3. Norm and distance

- [norm, distance, angle](#page-1-0)
- [application examples](#page-13-0)
- [standard deviation, correlation](#page-18-0)
- [complexity](#page-30-0)
- [clustering](#page-32-0)

Euclidean norm

Euclidean norm of vector $a \in \mathbb{R}^n$:

$$
||a|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{a^T a}
$$

- reduces to absolute value $|a|$ when $n = 1$
- \bullet measures the magnitude of a
- examples

$$
\left\| \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \right\| = \sqrt{9} = 3, \quad \left\| \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\| = 1
$$

Properties

Positive definiteness

 $||a|| \ge 0$ for all a, $||a|| = 0$ only if $a = 0$

Homogeneity

 $||\beta a|| = |\beta| ||a||$ for all vectors a and scalars β

Triangle inequality

 $||a + b|| \le ||a|| + ||b||$ for all vectors a and b of equal length

- any real function that satisfies these properties is called a (general) *norm*
- Euclidean norm is often written as $||a||_2$ to distinguish from other norms
- examples are the one-norm and infinity-norm

$$
||a||_1 = |a_1| + |a_2| + \dots + |a_n|
$$

$$
||a||_{\infty} = \max\{|a_1|, |a_2|, \dots, |a_n|\}
$$

Norm of block vector and norm of sum

Norm of block vector: for vectors a, b, c ,

$$
\left\| \left[\begin{array}{c} a \\ b \\ c \end{array} \right] \right\| = \sqrt{\|a\|^2 + \|b\|^2 + \|c\|^2} = \|(\|a\|, \|b\|, \|c\|)\|
$$

Norm of sum: for vectors a, b ,

$$
||a + b|| = \sqrt{||a||^2 + 2a^Tb + ||b||^2}
$$

Cauchy-Schwarz inequality

 $|a^Tb| \le ||a|| ||b||$ for all $a, b \in \mathbb{R}^n$

moreover, equality $|a^T b| = \|a\| \|b\|$ holds if:

- $a = 0$ or $b = 0$; in this case $a^T b = 0 = ||a|| ||b||$
- $b = \gamma a$ for some $\gamma > 0$; in this case

$$
0 < a^T b = \gamma \|a\|^2 = \|a\| \|b\|
$$

• $b = -\gamma a$ for some $\gamma > 0$; in this case

$$
0 > a^T b = -\gamma ||a||^2 = -||a|| ||b||
$$

Proof of Cauchy-Schwarz inequality

- 1. trivial if $a = 0$ or $b = 0$
- 2. assume $\|a\| = \|b\| = 1$; we show that $-1 \le a^Tb \le 1$

$$
0 \le ||a - b||^2
$$

= $(a - b)^T(a - b)$
= $||a||^2 - 2a^Tb + ||b||^2$
= $2(1 - a^Tb)$

$$
0 \le ||a + b||^2
$$

= $(a + b)^T(a + b)$
= $||a||^2 + 2a^Tb + ||b||^2$
= $2(1 + a^Tb)$

with equality only if $a = b$

with equality only if $a = -b$

3. for general nonzero a, b , apply case 2 to the unit-norm vectors

$$
\frac{1}{\|a\|}a, \quad \frac{1}{\|b\|}b
$$

Triangle inequality from Cauchy-Schwarz inequality

for vectors a, b of equal size

$$
||a + b||2 = (a + b)T(a + b)
$$

= $aTa + bTa + aTb + bTb$
= $||a||2 + 2aTb + ||b||2$
 $\le ||a||2 + 2||a||||b|| + ||b||2$
= $(||a|| + ||b||)2$

- taking square roots gives the triangle inequality
- triangle inequality is an equality if and only if $a^T b = ||a|| ||b||$
- also note from line 3 that $||a + b||^2 = ||a||^2 + ||b||^2$ if $a^Tb = 0$

Euclidean distance

Euclidean distance between two vectors a and b ,

```
dist(a, b) = ||a - b||
```
• agrees with ordinary distance for $n = 1, 2, 3$

2-D illustration

• when the distance between two vectors is small, we say they are 'close' or 'nearby', and when the distance is large, we say they are 'far'

Triangle inequality

- triangle with vertices at positions a, b, c
- edge lengths are $||a b||$, $||b c||$, $||a c||$
- by triangle inequality

$$
||a - c|| = ||(a - b) + (b - c)|| \le ||a - b|| + ||b - c||
$$

i.e., third edge length is no longer than sum of other two

Angle between vectors

the *angle* between nonzero real vectors a, b is defined as

$$
\theta = \angle(a, b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)
$$

- this is the unique value of $\theta \in [0, \pi]$ that satisfies $a^T b = ||a|| ||b|| \cos \theta$
- coincides with ordinary angle between vectors in 2-D and 3-D
- symmetric: $\angle(a, b) = \angle(b, a)$
- unaffected by scaling: $\angle(\alpha a, \beta b) = \angle(a, b)$ for positive α, β

 \boldsymbol{b}

Classification of angles

$$
\begin{array}{c|c}\n\theta = 0 & a^Tb = ||a|| ||b|| \\
0 \le \theta < \pi/2 & a^Tb > 0 \\
\theta = \pi/2 & a^Tb = 0 \\
\pi/2 < \theta \le \pi & a^Tb < 0 \\
\theta = \pi & a^Tb = -||a|| ||b||\n\end{array}
$$

vectors are aligned or parallel vectors make an acute angle vectors are orthogonal $(a \perp b)$ vectors make an obtuse angle vectors are anti-aligned or opposed

Example: Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R\angle(a, b)$

Norm of sum via angles

for vectors a and b we have

$$
||a + b||2 = ||a||2 + 2aTb + ||b||2
$$

= ||a||² + 2||a||||b||cos θ + ||b||²

- if a and b are aligned $(\theta = 0)$, then $||a + b|| = ||a|| + ||b||$
- if a and b are orthogonal $(\theta = 90^{\circ})$, then

$$
||a + b||^2 = ||a||^2 + ||b||^2
$$

and $\|a+b\|=\sqrt{\|a\|^2+\|b\|^2}$ (called the Pythagorean theorem)

Outline

- • [norm, distance, angle](#page-1-0)
- **[application examples](#page-13-0)**
- [standard deviation, correlation](#page-18-0)
- [complexity](#page-30-0)
- [clustering](#page-32-0)

Feature distance and nearest neighbors

Feature distance

- let x and y be feature vectors for two entities
- $||x y||$ is the *feature distance*; gives a measure of how different the objects are
	- example: features associated with patients in a hospital (weight, age, results of tests)
	- feature vector distance gives similarity between one patient case and another one

Nearest neighbor

- z_1, \ldots, z_m is a list of vectors
- z_i is the nearest neighbor of x if

 $||x-z_j||$ ≤ $||x-z_i||$, $i = 1, ..., m$

Units for heterogeneous vector entries

$$
||a-b||^2 = (a_1 - b_1)^2 + \dots + (a_n - b_n)^2
$$

- suppose entries of vectors a_i, b_i represent different types of quantities
- choice of units for each entry affects the distance/angle between a and b
- general rule: choose units so typical vector entries have similar ranges of values

Document dissimilarity

- if x_i represent histogram of word occurrence in document i
- $||x_i x_j||$ measures the dissimilarity between documents

Example

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

Document dissimilarity by angles

- if *n*-vectors x_i are word counts for documents, their angle $\angle(x_i, x_j)$ can be used as a measure of document dissimilarity
- example: pairwise angles (in degrees) for 5 Wikipedia pages shown below

Outline

- • [norm, distance, angle](#page-1-0)
- [application examples](#page-13-0)
- **[standard deviation, correlation](#page-18-0)**
- [complexity](#page-30-0)
- [clustering](#page-32-0)

RMS value

the *root-mean-square* value of $a \in \mathbb{R}^n$ is the root of the average squared entry

$$
rms(x) = \sqrt{\frac{a_1^2 + \dots + a_n^2}{n}} = \frac{||a||}{\sqrt{n}}
$$

- it is root of *mean-square value*: $ms = (a_1^2 + \dots + a_n^2)/n$
- RMS value useful for comparing sizes of vectors of different lengths
- $\text{rms}(a)$ gives 'typical' value of $|a_i|$
- *e.g.*, $\text{rms}(a1) = |\alpha|$ (independent of *n*)
- $\text{rms}(a b)$ is called the RMS *deviation* between a and b

Standard deviation

the *standard deviation* of $a \in \mathbb{R}^n$ is

$$
std(a) = rms(a - avg(a)1) = ||a - ((1^T a)/n)1|| / \sqrt{n}
$$

- std is RMS deviation from the average
- std "tells" us the typical amount a vector entries deviate from their average
- $\tilde{a} = a \text{avg}(a)1$ is called *de-meaned* vector (since $\text{avg}(\tilde{a}) = 0$)
- other notation: μ and σ are often used for mean and standard deviation

Standard deviation formula

$$
rms(a)^2 = avg(a)^2 + std(a)^2
$$

Proof

$$
std(a)^{2} = \frac{||a - avg(a)1||^{2}}{n}
$$

= $\frac{1}{n} \left(a - \frac{1^{T}a}{n} 1 \right)^{T} \left(a - \frac{1^{T}a}{n} 1 \right)$
= $\frac{1}{n} \left(a^{T}a - \frac{(1^{T}a)^{2}}{n} - \frac{(1^{T}a)^{2}}{n} + \left(\frac{1^{T}a}{n} \right)^{2} n \right)$
= $\frac{1}{n} \left(a^{T}a - \frac{(1^{T}a)^{2}}{n} \right)$
= $rms(a)^{2} - avg(a)^{2}$

Mean return and risk of investment

- vectors represent time series of returns on an investment (as a percentage)
- average value is (mean) return of the investment
- standard deviation measures variation around the mean, *i.e.*, risk

Chebyshev inequality

- assume that k of the numbers $|x_1|, \ldots, |x_n|$ are $\ge \alpha$
- then k of the numbers x_1^2, \ldots, x_n^2 are $\geq \alpha^2$
- so $||x||^2 = x_1^2 + \dots + x_n^2 \ge k\alpha^2$

Chebyshev inequality

$$
k \le ||x||^2/\alpha^2
$$

- number of x_i with $|x_i| \ge \alpha$ is no more than $||x||^2/\alpha^2$
- in terms of RMS value:

$$
(\text{fraction of entries with } |x_i| \ge \alpha) = \frac{k}{n} \le \left(\frac{\text{rms}(x)}{\alpha}\right)^2
$$

- for $\alpha = 5 \text{rms}(x)$, no more than $\frac{1}{25} = 4\%$ of entries of x satisfy $|x_i| \ge 5 \text{rms}(x)$
- RMS value indicate that not too many of the entries of a vector can be much bigger (in absolute value) than its RMS value

Chebyshev inequality for standard deviation

if k is the number of entries of x that satisfy $|x_i - \mathrm{avg}(x)| \ge \alpha$, then

$$
\frac{k}{n} \le \left(\frac{\text{std}(x)}{\alpha}\right)^2
$$

- rough idea: most entries of x are not too far from the mean
- example: for return time series with mean 8% and standard deviation (risk) 3%, loss $(x_i \leq 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods
- by Chebyshev inequality, fraction of entries of x with

$$
|x_i - \mathrm{avg}(x)| \ge \beta \mathrm{std}(x)
$$

is no more than $1/\beta^2$ (for $\beta > 1$)

– fraction of entries of x within β standard deviations of $\mathrm{avg}(x)$ is at least $1-1/\beta^2$

Correlation coefficient

correlation coefficient (between a and b)

$$
\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}
$$

where vectors \tilde{a} and \tilde{b} are de-meaned vectors ($\tilde{a} \neq 0$, $\tilde{b} \neq 0$):

$$
\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \quad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}
$$

- $\rho = \cos \angle(\tilde{a}, \tilde{b})$ hence $-1 \leq \rho \leq 1$
- $\rho = 0$, a and b are uncorrelated
- $\rho > 0.8$ (or so), a and b are highly correlated
- $\rho < -0.8$ (or so), a and b are highly anti-correlated
- highly correlated "means" many a_i, b_i are both above (below) their means

Example

Examples

highly correlated vectors:

- rainfall time series at nearby locations
- daily returns of similar companies in same industry
- word count vectors of closely related documents (*e.g.*, same author, topic, ...)
- sales of shoes and socks (at different locations or periods)

approximately uncorrelated vectors

- unrelated vectors
- audio signals (even different tracks in multi-track recording)

(somewhat) negatively correlated vectors

• daily temperatures in Palo Alto and Melbourne

Properties and standardization

Properties of standard deviation

- *adding a constant:* $std(a + \beta 1) = std(a)$ for vector a and number β
- *multiplying by a scalar:* $std(Ba) = |\beta| std(a)$ for vector a and number β
- *sum:* $std(a + b) = \sqrt{std(a)^2 + 2\rho stdcdot(a) std(b) + std(b)^2}$ for vectors a, b

Standardization

• de-meaned vector of a in standard units is

$$
z = \frac{1}{\text{std}(a)}(a - \text{avg}(a)\mathbf{1})
$$

- *z* is called *standardized* or *z*-scored version of a $(\text{avg}(z) = 0 \text{ and } \text{std}(z) = 1)$
- $z_4 = 1.4$ means a_4 is 1.4 standard deviations above the mean of entries of a

Example: Hedging investments

- a and b are time series of returns for two assets with the same return (average) μ . risk (standard deviation) σ , and correlation coefficient ρ
- $c = (a + b)/2$ is time series of returns for an investment with 50% in each asset
- this blended investment has the same return as the original assets, since

$$
avg(c) = avg((a + b)/2) = (avg(a) + avg(b))/2 = \mu
$$

• the risk (standard deviation) of this blended investment is

$$
{\rm std}(c) = \sqrt{2\sigma^2 + 2\rho\sigma^2}/2 = \sigma\sqrt{(1+\rho)/2}
$$

- risk of the blended investment is never more than the risk of the original assets, and is smaller when the correlation of the original asset returns is smaller
- investing in two uncorrelated or negativ. correlated assets is called *hedging*

Outline

- • [norm, distance, angle](#page-1-0)
- [application examples](#page-13-0)
- [standard deviation, correlation](#page-18-0)
- **[complexity](#page-30-0)**
- [clustering](#page-32-0)

Complexity of norms

for n -vectors

- $||x||$ requires $2n$ flops
	- n multiplications (to square each entry)
	- $n 1$ additions (to add the squares)
	- one squareroot
- RMS value costs $2n$ (ignore two flops from division of \sqrt{n})
- distance between two vectors costs $3n$ flops
- angle between them costs $6n$ flops
- de-meaning an *n*-vector requires $2n$ flops
	- $-$ *n* for forming the average
	- $-$ *n* flops for subtracting the average from each entry
- standard deviation costs $4n$ flops
	- $-2n$ for computing the de-meaned vector
	- $-2n$ for computing its RMS value
- correlation coefficient costs $10n$ flops to compute

Outline

- • [norm, distance, angle](#page-1-0)
- [application examples](#page-13-0)
- [standard deviation, correlation](#page-18-0)
- [complexity](#page-30-0)
- **[clustering](#page-32-0)**

Clustering

- given Nn -vectors x_1, \ldots, x_N (features)
- goal: partition (divide, group, cluster) vectors into k groups ($k \ll N$)
- we want vectors in the same group to be close to each other

Example ($N = 300, k = 3$)

Examples

- topic discovery
	- x_i is word count histogram for document i
	- clustering algorithm groups documents with similar topics, genre, or author
- patient clustering
	- x_i are patient features (test results, symptoms, ..etc)
	- clustering algorithm groups similar patients together
- customer market segmentation
	- x_i is purchase quantities of items purchased by customer i
	- clustering algorithm groups customers with similar purchasing patterns
- financial sectors
	- x_i is financial attributes of company i (total capitalization, quarterly return, profits,...)
	- clustering algorithm groups companies into *sectors* (companies with similar attributes)
- color images
	- x_i are RGB pixel values
	- clustering algorithm groups images with similar colors

Clustering objective

Specifying clusters assignment

- c_i is group number that x_i is assigned to $(i = 1, \ldots, N)$
- G_j is set of (indices) corresponding to group $j = 1, ..., k$
	- example: $N = 5$ vectors and $k = 3$ groups
	- $-c = (3, 1, 1, 1, 2)$ means x_1 is assigned to group 3, x_2 is assigned to group 1,...

$$
- G_1 = \{2, 3, 4\}, G_2 = \{5\}, G_3 = \{1\}
$$

Group representatives

- n -vectors z_1, \ldots, z_k are *group representatives*
- we want $||x_i z_{ci}||$ to be small (z_{ci} is representative vector associated x_i)

Objective: mean square distance from vectors to associated representative

$$
J^{\text{clust}} = (||x_1 - z_{c_1}||^2 + \cdots + ||x_N - z_{c_N}||^2)/N
$$

- \bullet J^{clust} small means good clustering
- goal: choose clustering c_i and representatives z_j to minimize J^{clust}

Partitioning the vectors given the representatives

- assume group representatives z_1, \ldots, z_k are given (fixed)
- how to choose c_1, \ldots, c_N to minimize J^{clust} ? (how to assign vectors to groups)

Partitioning the vectors given

- c_i only appears in term $||x_i z_{c_i}||^2$ in J^{clust}
- to minimize over c_i , choose c_i to be the value of *j* that minimizes $||x_i z_j||^2$

$$
c_i = \operatorname*{argmin}_{j=1,...,k} \|x_i - z_j\|^2
$$

i.e., assign each vector to its nearest neighbor representative

• so the value of J^{clust} is

$$
J^{\text{clust}} = \left(\min_{j=1,...,k} ||x_1 - z_j||^2 + \dots + \min_{j=1,...,k} ||x_N - z_j||^2\right) / N
$$

this is mean squared distance from data vectors to their closest representative

Choosing representatives given the partition

given G_1, \ldots, G_k , how do we choose z_1, \ldots, z_k to minimize $J^\mathsf{clust} ?$

Choosing z_i given G_i

• J^{clust} splits into a sum of k sums, one for each z_i :

$$
J^{\text{clust}} = J_1 + \dots + J_k, \quad J_j = (1/N) \sum_{i \in G_j} ||x_i - z_j||^2
$$

- so we choose z_i to minimize mean square distance to the points in its partition
- this is the mean (or average or centroid) of the points in the partition:

$$
z_j = (1/|G_j|) \sum_{i \in G_j} x_i
$$

(we will see later how to get this solution)

-means algorithm

given initial representatives z_1, \ldots, z_k for the k groups and repeat:

- 1. assign x_i to the nearest group representative z_i
- 2. set the representative z_j to be the mean of the vectors in group j

Math description

given $x_1, \ldots, x_N \in \mathbb{R}^n$ and $z_1, \ldots, z_k \in \mathbb{R}^n$ **repeat**

- 1. *partition vectors:* assign *i* to G_j , $j = \operatorname{argmin}_{j'} ||x_i z_{j'}||^2$
- 2. *update representatives:* $z_j = \frac{1}{|G_i|} \sum_{i \in G_j} x_i$

until z_1, \ldots, z_k stop changing

(in practice, often restarted a few times, with different starting points)

Complexity

k-means cost $(3k + 1)Nn$ flops per iteration (order Nkn flops)

step 1:

- each distance $||x_i z_j||$ costs 3*n* flops
- computing all distances $||x_i z_j||$ over groups costs $3kn$
- comparisons to find the minimum costs $k-1$ flops
- repeat above N times to get approximately $3Nkn$ flops

step 2: approximately Nn flops

- averaging $(1/p)\sum_{i=1}^p x_i$ clusters requires a total of np flops
- averaging all clusters requires a total of Nn flop

Iteration $\sqrt{2}$

Handwritten digit image set

- MNIST images of handwritten digits
- $N = 60,000$ size 28×28 images, represented as 784-vectors x_i
- 25 image samples shown below

Group representatives, best clustering

 $k = 20$ group representatives, z,

Document topic discovery

- $N = 500$ Wikipedia articles
- dictionary of $n = 4423$ words
- each document is represented by a word histogram vector of length $n = 4423$
- $k = 9$, run 20 times with different initial assignments

Topics discovered (clusters 1-3)

titles of articles closest to cluster representative of the word histogram

- 1. "Floyd Mayweather, Jr", "Kimbo Slice", "Ronda Rousey", "José Aldo", "Joe Frazier", "Wladimir Klitschko", "Saul Alvarez", "Gennady Golovkin", "Nate Diaz", ... ´
- 2. "Halloween", "Guy Fawkes Night" "Diwali", "Hanukkah", "Groundhog Day", "Rosh Hashanah", "Yom Kippur", "Seventh-day Adventist Church", "Remembrance Day", ...
- 3. "Mahatma Gandhi", "Sigmund Freud", "Carly Fiorina", "Frederick Douglass", "Marco Rubio", "Christopher Columbus", "Fidel Castro", "Jim Webb", ...

Topics discovered (clusters 4-6)

words with largest representative coefficients of the word histogram

titles of articles closest to cluster representative

- 4. "David Bowie", "Kanye West" "Celine Dion", "Kesha", "Ariana Grande", "Adele", "Gwen Stefani", "Anti (album)", "Dolly Parton", "Sia Furler", ...
- 5. "Kobe Bryant", "Lamar Odom", "Johan Cruyff", "Yogi Berra", "Jose Mourinho", "Halo 5: ´ Guardians", "Tom Brady", "Eli Manning", "Stephen Curry", "Carolina Panthers", ...
- 6. "The X-Files", "Game of Thrones", "House of Cards (U.S. TV series)", "Daredevil (TV series)", "Supergirl (U.S. TV series)", "American Horror Story", ...

Topics discovered (clusters 7-9)

words with largest representative coefficients

titles of articles closest to cluster representative

- 7. "Wrestlemania 32", "Payback (2016)", "Survivor Series (2015)", "Royal Rumble (2016)", "Night of Champions (2015)", "Fastlane (2016)", "Extreme Rules (2016)", ...
- 8. "Ben Affleck", "Johnny Depp", "Maureen O'Hara", "Kate Beckinsale", "Leonardo DiCaprio", "Keanu Reeves", "Charlie Sheen", "Kate Winslet", "Carrie Fisher", ...
- 9. "Star Wars: The Force Awakens", "Star Wars Episode I: The Phantom Menace", "The Martian (film)", "The Revenant (2015 film)", "The Hateful Eight", ...

Applications

Classification: determine vector belongs to which group

- cluster a large collection of vectors into k groups
- label the groups by hand
- assign *new* vectors to one of the k groups by choosing the nearest group representative

Recommendation engine: suggest items that user might be interested in

- example: vectors give the number of times a user has listened to or streamed each song from a library of n songs over some period
- clustering the vectors reveals groups of users with similar musical taste
- allows us to suggest new songs from those with similar tastes

References and further readings

- S. Boyd and L. Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares,* Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes,* Univ. of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)