
Introduction to MATLAB

• Basics

• Vectors

• Matrices

• Plotting

Fall (2025) S. Alghunaim

1

Outline

• Basics

• Vectors

• Matrices

• Plotting

Basic commands

MATLAB is a computer program that provides the user with a convenient
environment for numerical computations and programming

• When MATLAB is ready to accept instructions, a command prompt (>>) is
displayed in the command window

• scalar addition, subtraction, multiplication, division, and exponentiation can be
computed using the symbols +,-,*,/ and ^, for example:

>> 2+2

ans = 4

• MATLAB automatically assigns the answer to a variable, ans; example:

>> ans*2

ans = 8

• assignment of values to variables can be done using equal sign; example:

>> a=2.23

a = 2.2300

creates a variable named “a” with value equal to 2.23 and displays result

Introduction to MATLAB 2

• result can be suppressed by terminating the command line with semicolon (;)

• text after (%) on same line are treated as comments and ignored
>> a=4; create variable ’a’ with value 4 without displaying result

• you can type several commands on same line by separating them with commas
or semicolons; if you separate them with commas, they will be displayed
>> a = 4,A = 6;x = 1;

a = 4

• e is used for powers of ten (e.g., 102 can be found using 1e2 or 10^2)

• MATLAB predefines the variables
– pi= 𝜋

– i=j =
√
−1 (imaginary number)

– Inf = ∞ and NaN means not a number

for example, we can create a complex number
>> x=pi+2i

x = 3.1416 + 2i

• MATLAB displays four decimal points; for additional precision, use format

long; we can switch back using format short

Introduction to MATLAB 3

• clear command deletes all objects from the workspace

• clear followed by the names of the variables removes specific variables; e.g.,

>> clear a %removes the variable ’a’ from the workspace

• clc command clears the command window

• save command, followed by the desired filename, saves the workspace to a
file, which has the .mat extension

• load command followed by the filename is used to load the data and objects
contained in a MATLAB data file (.mat file)

• in the command window, pressing the up or down arrow key scrolls through
previous commands and redisplays them at the command prompt
– typing the first few characters and then pressing the arrow keys scrolls through the

previous commands that start with the same characters
– the arrow keys allow command sequences to be repeated without retyping

Introduction to MATLAB 4

Built-in functions

function command√
𝑥 sqrt(x)

𝑒𝑥 exp(x)

sin(𝑥) sin(x)

cos(𝑥) cos(x)

tan(𝑥) tan(x)

tan−1 (𝑥) atan(x)

log10 𝑥 log10(x)

ln 𝑥 log(x)

Complex numbers

command meaning
real(x) real part of x
imag(x) imaginary part of x
abs(x) absolute value of x
angle(x) phase of x in rad/s
conj(x) complex conjugate of x

(for list of functions type help elfun)
Introduction to MATLAB 5

Rounding and remainder

command meaning
round(x) rounds to nearest integer
fix(x) rounds to nearest integer towards zero
floor(x) rounds down (towards negative infinity)
ceil(x) rounds up (towards positive infinity)
mod(x,y) modulus (signed remainder after division)
rem(x,y) remainder after division

Example

>> x = 2.3 - 4.7*i;

>> round(x); % results in (2 - 5i)

>> fix(x); % results in (2 - 4i)

>> floor(x); % results in (2 - 5i)

>> ceil(x); % results in (3 - 4i)

Introduction to MATLAB 6

Strings

• character strings can be represented by enclosing the strings within single
quotation marks; for example

>> f = ’Miles’;

>> s = ’Davis’;

• we can concatenate (i.e., paste together) strings as in

>> x = [f s]

x =

Miles Davis

• str2num(s) converts string s to a number

• num2str(n) converts number n to a string

Introduction to MATLAB 7

Relational operations

a relational operator compares two items and indicates whether a condition is true

relational operator meaning
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
∼= not equal to

• if true, a logical true (1) is returned; else, a logical false (0) is returned

• for example

>> 1>2

ans =

logical

0

Introduction to MATLAB 8

Logical operations

logical operator meaning
& logical AND
| logical OR
~ logical negation

• relational operators can be combined using logical operators

• for example, we can test the condition 0 < 𝑡 < 1 using

>>(t>0)&(t<1)

or

>>~((t<=0)|(t>=1))

Introduction to MATLAB 9

If statements

• if statements execute commands if a certain condition is met

if condition

statements

else

statments

end

• example: set 𝑥 = 5 if 𝑎 > 0 and 𝑥 = 100 otherwise

>> a = 15;

>> if a > 0,

x = 5;

else

x = 100

end

Introduction to MATLAB 10

For loop

• for statements loop a specific number of times, and keep track of iteration index

for index = values

statements

end

• example: determine the product of all prime numbers between 1 and 20

>> result = 1;

>> for n = 1:20 % iterate over ’n’ from 1 to 20

if isprime(n) % built-in function

result = result*n;

end

end

Introduction to MATLAB 11

While loop

while statements loop as long as a condition remains true

while expression

statements

end

example: find the first integer 𝑛 for which factorial(𝑛) is a 100-digit number

n = 1;

nFact = 1;

while nFact < 1e100

n = n + 1;

nFact = nFact * n;

end

Introduction to MATLAB 12

Anonymous function

an anonymous function provides a symbolic representation of a function defined in
terms of MATLAB operators, functions, or other anonymous functions

Example: we can define 𝑓 (𝑡) = 𝑒−𝑡 cos(2𝜋𝑡) as

>> f = @(t) exp(-t)*cos(2*pi*t);

• symbol @ identifies the expression as an anonymous function

• parentheses following @ symbol are used to identify variables (input arguments)

• 𝑓 (𝑡) can be evaluated simply by passing the input values of interest

>> t = 0; f(t)

ans = 1

Introduction to MATLAB 13

Example: piecewise functions

• the unit step function

𝑢(𝑡) =
{
1 𝑡 ≥ 0

0 𝑡 < 0

can be created using the command

>> u = @(t) 1.0*(t>=0);

• the function

𝑓 (𝑡) =
{
1 0 ≤ 𝑡 ≤ 2

−𝑡 −1 ≤ 𝑡 < 0

can be created using the command

>> f = @(t) 1.0*((t>=0)&(t <=2))-t*((t<0)&(t>=-1));

Introduction to MATLAB 14

Functions M-files

• script M-files file is a series of commands saved on a file that can be run at once

• function M-files can accept input arguments as well as return outputs

• a function M-file is identical to a script M-file except for the first line

• the general form of the first line is

function [outputs] = filename(inputs)

• an M-file is executed by simply typing the filename (without the .m extension)

Introduction to MATLAB 15

Example

M-file content

function [f1] = myfirsfunx(x)

% input x, output f1

f1 = sin(pi*x); % Calculate function f1

end

Execute function M-file

>> x = 2; % Define the input argument

>> [y] = myfirstfunc(x); % Output value is returned to y

Introduction to MATLAB 16

Outline

• Basics

• Vectors

• Matrices

• Plotting

Vectors

vector arrays are created using square brackets and semicolon

• we can create the row vector 𝑥 = [1 2 3] via the command

>> x = [1 2 3]

x = 2 0 3

• we can create the column vector 𝑦 =


−1
−2
−3

 via the command

>> y=[-1;-2;-3]

y =

-1

-2

-3

• (conjugate) transpose of a vector can be found using apostrophe

>> y’

ans =

-1 -2 -3

Introduction to MATLAB 17

Vector indexing and operations

Vector indexing

• the 𝑛th element of x can be extracted using x(n)

• we can use indexing to get a slice of a vector; for example, x(98:100) gives a
vector (x(98),x(99),x(100))

• end command automatically references the final index of an array; for example,

>> x(end-9:end) % extract final 10 values of vector x

• we can concatenate vectors to create a larger vector

>> a=[1;2];b=[1;1];c=[-1;-1]

>> d=[a;b;c]; % create concatenated vector

Vector operations

• vector addition and subtraction are carried out using the commands +,-

• element-by-element operations are computed using (.*, ./,.^); example:

>> u=[1 2 3]; v=[-1 -2 -3];

>> w=u.*v

w = -1 -5 -9

Introduction to MATLAB 18

Basic vector commands

command meaning
a:b:c vector with elements between a and c with increments b

(command a:c assumes increment of 1)
linspace(x1,x2,n) 𝑛-vector from x1 to x2 with equal spacing (x2-x1)/(n-1)

logspace(x1,x2,n) 𝑛-vector from 10x1 to 10x2 logarithmic spacing
sum(x) sums the elements of x
prod(x) return products of elements of x
max(x) return max value in x

min(x) return min value in x

sort(x) sorts elements in ascending order
ones(1,n)/zeros(1,n) row 𝑛-vector of all ones/zeros
ones(n,1)/zeros(n,1) column 𝑛-vector of all ones/zeros
length(x) returns the length of the vector x
x’y or dot(x,y) return inner (dot) product between vectors x and y

norm(x) return the 2-norm of vector x
flipud(x) reverses the order of elements in a column vector x
fliplr(x) reverses the order of elements in a row vector x

Introduction to MATLAB 19

Functions of vectors

• common built in functions operates elementwise on vectors and matrices

• example: to compute
√
𝑥 for all values (1, 2, . . . , 100), we can use

>> x = 1:100; y=sqrt(x);

• vectors can be used to represent points of a function 𝑓 over some interval

• for example, we can represent 𝑓 = sin(2𝜋10𝑡 + 𝜋/6) over 0 ≤ 𝑡 ≤ 2 using

>> t = linspace(0,2,500); %500 points between 0 and 2

>> f = sin(2*pi*10*t+pi/6)

• indexing in Matlab starts from 1

• for example, the value of 𝑓 (𝑡) at 𝑡 = 0 is the first element of the vector f(1)

Introduction to MATLAB 20

Example

𝑥 =


1
4
−2

(3 − 𝑗2)

 , 𝑦 =


−3

(5 + 𝑗7)
6
2


use Matlab to compute

(a) 𝑥 + 𝑦

(b) inner product 𝑥∗𝑦 =
∑4

𝑘=1 𝑥(𝑘)∗𝑦(𝑘)

(c) mean or average avg(𝑥) = (1/4)∑4
𝑘=1 𝑥(𝑘)

(d) average energy 𝐸𝑥 = (1/4)∑4
𝑘=1 |𝑥(𝑘) |2

(e) variance var(𝑥) = (1/4)∑4
𝑘=1 |𝑥(𝑘) − avg(𝑥) |2

Introduction to MATLAB 21

Solution:

(a) >> x = [1;4;-2;3-2*i];

>> y = [-3;5+7*i;6;2];

>> sum_xy = x + y;

(b) >> dot_xy = dot(x,y);

>> dot_xy = x’*y; % alternative computation

(c) >> mean_x = sum(x)/length(y);

>> mean_x = mean(x); % alternative computation

(d) >> avg_x = sum(x.*conj(x))/length(x);

>> avg_x = sum(x’*x)/length(x); % alternative computation

>> avg_x = norm(x)^2/length(x); % alternative computation

>> avg_x = mean(abs(x).^2); % alternative computation

(e) >> z=x-mean(x);

>> var_x = sum(z.*conj(z))/length(x);

>> var_x = sum(z’*z))/length(x); % alternative computation

>> var_x = mean(|z|.^2); % alternative computation

Introduction to MATLAB 22

Find function

the find allows us to find indices satisfying certain conditions

Example: find indices of vector 𝑥 bigger than 1

>> x=[1;-1;3;4]

>> find(x>1)

ans =

3

4

Introduction to MATLAB 23

Outline

• Basics

• Vectors

• Matrices

• Plotting

Matrices

matrices can be created similar to vectors using square brackets and semicolon

• we can create the 3 × 4 matrix 𝐴 =


2 3
4 5
0 6

 by the command

>> A = [2 3;4 5;0 6]

A = 2 3

4 5

0 6

• (conjugate) transpose of a matrix can be found using apostrophe

>> A’

ans =

2 4 0

3 5 6

Introduction to MATLAB 24

Matrix indexing

• element (𝑘, 𝑙) of matrix A can be extracted using A(k,l)

• subblocks of A can be extracted using indexing; for example

>> A = [1 2 3;

0 4 5;

0 0 6];

>>A(1:2,2:3)

ans = 2 3

4 5

A(2,:) selects all column elements along the second row

>> A(2,:)

ans = 0 4 5

• we can concatenate arrays to create larger arrays; for example

>> a = [1;0;0]; B = [2 3;4 5;0 6]

>> C = [a B]

C = 1 2 3

0 4 5

0 0 6

Introduction to MATLAB 25

• repmat command replicate objects; for example

>> u=[1 2]; repmat(u,1,3)

ans = 1 2 1 2 1 2

>> u=[1 2]; repmat(u,2,1)

ans = 1 2

1 2

Matrix operations

• matrix addition and multiplications are carried out using the commands +,-,*

• matrix power can be found using ^ (e.g., A^3)

• element-by-element operations are computed using .*, ./,.^

• passing a matrix into a function computes the function elementwise

Linear equation: we can solve Ax=b using backlash operator (left division):
x=A\b, which is more computationally efficient than inv(A)*b

Introduction to MATLAB 26

Basic matrix commands

command meaning
sum(A) returns a row vector containing the sum of each column
sum(A,2) returns a column vector containing the sum of each row
sum(A,"all") returns the sum of all elements of A
prod(A) returns a row vector containing the sum of each column
max(A)/min(A) return max/min value in A

eye(m) 𝑚 × 𝑚 identity matrix
ones(m,n)/zeros(m,n) 𝑚 × 𝑛 matrix of all ones/zeros
diag(x) creates diagonal matrix with diagonal elements x
length(A) returns the length of the largest array dimension in A

size(A) returns the size of the array A
det(A) determinant of a square matrix A
inv(A) inverse of a square matrix A
eig(A) computes eigenvalues and eigenvectors of A
rank(A) computes rank of A
norm(A) return the 2-norm of A
norm(A,"fro") return the Frobenius norm of A
flipud(A) reverses the order of rows of A
fliplr(A) reverses the order of columns of A

Introduction to MATLAB 27

Outline

• Basics

• Vectors

• Matrices

• Plotting

Plot commands

command meaning
plot(x,y) Plots the vector x versus the vector y
semilogx(x,y) The x-axis is log10; the y-axis is linear
semilogy(x,y) The x-axis is linear; the y-axis is log10.
loglog(x,y) Creates a plot with log10 scales on both axes

• there are also several other 2D graphical functions in MATLAB including

stem, bar, hist, polar, stairs, ...

• clf command clears the current figure window

• axis equal command ensures that the scale used for the horizontal axis is
equal to the scale used for the vertical axis

• we can add labels, change axis range, plot color,...etc

Introduction to MATLAB 28

Plot command

>> t = linspace(-0.2,0.2,500);

>> f = sin(2*pi*10*t+pi/6);

>> plot(t,f);

>> axis([-0.2 0.2 -2 2]) % plot range

>> xlabel(’t’); ylabel(’f(t)’); % label the x and y axis

>> title(’sin(2*pi*10*t+pi/6)’); %label the title

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
t)

sin(2*pi*10*t+pi/6)

Introduction to MATLAB 29

Stem command
the stem command can be used to plot 𝑓 [𝑘] against discrete 𝑘

>> k = -20:20;

>> f = 2*cos(0.5*k);

>> stem(k,f,,k,’filled’); %’k’ for black and filled circle

>> xlabel(’k’); ylabel(’f[k]’);

>> axis([-25 25 -3 3])

-3

-2

-1

0

1

2

3

f[
k
]

-25 -20 -15 -10 -5 0 5 10 15 20 25

k

Introduction to MATLAB 30

Multiple curves
plot command can accommodates multiple curves

>> t = linspace(0,0.2,500);

>> f = sin(2*pi*10*t+pi/6);

>> g = exp(-10*t);

>> h = f.*g;

>> plot(t,f,’-k’,t,h,’:k’,’linewidth’,2);

>> xlabel(’t’); ylabel(’Amplitude’);

>> legend(’f(t)’,’h(t)’);

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t

-1

-0.5

0

0.5

1

A
m

p
lit

u
d

e

f(t)

h(t)

Introduction to MATLAB 31

Plotting using anonymous functions

we can use anonymous functions for potting

>> f = @(t) exp(-t).*cos(2*pi*t);

>> t = (-2:0.01:2);

>> plot(t,f(t),’k’,’linewidth’,1.4);

>> xlabel(’t’); ylabel(’f(t)’);

>> grid; % adds grid lines

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

t

-6

-4

-2

0

2

4

6

8

f(
t)

Introduction to MATLAB 32

Example

plot 𝑓 (𝑡) = 𝑒−𝑡𝑢(𝑡) over −1 ≤ 𝑡 ≤ 3:

>> u = @(t) 1.0*(t>0);

>> f = @(t) exp(-t).*u(t);

>> t = -1:0.0001:3;

>> subplot(2,1,1) % create multiple graphs in one figure

>> plot(t,f(t),’k’)

>> axis([-1 3 -0.25 1.25]);

>> xlabel(’t’); ylabel(’f(t)’);

we can also evaluate a function by passing it an expression; this makes it very
convenient to evaluate expressions such as 𝑓 (1 − 𝑡), for example:

>> subplot(2,1,2)

>> plot(t,f(1-t),’k’)

>> axis([-1 3 -0.25 1.25]);

>> xlabel(’t’); ylabel(’f(1-t)’);

Introduction to MATLAB 33

-1 -0.5 0 0.5 1 1.5 2 2.5 3

t

0

0.5

1

f(
t)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

t

0

0.5

1

f(
1
-t

)

Introduction to MATLAB 34

Family of curves
matrices can be used to create a family of curves

>> alpha = (0:10);

>> t = (0:0.001:0.2)’; %defined as column vector

>> T = repmat(t,1,11); %matrix T, columns t repeated 11 times

>> H = exp(-T*diag(alpha)).*sin(2*pi*10*T+pi/6);

>> plot(t,H,’k’); xlabel(’t’); ylabel(’h(t)’);

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t

-1

-0.5

0

0.5

1

h
(t

)

ℎ𝛼 (𝑡) = 𝑒−𝛼𝑡 sin(2𝜋10𝑡 + 𝜋/6) for 𝛼 = [0, 1, . . . , 10]

Introduction to MATLAB 35

	Basics
	Vectors
	Matrices
	Plotting

