ENGR 308 (Fall 2025)

e polynomial interpolation
e Newton divided difference
e Lagrange interpolation

o spline interpolation

7. Interpolation

S. Alghunaim

71

Polynomial interpolation

construct an nth-order polynomial
fa(X) =ao+aix +asx® + -+ ax"
that passes exactly through the given data points

e nth order polynomial requires n + 1 data points
e examples: (a) n = 1 straight line; (b) n = 2 parabola; (c) n = 3
A

A A

Y
Y

(@) ® (©)

polynomial interpolation

Y

The need for interpolation

e building blocks for other, more complex algorithms in differentiation, integration,
solution of differential equations, approximation theory, ...

- e.g., finding approximations for derivatives and integrals of a complicated function

e used for prediction: provides a formula to estimate intermediate values x other
than the available data, xg, ..., x,

— interpolation: x is inside the smallest interval containing all the data
— extrapolation: x is outside that interval

&
; Interpolation _iExtlapoIatlon

True
curve

:“ Extrapolation

1 ' of Interpolating
1 .

1 polynomial

1
1
1
1
1
1
i

X

) P
K

polynomial interpolation

7.3

Polynomial interpolation via linear equations

fit polynomial f, (x) = 3" _, arx® to data (xg, f(x0)), . .., (xn, f(xn))

e substitute {(x;, f(x;))}1, in f,(x) yields n + 1 linear equations Xa = f:

1oxo x5 - xg|fao] [f(xo)
1 oxy x2 o x| || _ | f(x0)
1 xp X,21 Xﬁ an f(xn)

coefficient matrix X known as Vandermonde matrix
e X is invertible for distinct x; = unique polynomial coefficient

e given three points (xq, f(xg)), (x1, f(x1)), (x2, f(x2)), substitute to obtain

f(XO) =dag+aixg+ agxg 1 xg X% ag f(xo)
f(xl) =dag+aix;+ an% — 1 x x% ai| = f(xl)
f(x2) = ag +a1xz + asx; 1 xy x2||as| L[F(x2)

polynomial interpolation

7.4

Example

e fit a polynomial, fi(x) = ag + a1x, through (1, 1) and (2, 3)

— the interpolating conditions are
ao
ai

e fit a polynomial f5(x) = ag + a1 x + a-x? through (1, 1), (2, 3), (4, 3)

1 1

1 2 3

=[1]=>a0=—1, a1=2= fi(x)=2x-1

— 3 X 3 linear system for the unknown coefficients cj:

1 1 171[ae] [1
1 2 4f|ai|=1|3|=a0=-% a1=4, az=-%
1 4 16||az| |3

— the desired interpolating polynomial is

—2xZ+12x -7
3

e forinstance atx = 3, f2(3) = 13—1 = 3.6667, which is lower than f1(3) =5

fo(x) =

polynomial interpolation

7.5

Efficiency and numerical cautions

Solving Vandemonde system

e forming and solving a full Vandermonde system is not the most efficient path
e Vandermonde matrices are ill-conditioned for large n or widely spaced x;

e small data or rounding errors can produce large coefficient errors

Special algorithms

e specialized algorithms are faster and more stable

e two forms especially useful for computer implementation:
1. Newton polynomial

2. Lagrange polynomial

e allows forming f;, (x) directly without solving for all ag

polynomial interpolation

7.6

Outline

e polynomial interpolation
o Newton divided difference
e | agrange interpolation

® spline interpolation

Linear interpolation (first-order)

e connect two data points (xg, f(xg)) and (x1, f(x1)) with a straight line

e from similar triangles, we get the linear interpolation formula:
fe)

Ji(x) = f(xo) _ f(x1) = f(x0) R
X —Xg X1 — Xg]
—
f(x1) = f(xo) b b
fi(x) = f(xo) + ———(x —x0) | P
X1~ Xo | P
’Eﬂ "K‘ ;1 x
e slope f[x1,xq] = LEU=S0) s firt finite divided difference of 1st-derivative

X1—Xo
— as x1 — xo, first divided difference f[x1,x0] — f’(xo) for smooth f

e asinterval [xg,x1] shrinks, f is better approximated by a straight line

Newton divided difference

77

Example

estimate In 2 = 0.6931472 on [1, 6] and [1, 4]
(a) interpolate on [1,6]: usingln1 =0,1n6 = 1.791759,

f1(2) = 0+ L1190 1) = 0.3583519, &, = 48.3%
(b) interpolate on [1,4]: usingIn1 =0, In4 = 1.386294,

f1(2) = 0+ L1:388294=0(2 _ 1) = 0.4620981, &, = 33.3%

f@
2 f@=Inx

True
value SACH)

Linear estimates

Newton divided difference

7.8

Quadratic (parabola) interpolation (second-order)

to introduce curvature, use three points (xq, f(xo)), (x1, f(x1)), (x2, f(x2))

Newton form quadratic polynomial
fa(x) = bo + b1(x — x0) + b2(x — x0)(x — x1)

e equivalent to the standard quadratic ag + a1x + asx? via collecting terms

e coefficients determined by enforcing exactness at xg, x1, X2:

_) = fxo)

X1 —Xo

bO:f('xo)’ bl

J(x2) = flx1) f(x1) - f(xo)

X2 — X1 X1 —Xo

by =

X2 — X0

e by is first divided difference, and b is second divided difference

Newton divided difference

Example

use quadratic interpolation for In 2 given data
xo=1, f(x0) =0; x1 =4, f(x1)=1.386294; x5 =06, f(x2)=1.791759

using previous formulas, we have

1.386294 — 0
bo=f(x0) =0, b1 = — -1 - 0.4620981
1.791752 - i.386294 04620081
by = = T = —0.0518731

hence, the interpolant:
fo(x) =0+0.4620981(x — 1) — 0.0518731(x — 1)(x — 4)

and the estimated value at x = 2 is

~0.6931472 - 0.5658444

2) = 0.5658444 = 100% = 18.4
£(2) = 0.5658444, & 6931172 x 100% = 18.4%

Newton divided difference 7.10

Example

f) 4

f@)=Inx—a

Quadratic estimate
Linear estimate

e quadratic interpolant improves over linear case; added curvature reduces error

e linear: exact at xq, x1; error proportional to local curvature (second derivative)

e quadratic: exact at xg, x1, Xo; incorporates a second-order term via b, thus
better tracks smooth curvature of In x near x = 2

Newton divided difference

7.1

Newton interpolating polynomial

Newton polynomial: nth-order Newton interpolating polynomial for n + 1 points:
Jn(x) = bo+b1(x—x0) +b2(x—x0) (x —x1) + -+ by (x —x0) (x —x1)++ (X —Xp-1)
e coefficients determined by enforcing exactness at xg, x1,...,x,

e by computed using only f(xq); b1 computed using only (xg, f(x0)), (x1, f(x1))

e --- b, computed using (xg, f(x0)), (x1, f(x1)), ..., (xn, f(xn))

e allows introducing interpolation data (x;, y;) one pair at a time

Newton divided difference 712

Coefficients in terms of finite divided differences

fa(x) = bo+b1(x=x0) +ba(x—x0) (X =x1)+ - +bp(x—x0) (X —x1) - (X =Xp_1)

e coefficient b; is jth finite divided differences:

bo = f(x0), b1 = f[x1,x0], b2 = flx2,x1,x0], ...

e recursive definitions:

Flogry) = L0 =T
X —X;
flxioxi] = flxj, xi]

Xi — Xk

flxixj,x,] =

flxn, -

Sx1] = flxn-1,- .

,X0]

5 bn = f[xn’-xn—ls ..

. .,Xo] =
Xn — X0

Newton divided difference

-,Xo]

1st finite divided difference

2nd finite divided difference

nth finite divided difference

713

Recursive computation of divided differences

e example structure:

I X; fix) First Second Third

0 Xo ixo) I, Xo] Xz, X1, Xo] * fXa, X2, X4, Xol
1 X fa) X X1] flxa, X2, X1]

2 X2 flx2) flxs, X2]

3 X3 1)

o the divided difference coefficients satisfy the recursive formula

flxis.oooxal = flxi-1,. .., x0]

Xi —Xo

f[-xi’xi—19 e ’xO] =
require to compute for 0 < k < j <i < m:

f[Xj,.. .,xk+1] —f[xj,l, . ..,xk]
Xj — Xk

Flxil =), flxje.xid =
e higher-order differences are computed from lower-order ones

e this recursive property is the basis of efficient computer algorithms

Newton divided difference 714

Example

extend last example to cubic interpolation for In 2 using points:
xo=1, f(xo) =0; x1 =4, f(x1)=1.386294
xo =6, f(xo) =1.791759; x3=05, f(x3) =1.609438

i X flxil flxivr, xi] | flxie2, xien,xi] | flxs, x2,x1,x0]
1 0 0.4620981 —-0.05187311 0.007865529
4 | 1.386294 | 0.2027326 —0.02041100

2| 6 | 1.791759 | 0.1823216
5

3 1.609438
for example
flx1, x0] = 1382340 = 0.4620981
Flxo,x1,%0] = & 2027322_({ 4620981 _ _(05187311
F s, X2, X1, X0] = —0.020411005:_(10.05187311) — 0.007865529

Newton divided difference 715

Example

resulting polynomial coefficient extracted from first row:

f3(x) = 0+0.4620981(x — 1) — 0.05187311(x — 1) (x — 4)
+0.007865529(x — 1) (x — 4)(x — 6)

estimate at x = 2 (true value In 2 = 0.6931472):

f3(2) = 0.6287686, &, = L09BLITZ0.628T686 5 100% = 9.3%

S
1)

2

- f@=Inx

Cubic
estimate

Newton divided difference

Error of Newton interpolating polynomial

structure of Newton polynomial resembles a Taylor series expansion
fn(x) = f(x0) + (x = x0) f[x1,X0] + -+
if f(x) is truly an nth-order polynomial, the interpolating polynomial is exact

analogy with Taylor series remainder for nth order polynomial:

_ fm(g)

"= T (x —x0)(x = x1)--(x —x,,), €& lies within the data interval

practical difficulty: f**1) (£) is usually unknown
alternative finite difference formulation

Ry = flx,xn,...,x0] (x —x0)(x —=x1) - (x — x3,)
if an extra data point f(x,+1) is available, error can be estimated as

R, ~ f[xn+1,xns cee ’XO](X _xO)(x _xl)"'(x _xn) = fn+1(x) - fn(x)

Newton divided difference 717

Example: error estimation

estimate error of quadratic interpolant for In 2 using extra point f(5) = 1.609438
e from page 7.10, quadratic estimate f>(2) = 0.5658444

e true error
E, =0.6931472 — 0.5658444 = 0.1273028

e from page 7.15, we have f[x3,x2,x1,x0] = 0.007865529
e error estimate:

Ry = flx3,x2,x1,%0](x = 1)(x = 4)(x - 6)
= 0.007865529(2 — 1)(2 = 4)(2 - 6) = 0.0629242

estimate is of the same order of magnitude as the true error

Newton divided difference

7.18

Outline

e polynomial interpolation
o Newton divided difference
e Lagrange interpolation

® spline interpolation

Lagrange interpolating polynomials

Fulx) = 20 Li(x) f(x1)

where

X—x]'

Li(x) = 1

Jj=0 Xi —)Cj

J#

150

100

50

-50

=100

-150

Third term

Summation
of three
terms = f(x)

First term

30

Second term

e a reformulation of Newton polynomial that avoids divided differences

e each L;(x) is 1 at x = x; and 0 at other sample points

e the sum is the unique nth-order polynomial that passes through all n + 1 points

Lagrange interpolation

7.19

First-, second-, third-order Lagrange polynomial

o first-order polynomial (n = 1):

X —

filx) =

T fg) + 2 f(xy)
0— X1 X0

X X1 —
e second-order polynomial (n = 2):

(x = x0) (x — x2)
(x1 = x0) (x1 — x2)

(x = x1)(x = x2)

(x0 = x1)(x0 — x2)
(x — x0) (x — x1)
(x2 = x0) (x2 —x1)

fa(x) =

f(xo) +

f(x1)

f(x2)
e third-order polynomial (n = 3):

(x = x0) (x — x2) (x — x3)
(1 = x0) (x1 = x2)(x1 — x3)
(x = x0) (x —x1) (x — x2)
(x3 = x0) (x3 — x1)(x3 — X2)

(x = x1)(x = x2) (x — x3)
(x0 = x1) (x0 — x2) (x0 — x3)
(x = x0) (x — x1) (x — x3)
(x2 — x0) (x2 —x1) (x2 — x3)

f3(x) = f(xo) + f(x1)

flx2) + f(x3)

Lagrange interpolation 7.20

Example

use Lagrange first-order interpolation to estimate In 2 with data
X0 =]., f(xo) = 0, X1 = 4, f(xl) = 1.386294

we have 9_4 9_1

extending the example with three points

X0 = 1, f(XO) = O, X1 = 4, f(xl) = 1386294, Xg = 6, f(XQ) =1.791760

gives
2-492-6) , 2-1D@2-6)

R@=a=pa-e "t a a9
(2-1)(2-4)
(6-1)(6-4)

- 1.386294

-1.791760 = 0.5658444

Observation: agrees with the Newton interpolation

Lagrange interpolation 7.21

Example: parachutist velocity interpolation problem

estimate v(10) by polynomial interpolation of orders n = 1, 2, 3, 4 given data

] 13 5 713
v[800 2310 3090 3940 4755

(a) quartic (n = 4): use all five points

(b) cubic (n = 3): use {(3,2310), (5, 3090), (7, 3940), (13, 4755)}
(c) quadratic (n = 2): use {(5,3090), (7,3940), (13,4755)}

(d) linear (n = 1): use {(7,3940), (13,4755)}

note: selecting nearest neighbors typically improves stability and accuracy

Lagrange interpolation

7.22

Computed estimatesat7 = 10 s

6000 — (a) 6000 — (b)

g C C

anoo 3000/_-\

< L
oM i ML NN
0 5 10 15 0 5 10 15

6000 — (c) 6000 — (d)

@ C C

%3000_ 3000 [—
oMy NLINEE NN
0 5 10 15 0 5 10 15

t () t(s)

higher orders (cubic, quartic) overshoot trend betweent =7 and t = 13

higher-degree polynomials are ill-conditioned and sensitive to data spacing/noise
o prefer low-order interpolation with nearby points for local estimates
e for noisy data, consider regression (least squares) rather than exact interpolation

e for many points over a range, consider piecewise low-order methods (e.g., splines)

Lagrange interpolation 7.23

Inverse interpolation

inverse problem: given f(x) = f*, determine x

e eg., findx suchthat f(x) = £ = 0.3 = true value x = 3.333

X

e x values typically evenly spaced

example: f(x) =1/x
x |1 2 3 4 5 6 7

F |1 05 03333 025 0.2 0.1667 0.1429

Naive approach: swap variables and interpolate x vs f(x)

y=f(x)]0.1429 0.1667 0.2 0.25 0.3333 0.5 1

g(y)=x‘ 7 6 5 4 3 2 1

e but f(x) values are nonuniform = abscissa “telescoped”

e this often causes oscillations even with low-order polynomials

Lagrange interpolation

7.24

Polynomial strategy for inverse interpolation

alternative approach:
e fit interpolating polynomial f;, (x) to original data (f (x) vs x)

e then solve f,(x) = f™ for x using root-finding methods
Example: fit quadratic through (2, 0.5), (3, 0.3333), (4, 0.25)
f2(x) = 1.08333 — 0.375x + 0.041667x>
solve for f(x) = 0.3:
0.3 = 1.08333 — 0.375x +0.041667x>

quadratic formula:

0375 + /(<0.375)2 — 4(0.041667)(0.78333)
t= 2(0.041667)

roots: x = 5.704, 3.296
= choose x = 3.296 as approximation to true 3.333

Lagrange interpolation

7.25

Outline

e polynomial interpolation
o Newton divided difference
e | agrange interpolation

e spline interpolation

Spline interpolation

e apply lower-order polynomials to subsets of data points

e these connecting polynomials are called spline functions

i N e

Fas V:J .-
) x 0 x 0} *)
@ ®) © @

e higher-order polynomials oscillate wildly near abrupt changes
e splines (limited to lower-order curves) minimize oscillations

e 15 data points = n — 1 intervals; each interval i has spline s; (x)

1@

5:,6) 5,00 5510
5 S 5
2 - !
A—e.. . 5 S e 3 '
Interval Interval ‘ Interval
i n=1
* X X e Xy X X

data points where two splines meet are called knots or break points

spline interpolation

Linear splines

e straight line between two adjacent points with [x;, x;41],i=1,...,n—1

e called piecewise linear or broken line interpolation

Linear spline: for interval [x;, x;+1], use Newton first-order polynomial

Jin— fi ﬁ

Xi+1 —

si(x) =a; + bi(x —xi), a; = fi, bi

therefore,

Jir1 - fi

Xi+1 — Xi

si(x) = fi +

———(x—x;), for xe€ [x;xi1]

e 1 data points = n — 1 intervals
e each s;(x) can be used to evaluate f between (x;, x;+1)

e resulting interpolant is continuous but not differentiable at knots

spline interpolation

7.27

Example

fit the data in table with first-order splines and evaluate the function at x = 5

e 4 data points = 3 intervals

e spline in interval i:

Jin— fi

Xi+1l — Xi

si(x) = fi+ ———(x —x;)

e for the second interval (x = 4.5to x = 7),

sz(x)—10+$ (x—4.5)

evaluating at x = 5:

52(5) = 1.0+ 25=2:2(5 - 4.5) = 1.3

el

spline interpolation

7.28

Example

f@®)
First-order
spline
2
0 -
2 4 6 8 10 X

Remarks

e first-order splines connect data with straight lines
e disadvantage: not smooth at knots (slope changes abruptly)
o first derivative is discontinuous at joining points

e higher-order splines overcome this by enforcing derivative continuity

spline interpolation

7.29

Quadratic splines

spline of at least n + 1 order need to ensure nth derivatives are continuous at knots

e quadratic splines require continuous first derivatives at knots

e goal: for n data points (x;, f;), construct piecewise quadratics on n — 1 intervals

[Xi,xi+1]

Quadratic spline: for interval i:
5i(x) = a; + bi(x — x;) + i (x — x;)°

for n data points (i = 1, . .., n):
e n — lintervals = 3(n — 1) unknowns (a;, b;, ¢;)

e need 3(n — 1) conditions to solve system

spline interpolation 7.30

Conditions for quadratic splines

Continuity at points (pass through data)
fi=ai+bi(xi —x) +ci(xi —x;)* = a;=f;

s0
si(x) = fi+bi(x —x;) +¢i(x = x;)?

reduces unknowns to 2(n — 1)

Function continuity at knots: define i; = x;41 — x;, then

5i(Xi41) = Si01 (K1) = fi + bihi + cih? = fiur, i=1,...

Derivative continuity at interior knots

s;(x) = b,‘ +2c,-(x —X[) - b[+2€ih[= b[+1, i=1,...

Zero second derivative at first point
Cc1 = 0
this implies first two points will be connected by a straight line

spline interpolation

7.31

Example

fit quadratic splines to the data

use the results to estimate the value of the function at x = 5

e for four data points (n = 4) we have n — 1 = 3 intervals

e after continuity condition and zero 2nd-derivative condition (c¢; = 0), we need
24-1)-1=5

conditions

spline interpolation

7.32

Example

continuity at knots yields (with ¢; = 0)
Si+bih = fo
fo+bohy +cahl = f3
S+ bshs + Cshg =fa
derivative continuity conditions (with ¢; = 0)
by = by
bo +2coho = b3
function and interval widths #; = 1.5, ho = 2.5, hz = 2.0

putting things together, results in the system of linear equations:

1.5 0 0 0 0]|b1 -1.5
0 25 625 0 0]]|bs 1.5
0 0 0 2 Allec2| =] -2
1 -1 0 0 0]]|bs 0
0 1 5 =1 0]]ecs 0

spline interpolation

Example

solution is
by =-1, ba=-1, c2=064, b3=2.2, c3=-1.6
and the quadratic splines are
s1(x) =2.5-(x—-3)
so(x) = 1.0 = (x —4.5) + 0.64(x — 4.5)?
s3(x) =2.5+2.2(x — 7.0) — 1.6(x — 7.0)?
so, our estimate atx = 5 is

s2(5) = 1.0 — (0.5) + 0.64(0.5%) = 0.66

FfA
- Second-order
spline
2 —
0 |

=Y

spline interpolation

Cubic splines

e linear and quadratic splines lack smoothness or symmetry
e cubic splines are most commonly used

e require continuous 1st and 2nd derivatives at knots

goal: for n data points (x;, f;), construct piecewise cubics on n — 1 intervals

[xi, Xis1]

Cubic splines: for each interval on interval 7, use
5i(x) = a; + bi(x = x;) + ¢;(x = x;)* + d;i (x — x;)°

unknowns per interval: a;, b;, ¢;, d; = total 4(n — 1) unknowns

spline interpolation 7.35

Cubic spline interpolation

on [X;, Xis1],

5i(xX) = fi +bi(x —x;) + i (x —x0) + di (x — x;)*

1. solve tridiagonal system for c1, ..., cp:

1 0 0 0 1 0
hi 2(hi+h2) ke c2 3(f[x3, x2] = fx2.x1])

hy—o 2(hp—2 +hp_1) hp—1||€n-1 3(f[xnvxn—1] - f[xn—lv-xn—2])
0 0 0 1 Cn 0

2. back-substitution for remaining coefficients

Ci+1 — Ci
di =
3y
h.
bi = lehz fi gl (2¢; + civ1)

spline interpolation 7.36

Derivation

Continuity at points (pass through data): at x = x;,
fi=ai = a;=f;

50 5;(x) = fi + by (x = x;) + ¢i(x = x;)? + di (x = x;)°

Function continuity at knots: with #; = x;,1 — x;

fi +bihi +cih? + dih} = finy

First-derivative continuity
sH(x) = by + 2¢;(x — x;) +3d; (x — x;)?
at xj4+1,
bi +2cih; +3d;h? = by
Second-derivative continuity
s7(x) = 2¢; + 6d; (x — x;)

at xj4+1,
¢ +3dih; = ciy1

spline interpolation 7.37

Derivation

eliminate d;:
Ciyl — Ci

4=
3h;

substitute back into first two equations:

h2
fi+bihi+— (2Cl+cz+1)—fz+1

biy1 = b+ hi(c; + Ci+1) = b;=bj_1+hi_1(ci—1+c;)

solve first equation for b; and shift index:

i i hi
b; = f+1h, L 3 (2¢; + civn)
. h
bi-1 = % - lTl (2¢i-1+¢i)

we now substitute these two equations into

bi =bi—1+h;i—1(ci-1+c¢;)

spline interpolation

7.38

Derivation

putting things together yields a relation for c:

Jiv1 — fi _fi—fi—l)

hi—1ci—1 +2(hi—1 + hi)ci + hiciyy = 3(
h; hi—q

Ji—Ji

xi—xj’

or with divided differences notation f [x;,x;] =

hi—icicy + 2(hi—y + hi)e + hicivr = 3(f [xiv1, xi] = fxi, xi-1])
in matrix form, this yields a tridiagonal system of linear equations
Natural end conditions (straight at ends): 2nd derivatives vanish at the endpoints:

s7(x1)=0 = ¢1=0

s 1(xn) =0 = cyo1+3dp1hy_1=c, =0

where we introduced an extraneous parameter c;,

spline interpolation 7.39

Example

fit cubic splines to the data

use the results to estimate the value of the function atx = 5

tridiagonal system of equations

1 C1 0
hy 2(h1 +l’l2) ho Co _ 3(f[X3,X2] —f[xg,xl])
ha 2(hy + h3) hs3| |c3 3(f [xa.x3] = flx3,x2])
1 Cy 0
data values:

h) =45-30=15, hy=70-45=25, h3=9.0-70=2.0

spline interpolation 7.40

Example

matrix system becomes

1 0 0 0]fc1 0
1.5 8 25 0]|ca| |48
0 25 9 2||cs| [|-48
0 0 0 1If]ca 0

solution: ¢1 =0, ¢o =0.8395, ¢3 = —0.7665, ¢4 =0

compute b; and d;:

by =-1.4198, d; = 0.1866
by = —-0.1605, dy = —0.2141
b3 =0.0221, d3 = 0.1278

spline interpolation 7.41

Example

final cubic splines

s1(x) = 2.5 — 1.4198(x — 3) + 0.1866(x — 3)3
s2(x) = 1.0 — 0.1605(x — 4.5) +0.8395(x — 4.5)% — 0.2141(x — 4.5)3
s3(x) = 2.5 +0.0221(x — 7) — 0.7665(x — 7)? +0.1278(x — 7)*

estimate at x = 5 (interval 2): 52(5) = 1.103

F@®)
Cubic Interpolating
spline cubic
2
0 1

cubic spline fit shows smoother and more accurate behavior than linear/quadratic

spline interpolation

End conditions for cubic splines

Natural: c; =0, ¢, =0 (spline straightens at endpoints)

Clamped: specify first derivatives at first and last nodes
2h1cy + hico = 3f[x2,x1] = 3f]
hp_1Cp—1 +2h,_1cp = 3fy; - 3f[xm Xn-1]

Not-a-knot: enforce third derivative continuity at 2nd and next-to-last knots
h26‘1 - (l’ll + /’lg)CQ + h1C3 =0
hn—lcn—Q - (hn—2 + hn—l)cn—l + hn—2cn =0

@

Not-a-knot

spline interpolation 7.43

References and further readings

e S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.18)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.17, 18)

references

7.44

	polynomial interpolation
	Newton divided difference
	Lagrange interpolation
	spline interpolation
	references

