
1. Numerical precision and errors

• floating-point numbers

• IEEE standard and machine precision

• numerical errors

• conditioning and sensitivity

• numerical stability and efficiency

ENGR 504 (Fall 2024) S. Alghunaim

1.1

Floating-point number

a floating-point number is represented as

𝑥 = ±(.𝑑1𝑑2 · ··𝑑𝑛) · 𝛽𝑒

with value

𝑥 = ±
(
𝑑1

𝛽1
+ ··· + 𝑑𝑛

𝛽𝑛

)
· 𝛽𝑒

• 𝛽 is the base (an integer larger than 1); 𝑛 is precision (number of digits)

• 𝑒 is exponent (𝑒min ≤ 𝑒 ≤ 𝑒max)

• 𝑑1𝑑2𝑑3 · ·· is mantissa or significand

• 𝑑𝑖 integer with 0 ≤ 𝑑𝑖 ≤ 𝛽 − 1 and 𝑑1 ≠ 0 for 𝑥 ≠ 0 (normalized system)

Other convention

±(𝑑0.𝑑1𝑑2 · ··𝑑𝑛−1) · 𝛽𝑒 = ±
(
𝑑0 +

𝑑1

𝛽1
+ 𝑑2

𝛽2
+ ··· + 𝑑𝑛−1

𝛽𝑛−1

)
· 𝛽𝑒

relation to previous representation: 𝑑𝑖 = 𝑑𝑖+1 and 𝑒 = 𝑒 − 1

SA — ENGR504floating-point numbers 1.2

Floating-point numbers with base 10

𝑥 = ± (.𝑑1𝑑2 . . . 𝑑𝑛)10 · 10𝑒

= ±
(
𝑑1

10
+ 𝑑2

102
+ ··· + 𝑑𝑛

10𝑛

)
· 10𝑒

• 𝑑𝑖 integer, 0 ≤ 𝑑𝑖 ≤ 9

• 𝑑1 ≠ 0 if 𝑥 ≠ 0 (normalized system)

• used in pocket calculators

Example (with 𝑛 = 6):

12.625 = + (.126250)10 · 102

= +
(
1 · 10−1 + 2 · 10−2 + 6 · 10−3 + 2 · 10−4 +5 · 10−5 + 0 · 10−6

)
· 102

SA — ENGR504floating-point numbers 1.3

Properties

• a finite set of numbers

• unevenly spaced: distance between floating-point numbers varies

– smallest number greater than 1 is (.10· ··01)10 · 10 = 1 + 10−𝑛+1

– smallest number greater than 10 is (.10· ··01)10 · 102 = 10 + 10−𝑛+2, . . .

• largest positive number:

𝑥max = +(.999· ··9)10 · 10𝑒max = (1 − 10−𝑛) 10𝑒max

(here we used
∑𝑛

𝑘=0 𝑟
𝑘 = 1−𝑟𝑛+1

1−𝑟 for 𝑟 ≠ 1)

• smallest positive number:

𝑥min = +(.100· ··0)10 · 10𝑒min = 10𝑒min−1

SA — ENGR504floating-point numbers 1.4

Floating-point numbers with base 2

𝑥 = ± (.𝑑1𝑑2 . . . 𝑑𝑛)2 · 2𝑒

= ±
(
𝑑12

−1 + 𝑑22
−2 + ··· + 𝑑𝑛2

−𝑛) · 2𝑒
• 𝑑𝑖 ∈ {0, 1}

• 𝑑1 = 1 if 𝑥 ≠ 0 (normalized system)

• used in almost all computers

• example: 𝑥 = −(.1101) · 22 equals 𝑥 = −(12 + 1
4 + 0

8 + 1
16) · 2

2 = −3.25

Properties

• a finite set of unevenly spaced numbers

• largest positive number is

𝑥max = +(.111· ··1)2 · 2𝑒max = (1 − 2−𝑛) 2𝑒max

• smallest positive number is

𝑥min = +(.100· ··0)2 · 2𝑒min = 2𝑒min−1

SA — ENGR504floating-point numbers 1.5

Rounding

• a floating-point number system is a finite set of numbers

• all other numbers must be rounded

• fl(𝑥) is the floating-point representation of 𝑥

Rounding

• 𝑥− is the nearest floating point number to 𝑥 that is ≤ 𝑥

• 𝑥+ is the nearest floating point number to 𝑥 that is ≥ 𝑥

• numbers are rounded to the nearest floating-point number

fl(𝑥) =
{
𝑥− if 𝑥 − 𝑥− < 𝑥+ − 𝑥

𝑥+ if 𝑥+ − 𝑥 < 𝑥 − 𝑥−

for ties we round to nearest even

for binary case we round to number with least significant bit 0

SA — ENGR504floating-point numbers 1.6

Example: 3-digit calculator

𝑥 = ± (.𝑑1𝑑2𝑑3)10 · 10𝑒, −9 ≤ 𝑒 ≤ 9

• largest/smallest positive numbers: 𝑥max = 0.99 · 109 and 𝑥min = 0.100 · 10−9

• not enough “room” to store exactly the results from most arithmetic operations

(1.23 × 101) × (4.56 × 102) = 5608.8

(1.23 × 106) + (4.56 × 104) = 1275600

involve more than three significant digits

• results must be rounded in order to “fit” the 3-digit format,

fl(5608.8) = .561 × 104, fl(1275600) = .128 × 107

SA — ENGR504floating-point numbers 1.7

Example: small binary system

we enumerate all positive floating-point numbers for

𝑛 = 3, 𝑒min = −1, 𝑒max = 2

+ (.100)2 · 2−1 = 0.2500, +(.100)2 · 20 = 0.500

+ (.101)2 · 2−1 = 0.3125, +(.101)2 · 20 = 0.625

+ (.110)2 · 2−1 = 0.3750, +(.110)2 · 20 = 0.750

+ (.111)2 · 2−1 = 0.4375, +(.111)2 · 20 = 0.875

+ (.100)2 · 21 = 1.00, +(.100)2 · 22 = 2.0

+ (.101)2 · 21 = 1.25, +(.101)2 · 22 = 2.5

+ (.110)2 · 21 = 1.50, +(.110)2 · 22 = 3.0

+ (.111)2 · 21 = 1.75, +(.111)2 · 22 = 3.5

numbers not represented are rounded (e.g., 𝑥 = 0.26 is rounded to fl(𝑥) = 0.25)

SA — ENGR504floating-point numbers 1.8

Overflow and underflow

• overflow means number is too large to fit into floating-point system (𝑒 > 𝑒max)

• underflow is obtained when 𝑒 < 𝑒min

• underflow is nonfatal: system sets number to 0 (MATLAB does this)

Example: consider computing 𝑐 =
√
𝑎2 + 𝑏2 in a floating-point system with four

decimal digits and two exponent digits

• for 𝑎 = 1060 and 𝑏 = 1, correct result is 𝑐 = 1060

• squaring 𝑎 gives 10120, which cannot be represented in this system (overflow)

• can be avoided if we rescale 𝑐 = 𝑠
√︁
(𝑎/𝑠)2 + (𝑏/𝑠)2 for any 𝑠 ≠ 0

• using 𝑠 = 𝑎 = 1060 gives an underflow when 𝑏/𝑠 is squared, which is set to zero

• this yields the most accurate answer given this particular floating-point system

SA — ENGR504floating-point numbers 1.9

Outline

• floating-point numbers

• IEEE standard and machine precision

• numerical errors

• conditioning and sensitivity

• numerical stability and efficiency

IEEE standard for binary arithmetic

• two binary (𝛽 = 2) floating-point number formats

• used in almost all modern computers

IEEE standard single precision

𝑛 = 24, 𝑒min = −125, 𝑒max = 128

requires 32 bits:

• 23 bits for mantissa (𝑑1 = 1 not stored)

• 1 sign bit and 8 bits for exponent

IEEE standard double precision

𝑛 = 53, 𝑒min = −1021, 𝑒max = 1024

requires 64 bits:

• 52 bits for mantissa (𝑑1 = 1 not stored)

• 1 sign bit and 11 bits for exponent

SA — ENGR504IEEE standard and machine precision 1.10

Machine precision

for binary number system the value

𝜖M = 2−𝑛

is called machine precision or machine epsilon

Rounding error: 𝜖M gives rounding error bound

|𝑥 − fl(𝑥) |
|𝑥 | ≤ 𝜖M

fundamental limitations of numerical computations

Example: IEEE standard double precision (used by MATLAB)

𝑛 = 53, 𝜖M = 2−53 ≃ 1.1102 · 10−16

number of correct digits is roughly − log10 𝜖M ≈ 16

SA — ENGR504IEEE standard and machine precision 1.11

Example

• the smallest floating-point number greater than 1 is

(.10· ··01)2 · 21 = 1 + 21−𝑛 = 1 + 2𝜖M

• numbers 𝑥 ∈ (1, 1 + 2𝜖M) are rounded to 1 or 1 + 2𝜖M

fl(𝑥) = 1 for 1 ≤ 𝑥 ≤ 1 + 𝜖M
fl(𝑥) = 1 + 2𝜖M for 1 + 𝜖M < 𝑥 ≤ 1 + 2𝜖M

• therefore numbers between 1 and 1 + 𝜖M are indistinguishable from 1

SA — ENGR504IEEE standard and machine precision 1.12

Outline

• floating-point numbers

• IEEE standard and machine precision

• numerical errors

• conditioning and sensitivity

• numerical stability and efficiency

Error sources

Errors in the problem to be solved

• mathematical model errors (model approximation)

• error in the input data (arising from physical measurements)

• input data may have been produced by a previous approximate computational step

Truncation or discretization errors

• due to using approximate formula
– replacing derivatives by finite differences
– evaluating function by truncating a Taylor series

• convergence errors in iterative methods, which converge to the exact solution in
infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors

• arise from finite precision representation of real numbers on computers

• truncation or discretization errors usually dominate roundoff errors in magnitude

SA — ENGR504numerical errors 1.13

Example

surface area of the Earth might be computed using the formula

𝐴 = 4𝜋𝑟2

for the surface area of a sphere of radius 𝑟

• earth is modeled as a sphere, which is an approximation of its true shape

• 𝑟 ≈ 6370 km, is based on empirical measurements and previous computations

• 𝜋 is given by an infinite limiting process, which must be truncated at some point

• numerical values for the input data, as well as the results of the arithmetic
operations performed on them, are rounded in a computer or calculator

SA — ENGR504numerical errors 1.14

Absolute and relative errors

given actual value 𝑥 and its approximation 𝑥

• absolute error: |𝑥 − 𝑥 |

• relative error:
|𝑥 − 𝑥 |
|𝑥 | (assuming 𝑥 ≠ 0)

gives percentage of error compared to the actual value

Example

𝑥 𝑥 absolute error relative error
1 0.99 0.01 0.01
1 1.01 0.01 0.01
100 99.99 0.01 0.0001
100 99 1 0.01

• when |𝑥 | ≈ 1, little difference between absolute and relative error

• when |𝑥 | >> 1, relative error more meaningful

SA — ENGR504numerical errors 1.15

Example: derivative approximation

Taylor theorem: for differentiable 𝑓 , we have

𝑓 (𝑥0 + ℎ) = 𝑓 (𝑥0) + ℎ 𝑓 ′ (𝑥0) +
ℎ2

2
𝑓 ′′ (𝜃) for some 𝑥 ≤ 𝜃 ≤ 𝑥0 + ℎ

we can approximate 𝑓 ′ (𝑥0) by

𝑓 ′ (𝑥0) ≈
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0)

ℎ

0 𝑥

𝑓

𝑥0 𝑥0 + ℎ

with the truncation (discretization) error being���� 𝑓 ′ (𝑥0) − 𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0)
ℎ

���� = ���� ℎ2 𝑓 ′′ (𝜃)
���� ≤ 𝑀ℎ/2

where | 𝑓 ′′ (𝜃) | ≤ 𝑀

SA — ENGR504numerical errors 1.16

• assume error in evaluating 𝑓 (𝑥) is bounded by 𝜖

• rounding error in evaluating 𝑓 (𝑥0+ℎ)− 𝑓 (𝑥0)
ℎ

is bounded by 2𝜖/ℎ

• total error is
𝑀ℎ

2
+ 2𝜖

ℎ

• first term decreases as ℎ decreases

• second term increases as ℎ decreases

Example

• 𝑓 (𝑥) = sin(𝑥) and 𝑥0 = 1.2

• exact value of derivative is 𝑓 ′ (𝑥0) = cos(1.2)
• a log-log plot of the error versus ℎ is provided below

SA — ENGR504numerical errors 1.17

ℎ

A
bs

ol
ut

e
er

ro
r

• solid curve shows
��� 𝑓 ′ (𝑥0) − 𝑓 (𝑥0+ℎ)− 𝑓 (𝑥0)

ℎ

��� for 𝑓 (𝑥) = sin(𝑥), 𝑥0 = 1.2

• dash-dot style line depicts the truncation error without roundoff error

• when ℎ < 10−8, discretization error becomes small, and roundoff error dominate

SA — ENGR504numerical errors 1.18

Cancellation

𝑎 = 𝑎(1 + Δ𝑎), 𝑏 = 𝑏(1 + Δ𝑏)

• 𝑎, 𝑏: exact values

• 𝑎, 𝑏: approximations with unknown relative errors Δ𝑎,Δ𝑏

• relative error in 𝑥 = 𝑎 − 𝑏 = (𝑎 − 𝑏) + (𝑎Δ𝑎 − 𝑏Δ𝑏) is

|𝑥 − 𝑥 |
|𝑥 | =

|𝑎Δ𝑎 − 𝑏Δ𝑏 |
|𝑎 − 𝑏 |

if 𝑎 ≃ 𝑏, small Δ𝑎 and Δ𝑏 can lead to very large relative errors in 𝑥

this is called cancellation; cancellation occurs when:

• we subtract two numbers that are almost equal

• one or both numbers are subject to error

SA — ENGR504numerical errors 1.19

Example

two expressions for the same function

𝑓 (𝑥) = 1 − (cos 𝑥)2
𝑥2

𝑔(𝑥) = (sin 𝑥)2
𝑥2

𝑓
𝑔

• results of cos 𝑥 and sin 𝑥 were rounded to 10 significant digits

• other calculations are exact

• cancellation occurs when we evaluate the numerator of 𝑓 (𝑥) = 1−(cos 𝑥)2
𝑥2

– 1 ≃ (cos 𝑥)2 when 𝑥 is small
– there is a rounding error in cos 𝑥

SA — ENGR504numerical errors 1.20

Evaluation of 𝑓 : evaluate 𝑓 (𝑥) at 𝑥 = 5 · 10−5

• calculate cos 𝑥 and round result to 10 digits

cos 𝑥 = 0.99999999875000 . . .

{ 0.9999999988

• evaluate 𝑓 (𝑥) =
(
1 − cos(𝑥)2

)
/𝑥2 using rounded value of cos 𝑥

1 − (0.9999999988)2

(5 · 10−5)2
= 0.9599 . . .

has only one correct significant digit (correct value is 0.9999 . . .)

SA — ENGR504numerical errors 1.21

Evaluation of 𝑔: evaluate 𝑔(𝑥) at 𝑥 = 5 · 10−5

• calculate sin 𝑥 and round result to 10 digits

sin 𝑥 = 0.499999999791667 . . . · 10−5

{ 0.4999999998 · 10−5

• evaluate 𝑓 (𝑥) = sin(𝑥)2/𝑥2 using rounded value of cos 𝑥

(sin 𝑥)2
𝑥2

≈
(
0.4999999998 · 10−5

)2
(5 · 10−5)2

= 0.9999 . . .

has about ten correct significant digits

Conclusion: 𝑓 and 𝑔 are equivalent mathematically, but not numerically

SA — ENGR504numerical errors 1.22

Outline

• floating-point numbers

• IEEE standard and machine precision

• numerical errors

• conditioning and sensitivity

• numerical stability and efficiency

Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

well-conditioned problem

• small changes in the data produce small changes in the solution

ill-conditioned (badly conditioned) problem

• small changes in the data can produce large changes in the solution

𝑥

𝑦

𝑥

𝑦

𝑓

𝑓

SA — ENGR504conditioning and sensitivity 1.23

Roots of a polynomial

𝑝(𝑥) = (𝑥 − 1) (𝑥 − 2) ··· (𝑥 − 10) + 𝛿 · 𝑥10

roots of 𝑝 computed by MATLAB for two values of 𝛿

realpart

im
ag

in
ar

yp
ar

t

𝛿 = 10−5

realpart

im
ag

in
ar

yp
ar

t

𝛿 = 10−3

roots can be very sensitive to errors in the coefficients

SA — ENGR504conditioning and sensitivity 1.24

Condition number of differentiable functions

given 𝑥, evaluate 𝑦 = 𝑓 (𝑥)

• if 𝑥 is changed to 𝑥 + Δ𝑥, solution changes to 𝑦 + Δ𝑦 = 𝑓 (𝑥 + Δ𝑥)

• condition with respect to absolute error in 𝑥 and 𝑦

|Δ𝑦 | ≈ | 𝑓 ′ (𝑥) | |Δ𝑥 |

problem is ill-conditioned with respect to absolute error if | 𝑓 ′ (𝑥) | is very large

Condition number: condition with respect to relative errors in 𝑥 and 𝑦

|Δ𝑦 |
|𝑦 | ≈ | 𝑓 ′ (𝑥) | |𝑥 |

| 𝑓 (𝑥) |
|Δ𝑥 |
|𝑥 |

• | 𝑓 ′ (𝑥) | |𝑥 |/| 𝑓 (𝑥) | is the condition number

• ill-conditioned with respect to relative error if condition number is very large

SA — ENGR504conditioning and sensitivity 1.25

Examples

consider 𝑓 (𝑥) =
√
𝑥; since 𝑓 ′ (𝑥) = 1/(2

√
𝑥), the condition number is����𝑥 𝑓 ′ (𝑥)𝑓 (𝑥)

���� = ����𝑥/(2√𝑥)√
𝑥

���� = 1

2

• any relative change in input causes relative change in output of about half that size

• the square root problem is well-conditioned

consider 𝑓 (𝑥) = tan(𝑥); since 𝑓 ′ (𝑥) = 1 + tan2 (𝑥), the condition number is����𝑥 𝑓 ′ (𝑥)𝑓 (𝑥)

���� = ����𝑥 (1 + tan2 (𝑥)
)

tan(𝑥)

���� = ����𝑥 (1

tan(𝑥) + tan(𝑥)
)����

• ill-conditioned around an integer multiple of 𝜋/2, where its value becomes infinite

• for 𝑥 = 1.57079, the condition number is approximately 2.48275 × 105

• to see the effect of this, we evaluate the function at two nearby points,

tan(1.57079) ≈ 1.58058 × 105, tan(1.57078) ≈ 6.12490 × 104

difference is on order of approximately 10

SA — ENGR504conditioning and sensitivity 1.26

Outline

• floating-point numbers

• IEEE standard and machine precision

• numerical errors

• conditioning and sensitivity

• numerical stability and efficiency

Stability, efficiency, and robustness

Stability: refers to the accuracy of an algorithm in the presence of rounding errors

• an algorithm is unstable if rounding errors cause large errors in the result

• instability is often, but not always, caused by cancellation

Efficiency

• a numerical algorithm is inefficient if it takes an unreasonable amount of run-time

• efficiency depends on both cpu time and storage space requirements

• theoretical properties, like the rate of convergence, can indicate efficiency

Robustness

• major effort in writing numerical software is ensuring it works under all conditions

• a robust routine should yield correct results within an acceptable error tolerance

SA — ENGR504numerical stability and efficiency 1.27

Example: roots of a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (𝑎 ≠ 0)

Algorithm 1: use the formulas

𝑥1 =
−𝑏 +

√
𝑏2 − 4𝑎𝑐

2𝑎
, 𝑥2 =

−𝑏 −
√
𝑏2 − 4𝑎𝑐

2𝑎

unstable if 𝑏2 ≫ |4𝑎𝑐 |

• if 𝑏2 ≫ |4𝑎𝑐 | and 𝑏 ≥ 0, cancellation occurs in 𝑥1 (𝑏 ≃
√
𝑏2 − 4𝑎𝑐)

• if 𝑏2 ≫ |4𝑎𝑐 | and 𝑏 ≤ 0, cancellation occurs in 𝑥2 (−𝑏 ≃
√
𝑏2 − 4𝑎𝑐)

• in both cases 𝑏 may be exact, but the square root introduces small errors

SA — ENGR504numerical stability and efficiency 1.28

Example: roots of a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (𝑎 ≠ 0)

Algorithm 2: use fact that roots 𝑥1, 𝑥2 satisfy 𝑥1𝑥2 = 𝑐/𝑎

• if 𝑏 ≤ 0, calculate

𝑥1 =
−𝑏 +

√
𝑏2 − 4𝑎𝑐

2𝑎
, 𝑥2 =

𝑐

𝑎𝑥1

• if 𝑏 > 0, calculate

𝑥2 =
−𝑏 −

√
𝑏2 − 4𝑎𝑐

2𝑎
, 𝑥1 =

𝑐

𝑎𝑥2

no cancellation when 𝑏2 ≫ |4𝑎𝑐 |

SA — ENGR504numerical stability and efficiency 1.29

Example: polynomial evaluation

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + ··· + 𝑐𝑛𝑥

𝑛

Naive method

• compute 𝑐𝑛𝑥
𝑛 using 𝑛 multiplications, 𝑐𝑛−1𝑥𝑛−1 using 𝑛 − 1 multiplications, ...

• total is 𝑛(𝑛 + 1)/2 multiplications and 𝑛 additions

Horner’s rule: write in nested form:

𝑝𝑛 (𝑥) = 𝑐0 + 𝑥

(
𝑐1 + 𝑥

(
𝑐2 + 𝑥

(
𝑐3 + ··· + 𝑥(𝑐𝑛−1 + 𝑐𝑛𝑥) ···

)))
𝑝 = 𝑐𝑛
for 𝑗 = 𝑛 − 1, . . . , 1, 0
𝑝 = 𝑝𝑥 + 𝑐 𝑗

reduces the operation to 𝑛 multiplications and 𝑛 additions

SA — ENGR504numerical stability and efficiency 1.30

Error accumulation

if 𝐸𝑘 measures the relative error at the 𝑘 th operation of an algorithm, then

• 𝐸𝑘 ≃ 𝑐0𝑘𝐸0 represents linear error growth, for some constant 𝑐0

• 𝐸𝑘 ≃ 𝑐𝑘1𝐸0, for some constant 𝑐1 > 1, represents exponential error growth

an algorithm with exponential error growth is unstable and should be avoided

SA — ENGR504numerical stability and efficiency 1.31

Example

consider evaluating integrals 𝑦𝑘 =
∫ 1

0
𝑥𝑘

𝑥+10 𝑑𝑥 for 𝑘 = 1, 2, . . . , 30

observe at first that analytically

𝑦𝑘 + 10𝑦𝑘−1 =

∫ 1

0

𝑥𝑘 + 10𝑥𝑘−1

𝑥 + 10
𝑑𝑥 =

∫ 1

0

𝑥𝑘−1𝑑𝑥 =
1

𝑘

and

𝑦0 =

∫ 1

0

1

𝑥 + 10
𝑑𝑥 = ln(11) − ln(10)

• a simple algorithm is constructed as follows:
1. evaluate 𝑦0 = ln(11) − ln(10)
2. for 𝑘 = 1, . . . , 30, evaluate

𝑦𝑘 =
1

𝑘
− 10𝑦𝑘−1

• this algorithm is in fact unstable

• magnitude of roundoff errors gets multiplied by 10 at each iteration; there is
exponential error growth with 𝑐1 = 10

SA — ENGR504numerical stability and efficiency 1.32

References and further readings

• Uri M. Ascher. A First Course on Numerical Methods. Society for Industrial and Applied Mathematics,
2011.

• L. Vandenberghe. EE133A lecture notes, University of California, Los Angeles.
(http://www.seas.ucla.edu/~vandenbe/ee133a.html)

SA — ENGR504references 1.33

http://www.seas.ucla.edu/~vandenbe/ee133a.html

	floating-point numbers
	IEEE standard and machine precision
	numerical errors
	conditioning and sensitivity
	numerical stability and efficiency
	references

