1. Numerical precision and errors

- [floating-point numbers](#page-1-0)
- [IEEE standard and machine precision](#page-9-0)
- [numerical errors](#page-13-0)
- [conditioning and sensitivity](#page-24-0)
- [numerical stability and efficiency](#page-29-0)

Floating-point number

a *floating-point* number is represented as

$$
x = \pm (d_1 d_2 \cdots d_n) \cdot \beta^e
$$

with value

$$
x = \pm \left(\frac{d_1}{\beta^1} + \dots + \frac{d_n}{\beta^n}\right) \cdot \beta^e
$$

- β is the *base* (an integer larger than 1); *n* is *precision* (number of digits)
- *e* is *exponent* ($e_{\min} \le e \le e_{\max}$)
- \bullet $d_1 d_2 d_3 \cdots$ is *mantissa* or *significand*
- d_i integer with $0 \leq d_i \leq \beta 1$ and $d_1 \neq 0$ for $x \neq 0$ (normalized system)

Other convention

$$
\pm(\tilde{d}_0.\tilde{d}_1\tilde{d}_2\cdots\tilde{d}_{n-1})\cdot\beta^{\tilde{e}}=\pm\left(\tilde{d}_0+\frac{\tilde{d}_1}{\beta^1}+\frac{\tilde{d}_2}{\beta^2}+\cdots+\frac{\tilde{d}_{n-1}}{\beta^{n-1}}\right)\cdot\beta^{\tilde{e}}
$$

relation to previous representation: $\tilde{d}_{i} = d_{i+1}$ and $\tilde{e} = e-1$

[floating-point numbers](#page-1-0) $\begin{array}{ccc} 1.2 \end{array}$

Floating-point numbers with base 10

$$
x = \pm (d_1 d_2 ... d_n)_{10} \cdot 10^e
$$

= $\pm \left(\frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n} \right) \cdot 10^e$

- d_i integer, $0 \leq d_i \leq 9$
- $d_1 \neq 0$ if $x \neq 0$ (normalized system)
- used in pocket calculators

Example (with $n = 6$):

$$
12.625 = + (.126250)10 \cdot 102
$$

= + (1 \cdot 10⁻¹ + 2 \cdot 10⁻² + 6 \cdot 10⁻³ + 2 \cdot 10⁻⁴ + 5 \cdot 10⁻⁵ + 0 \cdot 10⁻⁶) \cdot 10²

Properties

- a finite set of numbers
- unevenly spaced: distance between floating-point numbers varies
	- smallest number greater than 1 is $(.10\cdots01)_{10} \cdot 10 = 1 + 10^{-n+1}$
	- smallest number greater than 10 is $(.10\cdots01)_{10} \cdot 10^2 = 10 + 10^{-n+2}, \dots$
- largest positive number:

$$
x_{\max} = +(.999\cdots9)_{10} \cdot 10^{e_{\max}} = (1 - 10^{-n}) 10^{e_{\max}}
$$

(here we used $\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$ $\frac{-r^{n+1}}{1-r}$ for $r \neq 1$)

• smallest positive number:

$$
x_{\min} = +(.100\cdots0)_{10} \cdot 10^{e_{\min}} = 10^{e_{\min}-1}
$$

[floating-point numbers](#page-1-0) $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$ and $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$. The set of $\begin{array}{ccc} \text{S-A} & \text{S-A} \end{array}$

Floating-point numbers with base 2

$$
x = \pm (d_1 d_2 ... d_n)_2 \cdot 2^e
$$

= $\pm (d_1 2^{-1} + d_2 2^{-2} + ... + d_n 2^{-n}) \cdot 2^e$

- $d_i \in \{0, 1\}$
- $d_1 = 1$ if $x \neq 0$ (normalized system)
- used in almost all computers
- example: $x = -(0.1101) \cdot 2^2$ equals $x = -(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}) \cdot 2^2 = -3.25$

Properties

- a finite set of unevenly spaced numbers
- largest positive number is

$$
x_{\max} = +(.111\cdots1)_2 \cdot 2^{e_{\max}} = (1 - 2^{-n}) 2^{e_{\max}}
$$

• smallest positive number is

$$
x_{\min} = +(.100\cdots0)_2\cdot 2^{e_{\min}} = 2^{e_{\min}-1}
$$

Rounding

- a floating-point number system is a finite set of numbers
- all other numbers must be rounded
- $f(x)$ is the floating-point representation of x

Rounding

- $x_$ is the nearest floating point number to x that is $\leq x$
- x_+ is the nearest floating point number to x that is $\geq x$
- numbers are rounded to the nearest floating-point number

$$
f(x) = \begin{cases} x_{-} & \text{if } x - x_{-} < x_{+} - x \\ x_{+} & \text{if } x_{+} - x < x - x_{-} \end{cases}
$$

for ties we round to nearest even

for binary case we round to number with least significant bit 0

Example: 3-digit calculator

$$
x = \pm (d_1 d_2 d_3)_{10} \cdot 10^e, \quad -9 \le e \le 9
$$

- largest/smallest positive numbers: $x_{\text{max}} = 0.99 \cdot 10^9$ and $x_{\text{min}} = 0.100 \cdot 10^{-9}$
- not enough "room" to store exactly the results from most arithmetic operations

$$
(1.23 \times 10^{1}) \times (4.56 \times 10^{2}) = 5608.8
$$

$$
(1.23 \times 10^{6}) + (4.56 \times 10^{4}) = 1275600
$$

involve more than three significant digits

• results must be rounded in order to "fit" the 3-digit format,

 $f1(5608.8) = .561 \times 10^4$, $f1(1275600) = .128 \times 10^7$

Example: small binary system

we enumerate all positive floating-point numbers for

$$
n = 3, e_{\min} = -1, e_{\max} = 2
$$

\n
$$
0.25 \t 0.5 \t 1 \t 2 \t 2.5 \t 3 \t 3.5
$$

\n
$$
+ (.100)_2 \cdot 2^{-1} = 0.2500, \t + (.100)_2 \cdot 2^0 = 0.500
$$

\n
$$
+ (.101)_2 \cdot 2^{-1} = 0.3125, \t + (.101)_2 \cdot 2^0 = 0.625
$$

\n
$$
+ (.110)_2 \cdot 2^{-1} = 0.3750, \t + (.110)_2 \cdot 2^0 = 0.750
$$

\n
$$
+ (.111)_2 \cdot 2^{-1} = 0.4375, \t + (.111)_2 \cdot 2^0 = 0.875
$$

\n
$$
+ (.100)_2 \cdot 2^1 = 1.00, \t + (.100)_2 \cdot 2^2 = 2.0
$$

\n
$$
+ (.101)_2 \cdot 2^1 = 1.25, \t + (.101)_2 \cdot 2^2 = 2.5
$$

\n
$$
+ (.110)_2 \cdot 2^1 = 1.50, \t + (.110)_2 \cdot 2^2 = 3.0
$$

numbers not represented are rounded (*e.g.*, $x = 0.26$ is rounded to $f(x) = 0.25$)

 $+(.111)_2 \cdot 2^1 = 1.75, \t +(.111)_2 \cdot 2^2 = 3.5$

[floating-point numbers](#page-1-0) $\begin{array}{ccc} 1.8 & \text{S-A} & \text{S-A} \end{array}$

Overflow and underflow

- overflow means number is too large to fit into floating-point system ($e > e_{\text{max}}$)
- underflow is obtained when $e < e_{\min}$
- underflow is nonfatal: system sets number to 0 (MATLAB does this)

Example: consider computing $c = \sqrt{a^2 + b^2}$ in a floating-point system with four decimal digits and two exponent digits

- for $a = 10^{60}$ and $b = 1$, correct result is $c = 10^{60}$
- squaring a gives 10^{120} , which cannot be represented in this system (overflow)
- can be avoided if we rescale $c = s\sqrt{(a/s)^2 + (b/s)^2}$ for any $s \neq 0$
- using $s = a = 10^{60}$ gives an underflow when b/s is squared, which is set to zero
- this yields the most accurate answer given this particular floating-point system

Outline

- • [floating-point numbers](#page-1-0)
- **[IEEE standard and machine precision](#page-9-0)**
- [numerical errors](#page-13-0)
- [conditioning and sensitivity](#page-24-0)
- [numerical stability and efficiency](#page-29-0)

IEEE standard for binary arithmetic

- two binary ($\beta = 2$) floating-point number formats
- used in almost all modern computers

IEEE standard single precision

$$
n=24, \quad e_{\rm min}=-125, \quad e_{\rm max}=128
$$

requires 32 bits:

- 23 bits for mantissa $(d_1 = 1 \text{ not stored})$
- 1 sign bit and 8 bits for exponent

IEEE standard double precision

$$
n=53, \quad e_{\rm min}=-1021, \quad e_{\rm max}=1024
$$

requires 64 bits:

- 52 bits for mantissa $(d_1 = 1 \text{ not stored})$
- 1 sign bit and 11 bits for exponent

Machine precision

for binary number system the value

$$
\epsilon_{\rm M}=2^{-n}
$$

is called *machine precision* or *machine epsilon*

Rounding error: ϵ_M gives rounding error bound

$$
\frac{|x - \mathrm{fl}(x)|}{|x|} \leq \epsilon_{\mathrm{M}}
$$

fundamental limitations of numerical computations

Example: IEEE standard double precision (used by MATLAB)

$$
n=53, \quad \epsilon_{\rm M}=2^{-53}\simeq 1.1102\cdot 10^{-16}
$$

number of correct digits is roughly $-\log_{10} \epsilon_{\mathrm{M}} \approx 16$

Example

• the smallest floating-point number greater than 1 is

$$
(.10\cdots01)_2\cdot2^1=1+2^{1-n}=1+2\epsilon_{\rm{M}}
$$

• numbers $x \in (1, 1 + 2\epsilon_M)$ are rounded to 1 or $1 + 2\epsilon_M$

$$
f1(x) = 1 \qquad \text{for } 1 \le x \le 1 + \epsilon_M
$$

$$
f1(x) = 1 + 2\epsilon_M \qquad \text{for } 1 + \epsilon_M < x \le 1 + 2\epsilon_M
$$

• therefore numbers between 1 and $1 + \epsilon_M$ are indistinguishable from 1

Outline

- • [floating-point numbers](#page-1-0)
- [IEEE standard and machine precision](#page-9-0)
- **[numerical errors](#page-13-0)**
- [conditioning and sensitivity](#page-24-0)
- [numerical stability and efficiency](#page-29-0)

Error sources

Errors in the problem to be solved

- mathematical model errors (model approximation)
- error in the input data (arising from physical measurements)
- input data may have been produced by a previous approximate computational step

Truncation or discretization errors

- due to using approximate formula
	- replacing derivatives by finite differences
	- evaluating function by truncating a Taylor series
- *convergence errors* in iterative methods, which converge to the exact solution in infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors

- arise from finite precision representation of real numbers on computers
- truncation or discretization errors usually dominate roundoff errors in magnitude

Example

surface area of the Earth might be computed using the formula

$$
A=4\pi r^2
$$

for the surface area of a sphere of radius r

- earth is modeled as a sphere, which is an approximation of its true shape
- $r \approx 6370$ km, is based on empirical measurements and previous computations
- \bullet π is given by an infinite limiting process, which must be truncated at some point
- numerical values for the input data, as well as the results of the arithmetic operations performed on them, are rounded in a computer or calculator

Absolute and relative errors

given actual value x and its approximation \hat{x}

- *absolute error:* $|x \hat{x}|$
- *relative error:* $\frac{|x \hat{x}|}{|x \hat{y}|}$ $\frac{x_1}{|x|}$ (assuming $x \neq 0$)

gives percentage of error compared to the actual value

Example

- when $|x| \approx 1$, little difference between absolute and relative error
- when $|x| \gg 1$, relative error more meaningful

Example: derivative approximation

Taylor theorem: for differentiable f , we have

$$
f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(\theta) \text{ for some } x \le \theta \le x_0 + h
$$

we can approximate $f'(x_0)$ by

$$
f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}
$$

with the truncation (discretization) error being

$$
\left| f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} \right| = \left| \frac{h}{2} f''(\theta) \right| \le Mh/2
$$

where $|f''(\theta)| \leq M$

[numerical errors](#page-13-0) **SA** — ENGR504 **1.16**

- assume error in evaluating $f(x)$ is bounded by ϵ
- rounding error in evaluating $\frac{f(x_0+h)-f(x_0)}{h}$ is bounded by $2\epsilon/h$
- total error is

$$
\frac{Mh}{2}+\frac{2\epsilon}{h}
$$

- first term decreases as h decreases
- second term increases as h decreases

Example

- $f(x) = \sin(x)$ and $x_0 = 1.2$
- exact value of derivative is $f'(x_0) = \cos(1.2)$
- a log-log plot of the error versus h is provided below

• solid curve shows $\left| f'(x_0) - \frac{f(x_0+h) - f(x_0)}{h} \right|$ for $f(x) = \sin(x), x_0 = 1.2$

- dash-dot style line depicts the truncation error without roundoff error
- when $h < 10^{-8}$, discretization error becomes small, and roundoff error dominate

Cancellation

$$
\hat{a} = a(1 + \Delta a), \quad \hat{b} = b(1 + \Delta b)
$$

- a, b : exact values
- \hat{a} . \hat{b} : approximations with unknown relative errors Δa , Δb
- relative error in $\hat{x} = \hat{a} \hat{b} = (a b) + (a\Delta a b\Delta b)$ is

$$
\frac{|\hat{x} - x|}{|x|} = \frac{|a\Delta a - b\Delta b|}{|a - b|}
$$

if $a \simeq b$, small Δa and Δb can lead to very large relative errors in x

this is called **cancellation**; cancellation occurs when:

- we subtract two numbers that are almost equal
- one or both numbers are subject to error

Example

two expressions for the same function

- results of $\cos x$ and $\sin x$ were rounded to 10 significant digits
- other calculations are exact
- cancellation occurs when we evaluate the numerator of $f(x) = \frac{1 (\cos x)^2}{x^2}$
	- $-1 \simeq (\cos x)^2$ when x is small
	- there is a rounding error in $\cos x$

Evaluation of f : evaluate $f(x)$ at $x = 5 \cdot 10^{-5}$

• calculate $\cos x$ and round result to 10 digits

 $\cos x = 0.99999999875000...$ ~ 0.9999999988

• evaluate $f(x) = (1 - \cos(x)^2)/x^2$ using rounded value of $\cos x$

$$
\frac{1 - (0.999999988)^2}{(5 \cdot 10^{-5})^2} = 0.9599...
$$

has only one correct significant digit (correct value is $0.9999...$)

Evaluation of g : evaluate $g(x)$ at $x = 5 \cdot 10^{-5}$

• calculate $\sin x$ and round result to 10 digits

$$
\sin x = 0.499999999791667... \cdot 10^{-5}
$$

$$
\sim 0.4999999998 \cdot 10^{-5}
$$

• evaluate $f(x) = \sin(x)^2/x^2$ using rounded value of $\cos x$

$$
\frac{(\sin x)^2}{x^2} \approx \frac{\left(0.4999999998 \cdot 10^{-5}\right)^2}{\left(5 \cdot 10^{-5}\right)^2} = 0.9999\dots
$$

has about ten correct significant digits

Conclusion: f and g are equivalent mathematically, but not numerically

Outline

- • [floating-point numbers](#page-1-0)
- [IEEE standard and machine precision](#page-9-0)
- [numerical errors](#page-13-0)
- **[conditioning and sensitivity](#page-24-0)**
- [numerical stability and efficiency](#page-29-0)

Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

well-conditioned problem

• small changes in the data produce small changes in the solution

ill-conditioned (badly conditioned) problem

• small changes in the data can produce large changes in the solution

Roots of a polynomial

$$
p(x) = (x - 1)(x - 2) \cdots (x - 10) + \delta \cdot x^{10}
$$

roots of p computed by MATLAB for two values of δ

roots can be very sensitive to errors in the coefficients

Condition number of differentiable functions

given x, evaluate $y = f(x)$

- if x is changed to $x + \Delta x$, solution changes to $y + \Delta y = f(x + \Delta x)$
- condition with respect to absolute error in x and y

 $|\Delta y| \approx |f'(x)| |\Delta x|$

problem is ill-conditioned with respect to absolute error if $|f'(x)|$ is very large

Condition number: condition with respect to relative errors in x and y

$$
\frac{|\Delta y|}{|y|} \approx \frac{|f'(x)||x|}{|f(x)|} \frac{|\Delta x|}{|x|}
$$

- $|f'(x)| |x|/|f(x)|$ is the *condition number*
- ill-conditioned with respect to relative error if condition number is very large

Examples

consider $f(x) = \sqrt{x}$; since $f'(x) = 1/(2\sqrt{x})$, the condition number is $\begin{array}{c} \n \begin{array}{c} \n \downarrow \\
\hline\n \end{array} \n \end{array}$ $xf'(x)$ $\overline{f(x)}$ $\overline{}$ $=\bigg\vert$ $\frac{x/(2\sqrt{x})}{\sqrt{x}}$ $\overline{}$ $=\frac{1}{2}$ 2

- any relative change in input causes relative change in output of about half that size
- the square root problem is well-conditioned

consider $f(x) = \tan(x)$; since $f'(x) = 1 + \tan^2(x)$, the condition number is $\overline{}$ $xf'(x)$ $\overline{f(x)}$ $\overline{}$ $=\bigg\vert$ $x(1 + \tan^2(x))$ $tan(x)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $=\bigg\vert$ $x\left(\frac{1}{1-x}\right)$ $\frac{1}{\tan(x)} + \tan(x)$

- ill-conditioned around an integer multiple of $\pi/2$, where its value becomes infinite
- for $x = 1.57079$, the condition number is approximately 2.48275×10^5
- to see the effect of this, we evaluate the function at two nearby points,

 $tan(1.57079) \approx 1.58058 \times 10^5$, $tan(1.57078) \approx 6.12490 \times 10^4$

difference is on order of approximately 10

[conditioning and sensitivity](#page-24-0) \sim 1.26

Outline

- • [floating-point numbers](#page-1-0)
- [IEEE standard and machine precision](#page-9-0)
- [numerical errors](#page-13-0)
- [conditioning and sensitivity](#page-24-0)
- **[numerical stability and efficiency](#page-29-0)**

Stability, efficiency, and robustness

Stability: refers to the accuracy of an algorithm in the presence of rounding errors

- an algorithm is unstable if rounding errors cause large errors in the result
- instability is often, but not always, caused by cancellation

Efficiency

- a numerical algorithm is inefficient if it takes an unreasonable amount of run-time
- efficiency depends on both cpu time and storage space requirements
- theoretical properties, like the rate of convergence, can indicate efficiency

Robustness

- major effort in writing numerical software is ensuring it works under all conditions
- a robust routine should yield correct results within an acceptable error tolerance

Example: roots of a quadratic equation

$$
ax^2 + bx + c = 0 \quad (a \neq 0)
$$

Algorithm 1: use the formulas

$$
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
$$

unstable if $b^2 \gg |4ac|$

- if $b^2 \gg |4ac|$ and $b \ge 0$, cancellation occurs in x_1 ($b \simeq \sqrt{b^2 4ac}$)
- if $b^2 \gg |4ac|$ and $b \le 0$, cancellation occurs in $x_2 \, (-b \simeq \sqrt{b^2 4ac})$
- \bullet in both cases b may be exact, but the square root introduces small errors

Example: roots of a quadratic equation

$$
ax^2 + bx + c = 0 \quad (a \neq 0)
$$

Algorithm 2: use fact that roots x_1, x_2 satisfy $x_1x_2 = c/a$

• if $b \leq 0$, calculate

$$
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{c}{ax_1}
$$

• if $b > 0$, calculate

$$
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_1 = \frac{c}{ax_2}
$$

no cancellation when $b^2 \gg |4ac|$

Example: polynomial evaluation

$$
p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n
$$

Naive method

- compute $c_n x^n$ using *n* multiplications, $c_{n-1} x^{n-1}$ using $n-1$ multiplications, ...
- total is $n(n + 1)/2$ multiplications and *n* additions

Horner's rule: write in nested form:

$$
p_n(x) = c_0 + x \bigg(c_1 + x \bigg(c_2 + x (c_3 + \dots + x (c_{n-1} + c_n x) \dots \bigg) \bigg)
$$

 $p = c_n$ for $j = n - 1, ..., 1, 0$ $p = px + c_i$

reduces the operation to n multiplications and n additions

Error accumulation

if E_k measures the relative error at the kth operation of an algorithm, then

- $E_k \simeq c_0 k E_0$ represents linear error growth, for some constant c_0
- $E_k \simeq c_1^k$ k_1E_0 , for some constant $c_1 > 1$, represents exponential error growth

an algorithm with exponential error growth is unstable and should be avoided

Example

consider evaluating integrals $y_k = \int_0^1$ $\frac{x^k}{x+10}$ dx for $k = 1, 2, ..., 30$

observe at first that analytically

$$
y_k + 10y_{k-1} = \int_0^1 \frac{x^k + 10x^{k-1}}{x+10} dx = \int_0^1 x^{k-1} dx = \frac{1}{k}
$$

and

$$
y_0 = \int_0^1 \frac{1}{x+10} dx = \ln(11) - \ln(10)
$$

- a simple algorithm is constructed as follows:
	- 1. evaluate $y_0 = \ln(11) \ln(10)$
	- 2. for $k = 1, \ldots, 30$, evaluate

$$
y_k = \frac{1}{k} - 10y_{k-1}
$$

- this algorithm is in fact unstable
- magnitude of roundoff errors gets multiplied by 10 at each iteration; there is exponential error growth with $c_1 = 10$

References and further readings

- Uri M. Ascher. *A First Course on Numerical Methods*. Society for Industrial and Applied Mathematics, 2011.
- L. Vandenberghe. *EE133A lecture notes,* University of California, Los Angeles. (<http://www.seas.ucla.edu/~vandenbe/ee133a.html>)