
5. Systems of equations

• system of equations

• Cramer rule for linear equations

• Gauss-Seidel and Jacobi methods for linear equations

• fixed point iteration for nonlinear equations

• Newton-Raphson for nonlinear equations
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System of nonlinear equations

𝑛 nonlinear equations in 𝑛 variables:

𝑓1 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

𝑓2 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

...

𝑓𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

• 𝑓𝑖 : R
𝑛 → R is a function that takes 𝑛 variables and outputs a scalar

• 𝑓𝑖 (𝑥) is 𝑖th residual

• the roots or solutions is the set of 𝑥 values that make all equations zero

• may have one solution, multiple solutions, or no solution

• in vector notation: 𝑓 (𝑥) = 0 with

𝑥 =


𝑥1
...

𝑥𝑛

 , 𝑓 (𝑥) =


𝑓1 (𝑥1, . . . , 𝑥𝑛)
...

𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)


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Example: nonlinear system

two nonlinear equations with two unknowns:

𝑓1 (𝑥1, 𝑥2) = 𝑥21 + 𝑥1𝑥2 − 10 = 0

𝑓2 (𝑥1, 𝑥2) = 𝑥2 + 3𝑥1𝑥22 − 57 = 0

solution: values (𝑥1, 𝑥2) such that both 𝑓1 (𝑥1, 𝑥2) = 0 and 𝑓2 (𝑥1, 𝑥2) = 0
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𝑓1 (𝑥1, 𝑥2) = 0
𝑓2 (𝑥1, 𝑥2) = 0

one solution is 𝑥1 = 2, 𝑥2 = 3
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Linear equations

an equation in the variables 𝑥1, . . . , 𝑥𝑛 is called linear if each side consists of a sum
of multiples of 𝑥𝑖 , and a constant, e.g.,

1 + 𝑥2 = 𝑥3 − 2𝑥1

is a linear equation in 𝑥1, 𝑥2, 𝑥3

System of linear equations: 𝑚 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛:

𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ··· + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

• 𝑎𝑖 𝑗 are the coefficients

• 𝑏𝑖 are called the right-hand sides

• may have no solution, a unique solution, infinitely many solutions
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Graphical approach

• we can use graphical approach for small systems 𝑛 ≤ 3

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

• both equations can be solved for 𝑥2:

𝑥2 = −
(
𝑎11

𝑎12

)
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
(
𝑎21

𝑎22

)
𝑥1 +

𝑏2

𝑎22

• thus, each equation is now in the form of a straight line:

𝑥2 = (slope) 𝑥1 + intercept

these lines can be graphed on Cartesian coordinates

• the values of 𝑥1 and 𝑥2 at the intersection of the lines represent the solution
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Example: graphical approach

(a) no solution (singular), (b) infinite solutions (also called singular), (c) ill-conditioned
system where slopes are so close that the point of intersection is difficult to detect
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Linear equation in matrix form

can express linear equations compactly as

𝐴𝑥 = 𝑏

• 𝐴 ∈ R𝑚×𝑛 is the coefficient matrix with entries 𝑎𝑖 𝑗

• 𝑏 ∈ R𝑚 is called the right-hand side with entries 𝑏𝑖

Classification of linear equations

• under-determined if 𝑚 < 𝑛 (more unknowns than equations, 𝐴 wide)

• square if 𝑚 = 𝑛 (no. equations equal no. unknowns, 𝐴 square)

• over-determined if 𝑚 > 𝑛 (more equations than unknowns, 𝐴 tall)
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Example

two equations in three variables 𝑥1, 𝑥2, 𝑥3 (underdetermined system):

1 + 𝑥2 = 𝑥3 − 2𝑥1, 𝑥3 = 𝑥2 − 2

• step 1: rewrite with variables on the l.h.s. side, and constants on the r.h.s. side:

2𝑥1 +𝑥2 −𝑥3 = −1
0𝑥1 −𝑥2 +𝑥3 = −2

(each row is one equation)

• step 2: rewrite equations as a single matrix equation:[
2 1 −1
0 −1 1

] 
𝑥1
𝑥2
𝑥3

 =
[
−1
−2

]
– 𝑖th row of 𝐴 gives the coefficients of the 𝑖th equation

– 𝑗 th column of 𝐴 gives the coefficients of 𝑥 𝑗 in the equations

– 𝑖th entry of 𝑏 gives the constant in the 𝑖th equation
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Solving square linear equations

suppose we have 𝑛 linear equations in 𝑛 variables 𝑥1, . . . , 𝑥𝑛

𝑎11𝑥1 + 𝑎12𝑥2 + ··· + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ··· + 𝑎2𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ··· + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

• compact form: 𝐴𝑥 = 𝑏, where 𝐴 is an 𝑛 × 𝑛 matrix, and 𝑏 is an 𝑛-vector

• suppose 𝐴 is invertible, i.e., its inverse 𝐴−1 exists

• multiply both sides of 𝐴𝑥 = 𝑏 on the left by 𝐴−1:

𝐴−1 (𝐴𝑥) = 𝐴−1𝑏

• lefthand side simplifies to 𝐴−1𝐴𝑥 = 𝐼𝑥 = 𝑥, so the solution is

𝑥 = 𝐴−1𝑏
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Linear equations with non-inveretible matrix

when 𝐴 isn’t invertible, i.e., inverse doesn’t exist

• one or more of the equations is redundant (i.e., can be obtained from the others)

• the equations are inconsistent or contradictory

in practice: 𝐴 isn’t invertible means

• you’ve set up the wrong equations

• or don’t have enough of them
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Solving linear equations in practice

• to solve 𝐴𝑥 = 𝑏 (i.e., compute 𝑥 = 𝐴−1𝑏) by computer, we don’t compute 𝐴−1,
then multiply it by 𝑏 (but that would work!)

• practical methods compute 𝑥 = 𝐴−1𝑏 directly, via specialized methods
– Gaussian elimination or LU factorization

– QR factorization

– Jacobi and Gauss-Seidel methods

– · ··

• standard methods, that work for any (invertible) 𝐴, require about 𝑛3 arithmetic
operations to compute 𝑥 = 𝐴−1𝑏

• but modern computers are very fast, so solving say a set of 1000 equations in
1000 variables takes only a second or so, even on a small computer

• in MATLAB, x = A\b solves 𝐴𝑥 = 𝑏 if a solution exists
– if no solution exists, it still returns a vector, which is not a solution
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Outline

• system of equations

• Cramer rule for linear equations

• Gauss-Seidel and Jacobi methods for linear equations

• fixed point iteration for nonlinear equations

• Newton-Raphson for nonlinear equations



Matrix determinant

if 𝐴 is an 𝑛 × 𝑛 matrix, then the 𝑖 𝑗 th submatrix of 𝐴, denoted by 𝐴𝑖 𝑗 , is the
(𝑛 − 1) × (𝑛 − 1) obtained by deleting row 𝑖 and column 𝑗 of 𝐴; for example,

𝐴 =

[
1 2 3
4 5 6
7 8 9

]
, 𝐴12 =

[
4 6
7 9

]
, 𝐴32 =

[
1 3
4 6

]

Determinant: pick any value of 𝑖 = 1, 2, . . . , 𝑛 and compute

det(𝐴) = |𝐴| =
𝑛∑
𝑗=1
(−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 )𝑎𝑖 𝑗

• det(𝐴𝑖 𝑗 ) is called the minor of element 𝑎𝑖 𝑗

• (−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 ) is called the cofactor of element 𝑎𝑖 𝑗
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Examples

a) for a scalar matrix 𝐴 = [𝑎11], we have det(𝐴) = 𝑎11

b) for a 2 × 2 matrix, the determinant is

det(𝐴) = det

[
𝑎11 𝑎12
𝑎21 𝑎22

]
= 𝑎11𝑎22 − 𝑎21𝑎12

c) for the matrix 𝐴 =


1 2 3
4 5 6
7 8 9


– we have for 𝑖 = 1

𝐴11 =

[
5 6
8 9

]
, 𝐴12 =

[
4 6
7 9

]
, 𝐴13 =

[
4 5
7 8

]
– thus, the determinant is

det(𝐴) = (−1)2𝑎11 det(𝐴11) + (−1)3𝑎12 det(𝐴12) + (−1)4𝑎13 det(𝐴13)
= 𝑎11 det(𝐴11) − 𝑎12 det(𝐴12) + 𝑎13 det(𝐴13)
= 1(−3) − 2(−6) + 3(−3) = 0
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Cramer’s rule

if det(𝐴) ≠ 0, then the square linear system 𝐴𝑥 = 𝑏 has a unique solution

𝑥 = 𝐴−1𝑏

we can find the solution using Cramer’s formula:

𝑥𝑘 =
|𝐷𝑘 |
|𝐴| , 𝑘 = 1, 2, . . . , 𝑛

• 𝐷𝑘 is the matrix obtained replacing the 𝑘 th column of 𝐴 by 𝑏

• from Cramer’s formula (with some algebra), we have

𝐴−1 =
1

det 𝐴


det 𝐴11 det 𝐴21 · ·· det 𝐴𝑛1

det 𝐴12 det 𝐴22 · ·· det 𝐴𝑛1

...
... · ·· ...

det 𝐴1𝑛 det 𝐴2𝑛 · ·· det 𝐴𝑛𝑛

︸                                            ︷︷                                            ︸
adj 𝐴

• rarely used (e.g., for small systems)
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Example: Cramer’s rule

0.3𝑥1 + 0.52𝑥2 + 𝑥3 = −0.01
0.5𝑥1 + 𝑥2 + 1.9𝑥3 = 0.67

0.1𝑥1 + 0.3𝑥2 + 0.5𝑥3 = −0.44
the determinant can be written as

|𝐴| =

������0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

������
the minors are:

𝐴11 =

���� 1 1.9
0.3 0.5

���� = 1(0.5) − 1.9(0.3) = −0.07

𝐴12 =

����0.5 1.9
0.1 0.5

���� = 0.5(0.5) − 1.9(0.1) = 0.06

𝐴13 =

����0.5 1
0.1 0.3

���� = 0.5(0.3) − 1(0.1) = 0.05
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Example: Cramer’s rule

|𝐴| = 0.3(−0.07) − 0.52(0.06) + 1(0.05) = −0.0022
Solution using Cramer’s rule

𝑥1 =

������−0.01 0.52 1
0.67 1 1.9
−0.44 0.3 0.5

������
−0.0022 =

0.03278

−0.0022 = −14.9

𝑥2 =

������0.3 −0.01 1
0.5 0.67 1.9
0.1 −0.44 0.5

������
−0.0022 =

0.0649

−0.0022 = −29.5

𝑥3 =

������0.3 0.52 −0.01
0.5 1 0.67
0.1 0.3 −0.44

������
−0.0022 =

−0.04356
−0.0022 = 19.8
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Outline

• system of equations

• Cramer rule for linear equations

• Gauss-Seidel and Jacobi methods for linear equations

• fixed point iteration for nonlinear equations

• Newton-Raphson for nonlinear equations



Gauss-Seidel method

a common iterative method for solving

𝐴𝑥 = 𝑏

Gauss-Seidel

• step 1: start with an initial guess 𝑥2,0, . . . , 𝑥𝑛,0

• step 2: update

𝑥1,𝑖 =
𝑏1 − 𝑎12𝑥2,𝑖−1 − 𝑎13𝑥3,𝑖−1 − ··· − 𝑎1𝑛𝑥𝑛,𝑖−1

𝑎11

𝑥2,𝑖 =
𝑏2 − 𝑎21𝑥1,𝑖 − 𝑎23𝑥3,𝑖−1 − ··· − 𝑎2𝑛𝑥𝑛,𝑖−1

𝑎22

...

𝑥𝑛,𝑖 =
𝑏𝑛 − 𝑎𝑛1𝑥1,𝑖 − 𝑎𝑛2𝑥2,𝑖 − ··· − 𝑎𝑛,𝑛−1𝑥𝑛−1,𝑖

𝑎𝑛𝑛

• repeat until: |𝜀𝑎, 𝑗 | =
��� 𝑥 𝑗,𝑖−𝑥 𝑗,𝑖−1

𝑥 𝑗,𝑖

��� × 100% < 𝜀𝑠 for all entries 𝑗 = 1, . . . , 𝑛
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Gauss-Seidel for three equations

for a 3 × 3 system:

𝑥1 =
𝑏1 − 𝑎12𝑥2 − 𝑎13𝑥3

𝑎11

𝑥2 =
𝑏2 − 𝑎21𝑥1 − 𝑎23𝑥3

𝑎22

𝑥3 =
𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2

𝑎33

• start with guesses for 𝑥1, 𝑥2, 𝑥3 (often zero)

• compute a new 𝑥1

• use the new 𝑥1 to compute 𝑥2

• use 𝑥1, 𝑥2 to compute 𝑥3

• repeat until convergence: all

|𝜀𝑎,1 | =
��� 𝑥1,𝑖−𝑥1,𝑖−1𝑥1,𝑖

��� 100%, |𝜀𝑎,2 | =
��� 𝑥2,𝑖−𝑥2,𝑖−1𝑥2,𝑖

��� 100%, |𝜀𝑎,3 | =
��� 𝑥3,𝑖−𝑥3,𝑖−1𝑥3,𝑖

��� 100%
less than 𝜀𝑠
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Example: Gauss-Seidel

implement Gauss-Seidel to solve

3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3
0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4

starting with 𝑥2 = 0, 𝑥3 = 0 (true solution: 𝑥1 = 3, 𝑥2 = −2.5, 𝑥3 = 7)

solve each equation for the diagonal variable:

𝑥1 =
7.85 + 0.1𝑥2 + 0.2𝑥3

3

𝑥2 =
−19.3 − 0.1𝑥1 + 0.3𝑥3

7

𝑥3 =
71.4 − 0.3𝑥1 + 0.2𝑥2

10
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Example: Gauss-Seidel

First iteration

𝑥1 =
7.85 + 0 + 0

3
= 2.616667

𝑥2 =
−19.3 − 0.1(2.616667) + 0

7
= −2.794524

𝑥3 =
71.4 − 0.3(2.616667) + 0.2(−2.794524)

10
= 7.005610

Second iteration

𝑥1 =
7.85 + 0.1(−2.794524) + 0.2(7.005610)

3
= 2.990557

𝑥2 =
−19.3 − 0.1(2.990557) + 0.3(7.005610)

7
= −2.499625

𝑥3 =
71.4 − 0.3(2.990557) + 0.2(−2.499625)

10
= 7.000291

converging toward:
𝑥1 → 3, 𝑥2 → −2.5, 𝑥3 → 7
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Example: Gauss-Seidel

approximate relative error:

|𝜀𝑎,1 | =
����2.990557 − 2.6166672.990557

���� 100% = 12.5%

|𝜀𝑎,2 | = 11.8%, |𝜀𝑎,3 | = 0.076%

• conservative measure of convergence

• ensures accuracy within specified tolerance 𝜀𝑠
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MATLAB implementation

function x = GaussSeidel(A,b,es,maxit)

if nargin<2,error(’at least 2 input arguments required’),end

if nargin<4 || isempty(maxit),maxit = 50;end

if nargin<3 || isempty(es),es = 0.00001;end

[m,n] = size(A);

if m~=n, error(’Matrix A must be square’); end

C = A;

for i = 1:n

C(i,i) = 0;x(i) = 0;

end

x = x’;

for i = 1:n

C(i,1:n) = C(i,1:n)/A(i,i);

end

for i = 1:n

d(i) = b(i)/A(i,i);

end

iter = 0;

while (1)

xold = x;

for i = 1:n

x(i) = d(i) - C(i,:)*x;

if x(i) ~= 0

ea(i) = abs((x(i) - xold(i))/x(i)) * 100;

end

end

iter = iter+1;

if max(ea)<=es || iter >= maxit, break, end

end
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Sufficient conditions for convergence

system is diagonally dominant if

|𝑎𝑘𝑘 | >
𝑛∑

ℓ=1
ℓ≠𝑘

|𝑎𝑘ℓ |, 𝑘 = 1, 2, . . . , 𝑛

• each diagonal element is greater than sum of off-diagonal terms in its row

• diagonal dominance =⇒ guaranteed convergence

• if not satisfied, convergence is not guaranteed (but still possible in some cases)

SA — ENGR308Gauss-Seidel and Jacobi methods for linear equations 5.23



Graphical illustration

𝑢 : 11𝑥1 + 13𝑥2 = 286, 𝑣 : 11𝑥1 − 9𝑥2 = 99

• iteration cobwebs show convergence vs divergence

• same functions plotted; difference arises from the order of implementation

– (a) update 𝑥2 in equation 𝑢 first (diagonally dominant)

– (b) update 𝑥2 in equation 𝑣 first (not diagonally dominant)

• if diagonal dominance does not hold, divergence can occur
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Relaxation to improve convergence

Gauss-Seidel with relaxation

𝑥new
𝑗 ← 𝜆𝑥new

𝑗 + (1 − 𝜆)𝑥old
𝑗 , 𝑗 = 1, . . . , 𝑛

• underrelaxation: 0 < 𝜆 < 1

– dampens oscillations

– helps nonconvergent systems converge

• overrelaxation: 1 < 𝜆 < 2

– speeds up convergence if system already convergent

– common in large-scale engineering systems

– also called successive or simultaneous overrelaxation (SOR)

• 𝜆 = 1: standard Gauss-Seidel
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Example: Gauss-Seidel with relaxation

solve the following system
−3𝑥1 + 12𝑥2 = 9

10𝑥1 − 2𝑥2 = 8

with Gauss-Seidel using overrelaxation (𝜆 = 1.2) and stopping criterion 𝜀𝑠 = 10%

Rearrangement (diagonally dominant)

𝑥1 =
8 + 2𝑥2
10

= 0.8 + 0.2𝑥2

𝑥2 =
9 + 3𝑥1
12

= 0.75 + 0.25𝑥1
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Example: Gauss-Seidel with relaxation

First Iteration: initial guesses: 𝑥1 = 𝑥2 = 0

• first value
𝑥1 = 0.8 + 0.2(0) = 0.8

apply relaxation:
𝑥1,𝑟 = 1.2(0.8) − 0.2(0) = 0.96

• now compute 𝑥2 using relaxed value 𝑥1,𝑟 :

𝑥2 = 0.75 + 0.25(0.96) = 0.99

apply relaxation:
𝑥2,𝑟 = 1.2(0.99) − 0.2(0) = 1.188

errors are initially 100% since we started from zero
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Example: Gauss-Seidel with relaxation

Second Iteration

• using updated values from iteration 1:

𝑥1 = 0.8 + 0.2(1.188) = 1.0376

relaxed value:
𝑥1,𝑟 = 1.2(1.0376) − 0.2(0.96) = 1.05312

approximate error:

𝜀𝑎,1 =
�� 1.05312−0.96

1.05312

�� × 100% = 8.84%

• next variable:
𝑥2 = 0.75 + 0.25(1.05312) = 1.01328

relaxed value:

𝑥2,𝑟 = 1.2(1.01328) − 0.2(1.188) = 0.978336

approximate error:

𝜀𝑎,2 =
�� 0.978336−1.188

0.978336

�� × 100% = 21.43%
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Example: Gauss-Seidel with relaxation

Stopping criterion

• at the end of iteration 2:

𝜀𝑎,1 = 8.84% < 10% ⇒ 𝑥1 satisfies criterion

and
𝜀𝑎,2 = 21.43% > 10% ⇒ 𝑥2 does not satisfy criterion

• thus, further iterations are required until stopping criteria satisfied

• overrelaxation (𝜆 = 1.2) accelerates convergence when system is convergent
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Jacobi iteration

• computes new values using only the previous iteration’s estimates

• all updates occur simultaneously after each iteration

Jacobi iteration

• step 1: start with an initial guess 𝑥1,0, 𝑥2,0, . . . , 𝑥𝑛,0

• step 2: update

𝑥1,𝑖 =
𝑏1 − 𝑎12𝑥2,𝑖−1 − 𝑎13𝑥3,𝑖−1 − ··· − 𝑎1𝑛𝑥𝑛,𝑖−1

𝑎11

𝑥2,𝑖 =
𝑏2 − 𝑎21𝑥1,𝑖−1 − 𝑎23𝑥3,𝑖−1 − ··· − 𝑎2𝑛𝑥𝑛,𝑖−1

𝑎22

...

𝑥𝑛,𝑖 =
𝑏𝑛 − 𝑎𝑛1𝑥1,𝑖−1 − 𝑎𝑛2𝑥2,𝑖−1 − ··· − 𝑎𝑛,𝑛−1𝑥𝑛−1,𝑖−1

𝑎𝑛𝑛

• repeat until : |𝜀𝑎, 𝑗 | =
��� 𝑥 𝑗,𝑖−𝑥 𝑗,𝑖−1

𝑥 𝑗,𝑖

��� 100% < 𝜀𝑠 for 𝑗 = 1, . . . , 𝑛
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Gauss-Seidel vs Jacobi iteration

Gauss-Seidel [left (a)] generally converges faster and is preferred
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Outline

• system of equations

• Cramer rule for linear equations

• Gauss-Seidel and Jacobi methods for linear equations

• fixed point iteration for nonlinear equations

• Newton-Raphson for nonlinear equations



Fixed-point iteration for nonlinear systems

consider
𝑓1 (𝑥1, 𝑥2) = 0

𝑓2 (𝑥1, 𝑥2) = 0

Fixed point iteration

𝑥1,𝑖+1 = 𝑔1 (𝑥1,𝑖 , 𝑥2,𝑖), 𝑥2,𝑖+1 = 𝑔2 (𝑥1,𝑖 , 𝑥2,𝑖)

• extends single equation idea

• also called successive substitution

Example
𝑓1 (𝑥1, 𝑥2) = 𝑥21 + 𝑥1𝑥2 − 10 = 0

𝑓2 (𝑥1, 𝑥2) = 𝑥2 + 3𝑥1𝑥22 − 57 = 0

with 𝑥1,0 = 1.5 and 𝑥2,0 = 3.5
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Example: fixed-point iteration setup

formulate as

𝑥1,𝑖+1 =
10 − 𝑥21,𝑖

𝑥2,𝑖

and
𝑥2,𝑖+1 = 57 − 3𝑥1,𝑖𝑥22,𝑖

on the basis of the initial guesses, we have

𝑥1 =
10 − (1.5)2

3.5
= 2.21429

and
𝑥2 = 57 − 3(2.21429) (3.5)2 = −24.37516

repeating the computation:

𝑥1 =
10 − (2.21429)2
−24.37516 = −0.20910

𝑥2 = 57 − 3(−0.20910) (−24.37516)2 = 429.709

Observation: the approach is diverging rapidly
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Alternative formulation

rearrange the equations as

𝑥1 =
√︁
10 − 𝑥1𝑥2, 𝑥2 =

√︂
57 − 𝑥2
3𝑥1

using initial guesses 𝑥1 = 1.5, 𝑥2 = 3.5:

𝑥1 =
√︁
10 − 1.5(3.5) = 2.17945

and

𝑥2 =

√︄
57 − 3.5

3(2.17945) = 2.86051

next iteration:
𝑥1 =

√︁
10 − 2.17945(2.86051) = 1.94053

𝑥2 =

√︄
57 − 2.86051
3(1.94053) = 3.04955

Conclusion: the reformulated system converges to the true solution

𝑥1 = 2, 𝑥2 = 3

SA — ENGR308fixed point iteration for nonlinear equations 5.34



Remarks

• convergence depends heavily on formulation

• poor initial guesses can cause divergence

• sufficient (but restrictive) conditions:����𝜕 𝑓1𝜕𝑥1

���� + ����𝜕 𝑓1𝜕𝑥2

���� < 1,

����𝜕 𝑓2𝜕𝑥1

���� + ����𝜕 𝑓2𝜕𝑥2

���� < 1

• limited utility for nonlinear systems, but useful for linear systems
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First-order Taylor (affine) approximation

first-order Taylor approximation of 𝑓 : R𝑛 → R, near point 𝑧:

𝑓 (𝑥) = 𝑓 (𝑧) + 𝜕 𝑓

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + ··· +

𝜕 𝑓

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛)

= 𝑓 (𝑧) + ∇ 𝑓 (𝑧)T (𝑥 − 𝑧)

• 𝑛-vector ∇ 𝑓 (𝑧) is the gradient of 𝑓 at 𝑧,

∇ 𝑓 (𝑧) =
(
𝜕 𝑓

𝜕𝑥1
(𝑧), . . . , 𝜕 𝑓

𝜕𝑥𝑛
(𝑧)

)
• 𝑓 (𝑥) is very close to 𝑓 (𝑥) when 𝑥𝑘 are all near 𝑧𝑘 (𝑥 near 𝑧)

• sometimes written 𝑓 (𝑥; 𝑧), to indicate that 𝑧 where the approximation appear

• 𝑓 is an affine function of 𝑥 (linear plus constant term)

• often called linear approximation of 𝑓 near 𝑧, even though it is in general affine
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Example with one variable

𝑧

𝑓 (𝑥)

𝑓

𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′ (𝑧) (𝑥 − 𝑧)
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Example with two variables

𝑓 (𝑥1, 𝑥2) = 𝑥1 − 3𝑥2 + 𝑒2𝑥1+𝑥2−1

• gradient:

∇ 𝑓 (𝑥) =
[
1 + 2𝑒2𝑥1+𝑥2−1
−3 + 𝑒2𝑥1+𝑥2−1

]
• Taylor approximation around 𝑧 = 0:

𝑓 (𝑥) = 𝑓 (0) + ∇ 𝑓 (0)T (𝑥 − 0)
= 𝑒−1 + (1 + 2𝑒−1)𝑥1 + (−3 + 𝑒−1)𝑥2
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Taylor approximation for vector-valued functions

first-order Taylor approximation of differentiable 𝑓 : R𝑛 → R𝑚 around 𝑧:

𝑓𝑘 (𝑥) = 𝑓𝑘 (𝑧) +
𝜕 𝑓𝑘

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + ··· +

𝜕 𝑓𝑘

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛), 𝑘 = 1, . . . , 𝑚

in matrix-vector notation: 𝑓 (𝑥) = 𝑓 (𝑧) + 𝐽 (𝑧) (𝑥 − 𝑧) where

𝐽 (𝑧) =


𝜕 𝑓1
𝜕𝑥1
(𝑧) 𝜕 𝑓1

𝜕𝑥2
(𝑧) ··· 𝜕 𝑓1

𝜕𝑥𝑛
(𝑧)

𝜕 𝑓2
𝜕𝑥1
(𝑧) 𝜕 𝑓2

𝜕𝑥2
(𝑧) ··· 𝜕 𝑓2

𝜕𝑥𝑛
(𝑧)

... ... ...
𝜕 𝑓𝑚
𝜕𝑥1
(𝑧) 𝜕 𝑓𝑚

𝜕𝑥2
(𝑧) ··· 𝜕 𝑓𝑚

𝜕𝑥𝑛
(𝑧)


=


∇ 𝑓1 (𝑧)T
∇ 𝑓2 (𝑧)T

...

∇ 𝑓𝑚 (𝑧)T


• 𝐽 (𝑧) is the derivative or Jacobian matrix of 𝑓 at 𝑧 (sometimes written as 𝐷 𝑓 (𝑧))

• 𝑓 is a local affine approximation of 𝑓 around 𝑧
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Example

𝑓 (𝑥) =
[

𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
𝑒2𝑥1+𝑥2 − 𝑥1
𝑥21 − 𝑥2

]

• derivative matrix:

𝐽 (𝑥) =
[
2𝑒2𝑥1+𝑥2 − 1 𝑒2𝑥1+𝑥2

2𝑥1 −1

]
• first order approximation of 𝑓 around 𝑧 = 0:

𝑓 (𝑥) =
[

𝑓1 (𝑥)
𝑓2 (𝑥)

]
=

[
1
0

]
+
[
1 1
0 −1

] [
𝑥1
𝑥2

]
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Newton-Raphson method for nonlinear equations

• linearize 𝑓 (i.e., make affine approximation) around current iterate 𝑥𝑖

𝑓 (𝑥; 𝑥𝑖) = 𝑓 (𝑥𝑖) + 𝐽 (𝑥𝑖) (𝑥 − 𝑥𝑖)
• take solution 𝑥 of linearized equation 𝑓 (𝑥; 𝑥𝑖) = 0 as the next iterate:

𝑥𝑖+1 = 𝑥𝑖 − 𝐽 (𝑥𝑖)−1 𝑓 (𝑥𝑖)

given a starting point 𝑥0 and solution tolerance 𝜀𝑠

repeat for 𝑖 ≥ 0

1. evaluate 𝐽 (𝑥𝑖)
2. set

𝑥𝑖+1 = 𝑥𝑖 − 𝐽 (𝑥𝑖)−1 𝑓 (𝑥𝑖)
if

∑𝑛
𝑘=1
( 𝑓𝑘 (𝑥𝑖+1))2 < 𝜀𝑠 or

|𝑥 𝑗,𝑖+1−𝑥 𝑗,𝑖 |
|𝑥 𝑗,𝑖+1 | 100% < 𝜀𝑠 , stop and output 𝑥𝑖+1

• 𝐽 (𝑥𝑖) is assumed to be nonsingular

• each iteration requires one evaluation of 𝑓 (𝑥) and 𝐽 (𝑥)

• also called (just) Newton method
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Newton-Raphson for two nonlinear equations

consider two equations in two variables 𝑥, 𝑦:

𝑓1 (𝑥1, 𝑥2) = 0, 𝑓2 (𝑥1, 𝑥2) = 0

write [
𝑥1,𝑖+1
𝑥2,𝑖+1

]
=

[
𝑥1,𝑖
𝑥2,𝑖

]
−
[
𝜕 𝑓1,𝑖
𝜕𝑥1

𝜕 𝑓1,𝑖
𝜕𝑥2

𝜕 𝑓2,𝑖
𝜕𝑥1

𝜕 𝑓2,𝑖
𝜕𝑥2

]−1 [
𝑓1,𝑖
𝑓2,𝑖

]
computing inverse of 2 by 2 matrix gives the update below

Newton-Raphson update

𝑥1,𝑖+1 = 𝑥1,𝑖 −
𝑓1,𝑖

𝜕 𝑓2,𝑖
𝜕𝑥2
− 𝑓2,𝑖

𝜕 𝑓1,𝑖
𝜕𝑥2

𝜕 𝑓1,𝑖
𝜕𝑥1

𝜕 𝑓2,𝑖
𝜕𝑥2
− 𝜕 𝑓1,𝑖

𝜕𝑥2

𝜕 𝑓2,𝑖
𝜕𝑥1

𝑥2,𝑖+1 = 𝑥2,𝑖 −
𝑓2,𝑖

𝜕 𝑓1,𝑖
𝜕𝑥1
− 𝑓1,𝑖

𝜕 𝑓2,𝑖
𝜕𝑥1

𝜕 𝑓1,𝑖
𝜕𝑥1

𝜕 𝑓2,𝑖
𝜕𝑥2
− 𝜕 𝑓1,𝑖

𝜕𝑥2

𝜕 𝑓2,𝑖
𝜕𝑥1

denominator = determinant of Jacobian
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Example: Newton-Raphson

𝑓1 (𝑥1, 𝑥2) = 𝑥21 + 𝑥1𝑥2 − 10, 𝑓2 (𝑥1, 𝑥2) = 𝑥2 + 3𝑥1𝑥22 − 57

initial guess: 𝑥1 = 1.5, 𝑥2 = 3.5

• compute derivatives:
𝜕 𝑓1

𝜕𝑥1
= 2𝑥1 + 𝑥2,

𝜕 𝑓1

𝜕𝑥2
= 𝑥1

𝜕 𝑓2

𝜕𝑥1
= 3𝑥22,

𝜕 𝑓2

𝜕𝑥2
= 1 + 6𝑥1𝑥2

• substitute 𝑥0 = (𝑥1,0, 𝑥2,0) = (1.5, 3.5):

𝜕 𝑓1,0

𝜕𝑥1
= 6.5,

𝜕 𝑓1,0

𝜕𝑥2
= 1.5,

𝜕 𝑓2,0

𝜕𝑥1
= 36.75,

𝜕 𝑓2,0

𝜕𝑥2
= 32.5
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Example: Newton-Raphson results

• evaluate functions:
𝑓1,0 = −2.5, 𝑓2,0 = 1.625

• Jacobian determinant:

6.5(32.5) − 1.5(36.75) = 156.125

• updates:

𝑥1,1 = 𝑥1,0 −
𝑓1,0

𝜕 𝑓2,0
𝜕𝑥2
− 𝑓2,0

𝜕 𝑓1,0
𝜕𝑥2

𝜕 𝑓1,0
𝜕𝑥1

𝜕 𝑓2,0
𝜕𝑥2
− 𝜕 𝑓1,0

𝜕𝑥2

𝜕 𝑓2,0
𝜕𝑥1

= 1.5 − −2.5(32.5)−1.625(1.5)156.125 = 2.036

𝑥2,1 = 𝑥2,0 −
𝑓2,0

𝜕 𝑓1,0
𝜕𝑥1
− 𝑓1,0

𝜕 𝑓2,𝑖
𝜕𝑥1

𝜕 𝑓1,0
𝜕𝑥1

𝜕 𝑓2,0
𝜕𝑥2
− 𝜕 𝑓1,0

𝜕𝑥2

𝜕 𝑓2,0
𝜕𝑥1

= 3.5 − 1.625(6.5)−(−2.5) (36.75)
156.125 = 2.844

=⇒ converges toward (2, 3)
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Example: Newton-Raphson results

MATLAB first iteration

>> x = [1.5;3.5];

>> J = [2*x(1)+x(2) x(1); 3*x(2)^2 1+6*x(1)*x(2)]

J =

6.5000 1.5000

36.7500 32.5000

>> f = [x(1)^2 + x(1)*x(2) - 10; x(2) + 3*x(1)*x(2)^2 - 57]

f =

-2.5000

1.6250

>> x = x - J\f

x =

2.0360

2.8439
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General code

function [x,f,ea,iter] = newtmult(func,x0,es,maxit,varargin)

% newtmult: Newton-Raphson root zeroes nonlinear systems

if nargin < 2, error(’at least 2 input arguments required’), end

if nargin < 3 || isempty(es), es = 0.0001; end

if nargin < 4 || isempty(maxit), maxit = 50; end

iter = 0;

x = x0;

while (1)

[J,f] = func(x,varargin{:});

dx = J\f;

x = x - dx;

iter = iter + 1;

ea = 100*max(abs(dx./x));

if iter >= maxit || ea <= es, break, end

end
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Remarks on nonlinear equations

• both fixed-point and Newton-Raphson can diverge if initial guesses are poor

• Newton-Raphson does not work if Jacobian is non-singular (or nearly singular)

• no simple graphical procedure for choosing initial guesses in multivariable case

• advanced methods exist, but often trial and error, system knowledge are needed
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References and further readings

• S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.9.1, 9.6, 11.2)

• S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.9.1, 12)
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