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• linearization of nonlinear equations
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• multiple linear regression
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Curve fitting: motivation

• data are often available only at discrete points along a continuum

• we may need estimates at points between known values

• we can use simple function to approximate complicated data

• this is called curve fitting

Regression Interpolation

• data contain significant error or noise

• derive curve representing general trend

• curve does not necessarily pass
through all points

• example: least squares regression

• data are very accurate

• fit a curve (or piecewise curves) exactly

• estimate values between points

• example: interpolation
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Engineering practice and curve fitting

• common engineering need: estimating intermediate values

• many properties are not tabulated −→ must fit your own data

• two main applications: trend analysis and hypothesis testing

Trend analysis
• use data patterns for prediction

– interpolation: within the range of available data

– extrapolation: outside the available range

• applications appear in all fields of engineering

Hypothesis testing

• compare existing mathematical model with observed data

• two cases:
1. model coefficients unknown → determine best-fit values

2. model coefficients known → check adequacy of predictions

• multiple models may be tested, best selected empirically
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Other uses of curve fitting

• derive simpler functions to approximate complicated ones

• essential tool in numerical methods:
– numerical integration

– solution of differential equations

• provides efficiency and insight into underlying physical systems

SA — ENGR308curve fitting and statistics 6.4



Statistics for experimental data

• engineering measurements often provide limited raw information

• example:

24 readings of coefficient of thermal expansion of structural steel [×10−6 in/(in· ◦F)]

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685

range: 6.395 to 6.775 ×10−6

• more insight is obtained by computing descriptive statistics:

1. mean: location of the center of the data

2. standard deviation and variance: spread of the data
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Mean and standard deviation

given data points 𝑦1, . . . , 𝑦𝑛

Arithmetic mean

𝑦 =

∑𝑛
𝑖=1 𝑦𝑖

𝑛

Standard deviation

𝑠𝑦 =

√︂
𝑆𝑡

𝑛 − 1
, 𝑆𝑡 =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2

• measures the spread of data about mean

• if measurements are spread out widely around the mean, 𝑆𝑡 (and 𝑠𝑦) will be large

• if they are grouped tightly, the standard deviation will be small

• the variance is the square of standard deviation:

𝑠2𝑦 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

𝑛 − 1
=

∑
𝑦2
𝑖
− (∑ 𝑦𝑖)2/𝑛
𝑛 − 1
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Coefficient of variation

Coefficient of variation
c.v. =

𝑠𝑦

𝑦
× 100%

• provides a normalized measure of spread

• similar in spirit to relative error

Remark: 𝑆𝑡 and 𝑠𝑦 are based on 𝑛 − 1 degrees of freedom

• this nomenclature arises because (𝑦 − 𝑦1) + (𝑦 − 𝑦2) + ··· + (𝑦 − 𝑦𝑛) = 0

• if 𝑦 is known and 𝑛 − 1 of the values are specified, the remaining value is fixed

• hence only 𝑛 − 1 of the values are freely determined

• another justification: there is no spread of a single data point

• however, it is also common to be defined by dividing by 𝑛 instead of 𝑛 − 1
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Example

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685

• 𝑛 = 24 measurements of coefficient of thermal expansion

• average (mean): ∑
𝑦𝑖 = 158.4, 𝑦 =

158.4

24
= 6.6

• standard deviation and variance:

∑(𝑦𝑖 − 𝑦)2 = 0.217, 𝑠𝑦 =

√︂
0.217

24 − 1
= 0.097133, 𝑠2𝑦 = 0.009435

• coefficient of variation

c.v. =
0.097133

6.6
× 100% = 1.47%

indicates that the data are tightly clustered around the mean
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Outline

• curve fitting and statistics

• straight line fit to data

• linearization of nonlinear equations

• fitting a polynomial to data

• multiple linear regression

• general linear least squares



Straight line data fitting

simplest example of least squares: fitting a straight line to observations

(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)

Line model: 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒 where 𝑎0, 𝑎1 are to determined based on data

• 𝑎0 is intercept

• 𝑎1 is slope

• 𝑒 = 𝑦 − 𝑎0 − 𝑎1𝑥 is error or residual

• residual is discrepancy between true value of 𝑦 and approximate value 𝑎0 + 𝑎1𝑥
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Least squares fit of straight line

minimize the sum of squared residuals over data:

𝑆𝑟 =
𝑛∑
𝑖=1

𝑒2𝑖 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)2

• called linear regression

• to find 𝑎0 and 𝑎1 that minimize 𝑆𝑟 , we set partial derivatives w.r.t. 𝑎0, 𝑎1 to zero:

𝜕𝑆𝑟

𝜕𝑎0
= −2∑

𝑖

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖) = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2∑

𝑖

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)𝑥𝑖 = 0

• yields a unique line for a given data set
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Solution

• rewriting previous equation as

−∑
𝑖

𝑦𝑖 + 𝑛𝑎0 + 𝑎1
∑
𝑖

𝑥𝑖 = 0

−∑
𝑖

(𝑦𝑖𝑥𝑖) + 𝑎0
∑
𝑖

𝑥𝑖 + 𝑎1
∑
𝑖

𝑥2𝑖 = 0

• which can be written as:[
𝑛

∑
𝑖 𝑥𝑖∑

𝑖 𝑥𝑖
∑

𝑖 𝑥
2
𝑖

] [
𝑎0

𝑎1

]
=

[ ∑
𝑖 𝑦𝑖∑

𝑖 𝑥𝑖𝑦𝑖

]
these are called the normal equations

• solving the normal equations:

𝑎1 =
𝑛
∑

𝑥𝑖𝑦𝑖 −
∑

𝑥𝑖
∑

𝑦𝑖

𝑛
∑

𝑥2
𝑖
− (∑ 𝑥𝑖)2

, 𝑎0 = 𝑦 − 𝑎1𝑥

where 𝑥 and 𝑦 are the sample means of 𝑥 and 𝑦

SA — ENGR308straight line fit to data 6.11



Example

fit a straight line to the 𝑥 and 𝑦 values in the table

𝑥𝑖 1 2 3 4 5 6 7
𝑦𝑖 0.5 2.5 2.0 4.0 3.5 6.0 5.5

• compute the following quantities:

𝑛 = 7,
∑

𝑥𝑖 = 28, 𝑥 = 28
7 = 4∑

𝑦𝑖 = 24, 𝑦 = 24
7 = 3.428571∑

𝑥𝑖𝑦𝑖 = 119.5,
∑

𝑥2𝑖 = 140

• thus

𝑎1 =
𝑛
∑

𝑥𝑖𝑦𝑖 −
∑

𝑥𝑖
∑

𝑦𝑖

𝑛
∑

𝑥2
𝑖
− (∑ 𝑥𝑖)2

=
7(119.5) − (28) (24)

7(140) − (28)2 = 0.8392857

𝑎0 = 𝑦 − 𝑎1𝑥 = 3.428571 − (0.8392857) (4) = 0.07142857

and
𝑦 = 0.07142857 + 0.8392857𝑥
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Residuals and error analysis

Error for the linear fit

𝑥𝑖 𝑦𝑖 (𝑦𝑖 − 𝑦)2 (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 )2
1 0.5 8.5765 0.1687
2 2.5 0.8622 0.5625
3 2.0 2.0408 0.3473
4 4.0 0.3265 0.3265
5 3.5 0.0051 0.5896
6 6.0 6.6122 0.7972
7 5.5 4.2908 0.1993
Σ 24.0 22.7143 2.9911

sum of squared residuals:

𝑆𝑟 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)2 = 2.9911

• least squares line is unique: any other line gives a larger 𝑆𝑟

• residuals quantify the vertical discrepancies between observed 𝑦𝑖 and the line
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Standard error of the estimate

a “standard deviation” for the regression line can be defined as

𝑠𝑦/𝑥 =

√︂
𝑆𝑟

𝑛 − 2

• 𝑠𝑦/𝑥 is called the standard error of the estimate

• we divide by 𝑛 − 2 since two estimates (𝑎0 and 𝑎1) were used to compute 𝑆𝑟
– there is no such thing as the “spread of data” around a straight line connecting two points

• 𝑠𝑦/𝑥 quantifies spread of data around the regression line
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Coefficient of determination

• 𝑆𝑡 : total sum of squares around the mean (before regression)

• 𝑆𝑟 : sum of squares of residuals around regression line (unexplained error)

• 𝑆𝑡 − 𝑆𝑟 : improvement of straight line fit compared with average value

Normalized improvement

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
=⇒ 𝑟 =

𝑛
∑

𝑥𝑖 𝑦𝑖−(
∑

𝑥𝑖) (
∑

𝑦𝑖)√︃
𝑛
∑

𝑥2
𝑖
−(∑ 𝑥𝑖)2

√︃
𝑛
∑

𝑦2
𝑖
−(∑ 𝑦𝑖)2

• 𝑟2: coefficient of determination

• 𝑟 : correlation coefficient

• 𝑟2 = 1: perfect fit (𝑆𝑟 = 0)

• 𝑟2 = 0: no improvement (𝑆𝑟 = 𝑆𝑡 )
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Example

compute total standard deviation, standard error of estimate, and correlation
coefficient for data in last example

• standard deviation:

𝑠𝑦 =

√︂
22.7143

7 − 1
= 1.9457

• standard error of the estimate:

𝑠𝑦/𝑥 =

√︂
2.9911

7 − 2
= 0.7735

since 𝑠𝑦/𝑥 < 𝑠𝑦 , the linear regression model has merit

• extent of improvement is quantified by

𝑟2 =
22.7143 − 2.9911

22.7143
= 0.868 or 𝑟 =

√
0.868 = 0.932

• interpretation: 86.8% of original uncertainty has been explained by linear model
– caution: high 𝑟 does not always imply a good fit
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Linear transformation

• line fitting assumes linear relation between dep. and indep. variables

• always begin regression analysis by plotting the data

• for nonlinear data, other approaches are required such as polynomial regression

• nonlinear models can sometime be transformed into linear form

– linear regression can then be applied to estimate coefficients

– results must be transformed back for predictive use
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Exponential model

𝑦 = 𝛼1𝑒
𝛽1𝑥

• 𝛼1, 𝛽1 are constants

• models growth or decay (population, radioactive decay)

• nonlinear for 𝛽1 ≠ 0

Linearization: take natural log:

ln 𝑦 = ln𝛼1 + 𝛽1𝑥

• plot ln 𝑦 vs 𝑥

• slope = 𝛽1, intercept = ln𝛼1
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Power model

𝑦 = 𝛼2𝑥
𝛽2

• 𝛼2, 𝛽2 are constants

• widely used in engineering (e.g., scaling laws)

Linearization: take base-10 log:

log 𝑦 = 𝛽2 log 𝑥 + log 𝛼2

• plot log 𝑦 vs log 𝑥

• slope = 𝛽2, intercept = log 𝛼2
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Saturation-growth-rate model

𝑦 =
𝛼3𝑥

𝛽3 + 𝑥

• used for population growth under limiting conditions

• levels off (saturates) as 𝑥 increases

Linearization: invert the equation:

1

𝑦
=

𝛽3

𝛼3

1

𝑥
+ 1

𝛼3

• plot 1/𝑦 vs 1/𝑥

• slope = 𝛽3/𝛼3, intercept = 1/𝛼3
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Summary
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Example

we fit data to the model 𝑦 = 𝛼2𝑥
𝛽2

𝑥 𝑦 log 𝑥 log 𝑦
1 0.5 0.000 -0.301
2 1.7 0.301 0.226
3 3.4 0.477 0.534
4 5.7 0.602 0.753
5 8.4 0.699 0.922

• take logarithm:
log 𝑦 = 𝛽2 log 𝑥 + log 𝛼2

• this is a linear equation in log 𝑥 and log 𝑦

• apply linear regression to the transformed data to find 𝛽2 and log 𝛼2
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Example

linear regression of the log-transformed data yields:

log 𝑦 = 1.75 log 𝑥 − 0.300

• slope: 𝛽2 = 1.75

• intercept: log 𝛼2 = −0.300 =⇒ 𝛼2 = 10−0.300 ≈ 0.501

• final model:
𝑦 = 0.501 𝑥1.75
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Quadratic model and least squares objective

suppose data are related by a quadratic model:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑒

• (𝑎0, 𝑎1, 𝑎2) are model parameters to be determined

• given data (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), the residual sum of squares is

𝑆𝑟 =
𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥

2
𝑖

)2
• we minimize 𝑆𝑟 by setting partial derivatives to zero

𝜕𝑆𝑟

𝜕𝑎0
= −2∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥

2
𝑖 ) = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2∑ 𝑥𝑖 (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥

2
𝑖 ) = 0

𝜕𝑆𝑟

𝜕𝑎2
= −2∑ 𝑥2𝑖 (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥

2
𝑖 ) = 0
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Normal equations for the quadratic

• collecting terms yields a 3 × 3 linear system:

𝑛𝑎0 +
(∑

𝑥𝑖
)
𝑎1 +

(∑
𝑥2𝑖
)
𝑎2 =

∑
𝑦𝑖(∑

𝑥𝑖
)
𝑎0 +

(∑
𝑥2𝑖
)
𝑎1 +

(∑
𝑥3𝑖
)
𝑎2 =

∑
𝑥𝑖𝑦𝑖(∑

𝑥2𝑖
)
𝑎0 +

(∑
𝑥3𝑖
)
𝑎1 +

(∑
𝑥4𝑖
)
𝑎2 =

∑
𝑥2𝑖 𝑦𝑖

• in matrix form: 
𝑛

∑
𝑥𝑖

∑
𝑥2
𝑖∑

𝑥𝑖
∑

𝑥2
𝑖

∑
𝑥3
𝑖∑

𝑥2
𝑖

∑
𝑥3
𝑖

∑
𝑥4
𝑖



𝑎0
𝑎1
𝑎2

 =

∑

𝑦𝑖∑
𝑥𝑖𝑦𝑖∑
𝑥2
𝑖
𝑦𝑖


• solve for (𝑎0, 𝑎1, 𝑎2) with any linear solver
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General 𝑚th-order polynomial regression

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ··· + 𝑎𝑚𝑥

𝑚 + 𝑒

• minimize 𝑆𝑟 =
∑𝑛

𝑖=1 (𝑦𝑖 −
∑𝑚

𝑘=0 𝑎𝑘𝑥
𝑘
𝑖
)2 by setting partial derivatives to zero:

𝑛
∑

𝑥𝑖 · ·· ∑
𝑥𝑚
𝑖∑

𝑥𝑖
∑

𝑥2
𝑖

· ·· ∑
𝑥𝑚+1
𝑖

... ... . . . ...∑
𝑥𝑚
𝑖

∑
𝑥𝑚+1
𝑖

· ·· ∑
𝑥2𝑚
𝑖



𝑎0

𝑎1
...

𝑎𝑚


=


∑

𝑦𝑖∑
𝑥𝑖𝑦𝑖
...∑
𝑥𝑚
𝑖
𝑦𝑖


• results in 𝑚+1 normal equations in 𝑚+1 unknowns

• standard error of the estimate:

𝑠𝑦/𝑥 =

√︄
𝑆𝑟

𝑛 − (𝑚 + 1)

• coefficient of determination: 𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
, where 𝑆𝑡 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2
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Example: fit a quadratic

fit quadratic 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑒 model to data

𝑥𝑖 0 1 2 3 4 5
𝑦𝑖 2.1 7.7 13.6 27.2 40.9 61.1

• we have

𝑛 = 6,
∑

𝑥𝑖 = 15,
∑

𝑥2𝑖 = 55,
∑

𝑥3𝑖 = 225,
∑

𝑥4𝑖 = 979∑
𝑦𝑖 = 152.6,

∑
𝑥𝑖𝑦𝑖 = 585.6,

∑
𝑥2𝑖 𝑦𝑖 = 2488.8

• normal equations: 
6 15 55
15 55 225
55 225 979



𝑎0
𝑎1
𝑎2

 =

152.6
585.6
2488.8


• solution: 𝑎0 = 2.47857, 𝑎1 = 2.35929, 𝑎2 = 1.86071

• quadratic fit:
𝑦 = 2.47857 + 2.35929 𝑥 + 1.86071 𝑥2
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Example: fit a quadratic
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Example: fit a quadratic

𝑥𝑖 𝑦𝑖 (𝑦𝑖 − 𝑦)2
(
𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥

2
𝑖

)2
0 2.1 544.44 0.14332
1 7.7 314.47 1.00286
2 13.6 140.03 1.08158
3 27.2 3.12 0.80491
4 40.9 239.22 0.61951
5 61.1 1272.11 0.09439

Σ 152.6 2513.39 3.74657

• from the residuals table: 𝑆𝑟 = 3.74657, 𝑆𝑡 = 2513.39

• standard error (quadratic, 𝑚+1 = 3 parameters):

𝑠𝑦/𝑥 =

√︃
𝑆𝑟

𝑛−(𝑚+1) =
√︃

3.74657
6−3 = 1.12

• coefficient of determination:

𝑟2 =
𝑆𝑡−𝑆𝑟
𝑆𝑡

= 2513.39−3.74657
2513.39 = 0.99851, 𝑟 = 0.99925

so 99.851% of original variability is explained by quadratic model; fit is excellent
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Multiple linear regression

linear model with multiple predictors:

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ··· + 𝑎𝑚𝑥𝑚 + 𝑒

• in data-fitting, 𝑦 is outcome and 𝑥1, . . . , 𝑥𝑚 are features or regressors

• for two predictors, the best-fit “line” becomes a plane in (𝑥1, 𝑥2, 𝑦)

• choose coefficients {𝑎 𝑗 }𝑚𝑗=0 that minimize the sum of squared residuals

𝑆𝑟 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − ··· − 𝑎𝑚𝑥𝑚𝑖)2

over data (𝑥𝑖 , 𝑦𝑖) for 𝑖 = 1, . . . , 𝑛 where 𝑥𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑚𝑖) is an 𝑚-vector
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Least squares plane fit

for 𝑚 = 2

𝑆𝑟 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖)2

take partial derivatives and set to zero:

𝜕𝑆𝑟

𝜕𝑎0
= −2∑(𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2∑ 𝑥1𝑖 (𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) = 0

𝜕𝑆𝑟

𝜕𝑎2
= −2∑ 𝑥2𝑖 (𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖) = 0

matrix (normal equations) form:


𝑛

∑
𝑥1𝑖

∑
𝑥2𝑖∑

𝑥1𝑖
∑

𝑥21𝑖
∑

𝑥1𝑖𝑥2𝑖∑
𝑥2𝑖

∑
𝑥1𝑖𝑥2𝑖

∑
𝑥22𝑖



𝑎0
𝑎1
𝑎2

 =


∑
𝑦𝑖∑

𝑥1𝑖𝑦𝑖∑
𝑥2𝑖𝑦𝑖


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Example

find model, 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2, that fits the data:

𝑦 𝑥1 𝑥2 𝑥21 𝑥22 𝑥1𝑥2 𝑥1𝑦 𝑥2𝑦

5 0 0 0 0 0 0 0
10 2 1 4 1 2 20 10
9 2.5 2 6.25 4 5 22.5 18
0 1 3 1 9 3 0 0
3 4 6 16 36 24 12 18

27 7 2 49 4 14 189 54∑
54 16.5 14 76.25 54 48 243.5 100∑

𝑦 = 54,
∑

𝑥1 = 16.5,
∑

𝑥2 = 14∑
𝑥21 = 76.25,

∑
𝑥22 = 54,

∑
𝑥1𝑥2 = 48∑

𝑥1𝑦 = 243.5,
∑

𝑥2𝑦 = 100

normal equations:
6 16.5 14

16.5 76.25 48
14 48 54



𝑎0
𝑎1
𝑎2

 =


54
243.5
100

 ⇒ 𝑎0 = 5, 𝑎1 = 4, 𝑎2 = −3
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Goodness of fit and uncertainty

• residual sum of squares

𝑆𝑟 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, 𝑦𝑖 = 𝑎0 + 𝑎1𝑥1𝑖 + ··· + 𝑎𝑚𝑥𝑚𝑖

• total sum of squares about the mean 𝑦:

𝑆𝑡 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2

• standard error of the estimate (multiple regression with 𝑚 predictors)

𝑠𝑦/𝑥 =

√︄
𝑆𝑟

𝑛 − (𝑚 + 1)

• coefficient of determination (explained variance fraction)

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
, 0 ≤ 𝑟2 ≤ 1
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Power-law via multiple linear regression

many engineering relations are multiplicative:

𝑦 = 𝑎0 𝑥
𝑎1

1 𝑥
𝑎2

2 · ·· 𝑥𝑎𝑚𝑚

• take logarithms to linearize:

log 𝑦 = log 𝑎0 + 𝑎1 log 𝑥1 + ··· + 𝑎𝑚 log 𝑥𝑚

• perform multiple linear regression with response log 𝑦 and predictors log 𝑥𝑘

• recover coefficients via 𝑎0 = 10 intercept, exponents 𝑎𝑘 are the slopes
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Linear-in-parameters model

model is linear-in-parameter

𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + 𝑎2𝑧2 + ··· + 𝑎𝑚𝑧𝑚 + 𝑒

• 𝑧0, . . . , 𝑧𝑚 are basis functions/feature mapping that we choose; 𝑒 is residual

• the term “linear” refers only to linearity in the parameters 𝑎 𝑗

• basis functions 𝑧 𝑗 may be nonlinear (e.g., 𝑧 𝑗 = sin(𝜔𝑡))

Examples

• simple linear regression (line model): 𝑧0 = 1, 𝑧1 = 𝑥

• polynomial regression: 𝑧0 = 1, 𝑧1 = 𝑥, 𝑧2 = 𝑥2, . . . , 𝑧𝑚 = 𝑥𝑚

• multiple linear regression: 𝑧0 = 1, 𝑧1 = 𝑥1, 𝑧2 = 𝑥2, . . .

• 𝑦 = 𝑎0 + 𝑎1 cos(𝜔𝑡) + 𝑎2 sin(𝜔𝑡), 𝑧0 = 1, 𝑧1 = cos(𝜔𝑡), 𝑧2 = sin(𝜔𝑡)
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Normal equations

given data (𝑧𝑖 , 𝑦𝑖)𝑛𝑖=1 with 𝑧𝑖 = (𝑧0𝑖 , . . . , 𝑧𝑚𝑖), the least squares criterion minimizes

𝑆𝑟 =
𝑛∑
𝑖=1

(
𝑦𝑖 −

𝑚∑
𝑗=0

𝑧 𝑗𝑖𝑎 𝑗

)2
• called linear regression or least squares regression

• differentiating w.r.t. each 𝑎 𝑗 and setting to zero yields the normal equations:

𝑍T𝑍𝑎 = 𝑍T𝑦

𝑍 =


𝑧01 𝑧11 · ·· 𝑧𝑚1

𝑧02 𝑧12 · ·· 𝑧𝑚2

... ... . . . ...

𝑧0𝑛 𝑧1𝑛 · ·· 𝑧𝑚𝑛

 ∈ R𝑛×(𝑚+1) , 𝑦 =


𝑦1
𝑦2
...

𝑦𝑛

 , 𝑎 =


𝑎0
𝑎1
...

𝑎𝑚


if 𝑍T𝑍 is invertible, then the solution is unique 𝑎 = (𝑍T𝑍)−1𝑍T𝑦
– in MATLAB: a=Z\y, which is called least squares approximate solution to 𝑍𝑎 = 𝑦

• this unifies linear, polynomial, and multiple regression under one framework
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SA — ENGR308references 6.37


	curve fitting and statistics
	straight line fit to data
	linearization of nonlinear equations
	fitting a polynomial to data
	multiple linear regression
	general linear least squares
	references

