ENGR 308 (Fall 2025)

6. Least squares regression

e curve fitting and statistics

e straight line fit to data

e linearization of nonlinear equations
o fitting a polynomial to data

e multiple linear regression

e general linear least squares
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Curve fitting: motivation

e data are often available only at discrete points along a continuum
e we may need estimates at points between known values

e we can use simple function to approximate complicated data

e this is called curve fitting

Regression Interpolation

e data contain significant error or noise
e data are very accurate

e derive curve representing general trend . . .
o fit a curve (or piecewise curves) exactly

e curve does not necessarily pass

] e estimate values between points
through all points P

. e example: interpolation
e example: least squares regression
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Engineering practice and curve fitting

e common engineering need: estimating intermediate values

e many properties are not tabulated — must fit your own data
e two main applications: trend analysis and hypothesis testing
Trend analysis

e use data patterns for prediction

— interpolation: within the range of available data
— extrapolation: outside the available range

e applications appear in all fields of engineering
Hypothesis testing
e compare existing mathematical model with observed data

e two cases:
1. model coefficients unknown — determine best-fit values

2. model coefficients known — check adequacy of predictions

e multiple models may be tested, best selected empirically

curve fitting and statistics
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Other uses of curve fitting

e derive simpler functions to approximate complicated ones

e essential tool in numerical methods:
— numerical integration

— solution of differential equations

e provides efficiency and insight into underlying physical systems

curve fitting and statistics
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Statistics for experimental data

e engineering measurements often provide limited raw information

e example:

24 readings of coefficient of thermal expansion of structural steel [x10~% in/(in- °F)]

6.495
6.665
6.755
6.565

6.595
6.505
6.625
6.515

6.615
6.435
6.715
6.555

6.635 6.485
6.625 6.715
6.575 6.655
6.395 6.775

6.555
6.655
6.605
6.685

range: 6.395 to 6.775 x1076

e more insight is obtained by computing descriptive statistics:

1. mean: location of the center of the data

2. standard deviation and variance: spread of the data

curve fitting and statistics
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Mean and standard deviation

given data points y1, ..., yn
Arithmetic mean n

_ Zi:1 Yi

y=————

n
Standard deviation
S n _
sy = —, S =>(yi-Y)>
n—1 i=1

e measures the spread of data about mean

e if measurements are spread out widely around the mean, S; (and s,) will be large

e the variance is the square of standard deviation:

if they are grouped tightly, the standard deviation will be small

2 X0 -9)? _ Xy (Eyi)?n

Y n-1 n-1
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Coefficient of variation

Coefficient of variation s
cv. = = x 100%
y

e provides a normalized measure of spread

e similar in spirit to relative error

Remark: S; and s, are based on n — 1 degrees of freedom

e this nomenclature arises because (y — y1) + (¥ —y2) + -+ (J—y,) =0

if ¥ is known and n — 1 of the values are specified, the remaining value is fixed

e hence only n — 1 of the values are freely determined

another justification: there is no spread of a single data point

e however, it is also common to be defined by dividing by n instead of n — 1
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Example

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685

e n = 24 measurements of coefficient of thermal expansion

e average (mean):

158.4
;=1584, y=—— =6.
> yi =158 y=— 6.6

standard deviation and variance:

[0.217
S (i —9)?=0.217, sy = T 0.097133, 53 = 0.009435

coefficient of variation
~0.097133
YT 66
indicates that the data are tightly clustered around the mean

x 100% = 1.47%
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e curve fitting and statistics

o straight line fit to data

e linearization of nonlinear equations
e fitting a polynomial to data

e multiple linear regression

e general linear least squares
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Straight line data fitting

simplest example of least squares: fitting a straight line to observations

(x1,¥1), (x2,¥2)s - - s (Xn, Yn)
Line model: y = ag + a1x + e where ag, a; are to determined based on data
® qa is intercept
® a is slope
® ¢ =Yy —aqy—ajxis erroror residual

e residual is discrepancy between true value of y and approximate value ag + a1 x

1 L
o o
o 5 x [ 5 * ° o

straight line fit to data 6.9



Least squares fit of straight line

minimize the sum of squared residuals over data:

n

=3 2= 3 (v - ag - arxi)?

i=1 i=1

o called linear regression

e to find ap and a; that minimize S, we set partial derivatives w.r.t. ag, a; to zero:

oS,

8a0 =-2 ;(yi —ag — alx,-) =0
a8,
(9511 =-2 ;(y, —dapg— alxi)xi = 0

e yields a unique line for a given data set

straight line fit to data 6.10



Solution

e rewriting previous equation as
—Y yi+nag+a; Y x; =0
i i

Y (yixi) +ap Sxi +ar a7 =0
1 1 1
e which can be written as:
n >oixi| [ao D i
Sixi 27| |a > XiYi
these are called the normal equations

e solving the normal equations:

g = Ny Xiyi =D Xi ) Vi
! ny x? = (3 xi)?

where X and y are the sample means of x and y

, ap=y-—aix

straight line fit to data
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Example

fit a straight line to the x and y values in the table

|1 2 3 4 5 6 7T
vi |05 25 20 40 35 6.0 55

e compute the following quantities:
n=7, Yx=28 x=%2=4
Syi=24, y=2 =3428571

3.
Sxiy = 119.5, Y x? = 140

e thus
ny xiyi—y Xy yi  7(119.5) — (28)(24)
— = =0.8392857
Ty 2 - () 7(140) — (28)2
4o = § — a1 = 3.428571 — (0.8392857)(4) = 0.07142857
and

y =0.07142857 + 0.8392857x

straight line fit to data 6.12



Residuals and error analysis

Error for the linear fit

y
xi | yi | i=9)?| (yi—ao—aixi)? Measurement
1 0.5 8.5765 0.1687 i

2 2.5 0.8622 0.5625

3 2.0 2.0408 0.3473

4| 4.0 0.3265 0.3265

5| 3.5 0.0051 0.5896 ag+ agx;

6 | 6.0 6.6122 0.7972

7| 5.5 4.2908 0.1993

Y | 24.0 | 22.7143 2.9911

X x

sum of squared residuals:
= 2
Sy =>(yi —ao—a1x;)” =2.9911
i=1

e |east squares line is unique: any other line gives a larger S,

e residuals quantify the vertical discrepancies between observed y; and the line
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Standard error of the estimate

a “standard deviation” for the regression line can be defined as

S,
Sv/x =
v/ n—2

® sy, is called the standard error of the estimate

e we divide by n — 2 since two estimates (¢ and a) were used to compute S,
— there is no such thing as the “spread of data” around a straight line connecting two points

e s,/ quantifies spread of data around the regression line

() )
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Coefficient of determination

e S;: total sum of squares around the mean (before regression)
e S, sum of squares of residuals around regression line (unexplained error)

e S; — S,: improvement of straight line fit compared with average value

Normalized improvement

9 St—=S, ny o xiyi=(20x) (i)
re = — r =
Si VS =(Z )" Y Zi-(E)

o r2: coefficient of determination
e 1 correlation coefficient
o 72 = 1: perfect fit (S, = 0)

e r% = 0: no improvement (S, = S;)

straight line fit to data
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Example

compute total standard deviation, standard error of estimate, and correlation
coefficient for data in last example

[22.7143
Sy = ? =1.9457

e standard error of the estimate:

[2.9911
Sy/x = ﬁ =0.7735

since sy/x < Sy, the linear regression model has merit

e standard deviation:

e extent of improvement is quantified by

22.7143 - 2.9911

2

_ iiattel . = 0. =0.932
r° = 59 7143 0.868 or r 0.868 = 0.93

e interpretation: 86.8% of original uncertainty has been explained by linear model
— caution: high r does not always imply a good fit
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Outline

e curve fitting and statistics

o straight line fit to data

o linearization of nonlinear equations
e fitting a polynomial to data

e multiple linear regression

e general linear least squares



Linear transformation

e line fitting assumes linear relation between dep. and indep. variables
e always begin regression analysis by plotting the data

e for nonlinear data, other approaches are required such as polynomial regression

(@ ®)

e nonlinear models can sometime be transformed into linear form

— linear regression can then be applied to estimate coefficients

— results must be transformed back for predictive use

linearization of nonlinear equations 6.17



Exponential model

y = e

e a1, 31 are constants
e models growth or decay (population, radioactive decay)

e nonlinear for 81 # 0

Linearization: take natural log:

Iny=Ilna; +B1x

e plotlnyvsx

e slope = 31, intercept = In @

linearization of nonlinear equations
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Power model

y = asx??

® a9, 32 are constants

e widely used in engineering (e.g., scaling laws)

Linearization: take base-10 log:

logy = B2 log x + log as

e plotlog y vs logx

e slope = f35, intercept = log a>

linearization of nonlinear equations
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Saturation-growth-rate model

a3zXxX
,33 + X

e used for population growth under limiting conditions

e levels off (saturates) as x increases

Linearization: invert the equation:

1 1 1
:&—4-

y azx as

e plot1/yvs1/x

e slope = B3/as, intercept = 1/as3

linearization of nonlinear equations 6.20



Summary

l/ l/ y=apis

©

a

Linearization

Linearization
Linearization

Iny logy 1y

Slope = f, _
Siope = 4, Slope = B;la,

Intercept = 1/a,

Intercept = In @;

* Z log x x
T Intercept = log a,

@ (e 6)]

linearization of nonlinear equations
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Example

we fit data to the model y = axP2

y | logx | logy
0.5 | 0.000 | -0.301
1.7 | 0.301 0.226
3.4 | 0477 | 0.534
5.7 | 0.602 | 0.753
8.4 | 0.699 | 0.922

g~ WD 2=

e take logarithm:
logy = B2 logx + log a2

e this is a linear equation in log x and log y

e apply linear regression to the transformed data to find 82 and log a2

linearization of nonlinear equations



Example

linear regression of the log-transformed data yields:
logy =1.75 logx — 0.300
e slope: B2 = 1.75
e intercept: logas = —0.300 = ao = 1079390 » 0.501

e final model:
y =0.501x%7

— logy

linearization of nonlinear equations
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e linearization of nonlinear equations
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e multiple linear regression
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Quadratic model and least squares objective
suppose data are related by a quadratic model:

y=a0+a1x+a2x2+e

e (ag,a1,as) are model parameters to be determined

e given data (x1, y1), - - ., (Xn, yn), the residual sum of squares is
n
2
Sr =3 (vi — ao — arix; — asxy)
i=1

e we minimize S, by setting partial derivatives to zero

aS
T —_9 S(y; —ag —ax; — (12)6?) =0
6(10
as,
Bar =23 x;i(yi —ag — aix; — asx?) =0
ax
aS
o _QinQ(yi —ag—aix; — agx?) =0
6(12

fitting a polynomial to data 6.24



Normal equations for the quadratic

e collecting terms yields a 3 X 3 linear system:
nao + (Y xi)ar + (L x7)az = Y i
(S xi)ao + (X a7)ar + (X x7)az = S xiyi
(X x7)ao+ (Xa7)ar + (X xf)az = Sty

e in matrix form:
no XX L ao 2 Vi
Sxio yxr x| |an| = [ XXy
Zx? Zx? zx? az inzyi

e solve for (ag, a1, as) with any linear solver

fitting a polynomial to data
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General mth-order polynomial regression

Y =do+aiXx +asx® + - +a,x™ +e

e minimize S, = i1 (yi — >4, akxf)2 by setting partial derivatives to zero:
noYx e Y fa] Sy

Yxioo Yx e YAt g 2XiVi

m m+l 2m xMy;
in in in am Z i Vi
e results in m+1 normal equations in m+1 unknowns
e standard error of the estimate:

S,

Sylx = n—(m+1)

AR
e coefficient of determination: r> = = S, =, where S; = i i - y)?

fitting a polynomial to data 6.26



Example: fit a quadratic

fit quadraticy = ag + a1x + a2x2 + e model to data

x| 0]1] 2 | 3] 4]°H5
yi |21 77[13.6]27.2][40.9 | 61.1

e we have
n= 6, in = 15, ZX? = 55, Zx? = 225’ inl =979
Sy =152.6, Y x;y; =585.6, Y x7y; =2488.8

15 152.6
15 225 585.6

normal equations:

95 225 979 2488.8
solution: ag = 2.47857, a1 = 2.35929, as = 1.86071

quadratic fit:
y =2.47857 + 2.35929 x + 1.86071 x?

fitting a polynomial to data
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Example: fit a quadratic

YA

50 —
Least-squares
parabola

=Y

fitting a polynomial to data 6.28



Example: fit a quadratic

xi | oyi | Gi=9?| (yi—ao-axi- azx?)2
0| 2.1 | 544.44 0.14332
1| 77 | 31447 1.00286
2 | 13.6 | 140.03 1.08158
3| 272 3.12 0.80491
4] 409 | 239.22 0.61951
5| 61.1 | 1272.11 0.09439
> | 152.6 | 2513.39 3.74657

e from the residuals table: S, = 3.74657, S; = 2513.39
e standard error (quadratic, m+1 = 3 parameters):
_ Sy _  [3.74657 _
Sy/x = \/n—(m+1) = \/ 63 =112
o coefficient of determination:

r? = St - BABIOSTAOT - 99851, r =0.99925

50 99.851% of original variability is explained by quadratic model; fit is excellent

fitting a polynomial to data 6.29
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Multiple linear regression

linear model with multiple predictors:
y=ap+aixy+agxg+ - +amx,; t+e
e in data-fitting, y is outcome and x1, . . ., x,,, are features or regressors

e for two predictors, the best-fit “line” becomes a plane in (x1, x2, y)
y

e choose coefficients {aj};."zo that minimize the sum of squared residuals

2
Sr =3 (yi—ao—aixii — - = AmXmi)

s

i=1

over data (x;,y;) fori = 1,...,n where x; = (x1;,...,Xmn;) iS an m-vector

multiple linear regression
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Least squares plane fit

form = 2

n
2
Sy =3 (yi —ao — aixi; — asxs;)
-1

take partial derivatives and set to zero:

a8,

T = =23 (yi —ag — a1x1; — asxy;) =0
ap

a8,

a— =-2 lei(yi —dadg— aixi — 02x2i) =0
ai

aS,

a— =-2 ZXQ[(yi —ag—aixy; —axxg;) =0
as

matrix (normal equations) form:

n 2o X1i >x2i | [ag 2o Vi
Sxyo Xy Yxuxe| |an| =[xy
Sxoi  Yoxyixei  y.x3, |92 Do X2iYi

multiple linear regression
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Example

find model, y = ag + a1x1 + asxs, that fits the data:

Yy X1 X2 Xf x% X1X2 X1y X2y
5 0 0 0 0 0 0 0
10 2 1 4 1 2 20 10
9 25 2 6.25 4 5 22.5 18
0 1 3 1 9 3 0 0
3 4 6 16 36 24 12 18
27 7 2 49 4 14 189 54
> 54 16.5 14 76.25 54 48 2435 100

S>y=54, > x1=16.5, > xo=14
S x?=76.25 Y x2=54, Y xjxy=48
>x1y =243.5, > xoy =100

normal equations:

6 16.5 14||ao 54
16.5 76.25 48||ai1|=1243.5| =>ag=05, a1 =4, az =-3
14 48  b54||az 100

multiple linear regression



Goodness of fit and uncertainty
e residual sum of squares
n N2 R
Sp=2x(i—9)°  Ji=aot+aixii+ -+ amXmi
i=1
e total sum of squares about the mean y:
4 -2
Si=20i—Y)
i=1
e standard error of the estimate (multiple regression with m predictors)

S,

Sylx = n—(m+1)

o coefficient of determination (explained variance fraction)
2 Sy — S,

=2 7T 0<ri<
S, d

multiple linear regression
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Power-law via multiple linear regression

many engineering relations are multiplicative:

— ap ,dz . .Gm
y—aoxl .XI2 Xm

e take logarithms to linearize:
logy =logag +ailogxy + -+ + ay logx,,
e perform multiple linear regression with response log y and predictors log xx

e recover coefficients via ag = 10™¢"®P! exponents ay are the slopes

multiple linear regression
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Linear-in-parameters model

model is linear-in-parameter
y=apZotaizir +azx22+ - +amimte

® 70,...,Zm are basis functions/feature mapping that we choose; e is residual
e the term “linear” refers only to linearity in the parameters a ;

e basis functions z; may be nonlinear (e.g., z; = sin(wt))

Examples

e simple linear regression (line model): zo = 1,z1 = x

e polynomial regression: 7o = 1,21 = X, 22 = X2, ..., Zm = X"
o multiple linear regression: zo = 1, 71 = X1, 22 = X2, ...

e y=aqaq+aycos(wt) + as sin(wt), zg = 1, z1 = cos(wt), z2 = sin(wt)

general linear least squares
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Normal equations

given data (z;, yi)/L; With z; = (Zois - - - » Zmi) the least squares criterion minimizes
n m 2
S =2 (vi— X zjiaj)
i=1 j=0

o called linear regression or least squares regression

e differentiating w.r.t. each a; and setting to zero yields the normal equations:

VAVAE AR
201 211t Zmi Y1 aop
202 Q12 0 Im2 Y2 ax
Z = . . . e RnX(m-'—l)’ y = . 9 a =
ion Z1ln ' Zmn Yn am

it ZTZ is invertible, then the solution is unique a = (Z7Z)~1ZTy
— in MATLAB: a=Z\y, which is called least squares approximate solution to Za =y

e this unifies linear, polynomial, and multiple regression under one framework

general linear least squares 6.36
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