ENGR 504 (Fall 2024)

1. Numerical precision and errors

o floating-point numbers

e |EEE standard and machine precision
e numerical errors

e conditioning and sensitivity

e numerical stability and efficiency

S. Alghunaim

Floating-point number

a floating-point number is represented as
x =+(.d1dy--dy) - B¢
d d
e (/31 'WTZ)'ﬁe

B is the base (an integer larger than 1); n is precision (number of digits)

with value

e ¢ is exponent (émin < € < €max)

didsds--- is mantissa or significand

d; integer with 0 < d; < 8 —1and d; # 0 forx # 0 (normalized system)

Other convention

+(do.didy-+dy_1) - €=+ |do+ — + — + - +

relation to previous representation: d; = d;+1 andé = e — 1

floating-point numbers 1.2

Floating-point numbers with base 10

x==(didy...dy)yg - 10°

d d dy,
(222100
10 102 10"

e d;integer,0<d; <9
e dy # 0if x # 0 (normalized system)

e used in pocket calculators

Example (with n = 6):

12.625 =+ (.126250)1¢ - 102
=+(1-107"+2-1072+6-107°+2-107* +5-107° +0- 107°) - 10

floating-point numbers 1.3

Properties

e a finite set of numbers

e unevenly spaced: distance between floating-point numbers varies

— smallest number greater than 1is (.10---01)1q - 10 = 1 + 107"+!
— smallest number greater than 10 is (.10---01)10 - 102 = 10 + 107"*2, . ..

e largest positive number:

Xmax = +(9999)10 . 10emax = (1 — 10—") 106max

7rn+1
1-r

(here we used Y 7 _,rk =1 forr # 1)
e smallest positive number:

Xmin = +(.100-+-0)10 - 10¢min = 10¢min~"

floating-point numbers 1.4

Floating-point numbers with base 2

X == (.d1d2 .. .dn)2 - 2¢
=+ (127 +d227 %+ +d,27") - 2¢

d; € {0,1}

dy = 1ifx # 0 (normalized system)
e used in almost all computers
o example: x = —(.1101) - 2% equals x = —(5 + § + § + 75) - 22 = =3.25
Properties
e a finite set of unevenly spaced numbers
e |argest positive number is
Xmax = +(111---1)g - 26max = (1 — 27") 2¢max
e smallest positive number is
Xmin = +(.100:--0)g - 26min = 2¢min~1

floating-point numbers 1.5

Rounding

o a floating-point number system is a finite set of numbers
e all other numbers must be rounded

o fl(x) is the floating-point representation of x

Rounding

e Xx_ is the nearest floating point number to x thatis < x

e x, is the nearest floating point number to x that is > x

e numbers are rounded to the nearest floating-point number
Xo ifx—x_ <xy—x

fi(x) = , ’
Xy ifxp—x<x—x_
for ties we round to nearest even

for binary case we round to number with least significant bit 0

floating-point numbers 1.6

Example: 3-digit calculator

X== (.d1d2d3)10 <104, -9<e<9

e largest/smallest positive numbers: Xmax = 0.99 - 10° and xpin = 0.100 - 1077

e not enough “room” to store exactly the results from most arithmetic operations

(1.23 x 10%) x (4.56 x 10%) = 5608.8
(1.23 x 10%) + (4.56 x 10%) = 1275600

involve more than three significant digits

e results must be rounded in order to “fit” the 3-digit format,

1(5608.8) = .561 x 10%, f1(1275600) = .128 x 107

floating-point numbers

Example: small binary system

we enumerate all positive floating-point numbers for

numbers not represented are rounded (e.g., x = 0.26 is rounded to fl(x) = 0.25)

floating-point numbers

n=3, emin=-1, €max =2
S e ey |
1 2 25
+(.100)2 - 271 =0.2500, +(.100)3 - 2° = 0.500
+(.101)2 - 271 =0.3125, +(.101)2 - 2° = 0.625
+(.110)2 - 271 =0.3750, +(.110)2 - 2° = 0.750
+(111)3-271 =0.4375, +(.111)2-2°=0.875
+(.100)2 - 21 =1.00, +(.100)3 - 22 =2.0
+(.101)3 -2 =1.25, +(.101)2-22=25
+(.110)2 - 2 =1.50, +(.110)2-22=3.0
+(111)9 -2 =175, +(.111)9-22=3.5

Overflow and underflow

e overflow means number is too large to fit into floating-point system (e > eax)
e underflow is obtained when e < eip

e underflow is nonfatal: system sets number to 0 (MATLAB does this)

Example: consider computing ¢ = Va2 + b2 in a floating-point system with four
decimal digits and two exponent digits

e fora = 10%0 and b = 1, correct result is ¢ = 1050
e squaring a gives 102°, which cannot be represented in this system (overflow)

e can be avoided if we rescale ¢ = s+/(a/s)2 + (b/s)2 forany s # 0

e using s = a = 105 gives an underflow when b/s is squared, which is set to zero

this yields the most accurate answer given this particular floating-point system

floating-point numbers 1.9

Outline

o floating-point numbers

e |[EEE standard and machine precision
e numerical errors

e conditioning and sensitivity

e numerical stability and efficiency

IEEE standard for binary arithmetic

e two binary (8 = 2) floating-point number formats

e used in almost all modern computers

|IEEE standard single precision
n=24, emin=-125,

requires 32 bits:

e 23 bits for mantissa (d; = 1 not stored)
e 1 sign bit and 8 bits for exponent

IEEE standard double precision
n=2=53, emn=-1021,

requires 64 bits:

e 52 bits for mantissa (d; = 1 not stored)
e 1 sign bit and 11 bits for exponent

|IEEE standard and machine precision

emax = 128

emax = 1024

1.10

Machine precision

for binary number system the value

EM = 27"
is called machine precision or machine epsilon
Rounding error: €)1 gives rounding error bound

-1l
k=81
|

fundamental limitations of numerical computations
Example: |IEEE standard double precision (used by MATLAB)
n=>53, ey=25~1.1102-1071¢

number of correct digits is roughly —log;, em ~ 16

|IEEE standard and machine precision 1.1

Example

e the smallest floating-point number greater than 1 is
(.10---01)2 - 2V =1+ 217" =1 + 2ey
e numbers x € (1,1 + 2€y;) are rounded to 1 or 1 + 2€py

fix)=1 forl <x<1l+4+em
filx)=1+2em forl+ey <x <142evm

e therefore numbers between 1 and 1 + €y are indistinguishable from 1

|IEEE standard and machine precision 1.12

Outline

o floating-point numbers

e |[EEE standard and machine precision
e numerical errors

e conditioning and sensitivity

e numerical stability and efficiency

Error sources

Errors in the problem to be solved
e mathematical model errors (model approximation)
e error in the input data (arising from physical measurements)

e input data may have been produced by a previous approximate computational step

Truncation or discretization errors
e due to using approximate formula

— replacing derivatives by finite differences
— evaluating function by truncating a Taylor series

e convergence errors in iterative methods, which converge to the exact solution in
infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors
e arise from finite precision representation of real numbers on computers

e truncation or discretization errors usually dominate roundoff errors in magnitude

numerical errors 1.13

Example

surface area of the Earth might be computed using the formula
A =4nr?
for the surface area of a sphere of radius r

e earth is modeled as a sphere, which is an approximation of its true shape
e r ~ 6370 km, is based on empirical measurements and previous computations
e 7 is given by an infinite limiting process, which must be truncated at some point

e numerical values for the input data, as well as the results of the arithmetic
operations performed on them, are rounded in a computer or calculator

numerical errors 1.14

Absolute and relative errors

given actual value x and its approximation X

e absolute error: |x — X|
[x —x
|x
gives percentage of error compared to the actual value

e relative error: (assuming x # 0)

Example
X x absolute error relative error
1 0.99 0.01 0.01
1 1.01 0.01 0.01
100 99.99 0.01 0.0001
100 99 1 0.01

e when |x| = 1, little difference between absolute and relative error

e when |x| >> 1, relative error more meaningful

numerical errors 1.15

Example: derivative approximation

Taylor theorem: for differentiable f, we have

f(xo+h) = f(xg) + hf' (xo) + h;f”(ﬁ) forsomex <0 <xg+h

we can approximate f’(xq) by

I
£ (x0) ~ f(xo+ h;), — f(xo)
0 X0 Xo+h
with the truncation (discretization) error being
h) — h
fl(xo)_f(-x0+])1 f(XO) :'§fu(9) SMh/Q

where | £ (6)| < M

numerical errors

1.16

e assume error in evaluating f(x) is bounded by €
e rounding error in evaluating w is bounded by 2¢/h

e total erroris
Mh 2e

2 h
e first term decreases as / decreases

e second term increases as h decreases

Example

e f(x)=sin(x)andxg=1.2

e exact value of derivative is f” (xg) = cos(1.2)

e alog-log plot of the error versus # is provided below

numerical errors

1.17

10° |

Absolute error

e solid curve shows |f” (xg) — w for f(x) = sin(x), xo = 1.2
e dash-dot style line depicts the truncation error without roundoff error

e when h < 1078, discretization error becomes small, and roundoff error dominate

numerical errors 1.18

Cancellation

d=a(l+Aa), b=0b(1+Ab)
e a,b: exact values
° a, b: approximations with unknown relative errors Aa, Ab
e relative errorint = d — b = (a — b) + (aAa — bAb) is

|X = x| _|aAa - bAD|
|x| la - b|

if @ ~ b, small Aa and Ab can lead to very large relative errors in x

this is called cancellation; cancellation occurs when:

e we subtract two numbers that are almost equal

e one or both numbers are subject to error

numerical errors

1.19

Example

two expressions for the same function

1.0005
1 — (cosx)?
fx) = ———
* 1
(sinx)?
g(x) = 2
09995
-001 0 001

e results of cos x and sin x were rounded to 10 significant digits

e other calculations are exact
1—(cos x)?

e cancellation occurs when we evaluate the numerator of f(x) = 2

- 1 = (cosx)2 when x is small
— there is a rounding error in cos x

numerical errors 1.20

Evaluation of f: evaluate f(x)atx =5-107°

e calculate cos x and round result to 10 digits

cosx = 0.99999999875000. . .
~ 0.9999999988

e evaluate f(x) = (1 — cos(x)?) /x? using rounded value of cos x

1 — (0.9999999988)2

ERTE L L

has only one correct significant digit (correct value is 0.9999.. . .)

numerical errors

1.21

Evaluation of g: evaluate g(x) atx =5-107°

e calculate sin x and round result to 10 digits
sinx = 0.499999999791667 ...-107°
~> 0.4999999998 - 107°

e evaluate f(x) = sin(x)?/x? using rounded value of cosx

(sinx)? _ (0.4999999998 - 10-%)°

=0.9999...
x2 (5-10-5)2

has about ten correct significant digits

Conclusion: f and g are equivalent mathematically, but not numerically

numerical errors 1.22

Outline

o floating-point numbers

e |[EEE standard and machine precision
e numerical errors

e conditioning and sensitivity

e numerical stability and efficiency

Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data
well-conditioned problem

e small changes in the data produce small changes in the solution
ill-conditioned (badly conditioned) problem

e small changes in the data can produce large changes in the solution

y

Rl
~

conditioning and sensitivity 1.23

Roots of a polynomial

p(x)=(x-1)(x=2)(x—10) +6 - x*°
roots of p computed by MATLAB for two values of &

§=10"° §=10"3
3 3
2F 2
g 1} g 1 o
> ° D >
g OF o o o o o o . g 0F o o o @
£ . £
S -1f T -1 o
£ E
ol -2
_3 _3
0 2 4 6 8 10 0 2 4 6 8 10
realpart realpart

roots can be very sensitive to errors in the coefficients

conditioning and sensitivity

Condition number of differentiable functions

given x, evaluate y = f(x)
e if x is changed to x + Ax, solution changes to y + Ay = f(x + Ax)
e condition with respect to absolute error in x and y

|Ay] ~ | £ (x)] |Ax]

problem is ill-conditioned with respect to absolute error if | ' (x)] is very large

Condition number: condition with respect to relative errors in x and y

Ayl 1f7 () |1x] |Ax|

byl ~ @

o |f(x)||x|/|f(x)| is the condition number

e ill-conditioned with respect to relative error if condition number is very large

conditioning and sensitivity

1.25

Examples
consider f(x) = /x; since f/(x) = 1/(2+/x), the condition number is

W] |xeVD] 1
Fo 1T VE T2

e any relative change in input causes relative change in output of about half that size

o the square root problem is well-conditioned

consider f(x) = tan(x);since f’(x) = 1 + tan?(x), the condition number is
xf(x)| |x(1+tan?(x))
f(x) tan(x)

=|x (tanl(x) + tan(x))

e ill-conditioned around an integer multiple of 71/2, where its value becomes infinite
e forx = 1.57079, the condition number is approximately 2.48275 x 10°

e 10 see the effect of this, we evaluate the function at two nearby points,
tan(1.57079) ~ 1.58058 X 105, tan(1.57078) =~ 6.12490 x 10*

difference is on order of approximately 10

conditioning and sensitivity 1.26

Outline

o floating-point numbers

e |[EEE standard and machine precision
e numerical errors

e conditioning and sensitivity

e numerical stability and efficiency

Stability, efficiency, and robustness

Stability: refers to the accuracy of an algorithm in the presence of rounding errors

e an algorithm is unstable if rounding errors cause large errors in the result

e instability is often, but not always, caused by cancellation

Efficiency
e a numerical algorithm is inefficient if it takes an unreasonable amount of run-time
e efficiency depends on both cpu time and storage space requirements

o theoretical properties, like the rate of convergence, can indicate efficiency
Robustness

e major effort in writing numerical software is ensuring it works under all conditions

e arobust routine should yield correct results within an acceptable error tolerance

numerical stability and efficiency 1.27

Example: roots of a quadratic equation

ax?>+bx+c=0 (a#0)

Algorithm 1: use the formulas

-b+Vb? - 4ac —-b — Vb2 - 4ac

X]=—————, X9=
! 2a 2 2a
unstable if b2 > |4ac|

e if b2 > |4ac| and b > 0, cancellation occurs in x; (b = Vb2 — 4ac)
e if b2 > |4ac| and b < 0, cancellation occurs in x5 (—b =~ Vb2 — 4ac)

e in both cases b may be exact, but the square root introduces small errors

numerical stability and efficiency

1.28

Example: roots of a quadratic equation

ax?>+bx+c=0 (a#0)

Algorithm 2: use fact that roots x1, x5 satisfy x1x2 = c/a

e if b < 0, calculate

-b+Vb? - 4ac c
X]=———————, X9= —
2a axi
e if b > (0, calculate
—b—Vb?2 —4ac c
X9g= —————— X1 = —
2a axs

no cancellation when 52 > |4ac|

numerical stability and efficiency

Example: polynomial evaluation

p(X) =co+cix+cox’ + -+ cpx”"

Naive method

e compute ¢,x" using n multiplications, ¢,—1x" ! using n — 1 multiplications, ...

e total is n(n + 1)/2 multiplications and n additions

Horner’s rule: write in nested form:

pn(X) =co +x(c1 +x(02 +x(C3 + o+ x(cpo1 + cnx))))

P=c¢Cn
forj=n-1,...,1,0
p=px+cj

reduces the operation to n multiplications and » additions

numerical stability and efficiency

1.30

Error accumulation

if £ measures the relative error at the kth operation of an algorithm, then
[] Ek
o Fj ~ C]on, for some constant ¢; > 1, represents exponential error growth

[l

cok Eq represents linear error growth, for some constant ¢

an algorithm with exponential error growth is unstable and should be avoided

numerical stability and efficiency

1.31

Example

consider evaluating integrals y; = fo Srodxfork=1,2,...,30

x+10
observe at first that analytically

1 .k k-1 1
x4+ 10x 1
+10y._1 = — dx = k_ld = —
Yk Yk /0 x+10 ’ /ox * k

_/1 1
Yo=) x¥10

e a simple algorithm is constructed as follows:
1. evaluate yo = In(11) — In(10)
2. fork =1,...,30, evaluate

and

dx =In(11) — In(10)

1
Y =7 — 10y

k
o this algorithm is in fact unstable

e magnitude of roundoff errors gets multiplied by 10 at each iteration; there is
exponential error growth with ¢; = 10

numerical stability and efficiency 1.32

References and further readings

e Uri M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics,
2011.

e L. Vandenberghe. EE133A lecture notes, University of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references 1.33

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	floating-point numbers
	IEEE standard and machine precision
	numerical errors
	conditioning and sensitivity
	numerical stability and efficiency
	references

