thena=0o0rb=0

these properties follow directly from the polynomial product interpretation

convolution

1
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Convolution as matrix-vector product

for fixed a (or b) the convolution can be expressed as matrix-vector product of b (or a)

c=axb=T(b)a=T(a)b
for matrices T'(a) and T'(b)

e example: for 4-vector a and a 3-vector b,

by 0 0 O a

bg b1 O 0 ag

_ b5 bz bl 0 _ as
T(b) - 0 bg b2 bl ’ T(a) - 4
0 0 b3y be 0

0 0 0 b3 0

e T(b) is a Toeplitz matrix (values on diagonals are equal)

e columns of T'(a) are shifted versions of a padded with zeros

convolution

ai
as
as
ay

ai
az
as
ay
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Examples

Moving average of a time series
e n-vector x represents a time series

e the 3-period moving average of the time series is the time series
yi = (1/3) (kg + xXp-1 +xk-2), k=1,2,....,n+2
(with x interpreted as zero for k < 1 and k > n)

e can be expressed as a convolution y = a *x witha = (1/3,1/3,1/3)

3 3
25 25
2
9 = 2
=15 <15
1 1
05 05
0 0
0 20 40,60 80 100 0 20 40,60 80 100
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Audio filtering

e x is audio signal

e a is a vector called filter coefficients
e y = qa * x is filtered audio signal

e example: audio tone controls

Communication channel
e y signal transmitted over some channel (electrical, radio, optical,...)
® receiverreceives y = ¢ * u

e  is channel impulse response

convolution
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Input-output convolution system

many systems with input # and output y can be modeled as convolution y = h * u
e h is called the system impulse response

e for m-vector u input, n-vector i, we can express (m + n — 1)-vector y output,

n

yi = Zui—j+1hj

J=1
(interpreting uy as zero for k < nork > n)
e interpretation: output y; at time i is a linear combination of u;, . .., U;_p41

e i3 determines current output’s dependency on input from two time steps ago

convolution
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references 4.54


http://www.seas.ucla.edu/~vandenbe/ee133a.html

	matrix notation
	matrix operations
	complexity
	examples of matrices
	graphs
	convolution
	references

