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Vector

a vector is a collection of elements denoted as

aj

as
a= ) or a=(ai,as,...,a,)

an

e q; is the ith element (entry, coefficient, component) of vector a

e | is the index of the ith element a;

e number of elements n is the size (length, dimension) of the vector
e a vector of size n is called an n-vector

e example of a 4-vector:

~1.1
a= gg =(-1.1,0.0,3.6,7.2), a3 =3.6

7.2
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Notes and conventions

R™ is set of n-vectors with real entries

e a € R" means a is n-vector with real entries

two n-vectors a and b are equal, denoted as a = b, if a; = b; for all i

a; can refer to an ith vector in a collection of vectors
— in this case, we use (ai)j to denote the jth entry of vector a;

— example: if ag = (-1, 2, -5), then (a2)3 = -5

Conventions
e parentheses are also used instead of rectangular brackets to represent a vector
e other notations exist to distinguish vectors from numbers (e.g., @, d, a)

e conventions vary; be prepared to distinguish scalars from vectors

vector notation
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Row vector and transpose

an row vector b of size n with entries by, . . ., b,, has the form:
b = [ b1 by ... by, ]
e all vectors are column vectors unless otherwise stated
e other notation exists, e.g., b = [b1, b, ..., b, ] (we will not use)
Transpose: the franspose of an n-column vector a is the row vector a®:
T
ai
az
ClT = = [ a; das an ]
dan

e ()Tis transpose operation
T) T

e (a = a (transpose of row vector is a column vector)

vector notation
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Block vectors, subvectors

Stacking

e vectors can be stacked (concatenated) to create larger vectors

e stacking vectors b, ¢, d of size m, n, p gives an (m + n + p)-vector

b
a=|c |=(b,c,d) = (bl,...,bm,cl,...,cn,dl,...,d,,)
d

e we say that b, ¢, and d are subvectors or slices of a
e example:ifa=1,b=(2,-1),c=(4,2,7),then (a,b,c) = (1,2,-1,4,2,7)

Subvectors slicing
e colon () notation is used to define subvectors (slices) of a vector
e for vector a, we define a,.; = (a,, ..., ay)

e example: ifa = (1,-1,2,0,3), then as.4 = (-1,2,0)

vector notation
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Special vectors

Zero vector and ones vector
0=(0,0,...,0), 1=(1,1,...,1)

size follows from context (if not, we add a subscript and write 0,,, 1)

Unit vectors

e there are n unit vectors of size n, denoted by €1, €2, ...,¢e,
1 j=i
e:): =
(ei); {0 I

e the ith unit vector is zero except its ith element which is 1

e example: forn = 3,

1 0 0
€1 = 0 , €2 = 1 , €3 = 0
0 0 1

e the size of ¢; follows from context (or should be specified explicitly)
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Sparsity

e a vector is sparse if many of its entries are 0
e can be stored and manipulated efficiently on a computer
e nnz(x) is number of entries that are nonzero

e examples:
— x = 0 with nnz(x) =0
— x = ¢; (unit vectors), nnz(x) = 1
- x=(0,0,1,0,0,0,-2,0,5,0,0), nnz(x) = 3

e sparse vectors arise in many applications

vector notation
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Addition and subtraction

for n-vectors a and b,

ai; + by ay— by
as+b as—-b
a+b= 2' 2 , a—-b= 2 2
a, + b, an — by
Example
0 1 1
T+ 2|=]9
3 0 3

Properties: for vectors a, b of equal size

e commutative: a+b =b+a

e associative: a+ (b+c¢) = (a+b) +c¢

vector operations
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Scalar-vector multiplication

for scalar 8 and n-vector a, example:
a Bay
as Bas L 2
Bl  |= ) (-2)| 9 |=| -18
i : 6 -12
an Ban

Properties: for vectors a, b of equal size, scalars 3, y

commutative: Sa = af8

associative: (By)a = B(ya), we write as Sya

distributive with scalar addition: (8 + y)a = Ba + ya

distributive with vector addition: B(a + b) = Ba + b

vector operations



Component-wise multiplication

for n-vectors a, b

a1b1

asb

dob = 2b2

a,b,

Example

1 -2 -2
-3 o 2| _| -6
0 4 | 0
8 2 16

vector operations
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Linear combination

a linear combination of vectors a1, . . ., a,, is a sum of scalar-vector products
Brai + Paaz + - + Bpap

e scalars 31, . . ., B are the coefficients of the linear combination

e example: any n-vector b can be written as

b=b1€1+"'+bnen

Special linear combinations
e affine combination: when 81 + -+ -+ B, =1

e convex combination or weighted average: when 81 +---+ S, =1land 5; >0

vector operations
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Line segment

any point on the line passing through distinct a and b can be written as

c=0a+(1-6)b

e (is ascalar
e an affine combination

e for 0 < 6 < 1, point ¢ lie on the segment between a and b

6>1

o:fa+(1-6)b 0<0

vector operations
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Inner product

the inner product (or dot product) of two n-vectors a, b is

ClTb = a1b1 + a2b2 + -+ anbn

e ascalar

e other notation exists: {a, b), {a | b),a - b

e example:
-117 1
2 0 [=EDM)+(2)(0)+(2)(=3) =-T7
2 -3

inner product and linear functions
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Properties of inner product

for vectors a, b, c of equal size, scalar y

e nonnegativity: a’a > 0,and a’a = Oifand only if @ = 0.
e commutative: a’b = bTa

e associative with scalar multiplication: (ya)Tb = y(a’b)

e distributive with vector addition: (a + b)Tc = aTc + bTc

Useful combination: for vectors a, b, ¢, d

(a+b)(c+d)=aTc+atd+bTc+bTd

Block vectors: if vectors a, b are block vectors, and corresponding blocks
a;, b; € R have the same sizes (they conform),

[ ] —a1b1+ +akbk

inner product and linear functions 2.14



Inner product with unit vector

Differencing

Sum and average

174

avg(x)

inner product and linear functions

Simple examples

ap+as+ - +ay

ay+ag+ - +ay
n
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Linear functions

e f:R" — R means f is a function mapping n-vectors to numbers

e example: f(x) =x1 +x2 —xi (f :R* 5 R)

Linear functions: f is linear if it satisfies the superposition property

flax+pBy) =af(x)+Bf(y)

for all numbers «, 3, and all n-vectors x, y

Extension: if f is linear, then
[y + @gus + - + amit) = a1 f (u1) + azf (u2) + - + amf (um)

for all n-vectors u1, ..., u,, and all scalars a1, ..., a;,

inner product and linear functions
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Inner product function

Fx) =alx = a1xy +asxa + - + apxy,
the inner product function is linear:
flax+By) = a’(ax + By)
=a(ax) +a’(By)
=a(a'x) +B(aTy)
=af(x)+Bf(y)

All linear functions are inner products
o if f:R" — Rislinear, then f(x) = a’x for some (unique) a
o this follows from
f(x) = f(x1e1 +x2e0 + -+ +x,€p)
=x1f (e1) +x2f (€3) + -+ +xpf (€n) = a'x

witha = (f(e1),..., f(en))

inner product and linear functions
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Example

e mean or average value of an n-vector is linear

f(x) =avg(x) = (xy +x2+ - +X,) /n=a’x
where a = (1/n,...,1/n) = (1/n)1 (sometimes denoted X or i)
e maximum element func. f(x) = max {x1,...,X,}, is not linear (unless n = 1)

— we can show this by a counterexample for n = 2
- takex = (1,-1),y=(-1,1),a=1/2,=1/2

— then

flax+By) =0#af(x)+Bf(y) =1
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Affine functions
f:R"™ — Ris affine if
flax+By) =af(x)+Bf(y)

for all n-vectors and scalars @ + 8 = 1

e extension: if f is affine, then
faguy + agug + -+ + @pity) = a1 f (uy) +aof (uz) + - + am f (Um)

for all n-vectors u1, ..., u,, and all scalars a1, ..., @, witha; + - +a,, = 1

e every affine function f can be expressed as f(x) = a’x + b with

a=(f(e1) = f(0), f (e2) = f(0),.... f (en) = £(0))
b =f(0)

e an affine function is a linear function plus a constant

e often affine functions are called linear (which is mathematically not true)

inner product and linear functions
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fis linear

J)

Linear versus affine functions

g is affine

g(x)

\

~

inner product and linear functions
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Floating point operation (FLOP)

Computer representation of numbers

e computers store (real) numbers in floating-point format

e number represented as 64 bits (0s and 1s), or 8 bytes (group of bits)
264

e each of sequences of bits corresponds to a specific number

Floating point operations

¢ 1 flop = one basic arithmetic operation (+, —, *, /, Vi )in R (or complex C)
e speed with which a computer can carry out flops is typically in 1-10 Gflop/s
e complexity of an operation is the number of flops required to carry it out

o flop is the unit of complexity when comparing algorithms; run time of the algorithm:

number of operations (flops)
computer speed (flops per second)

run time =

this is a very crude and simplified model of complexity of algorithms

complexity 221



Dominant terms

e typically, complexity is highly simplified, dropping small or negligible terms
e dominant term: the highest-order term in the flop count
L3 2 L3
—n°+100n" +10n+5 = —-n
3 3
e order: the power in the dominant term
1 .
§n3 + 1012 + 100 = order n® = O(n®)

e order is useful in understanding how the time to execute the computation will scale
when the size of the operands changes
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Complexity of vector operations

for vectors of size n

e x +y needs n additions, so n flops
e scalar multiplication: n flops
e componentwise multiplication: n flops

e inner product: 2n — 1 =~ 2n flops
— we simplify this to 2n (or even n) flops

e these operations are all order n

Sparse vectors: when x and/or y is sparse
e ax requires nnz(x) flops
e x + y requires min{nnz(x), nnz(y)} flops
o if sparsity pattern do not overlap, x + y requires zero flops

e xTy requires no more than 2 min{nnz(x), nnz(y)} flops

complexity
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Location and displacement

e |ocation (position): coordinates of a point in 2-D (plane) or 3-D space

e displacement: vector represents the change in position from one point to another
(shown as an arrow in plane or 3-D space)

X9 X

X1 X1

e other quantities that have direction and magnitude (velocity, force vector, ...)

examples of vectors 224



Time series or signal

elements of n-vector are values of some quantity at n different times

e hourly temperature over a period of n hours

90

80

x;(F)

0 10 20 30 40 50

e audio signal: entries give the value of acoustic pressure at equally spaced times

examples of vectors 225



Color, images, video

Color: 3-vector can represent a color, with RGB intensity values
Monochrome (black and white) image
grayscale values of M X N pixels stored as M N-vector (row-wise or column-wise)

0.65 0.05 0.20

[x1 1 [ 0.65 ]
X3 0.05
X3 0.20
X = : = :
X62 0.28
X63 0.00
|l X64 | L 0.90 ]

0.28 0.00 0.90

Color image: 3M N-vectors with R, G, B values of the M'N pixels

Video: vector of size KM N represents K monochrome images of M X N pixels

examples of vectors 2.26



Quantities, values, proportions

Quantities
e clements of n-vector represent quantities of n resources or products
e sign indicates whether quantity is held or owed, produced or consumed, ...

e example: bill of materials is the list of resources (items) that are required to build a
product represented as a vector that gives the amounts of n resources required to
create a product

Values across a population

e n-vector gives values of some quantity across population of individuals or entities

e example: an n-vector b can give the blood pressure of a collection of n patients,
with b; the blood pressure of patient i

Proportions

e vector w give fractions or proportions out of n choices, outcomes, or options

e w; the fraction with choice or outcome i (w; > 0 and wy +---+w, =1)
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Portfolio

Portfolio

e a collection of financial assets (investments) such as stocks, bonds, cash,
commodities (e.g., gold), real estate ...

o it refers to a group of investments that an investor uses in order to earn a profit
while making sure that capital or assets are preserved

Vector representation

e n-vector s can represent stock portfolio (e.g., investment in n assets)
e s; is the number of shares of asset i held (or invested in asset )
e elements can be the no. of shares, dollar values, fractions of total dollar amount

e shares you owe another party (short positions) are represented by negative values

examples of vectors 2.28



Daily return and cash flow

Daily return
e daily fractional return of a stock for a period of n trading days

e example: return time series vector (—0.022, +0.014, +0.004) means stock price
— went down 2.2% on the first day
— then up 1.4% the next day
— and up again 0.4% on the third day

Cash flow
e cash flow: payments into and out of an entity over n periods
e example: vector (1000, -10, -10,-10,-1010) represents
— aone year loan of 1000
— with 1% interest only payments made each period (e.g., quarter)
— and the principal and last interest payment at the end

examples of vectors
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Word count vectors

e vector represents a document
e size of vector is the number of words in a dictionary
e word count vector: entry i is the number of times word i occurs in document

e word histogram: entry i is frequency of word i in document (in percentage)

Example: word count vectors are used in computer-based document analysis; each
entry of the word count vector represents the number of times the associated
dictionary word appears in the document

word 3
in 2
number 1
horse 0
document 2
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Features

Feature vector
e collects together n different quantities that relate to a single object
e entries are called the features or attributes

Examples

e age, height, weight, blood pressure, gender, etc., of patients

e square footage, number of bedrooms, list price, etc., of houses in an inventory

Notes

e vector elements can represent very different quantities, in different units
e can contain categorical features (e.g., 1/0 for house/condo)

e ordering has no particular meaning
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Addition and multiplication examples

Displacements addition

e if a and b are displacements, a + b is the net displacement

examples of vectors
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Displacement multiplication

e vector a represents a displacement
e for 8 > 0, Ba is displacement in same direction of a, with magnitude scaled by 8

e for 8 < 0, Ba is displac. in the opposite direction of a, with mag. scaled by ||
AT

examples of vectors 2.33



Linear combination of displacements

b =0.75a1 + 1.5a-

as 1.502

Y

0.75a1

Word count

e ¢ and b are word count vectors (using the same dictionary) for two documents
e a + b is the word count vector of the document combining the original two

e a — b how many more times each word appears in 1st document compared to 2nd

examples of vectors 2.34



Audio mixing
® ai,...,a, are vectors representing audio signals over the same period of time
e fa; is the same audio signal, but changed in volume (loudness) by the factor |3;|

e linear combination S1a; + - - - + Bia;y, is @ mixture of the audio tracks

Portfolio trading

e s is n-vector giving no. of shares of n assets in a portfolio
e b is n-vector giving no. of shares of assets that we buy (b; > 0) or sell (b; < 0)

e after trading, our portfolio is s + b, which is called the trade vector or trade list

examples of vectors 2.35



Inner product examples

Weights, features, scores
e vectors of features f and weights w

b WTf =wif1 +wafo+ - +w,f, is the total score

e example: features are associated with a loan applicant (e.g., age, income, . . . )

— we can interpret s = wa as a credit score

— we can interpret w; as the weight given to feature i in forming the score

Price quantity (cost)
e vectors of prices p and quantities g of n goods

b PTCI = p1q1 + p2g2 + -+ + paqy is the total cost

Speed time

e vehicle travels over n segments with constant speed in each segment
e n-vector s gives the speed in the segments

e n-vector ¢ gives the times taken to traverse the segments

e st is the total distance traveled

examples of vectors
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Polynomial evaluation

e n-vector c represents the coefficients of a polynomial p of degree n — 1 or less:

p(X) =c1+Cox+ - +cp1 X2 4 cpx

e tisnumber, andletz = (1,1,¢2,...,* 1) be the n-vector of powers of ¢

o clz= p(t) is the value of the polynomial p at the point ¢

Discounted total

e cash flow vector ¢ where c; is value at period i
e risinterestrateandd = (1,1/(1 +7r),...,1/(1+r)" 1)
o dlc=ci+co/(L+r)+...,cn/(1+7)" Lis the discounted total of cash flow

e called net present value (NPV) with interest rate r
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Portfolio value
e s is an n-vector of holdings in shares of a portfolio of n assets

e p is an n-vector for the prices of the assets

° st is the total (or net) value of the portfolio

Portfolio return

e portfolio vector x with x; representing dollar value of asset i

e r; is rate (fraction) of return of asset i over the investment period:
pfmal _ pi_mt

init

P

pfinal — (1 + rl_)pi_nit, rp=

init gng pfinal gre the prices of asset i at the beginning and end of the period
Di Di

o rix=rix1 4+ Xy is total return in dollars over the period

e if w is the fractional (dollar) holdings of our portfolio, then rTw is rate of return

— example: if rTw = 0.09, then our portfolio return is 9%; if we had invested 10000
initially, we would have earned $900

examples of vectors 2.38



Sag of a bridge

e w gives the weight of the load on the bridge in n locations in metric tons

s denote the distance that a specific point on the bridge sags, in millimeters

s ~ ¢Tw for some vector ¢

coefficients c¢; are called compliances, and give the sensitivity of the sag with
respect to loads applied at the n locations

e vector ¢ can be computed by (numerically) solving a partial differential equation

examples of vectors 2.39



References and further readings

e S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least
Squares, Cambridge University Press, 2018.

e L. Vandenberghe. EE133A lecture notes, University of California, Los Angeles.
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