ENGR 308 (Fall 2025) S. Alghunaim

5. Systems of equations

e system of equations

e Cramer rule for linear equations

e Gauss-Seidel and Jacobi methods for linear equations
o fixed point iteration for nonlinear equations

o Newton-Raphson for nonlinear equations

5.1

System of nonlinear equations

n nonlinear equations in n variables:
f1(x1,)62, coXp) =0

f2(x1’x2’ .. ’xn) = O

fn(x17x2’ LECRY 7-xl’l) = O

fi : R™ — R is a function that takes n variables and outputs a scalar

fi(x) is ith residual

the roots or solutions is the set of x values that make all equations zero
e may have one solution, multiple solutions, or no solution
e in vector notation: f(x) = 0 with

X1 fl(xl,...,xn)
x=1 1 [, fl=
Xn Sa(x1, ..o, x0)

system of equations

52

Example: nonlinear system

two nonlinear equations with two unknowns:

filxi,xg) =x2 +x1x0 - 10 =0

f2(x1,%2) = x2 +3x1x5 —=57=0

solution: values (x1, x2) such that both f; (x1,x2) = 0and fo(x1,x2) =0

one solutionis x1 = 2,x9 = 3

system of equations

53

Linear equations

an equation in the variables x1, . . ., x, is called linear if each side consists of a sum
of multiples of x;, and a constant, e.g.,

14+ x0 =x3 —2x1

is a linear equation in x1, x2, X3

System of linear equations: m linear equations in n variables x1, ..., x,:

aiixi1 +aioxe + - +aipx, = bl

ag1X1 + A22X3 + - + dopXy = ba

Am1X1 + ApoXo + -+ + AynXn = by

e a;; are the coefficients
e b; are called the right-hand sides

e may have no solution, a unique solution, infinitely many solutions

system of equations 5.4

Graphical approach

e we can use graphical approach for small systems n < 3
ainxi +aigxe = by
asn xi + azexs = by

e both equations can be solved for x5:

an by
Xo=—|—]|xX1+—

a2 ai2
az; by
Xo=—|—|x1+ —
a2 a2

e thus, each equation is now in the form of a straight line:
X9 = (slope) x1 + intercept
these lines can be graphed on Cartesian coordinates
e the values of x; and x» at the intersection of the lines represent the solution

system of equations

Example: graphical approach

i
|
|
|
|
|
|
L
o 2 4 6

(a) no solution (singular), (b) infinite solutions (also called singular), (c) ill-conditioned
system where slopes are so close that the point of intersection is difficult to detect

*2
A PAY
=z 2
N “‘\,h \/“,\,14 >
-2 - z
» Sl
23 X
A wX*
\ fA
-2
* * *
@ ®) @©

system of equations 5.6

Linear equation in matrix form

can express linear equations compactly as

Ax=b

e A € R™*"is the coefficient matrix with entries a;

e b € R™ is called the right-hand side with entries b;

Classification of linear equations

e under-determined if m < n (more unknowns than equations, A wide)
e square if m = n (no. equations equal no. unknowns, A square)

e over-determined if m > n (more equations than unknowns, A tall)

system of equations 57

Example

two equations in three variables x1, X2, x3 (underdetermined system):
1+x9=x3—2x1, X3=Xx9-—2
e step 1: rewrite with variables on the I.h.s. side, and constants on the r.h.s. side:

2)61 +Xo9 —X3 = -1
0)61 —X2 +X3 = -2

(each row is one equation)

e step 2: rewrite equations as a single matrix equation:

2 1 -1 | (-1
0 -1 1|72 |2
X3
— ith row of A gives the coefficients of the ith equation

— Jjth column of A gives the coefficients of x; in the equations
— ith entry of b gives the constant in the ith equation

system of equations

Solving square linear equations

suppose we have n linear equations in n variables x1, ..., x,

ajixy +aieXxe + ot aipxXy = b1
a21X1 +azex2 + -+ + douXy = b
Ap1X1 + Ap2Xo + -+ + AppXy = by,

e compact form: Ax = b, where A is an n X n matrix, and b is an n-vector

e suppose A is invertible, i.e., its inverse A~ exists

multiply both sides of Ax = b on the leftby A™1:
AN Ax)=A"1D

lefthand side simplifies to A™'Ax = Ix = x, so the solution is

x=A"1b

system of equations 5.9

Linear equations with non-inveretible matrix

when A isn’t invertible, i.e., inverse doesn't exist
e one or more of the equations is redundant (i.e., can be obtained from the others)

e the equations are inconsistent or contradictory

in practice: A isn’'t invertible means
e you've set up the wrong equations

e or don’t have enough of them

system of equations 5.10

Solving linear equations in practice

e to solve Ax = b (i.e., compute x = A~1b) by computer, we don’t compute A1,
then multiply it by b (but that would work!)

e practical methods compute x = A~1b directly, via specialized methods
— Gaussian elimination or LU factorization
— QR factorization

— Jacobi and Gauss-Seidel methods

e standard methods, that work for any (invertible) A, require about n® arithmetic
operations to compute x = A~'h

e but modern computers are very fast, so solving say a set of 1000 equations in
1000 variables takes only a second or so, even on a small computer

e in MATLAB, x = A\b solves Ax = b if a solution exists

— if no solution exists, it still returns a vector, which is not a solution

system of equations 5.11

Outline

e system of equations

e Cramer rule for linear equations

o Gauss-Seidel and Jacobi methods for linear equations
o fixed point iteration for nonlinear equations

o Newton-Raphson for nonlinear equations

Matrix determinant

if A'is an n X n matrix, then the i jth submatrix of A, denoted by A;;, is the
(n=1) X (n = 1) obtained by deleting row i and column j of A; for example,
1 2 3
4 1
A=14 5 Gl, A12=[7 g], A32=[4 2]
7 8 9

Determinant: pick any value of i = 1,2, ..., n and compute

det(A) = A = 32 (=1)* det(A;;)a;
j=1

e det(A;;) is called the minor of element a; ;

e (—1)"*/ det(A;;) is called the cofactor of element a; ;

Cramer rule for linear equations

5.12

Examples

a) for a scalar matrix A = [a11], we have det(A) = a3

b) for a 2 X 2 matrix, the determinant is

det(A) = det du iz aijidsz — a1di2
daz; daz2

c) for the matrix A =

Sy

2 3
5 6
8 9
— we havefori =1

5 6 4 6 4 5
A11—[8 9], A12—[7 9], A13—[7 8]

— thus, the determinant is

det(A) = (=1)%a11 det(A11) + (=1)3a12 det(A12) + (=1)*a13 det(A13)
=ay1 det(A11) — a1z det(A12) + a1z det(A13)
=1(=3) - 2(-6) +3(=3) =0

Cramer rule for linear equations 5.13

Cramer’s rule

if det(A) # 0, then the square linear system Ax = b has a unigue solution

x=A"1b

we can find the solution using Cramer’s formula:
_ |Dg|

=, k=12,....n
Al

Xk

e D, is the matrix obtained replacing the kth column of A by b

e from Cramer’s formula (with some algebra), we have

det A11 detAoy -+ detA,;
1 1 det A1o detAgo -+ detAn
- det A : :
det A1, detAo, -+ detAu,
adj A

e rarely used (e.g., for small systems)

Cramer rule for linear equations

5.14

Example: Cramer’s rule

0.3x1 + 0.52x2 + x3 = —-0.01
0.5x1 +x2 + 1.9x3 = 0.67
0.1x1 +0.3x2 + 0.5x3 = —0.44
the determinant can be written as

0.3 052 1
|A| =10.5 1 1.9
0.1 03 0.5
the minors are:
1 1.9
A1 = 03 05~ 1(0.5) = 1.9(0.3) = -0.07
0.5 1.9
Ao = 01 05~ 0.5(0.5) — 1.9(0.1) = 0.06
0.5 1
A3 = 01 03~ 0.5(0.3) — 1(0.1) = 0.05

Cramer rule for linear equations

5.15

Example: Cramer’s rule

|A| = 0.3(=0.07) — 0.52(0.06) + 1(0.05) = —0.0022

Solution using Cramer’s rule

-0.01 052 1

0.67 1 19
-0.44 03 0.5 0.03278

_ - - _14.
1 ~0.0022 ~0.0022)
0.3 -0.01 1
0.5 067 1.9
0.1 —0.44 0.5 0.0649
— = :—295
2 ~0.0022 -0.0022
0.3 0.52 -0.01
05 1 067
0.1 03 -044] _0.04
_ 0.0435 _ oo

X3 = =
-0.0022 —0.0022

Cramer rule for linear equations

5.16

Outline

e system of equations

e Cramer rule for linear equations

o Gauss-Seidel and Jacobi methods for linear equations
o fixed point iteration for nonlinear equations

o Newton-Raphson for nonlinear equations

Gauss-Seidel method
a common iterative method for solving
Ax=D>b

Gauss-Seidel
e step 1: start with an initial guess x2.0, ..., X0

e step 2: update

_ by —aiaxz,i-1 — a13X3,i-1 — -+ — A1inXn,i-1
X1,i =
ai
by — a21X1,; —A23X3,i-1 — '+ — A2pXp,i-1
X2,i =
az2
_bpn—amxi,; —apaxs; — - —dpp-1Xp-1,i
Xn,i =
Ann

e repeat until: |e, ;| = i1

Gauss-Seidel and Jacobi methods for linear equations

x 100% < & forall entries j = 1, . ..

5.17

Gauss-Seidel for three equations

fora 3 X 3 system:
b1 — aiaxs — aizxs

X1 =
ail
by — az1x1 — assxs
Xo =
az2
bz —az1x1 — azsxa
X3 =

ass
e start with guesses for x1, x2, x3 (often zero)
® compute a new x1
e use the new x; to compute x»
e use x1,x2 to compute x3

e repeat until convergence: all

100%, |8a’2| =

100%, |€q.5] = 100%

X1,i—X1,i—
|ga] = [zt

X2,i ~X2,i-1 X3,i ~X3,i-1
X2,i X3,i

less than &

Gauss-Seidel and Jacobi methods for linear equations 5.18

Example: Gauss-Seidel

implement Gauss-Seidel to solve

3x1 — 0.1xo — 0.2x3 = 7.85
0.1x1 + 7x9 — 0.3x3 = —19.3
0.3x;1 —0.2x9 +10x3 = 71.4

starting with xo = 0, x3 = 0 (true solution: x1 = 3, xo0 = —2.5,x3 =7)

solve each equation for the diagonal variable:

7.85+0.1x2 + 0.2x3

X1 = 3
—-19.3 - 0.1x; + 0.3x3
X9 =
7
71.4 —0.3x1 + 0.2x9
Xa =
? 10

Gauss-Seidel and Jacobi methods for linear equations 5.19

Example: Gauss-Seidel

First iteration

= EBH0H0) 616667
o -19.3 - 0.1(3.616667) 0 _ 5 rousad
o = 71.4 - 0.3(2.61666170) +0.2(-2.794529) _ . oee10
Second iteration
. 7.85 + 0.1(—2.7945?2)4) +0.2(7.005610) _ ,, ggqer-
Lo o103 0.1(2.9905757) +0.3(7.005610) _ _, 199695
o = 71.4 - 0.3(2.99055173 +0.2(-2.499625) _ . 100001

converging toward:
X1 — 3, X9 — —2.5, X3 — 7

Gauss-Seidel and Jacobi methods for linear equations

5.20

Example: Gauss-Seidel

approximate relative error:

2.990557 — 2.616667
1#a.1l 2.990557 00% = 12.5%
l6asl = 11.8%, |eas] = 0.076%

e conservative measure of convergence

e ensures accuracy within specified tolerance &

Gauss-Seidel and Jacobi methods for linear equations

5.21

MATLAB implementation

function x = GaussSeidel(A,b,es,maxit)

if nargin<2,error(’at least 2 input arguments required’),end

if nargin<4 || isempty(maxit),maxit = 50;end
if nargin<3 || isempty(es),es = 0.00001;end
[m,n] = size(A);

if m™=n, error(’Matrix A must be square’); end

for i
C(i,1)
end

0;x(i) = 0;

x=x;

for i n
C(i,1:n) = C(i,1:n)/A(i,i);
end

for i = 1:n

d@i) = b(1)/A(i,1);

end

iter = 0;

while (1)

xold = x;

for i :
x(i) = d(@i) - C(i,:)*x;

if x(1) "= 0

ea(i) = abs((x(i) - xold(i))/x(i)) * 100;
end

end

iter = iter+l;

if max(ea)<=es || iter >= maxit, break, end
end

Gauss-Seidel and Jacobi methods for linear equations

522

Sufficient conditions for convergence

system is diagonally dominant if

n

lakkl > > lakel, k=1,2,...,n
=1
12k

e each diagonal element is greater than sum of off-diagonal terms in its row
e diagonal dominance = guaranteed convergence

e if not satisfied, convergence is not guaranteed (but still possible in some cases)

Gauss-Seidel and Jacobi methods for linear equations 5.23

Graphical illustration

u:1lxy +13x9 =286, v:1lxy —9xg =99

X * v

_‘
P x
Y ‘@,\
/ u

(@) ®)

e iteration cobwebs show convergence vs divergence

e same functions plotted; difference arises from the order of implementation
— (@) update x2 in equation u first (diagonally dominant)

— (b) update x9 in equation v first (not diagonally dominant)

e f diagonal dominance does not hold, divergence can occur

Gauss-Seidel and Jacobi methods for linear equations 5.24

Relaxation to improve convergence

Gauss-Seidel with relaxation

J J
e underrelaxation: 0 < A1 < 1

— dampens oscillations

— helps nonconvergent systems converge
e overrelaxation: 1 < A < 2

— speeds up convergence if system already convergent
— common in large-scale engineering systems
— also called successive or simultaneous overrelaxation (SOR)

e 1 = 1: standard Gauss-Seidel

Gauss-Seidel and Jacobi methods for linear equations

W (—/lx;ew'i'(l _A)xOId j=1...,n

525

Example: Gauss-Seidel with relaxation

solve the following system
—3)(1 + 12X2 =9

1OX1 - 2)62 =8

with Gauss-Seidel using overrelaxation (1 = 1.2) and stopping criterion &5 = 10%

Rearrangement (diagonally dominant)

8+ 2x

=0 2~ 0.8+0.2xy
9+3

X = Txl = 0.75 + 0.25x,

Gauss-Seidel and Jacobi methods for linear equations 5.26

Example: Gauss-Seidel with relaxation

First Iteration: initial guesses: x;1 =x2 =0

e first value
x1 =0.8+0.2(0) =0.8

apply relaxation:
x1, =1.2(0.8) —0.2(0) = 0.96

e now compute x2 using relaxed value x1 ,:

x2 = 0.75 +0.25(0.96) = 0.99

apply relaxation:
X9, =1.2(0.99) — 0.2(0) = 1.188

errors are initially 100% since we started from zero

Gauss-Seidel and Jacobi methods for linear equations

5.27

Example: Gauss-Seidel with relaxation

Second lteration
e using updated values from iteration 1:

x1 =0.8+0.2(1.188) = 1.0376

relaxed value:
x1,- = 1.2(1.0376) — 0.2(0.96) = 1.05312
approximate error:

Eq,1 = |H23220.96] % 100% = 8.84%

e next variable:
xo =0.75+0.25(1.05312) = 1.01328

relaxed value:
X9, =1.2(1.01328) — 0.2(1.188) = 0.978336
approximate error:

_]0.978336—-1.188 —
€a2 = ‘W' x 100% = 21.43%

Gauss-Seidel and Jacobi methods for linear equations 5.28

Example: Gauss-Seidel with relaxation

Stopping criterion
e at the end of iteration 2:

€41 =884% <10% = x; satisfies criterion

and
€a2=21.43% > 10% = xo does not satisfy criterion

e thus, further iterations are required until stopping criteria satisfied

e overrelaxation (1 = 1.2) accelerates convergence when system is convergent

Gauss-Seidel and Jacobi methods for linear equations

Jacobi iteration

e computes new values using only the previous iteration’s estimates
e all updates occur simultaneously after each iteration
Jacobi iteration

e step 1: start with an initial guess x1,9, x2,0, . . ., Xn,0

e step 2: update

by —ajexs i1 —aisxs i1 — o — AipXn,i-1
X1,i =
an
_ by —anxyi1 —assxzi-1— - — dopXnp,i-1
X2, =
a2
_ by — an1X1,i-1 — AnaX2,i-1 — *** — A p-1Xn-1,i-1
Xn,i =
Ann

e repeat until: |&, ;| = |*LEL 100% < egfor j =1, ¢

Xji

Gauss-Seidel and Jacobi methods for linear equations

5.30

Gauss-Seidel vs Jacobi iteration

First Iteration

Xi = (b — apx, — axs)/an - apx)/ay
xl2 = (b — axx1 — apxs)/axn — ayxs)fan
x3 = (bs — ayx — apny)/as — apx)fazn
Second Interation
x = (b — apx — apxs)/an 'xl = (b - al‘z”z - alaxa)/au‘
xlz = (b — anX1 — axpxs)/axn X = (by — ayx — apx)fayp
x = (by — ay; — apty)/as X = (bs — ay; — apx)/axn
(@)

Gauss-Seidel [left (a)] generally converges faster and is preferred

Gauss-Seidel and Jacobi methods for linear equations

5.31

Outline

e system of equations

e Cramer rule for linear equations

o Gauss-Seidel and Jacobi methods for linear equations
o fixed point iteration for nonlinear equations

o Newton-Raphson for nonlinear equations

Fixed-point iteration for nonlinear systems

consider
filx1,x2) =0

fo(x1,x2) =0

Fixed point iteration

X1,ie1 = 81(X1,i,X2,1), Xoir1 = g2(X1,i,X2,)

e extends single equation idea

e also called successive substitution

Example
fi(x1,x2) = x% +x1x2—10=0
fo(x1,x2) = xo +3x1x3 =57 =0

withx; o = 1.5 and x2,9 = 3.5

fixed point iteration for nonlinear equations 5.32

Example: fixed-point iteration setup

formulate as
10 - x% ;
X141 = ———
X2,

and

X2,i+1 = 57 — 3)61,1')(?%,1-
on the basis of the initial guesses, we have
_10-(1.5)?

_ = 2.21429
a 35

and

Xo =57 — 3(2.21429)(3.5)2 = -24.37516
repeating the computation:
10 — (2.21429)2
2437516
X9 =57 — 3(—0.20910)(—24.37516)2 =429.709

=-0.20910

X1 =

Observation: the approach is diverging rapidly

fixed point iteration for nonlinear equations

5.33

Alternative formulation

rearrange the equations as

57 —
X1 = \110 —X1X2, Xo = —XQ

3)61

using initial guesses x1 = 1.5, x5 = 3.5:

x1 =10 — 1.5(3.5) = 2.17945

/ 57-3.5
= —_— 2].
*2 = \|3@17045) - 20000

x1 = /10 — 2.17945(2.86051) = 1.94053

[57 - 2.86051
= 2200 3 04955
2 3(1.94053)

Conclusion: the reformulated system converges to the true solution

and

next iteration:

X1=2, XQ=3

fixed point iteration for nonlinear equations 5.34

Remarks

e convergence depends heavily on formulation

e poor initial guesses can cause divergence

sufficient (but restrictive) conditions:

oh|, |05
0x1 Oxo

ofs
(9)61

af

<1
0)(?2

+ <1, +

limited utility for nonlinear systems, but useful for linear systems

fixed point iteration for nonlinear equations

5.35

Outline

e system of equations

e Cramer rule for linear equations

o Gauss-Seidel and Jacobi methods for linear equations
o fixed point iteration for nonlinear equations

o Newton-Raphson for nonlinear equations

First-order Taylor (affine) approximation

first-order Taylor approximation of f : R" — R, near point z:

of (Z) (xn - Zn)
Xn

F) = f2)+ j—)ﬁ@) ()bt

=f(2)+Vf(2)T(x-2)

n-vector V f(z) is the gradient of f at z,

af

dx,

af

0xy,

Vi(z) = (2)s- -

(2)

f(x) is very close to f (x) when xy are all near zx (x near z)

e sometimes written f(x; z), to indicate that z where the approximation appear

f is an affine function of x (linear plus constant term)

often called linear approximation of f near z, even though it is in general affine

Newton-Raphson for nonlinear equations

5.36

Example with one variable

f) =f@)+f(2)(x-2)

Newton-Raphson for nonlinear equations 5.37

Example with two variables

F(x1,x2) = x1 — 3xg + 217271

e gradient:

Vi) =

1+262x1+x2—1
3+ 62x1+xQ—1

e Taylor approximation around z = 0:

fx) = £(0)+V£(0)(x-0)

=e l+(1+2e Hx1+(-3+e Hxy

Newton-Raphson for nonlinear equations

5.38

Taylor approximation for vector-valued functions

first-order Taylor approximation of differentiable f : R — R™ around z:

0 fr
0x,

Jo) = @) + P @) 1 2 o+ L) k=1liom
X1

in matrix-vector notation: £ (x) = f(z) + J(z) (x — z) where

%(m %(z) "ﬁ(z) V@]
=] BO O - axn:@ _ Vfi@
Yoy Yo - e | L TR

e J(z) is the derivative or Jacobian matrix of f at z (sometimes written as D f(z))

° f is a local affine approximation of f around z

Newton-Raphson for nonlinear equations

Example

A@ | e —x
X) = =
T =1) X -
e derivative matrix: 9 2
2e2X1tX2 _ 1 p2X1tx2
J(x) - [2x1 -1]

e first order approximation of f around z = 0:

Aoy f(x) |1 1 1 by
Fx) = f;m]‘[o o 2 []

Newton-Raphson for nonlinear equations

5.40

Newton-Raphson method for nonlinear equations

e linearize f (i.e., make affine approximation) around current iterate x;

Flex) = fu) +J () (x = x)

o take solution x of linearized equation f(x; x;) = 0 as the next iterate:

Xia1 =X —J ()T (%)

given a starting point xy and solution tolerance &g
repeat fori > 0
1. evaluate J(x;)
2. set
Xie1 =3 = J ()T f ()

it 7 (fr(xie1))? < g5 or B =xil1g09 < g, stop and output X1
k=1

|xj.i+1|

e J(x;) is assumed to be nonsingular
e each iteration requires one evaluation of f(x) and J(x)

e also called (just) Newton method

Newton-Raphson for nonlinear equations

5.41

Newton-Raphson for two nonlinear equations

consider two equations in two variables x, y:

Silx1,x2) =0, fa(x1,x2) =0

write

Ofei Ofei
Ix1 Oxo

X1,i+1
X2,i+1

X2,i

computing inverse of 2 by 2 matrix gives the update below

Newton-Raphson update

f .6f21 f 6f1 i

o — 1,i Ox2 2,0 PHxy Oxo
Litl = AT 9 0 fan Ofii Ofeu
Ox1 Oxa Oxy 0x1

f afll _ f af21

o . 2,lax1 1tax1
Ll T T o 0 ey Of1i Ofa
dx1 Oxa Oxa Ox1

denominator = determinant of Jacobian

Newton-Raphson for nonlinear equations

Afii Ofui]L
_ X _ | o x S
Sfa.i

|

5.42

Example: Newton-Raphson

fi(x1,x2) = X3 + x1x2 — 10

initial guess: x1 = 1.5, xo = 3.5

fo(x1,x9) = X2 + 3x1x3 —

e compute derivatives:
% =2x1+x % =X
ox, ™ 1
af2 s 0f2
=3x;5, =—=1+6
0)(?1 0)(?2 T onx
e substitute xo = (x1,0,Xx2,0) = (1.5, 3.5)
0 0 0 0
S0 _ g5 010 5 9020 _gq00 020 g5
Oxy Oxs 0x1

Newton-Raphson for nonlinear equations

X2

o7

5.43

Example: Newton-Raphson results

e evaluate functions:
fi0=-2.5, fa0=1.625

e Jacobian determinant:

6.5(32.5) — 1.5(36.75) = 156.125

e updates:

f f2.0 _ f 9fi.0

=y 1.079x, 2.079x, 1.5 — —2:5(32.5)-1.625(1.5)

L1 =210 58 dfa0 ~ 0f10 0fr0 156.125
Ox1 O0xa Oxy Ox
f 8f1,0 _ f 6f21
ot = a0 — 2,0 75x, 09x 5_ 1.625(6.5)—(—2.5)(36.75)
2,1 =220 9f1,0 0f2,0 _ O0f1,0 0f2,0 e 156.125

dx; Oxo Oxo O0xy
= converges toward (2, 3)

Newton-Raphson for nonlinear equations

=2.036

=2.844

5.44

Example: Newton-Raphson results

MATLAB first iteration

>> x = [1.5;3.5];

>> J [2*x(1)+x(2) =x(1); 3*x(2)"2 1+6*x(1)*x(2)]
J =

6.5000 1.5000

36.7500 32.5000

>> f = [x(1)72 + x(1)*x(2) - 10; x(2) + 3*x(1)*x(2)"2 - 57]
£ =

-2.5000

1.6250

>> x = x - I\f

x =

2.0360

2.8439

Newton-Raphson for nonlinear equations

5.45

General code

function [x,f,ea,iter] = newtmult(func,x0,es,maxit,varargin)
% newtmult: Newton-Raphson root zeroes nonlinear systems

if nargin < 2, error(’at least 2 input arguments required’), end
if nargin < 3 || isempty(es), es = 0.0001; end

if nargin < 4 || isempty(maxit), maxit = 50; end

iter = 0;

x = x0;

while (1)

[J,£f] = func(x,varargin{:});

dx = J\f;

X = x - dx;

iter = iter + 1;

ea = 100*max(abs(dx./x));

if iter >= maxit || ea <= es, break, end
end

Newton-Raphson for nonlinear equations 5.46

Remarks on nonlinear equations

both fixed-point and Newton-Raphson can diverge if initial guesses are poor

Newton-Raphson does not work if Jacobian is non-singular (or nearly singular)

e no simple graphical procedure for choosing initial guesses in multivariable case

e advanced methods exist, but often trial and error, system knowledge are needed

Newton-Raphson for nonlinear equations

5.47

References and further readings

e S.C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.9.1,9.6, 11.2)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.9.1, 12)

references

5.48

	system of equations
	Cramer rule for linear equations
	Gauss-Seidel and Jacobi methods for linear equations
	fixed point iteration for nonlinear equations
	Newton-Raphson for nonlinear equations
	references

