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Vector

a column vector is an ordered list of scalars or numbers, represented by:

𝑎 =


𝑎1
𝑎2
...

𝑎𝑛

 or 𝑎 = (𝑎1, . . . , 𝑎𝑛)

■ 𝑎𝑖 is the the 𝑖th entry (or element, coefficient, component) of vector 𝑎

■ 𝑖 is the index of the 𝑖th element 𝑎𝑖

■ number of elements 𝑛 is the size (length, dimension) of the vector

■ a vector of size 𝑛 is called an 𝑛-vector; R𝑛 denote the set of real vectors of size 𝑛

■ two vectors 𝑎, 𝑏 are equal, denoted 𝑎 = 𝑏, if the have the same size and
corresponding entries are all equal
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Example

𝑎 =


1
−2
3.3
0.3

 , 𝑏 =


1
−2
3.3


■ 𝑎 is a 4-vector, 𝑏 is a 3-vector

■ third component of 𝑎 is 𝑎3 = 3.3

■ 𝑎5, 𝑏4 does not make sense

■ 𝑎 is not equal to 𝑏 since their dimension is different
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Row vector and transpose

an row vector 𝑏 of size 𝑛 with entries 𝑏1, . . . , 𝑏𝑛 has the form:

𝑏 =
[
𝑏1 𝑏2 . . . 𝑏𝑛

]
■ all vectors are column vectors unless otherwise stated

■ other notation exists, e.g., 𝑏 = [𝑏1, 𝑏2, . . . , 𝑏𝑛]

Transpose: the transpose of an 𝑛-column vector 𝑎 is the row vector 𝑎T:

𝑎T =


𝑎1
𝑎2
...

𝑎𝑛


T

=
[
𝑎1 𝑎2 . . . 𝑎𝑛

]

■ (.)T is transpose operation

■ (𝑎T)T = 𝑎 (transpose of row vector is a column vector)
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Block vectors, subvectors

Stacking

■ vectors can be stacked (concatenated) to create larger vectors

■ stacking vectors 𝑏, 𝑐, 𝑑 of size 𝑚, 𝑛, 𝑝 gives an (𝑚 + 𝑛 + 𝑝)-vector

𝑎 =


𝑏

𝑐

𝑑

 = (𝑏, 𝑐, 𝑑) =
(
𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑛, 𝑑1, . . . , 𝑑𝑝

)
■ we say that 𝑏, 𝑐, and 𝑑 are subvectors or slices of 𝑎

■ example: if 𝑏 = 1, 𝑐 = (2,−1), 𝑑 = (4, 2, 7), then (𝑏, 𝑐, 𝑑) = (1, 2,−1, 4, 2, 7)

Subvectors slicing

■ colon (:) notation can be used to define subvectors (slices) of a vector

■ for vector 𝑎, we define 𝑎𝑟 :𝑠 = (𝑎𝑟 , . . . , 𝑎𝑠)

■ example: if 𝑎 = (1,−1, 2, 0, 3), then 𝑎2:4 = (−1, 2, 0)

vectors 5



Special vectors

Zero vector and ones vector

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1)

size follows from context (if not, we add a subscript and write 0𝑛, 1𝑛)

Unit vectors

■ there are 𝑛 unit vectors of size 𝑛, written 𝑒1, 𝑒2, . . . , 𝑒𝑛

(𝑒𝑖) 𝑗 =
{
1 𝑗 = 𝑖

0 𝑗 ≠ 𝑖

■ the 𝑖th unit vector is zero except its 𝑖th element which is 1

■ example: for 𝑛 = 3,

𝑒1 =


1
0
0

 , 𝑒2 =


0
1
0

 , 𝑒3 =


0
0
1


■ the size of 𝑒𝑖 follows from context (or should be specified explicitly)
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Addition and subtraction

for 𝑛-vectors 𝑎 and 𝑏,

𝑎 + 𝑏 =


𝑎1 + 𝑏1
𝑎2 + 𝑏2

...

𝑎𝑛 + 𝑏𝑛

 , 𝑎 − 𝑏 =


𝑎1 − 𝑏1
𝑎2 − 𝑏2

...

𝑎𝑛 − 𝑏𝑛


Example 

0
7
3

 +

1
2
0

 =

1
9
3


Properties: for vectors 𝑎, 𝑏 of equal size

■ commutative: 𝑎 + 𝑏 = 𝑏 + 𝑎

■ associative: 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐
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Scalar-vector multiplication

for vector 𝑎 ∈ R𝑛 and scalar 𝛽:

𝛽𝑎 = (𝛽𝑎1, 𝛽𝑎2, . . . , 𝛽𝑎𝑛)

Properties: for vectors 𝑎, 𝑏 of equal size, scalars 𝛽, 𝛾

■ commutative: 𝛽𝑎 = 𝑎𝛽

■ associative: (𝛽𝛾)𝑎 = 𝛽(𝛾𝑎), we write as 𝛽𝛾𝑎

■ distributive with scalar addition: (𝛽 + 𝛾)𝑎 = 𝛽𝑎 + 𝛾𝑎

■ distributive with vector addition: 𝛽(𝑎 + 𝑏) = 𝛽𝑎 + 𝛽𝑏
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Linear combination

a linear combination of vectors 𝑎1, . . . , 𝑎𝑚 is a sum of scalar-vector products

𝛽1𝑎1 + 𝛽2𝑎2 + ··· + 𝛽𝑚𝑎𝑚

■ scalars 𝛽1, . . . , 𝛽𝑚 are the coefficients of the linear combination

■ example: any 𝑛-vector 𝑏 can be written as

𝑏 = 𝑏1𝑒1 + · · · + 𝑏𝑛𝑒𝑛
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Matrix

a matrix is a rectangular array of scalars or elements written as

𝐴 =


𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛
... ... . . . ...

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛


■ numbers in array are the elements (entries, coefficients, components)

■ a horizontal set of elements is called a row and a vertical set is called a column

■ 𝑎𝑖 𝑗 is the 𝑖, 𝑗 element of 𝐴 (𝑖 is row index, 𝑗 is column index)

■ size (dimensions) of the matrix is 𝑚 × 𝑛 = (#rows) × (#columns)

■ a matrix of size 𝑚 × 𝑛 is called an 𝑚 × 𝑛 matrix

■ R𝑚×𝑛 is set of 𝑚 × 𝑛 matrices with real elements

■ elements 𝑎𝑖𝑖 are called principal or main diagonal of the matrix
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Example

𝐴 =


0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7

 , 𝐵 =

[
3 −3
12 0

]
■ 𝐴 is a 3 × 4 matrix, 𝐵 is 2 × 2

■ the matrix 𝐴 has four columns; 𝐵 has two rows

■ for example, 𝑎23 = −0.1, 𝑎22 = 4, but 𝑎41 is meaningless

■ in 𝐴, the row index of the entry with value −2.3 is 1; its column index is 3
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Matrix shapes

Scalar: a 1 × 1 matrix is a scalar

Row and column vectors

■ a 1 × 𝑛 matrix is called a row vector

■ an 𝑛 × 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an 𝑚 × 𝑛 matrix is

■ tall if 𝑚 > 𝑛

■ wide if 𝑚 < 𝑛

■ square if 𝑚 = 𝑛
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Matrix equality

𝐴 = 𝐵 means:

■ 𝐴 and 𝐵 have the same size

■ the corresponding entries are equal

for example,

■ [
−2
3.3

]
≠

[
−2 −3.3

]
since the dimensions don’t agree

■ [
−2
3.3

]
≠

[
−2
3.1

]
since the 2nd components don’t agree
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Columns and rows

an 𝑚 × 𝑛 matrix can be viewed as a matrix with row/column vectors

Columns representation

𝐴 = [𝑎1 𝑎2 · ·· 𝑎𝑛]

each 𝑎 𝑗 is an 𝑚-vector (the 𝑗 th column of 𝐴)
𝑎 𝑗 =


𝑎1 𝑗
...

𝑎𝑚𝑗


Rows representation

𝐴 =


𝑏1
𝑏2
...

𝑏𝑚


each 𝑏𝑖 is a 1 × 𝑛 row vector (the 𝑖th row of 𝐴)

𝑏𝑖 = [𝑎𝑖1 · ·· 𝑎𝑖𝑛]
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Block matrix and submatrices

■ a block matrix is a rectangular array of matrices

■ elements in the array are the blocks or submatrices of the block matrix

Example: a 2 × 2 block matrix

𝐴 =

[
𝐵 𝐶

𝐷 𝐸

]
■ submatrices can be referred to by their block row and column (𝐶 is 1, 2 block of 𝐴)

■ dimensions of the blocks must be compatible

■ if the blocks are

𝐵 =

[
2
1

]
, 𝐶 =

[
0 2 3
5 4 7

]
, 𝐷 =

[
1

]
, 𝐸 =

[
−1 6 0

]
then

𝐴 =


2 0 2 3
1 5 4 7
1 −1 6 0


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Slice of matrix

𝐴𝑝:𝑞,𝑟 :𝑠 =


𝑎𝑝𝑟 𝑎𝑝,𝑟+1 · ·· 𝑎𝑝𝑠

𝑎𝑝+1,𝑟 𝑎𝑝+1,𝑟+1 · ·· 𝑎𝑝+1,𝑠
... ... ...

𝑎𝑞𝑟 𝑎𝑞,𝑟+1 · ·· 𝑎𝑞𝑠


■ an (𝑞 − 𝑝 + 1) × (𝑠 − 𝑟 + 1) matrix

■ obtained by extracting from 𝐴 elements in rows 𝑝 to 𝑞 and columns 𝑟 to 𝑠

■ from last page example, we have

𝐴2:3,3:4 =

[
1 4
5 4

]
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Special matrices

Zero matrix

■ matrix with 𝑎𝑖 𝑗 = 0 for all 𝑖, 𝑗

■ notation: 0 or 0𝑚×𝑛 (if dimension is not clear from context)

■ example:

02×3 =

[
0 0 0
0 0 0

]
Identity matrix

■ square matrix with 𝑎𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝑎𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗

■ notation: 𝐼 or 𝐼𝑛 (if dimension is not clear from context)

■ columns of 𝐼𝑛 are unit vectors 𝑒1, 𝑒2, . . . , 𝑒𝑛; for example,

𝐼3 =


1 0 0
0 1 0
0 0 1

 =
[
𝑒1 𝑒2 𝑒3

]
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Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

■ square with 𝑎𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗

■ represented as 𝐴 = diag(𝑎1, . . . , 𝑎𝑛) where 𝑎𝑖 are diagonal elements

diag(0.2,−3, 1.2) =

0.2 0 0
0 −3 0
0 0 1.2


Lower triangular matrix: square with 𝑎𝑖 𝑗 = 0 for 𝑖 < 𝑗

4 0 0
3 −1 0

−1 5 −2

 ,


4 0 0
0 −1 0

−1 0 −2


Upper triangular matrix: square with 𝑎𝑖 𝑗 = 0 for 𝑖 > 𝑗

(a triangular matrix is unit upper/lower triangular if 𝑎𝑖𝑖 = 1 for all 𝑖)
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Transpose of a matrix

transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix (𝐴T)𝑖 𝑗 = 𝑎 𝑗𝑖 :

■ example: [
0 4 7
0 3 1

]T
=


0 0
4 3
7 1


■ rows and columns of 𝐴 are transposed in 𝐴T

Properties

■

(
𝐴T

)T
= 𝐴

■ the transpose of a block matrix (shown for a 2 × 2 block matrix)[
𝐴 𝐵

𝐶 𝐷

]T
=

[
𝐴T 𝐶T

𝐵T 𝐷T

]
– 𝐴, 𝐵, 𝐶, and 𝐷 are matrices with compatible sizes
– concept holds for any number of blocks
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Symmetric matrices

a square matrix 𝐴 is symmetric if
𝐴 = 𝐴T

■ 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖

■ examples: 
4 3 −2
3 −1 5

−2 5 0

 ,

4 + 3 𝑗 3 − 2 𝑗 0
3 − 2 𝑗 − 𝑗 −2 𝑗

0 −2 𝑗 3


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Matrix addition

sum of two 𝑚 × 𝑛 matrices 𝐴 and 𝐵

𝐴 + 𝐵 =


𝑎11 + 𝑏11 𝑎12 + 𝑏12 · ·· 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 · ·· 𝑎2𝑛 + 𝑏2𝑛

... ... ...

𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 · ·· 𝑎𝑚𝑛 + 𝑏𝑚𝑛


Example [

0 4 7
0 3 1

]
+
[
1 2 2
3 0 4

]
=

[
1 6 9
3 3 5

]
matrix subtraction is similar: [

1 6
9 3

]
− 𝐼 =

[
0 6
9 2

]
(here we had to figure out that 𝐼 must be 2 × 2)
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Properties of matrix addition

■ commutativity: 𝐴 + 𝐵 = 𝐵 + 𝐴

■ associativity: (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶), , so we can write as 𝐴 + 𝐵 + 𝐶

■ addition with zero matrix: 𝐴 + 0 = 0 + 𝐴 = 𝐴

■ transpose of sum: (𝐴 + 𝐵)T = 𝐴T + 𝐵T
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Scalar-matrix multiplication

scalar-matrix product of 𝑚 × 𝑛 matrix 𝐴 with scalar 𝛽 is entry-wise

𝛽𝐴 =


𝛽𝑎11 𝛽𝑎12 · ·· 𝛽𝑎1𝑛
𝛽𝑎21 𝛽𝑎22 · ·· 𝛽𝑎2𝑛
... ... ...

𝛽𝑎𝑚1 𝛽𝑎𝑚2 · ·· 𝛽𝑎𝑚𝑛


for example,

(−2)
[
1 6 9
3 6 0

]
=

[
−2 −12 −18
−6 −12 0

]
Properties: for matrices 𝐴, 𝐵, scalars 𝛽, 𝛾

■ transposition: (𝛽𝐴)T = 𝛽𝐴T

■ associativity: (𝛽𝛾)𝐴 = 𝛽(𝛾𝐴)
■ distributivity: (𝛽 + 𝛾)𝐴 = 𝛽𝐴 + 𝛾𝐴 and 𝛽(𝐴 + 𝐵) = 𝛽𝐴 + 𝛽𝐵

■ 0 · 𝐴 = 0; 1 · 𝐴 = 𝐴
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Matrix-vector product

product of 𝑚 × 𝑛 matrix 𝐴 with 𝑛-vector 𝑥

𝐴𝑥 =


𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛
𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ··· + 𝑎𝑚𝑛𝑥𝑛

 =

𝑏T1𝑥
...

𝑏T𝑚𝑥


■ 𝑏T

𝑖
is 𝑖th row of 𝐴

■ dimensions must be compatible (number of columns of 𝐴 equals the size of 𝑥)

■ 𝐴𝑥 is a linear combination of the columns of 𝐴:

𝐴𝑥 =
[
𝑎1 𝑎2 · ·· 𝑎𝑛

] 
𝑥1
𝑥2
...

𝑥𝑛

 = 𝑥1𝑎1 + 𝑥2𝑎2 + ··· + 𝑥𝑛𝑎𝑛

each 𝑎𝑖 is an 𝑚-vector (𝑖th column of 𝐴)
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Properties of matrix-vector multiplication

for matrix 𝐴, vectors 𝑢, 𝑣 and scalar 𝛼

■ associativity: (𝛼𝐴)𝑢 = 𝐴(𝛼𝑢) = 𝛼(𝐴𝑢) (we write 𝛼𝐴𝑢)

■ distributivity: 𝐴(𝑢 + 𝑣) = 𝐴𝑢 + 𝐴𝑣 and (𝐴 + 𝐴)𝑢 = 𝐴𝑢 + 𝐴𝑢

■ transposition: (𝐴𝑢)T = 𝑢T𝐴T
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General examples

■ 0𝑥 = 0, i.e., multiplying by zero matrix gives zero

■ 𝐼𝑥 = 𝑥, i.e., multiplying by identity matrix does nothing

■ inner product 𝑎T𝑏 is matrix-vector product of 1 × 𝑛 matrix 𝑎T and 𝑛-vector 𝑏

■ 𝐴𝑒 𝑗 = 𝑎 𝑗 , the 𝑗 th column of 𝐴 [(𝐴T𝑒𝑖)T = 𝑒T
𝑖
𝐴 is 𝑖th row]

■ the 𝑚-vector 𝐴1 is the sum of the columns of 𝐴
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Matrix multiplication

product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵

𝐶 = 𝐴𝐵

is the 𝑚 × 𝑝 matrix with 𝑖, 𝑗 element

𝑐𝑖 𝑗 = 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + ··· + 𝑎𝑖𝑛𝑏𝑛 𝑗

■ to get 𝑐𝑖 𝑗 : move along 𝑖 th row of 𝐴, 𝑗 th column of 𝐵

■ dimensions must be compatible:

#columns in 𝐴 = #rows in 𝐵

■ to find 𝑖, 𝑗 entry of the product 𝐶 = 𝐴𝐵, you need the 𝑖th row of 𝐴 and the 𝑗 th
column of 𝐵
– form product of corresponding entries, e.g., third component of 𝑖th row of 𝐴 and third

component of 𝑗 th column of 𝐵
– add up all the products
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Examples

example 1: [
1 6
9 3

] [
0 −1
−1 2

]
=

[
−6 11
−3 −3

]
for example, to get 1, 1 entry of product:

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21 = (1) (0) + (6) (−1) = −6

example 2: [
−1.5 3 2

1 −1 0

] 
−1 −1
0 −2
1 0

 =
[
3.5 −4.5
−1 1

]
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Special cases of matrix multiplication

■ scalar-vector product (with scalar on right!) 𝑥𝛼

■ matrix-vector multiplication 𝐴𝑥

■ outer product of 𝑚-vector 𝑎 and 𝑛-vector 𝑏

𝑎𝑏T =


𝑎1𝑏1 𝑎1𝑏2 · ·· 𝑎1𝑏𝑛
𝑎2𝑏1 𝑎2𝑏2 · ·· 𝑎2𝑏𝑛
... ... ...

𝑎𝑚𝑏1 𝑎𝑚𝑏2 · ·· 𝑎𝑚𝑏𝑛


■ multiplication by identity 𝐴𝐼 = 𝐴 and 𝐼 𝐴 = 𝐴
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Inner product

𝑢 is a row vector (1 × 𝑛 matrix) and 𝑣 is a column vector (𝑛 × 1), then their product is

𝑢𝑣 = 𝑢1𝑣1 + ··· + 𝑢𝑛𝑣𝑛

■ a scalar

■ a special case of matrix multiplication

Inner product: for two 𝑛-vectors, 𝑎 and 𝑏, the inner product or dot product is

⟨𝑎, 𝑏⟩ = 𝑎T𝑏 = 𝑎1𝑏1 + ··· + 𝑎𝑛𝑏𝑛

for example 
1
−2
0.5


T 

−2
6
4

 = (2) (−2) + (−2) (6) + (0.5) (4) = −14
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Matrix powers

■ if matrix 𝐴 is square, then product 𝐴𝐴 makes sense, and is denoted 𝐴2

■ more generally, 𝑘 copies of 𝐴 multiplied together gives 𝐴𝑘 :

𝐴𝑘 = 𝐴 𝐴 · ·· 𝐴︸    ︷︷    ︸
𝑘

by convention we set 𝐴0 = 𝐼

■ (non-integer powers like 𝐴1/2 are tricky — that’s an advanced topic)

■ we have 𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙
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Properties of matrix-matrix product

■ associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) so we write 𝐴𝐵𝐶

■ associativity with scalar multiplication: (𝛾𝐴)𝐵 = 𝛾(𝐴𝐵) = 𝛾𝐴𝐵

■ distributivity with sum:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

■ transpose of product: (𝐴𝐵)T = 𝐵T𝐴T

■ not commutative: 𝐴𝐵 ≠ 𝐵𝐴 in general; for example,[
−1 0
0 1

] [
0 1
1 0

]
≠

[
0 1
1 0

] [
−1 0
0 1

]
order of multiplication is important

■ 0𝐴 = 0, 𝐴0 = 0 (here 0 can be scalar, or a compatible matrix)

■ 𝐼 𝐴 = 𝐴, 𝐴𝐼 = 𝐴
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Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 × 2 block matrices[
𝐴 𝐵

𝐶 𝐷

] [
𝑊 𝑋

𝑌 𝑍

]
=

[
𝐴𝑊 + 𝐵𝑌 𝐴𝑋 + 𝐵𝑍

𝐶𝑊 + 𝐷𝑌 𝐶𝑋 + 𝐷𝑍

]
if the dimensions of the blocks are compatible
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Column and row representations

Column representation

■ 𝐴 is 𝑚 × 𝑝, 𝐵 is 𝑝 × 𝑛 with columns 𝑏𝑖

𝐴𝐵 = 𝐴
[
𝑏1 𝑏2 · ·· 𝑏𝑛

]
=
[
𝐴𝑏1 𝐴𝑏2 · ·· 𝐴𝑏𝑛

]
■ so 𝐴𝐵 is ‘batch’ multiply of 𝐴 times columns of 𝐵

Row representation

■ with 𝑎T
𝑖

the rows of 𝐴

𝐴𝐵 =


𝑎T1𝐵

𝑎T2𝐵
...

𝑎T𝑚𝐵

 =


(
𝐵T𝑎1

)T(
𝐵T𝑎2

)T
...(

𝐵T𝑎𝑚
)T


■ row 𝑖 is (𝐵T𝑎𝑖)T
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Matrix determinant

if 𝐴 is an 𝑛 × 𝑛 matrix, then the 𝑖 𝑗 th submatrix of 𝐴, denoted by 𝐴𝑖 𝑗 , is the
(𝑛 − 1) × (𝑛 − 1) obtained by deleting row 𝑖 and column 𝑗 of 𝐴; for example,

𝐴 =

[
1 2 3
4 5 6
7 8 9

]
, 𝐴12 =

[
4 6
7 9

]
, 𝐴32 =

[
1 3
4 6

]

Determinant: pick any value of 𝑖 (𝑖 = 1, 2, . . . , 𝑛) and compute

det(𝐴) =
𝑛∑︁
𝑗=1

(−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 )𝑎𝑖 𝑗

■ det(𝐴𝑖 𝑗 ) is called the minor of element 𝑎𝑖 𝑗
■ (−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 ) is called the cofactor of element 𝑎𝑖 𝑗
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Example

a) for a scalar matrix 𝐴 = [𝑎11], we have det(𝐴) = 𝑎11

b) for a 2 × 2 matrix, the determinant is

det(𝐴) = det

[
𝑎11 𝑎12
𝑎21 𝑎22

]
= 𝑎11𝑎22 − 𝑎21𝑎12

c) for the matrix 𝐴 =


1 2 3
4 5 6
7 8 9


– we have for 𝑖 = 1

𝐴11 =

[
5 6
8 9

]
, 𝐴12 =

[
4 6
7 9

]
, 𝐴13 =

[
4 5
7 8

]
– thus, the determinant is

det(𝐴) = (−1)2𝑎11 det(𝐴11) + (−1)3𝑎12 det(𝐴12) + (−1)4𝑎13 det(𝐴13)
= 𝑎11 det(𝐴11) − 𝑎12 det(𝐴12) + 𝑎13 det(𝐴13)
= 1(−3) − 2(−6) + 3(−3) = 0
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Properties of determinants

■ multiplication of a single row/column by a constant: if a single row or column of a
matrix, 𝐴, is multiplied by a constant, 𝑐, forming the matrix, 𝐴, then

det 𝐴 = 𝑐 det 𝐴

■ multiplication of all elements by a constant

det(𝑐𝐴) = 𝑐𝑛 det 𝐴

■ transpose
det 𝐴T = det 𝐴

■ determinant of the product of square matrices

det 𝐴𝐵 = det 𝐴 det 𝐵

det 𝐴𝐵 = det 𝐵𝐴
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Inverse

the matrix 𝐴−1 is said to be the inverse of the 𝑛 × 𝑛 matrix 𝐴 if it satisfies

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛

■ if 𝐴 has an inverse, it is called invertible or nonsingular

■ invertible matrices must be square

■ for a non-zero scalar 𝑎, inverse 𝑥 satisfy 𝑎𝑥 = 1 ⇒ 𝑥 = 1/𝑎 = 𝑎−1

■ a square matrix 𝐴 is invertible if and only if det(𝐴) ≠ 0

■ if 𝐴 doesn’t have an inverse, it’s called singular or noninvertible
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Example

a) the identity matrix 𝐼 is invertible, with inverse 𝐼−1 = 𝐼 since (𝐼)𝐼 = 𝐼

b) any 2 × 2 matrix 𝐴 is invertible if and only if 𝑎11𝑎22 ≠ 𝑎12𝑎21, with inverse

𝐴−1 =

[
𝑎11 𝑎12
𝑎21 𝑎22

]−1
=

1

𝑎11𝑎22 − 𝑎12𝑎21

[
𝑎22 −𝑎12

−𝑎21 𝑎11

]
for example [

1 −1
1 2

]−1
=
1

3

[
2 1
−1 1

]
the matrix [

1 −1
−2 2

]
does not have an inverse; let’s see why:[

𝑎 𝑏

𝑐 𝑑

] [
1 −1
−2 2

]
=

[
𝑎 − 2𝑏 −𝑎 + 2𝑏
𝑐 − 2𝑑 −𝑐 + 2𝑑

]
=

[
1 0
0 1

]
. . . but you can’t have 𝑎 − 2𝑏 = 1 and −𝑎 + 2𝑏 = 0
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c) a diagonal matrix

𝐷 =


𝑑11 0 · ·· 0
0 𝑑22 · ·· 0
... ...

. . . ...

0 0 · ·· 𝑑𝑛𝑛


is invertible if and only if 𝑑𝑖𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑛, and

𝐷−1 =


1/𝑑11 0 · ·· 0
0 1/𝑑22 · ·· 0
... ...

. . . ...

0 0 · ·· 1/𝑑𝑛𝑛


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Properties of inverse

■ (𝐴−1)−1 = 𝐴, i.e., inverse of inverse is original matrix (assuming 𝐴 is invertible)

■ (𝐴𝐵)−1 = 𝐵−1𝐴−1 (assuming 𝐴, 𝐵 are invertible)

■ (𝐴T)−1 = (𝐴−1)T (assuming 𝐴 is invertible)

■ (𝛼𝐴)−1 = (1/𝛼)𝐴−1 (assuming 𝐴 invertible, 𝛼 ≠ 0)

■ if 𝑦 = 𝐴𝑥, where 𝑥 ∈ R𝑛 and 𝐴 is invertible, then 𝑥 = 𝐴−1𝑦:

𝐴−1𝑦 = 𝐴−1𝐴𝑥 = 𝐼𝑥 = 𝑥

■ let 𝐴 be a square invertible matrix, then

(𝐴𝑝)−1 = (𝐴−1) 𝑝

for any integer 𝑝
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Linear functions

■ 𝑓 : R𝑛 → R𝑚 means 𝑓 is a function mapping 𝑛-vectors to 𝑚-vectors

■ value is an 𝑚-vector 𝑓 (𝑥) = ( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥))
■ example: 𝑓 (𝑥) = (𝑥21, 𝑥2 − 𝑥1, 𝑥2) is 𝑓 : R2 → R3

Linear function 𝑓 : R𝑛 → R𝑚 is linear if it satisfies superposition properties:

■ homogeneous (scaling): for any 𝑛-vector 𝑥, any scalar 𝛼, 𝑓 (𝛼𝑥) = 𝛼 𝑓 (𝑥)

■ additive: for any 𝑛-vectors 𝑢 and 𝑣, 𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣)

Example: 𝑓 (𝑥) = 𝑦, where

𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 =

[
𝑥3 − 2𝑥1
3𝑥1 − 2𝑥2

]
let’s check scaling property:

𝑓 (𝛼𝑥) =
[
(𝛼𝑥3) − 2(𝛼𝑥1)
3(𝛼𝑥1) − 2(𝛼𝑥2)

]
= 𝛼

[
𝑥3 − 2𝑥1
3𝑥1 − 2𝑥2

]
= 𝛼 𝑓 (𝑥)
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Matrix multiplication and linear functions

general example: 𝑓 (𝑥) = 𝐴𝑥, where 𝐴 is 𝑚 × 𝑛 matrix

■ scaling: 𝑓 (𝛼𝑥) = 𝐴(𝛼𝑥) = 𝛼𝐴𝑥 = 𝛼 𝑓 (𝑥)

■ superposition: 𝑓 (𝑢 + 𝑣) = 𝐴(𝑢 + 𝑣) = 𝐴𝑢 + 𝐴𝑣 = 𝑓 (𝑢) + 𝑓 (𝑣)

so, matrix multiplication is a linear function

Converse

■ every linear function 𝑦 = 𝑓 (𝑥), with 𝑦 an 𝑚-vector and 𝑥 and 𝑛-vector, can be
expressed as 𝑦 = 𝐴𝑥 for some 𝑚 × 𝑛 matrix 𝐴

■ you can get the coefficients of 𝐴 from 𝑎𝑖 𝑗 = 𝑦𝑖 when 𝑥 = 𝑒 𝑗
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Linear equations

an equation in the variables 𝑥1, . . . , 𝑥𝑛 is called linear if each side consists of a sum
of multiples of 𝑥𝑖 , and a constant, e.g.,

1 + 𝑥2 = 𝑥3 − 2𝑥1

is a linear equation in 𝑥1, 𝑥2, 𝑥3

Systems of linear equations: 𝑚 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ··· + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

■ can express compactly as 𝐴𝑥 = 𝑏

■ 𝑎𝑖 𝑗 are the coefficients; 𝐴 ∈ R𝑚×𝑛 is the coefficient matrix

■ 𝑏 ∈ R𝑚 is called the right-hand side

■ may have no solution, a unique solution, infinitely many solutions
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Classification of linear equations

𝐴𝑥 = 𝑏

■ under-determined if 𝑚 < 𝑛 (𝐴 wide; more unknowns than equations)

■ square if 𝑚 = 𝑛 (𝐴 square)

■ over-determined if 𝑚 > 𝑛 (𝐴 tall; more equations than unknowns)
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Example

two equations in three variables 𝑥1, 𝑥2, 𝑥3:

1 + 𝑥2 = 𝑥3 − 2𝑥1, 𝑥3 = 𝑥2 − 2

■ step 1: rewrite equations with variables on the lefthand side, lined up in columns,
and constants on the righthand side:

2𝑥1 +𝑥2 −𝑥3 = −1
0𝑥1 −𝑥2 +𝑥3 = −2

(each row is one equation)

■ step 2: rewrite equations as a single matrix equation:[
2 1 −1
0 −1 1

] 
𝑥1
𝑥2
𝑥3

 =
[
−1
−2

]
– 𝑖th row of 𝐴 gives the coefficients of the 𝑖th equation

– 𝑗 th column of 𝐴 gives the coefficients of 𝑥 𝑗 in the equations

– 𝑖th entry of 𝑏 gives the constant in the 𝑖th equation
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Solving square linear equations

■ suppose we have 𝑛 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛

■ compact matrix form: 𝐴𝑥 = 𝑏, where 𝐴 is an 𝑛 × 𝑛 matrix, and 𝑏 is an 𝑛-vector

■ suppose 𝐴 is invertible, i.e., its inverse 𝐴−1 exists

■ multiply both sides of 𝐴𝑥 = 𝑏 on the left by 𝐴−1:

𝐴−1 (𝐴𝑥) = 𝐴−1𝑏

■ lefthand side simplifies to 𝐴−1𝐴𝑥 = 𝐼𝑥 = 𝑥, so we’ve solved the linear equations:

𝑥 = 𝐴−1𝑏
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Square linear equation

set or system of 𝑛 linear equations with 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ··· + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

■ scalars 𝑎𝑖 𝑗 are called coefficients

■ the numbers 𝑏𝑖 are called right-hand-sides

Matrix notation
𝐴𝑥 = 𝑏

■ the 𝑛 × 𝑛 matrix 𝐴 is called the coefficient matrix

■ the 𝑚 vector 𝑏 is called the right-hand side
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Cramer’s rule

if det(𝐴) ≠ 0, then the square linear system 𝐴𝑥 = 𝑏 has a unique solution

𝑥 = 𝐴−1𝑏

we can find the solution using Cramer’s formula

𝑥𝑘 =
|𝐷𝑘 |
|𝐴| , 𝑘 = 1, 2, . . . , 𝑛

■ 𝐷𝑘 is the matrix obtained replacing the 𝑘 th column of 𝐴 by 𝑏

■ from Cramer’s formula (with some algebra), we have

𝐴−1 =
1

det 𝐴


det 𝐴11 det 𝐴21 · ·· det 𝐴𝑛1

det 𝐴12 det 𝐴22 · ·· det 𝐴𝑛1

...
... · ·· ...

det 𝐴1𝑛 det 𝐴2𝑛 · ·· det 𝐴𝑛𝑛

︸                                            ︷︷                                            ︸
adj 𝐴

𝐴𝑖 𝑗 , is the (𝑛 − 1) × (𝑛 − 1) obtained by deleting row 𝑖 and column 𝑗 of 𝐴
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Example: Cramer’s rule

0.3𝑥1 + 0.52𝑥2 + 𝑥3 = −0.01
0.5𝑥1 + 𝑥2 + 1.9𝑥3 = 0.67

0.1𝑥1 + 0.3𝑥2 + 0.5𝑥3 = −0.44
the determinant can be written as

|𝐴| =

������0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

������
the minors are:

𝐴11 =

���� 1 1.9
0.3 0.5

���� = 1(0.5) − 1.9(0.3) = −0.07

𝐴12 =

����0.5 1.9
0.1 0.5

���� = 0.5(0.5) − 1.9(0.1) = 0.06

𝐴13 =

����0.5 1
0.1 0.3

���� = 0.5(0.3) − 1(0.1) = 0.05
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Example: Cramer’s rule

|𝐴| = 0.3(−0.07) − 0.52(0.06) + 1(0.05) = −0.0022
Solution using Cramer’s rule

𝑥1 =

������−0.01 0.52 1
0.67 1 1.9
−0.44 0.3 0.5

������
−0.0022 =

0.03278

−0.0022 = −14.9

𝑥2 =

������0.3 −0.01 1
0.5 0.67 1.9
0.1 −0.44 0.5

������
−0.0022 =

0.0649

−0.0022 = −29.5

𝑥3 =

������0.3 0.52 −0.01
0.5 1 0.67
0.1 0.3 −0.44

������
−0.0022 =

−0.04356
−0.0022 = 19.8
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Linear equations with non-inveretible matrix

when 𝐴 isn’t invertible, i.e., inverse doesn’t exist

■ one or more of the equations is redundant (i.e., can be obtained from the others)

■ the equations are inconsistent or contradictory

in practice: 𝐴 isn’t invertible means you’ve set up the wrong equations, or don’t have
enough of them
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Solving linear equations in practice

■ to solve 𝐴𝑥 = 𝑏 (i.e., compute 𝑥 = 𝐴−1𝑏) by computer, we don’t compute 𝐴−1,
then multiply it by 𝑏 (but that would work!)

■ practical methods compute 𝑥 = 𝐴−1𝑏 directly, via specialized methods (studied in
numerical linear algebra)

■ standard methods, that work for any (invertible) 𝐴, require about 𝑛3 multiplies &
adds to compute 𝑥 = 𝐴−1𝑏

■ but modern computers are very fast, so solving say a set of 1000 equations in
1000 variables takes only a second or so, even on a small computer

■ . . . which is simply amazing
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