
3. Roots of equations: bracketing methods

• nonlinear equation in one variable

• graphical methods

• bisection method

• false position method
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Nonlinear equation in one variable

𝑓 (𝑥) = 0

• the root or zero is any solution of the above equation

• we assume 𝑓 is a univariate continuous function on an interval [𝑥𝑙 , 𝑥𝑢]
• there may be one solution, multiple solutions, or no solution

Example: nonlinear resistive circuit
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a nonlinear equation in the variable 𝑥, with three solutions
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Examples
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𝑓 (𝑥) = 10 cosh(𝑥/4) − 𝑥 where cosh(𝑡) = (𝑒𝑡 + 𝑒−𝑡 )/2
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Iterative methods

• nonlinear equations are generally difficult to solve

• obtaining a solution by finite-step algorithm is not feasible

• iterative algorithms start with initial or starting point, 𝑥0 and compute estimates

𝑥0, 𝑥1, . . . , 𝑥𝑖 , . . .

where 𝑥𝑖 is the 𝑖th iterate

• moving from 𝑥𝑖 to 𝑥𝑖+1 is called an iteration of the algorithm

• ideally converge to a root of the target function

𝑥𝑖 → 𝑥★ as 𝑖 → ∞

where 𝑓 (𝑥★) = 0
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Bracketing methods

• many numerical methods for roots exploit a sign change near the root

• such approaches are called bracketing methods

• two initial guesses are required that lie on either side of the root

• methods reduce the bracket width systematically to converge to the solution
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Outline

• nonlinear equation in one variable

• graphical methods

• bisection method

• false position method



Graphical methods

• plot 𝑓 (𝑥) to identify approximate root locations

• root ≈ where 𝑓 (𝑥) crosses the 𝑥-axis

• provides rough estimates of roots

• estimates can be employed as starting guesses for other numerical methods

• useful to visualize:

– function properties (multiple roots, discontinuities, ill-conditioned intervals)

– behavior of numerical methods
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Example

recall our falling parachutist equation

𝑣(𝑡) = 𝑔𝑚

𝑐
(1 − 𝑒−(𝑐/𝑚)𝑡 )

find drag coefficient 𝑐 so that 𝑣 = 40 m/s after 𝑡 = 10 s with 𝑚 = 68.1 kg

• our equation is

𝑓 (𝑐) = 9.81×68.1
𝑐

(
1 − 𝑒−(𝑐/68.1)10

)
− 40 = 668.06

𝑐

(
1 − 𝑒−0.146843𝑐

)
− 40

• we evaluate 𝑓 (𝑐) at trial values and plot or in MATLAB
% Define c range (avoid c=0 to prevent division by zero)
c = linspace(1,20,500); % c from 1 to 200 with 500 points
% Define function
f = (9.81*68.1 ./ c) .* (1 - exp(-(c/68.1)*10))-40;
% Plot
plot(c,f,’LineWidth’,2);
grid on;
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Example

𝑐 𝑓 (𝑐)
4 34.190
8 17.712
12 6.114
16 -2.230
20 -8.368

• plot shows crossing between 𝑐 = 12 and 𝑐 = 16, 𝑐★ ≈ 14.75

• substitution check: 𝑓 (14.75) ≈ 0.100
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Roots in brackets

• if 𝑓 (𝑥𝑙) and 𝑓 (𝑥𝑢) have same sign =⇒ either 0 or even number of roots

• if 𝑓 (𝑥𝑙) and 𝑓 (𝑥𝑢) have opposite signs =⇒ odd number of roots in (𝑥𝑙 , 𝑥𝑢)
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Roots in brackets: exceptions

• multiple roots: function tangential to 𝑥-axis

• discontinuous functions: roots may not follow sign-change logic
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Example

𝑓 (𝑥) = sin(10𝑥) + cos(3𝑥), 0 ≤ 𝑥 ≤ 5

• initial plot suggests several roots and a possible double root near 𝑥 ≈ 4.2

• zooming (3–5) clarifies root structure

• further zoom (4.2–4.3) shows two distinct roots near 𝑥 = 4.23 and 𝑥 = 4.26

𝑓 (𝑥) 𝑓 (𝑥)

𝑓 (𝑥)

𝑥 𝑥

𝑥
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MATLAB code

% Define domain

x = linspace(0,5,1000); % 1000 points between 0 and 5

% Define function

f = sin(10*x) + cos(3*x);

% Plot

plot(x, f, ’LineWidth’, 2);
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Bisection method idea

• if 𝑓 is real and continuous on [𝑥𝑙 , 𝑥𝑢] and

𝑓 (𝑥𝑙) 𝑓 (𝑥𝑢) < 0

then there exists at least one real root in (𝑥𝑙 , 𝑥𝑢)

• bisection (binary chopping, interval halving, Bolzano’s method):

repeatedly bisect [𝑥𝑙 , 𝑥𝑢] at

𝑥𝑟 =
𝑥𝑙 + 𝑥𝑢

2

select the subinterval where the sign change occurs, and iterate

• guarantees bracketing at each step

• interval width halves every iteration
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Bisection method

1. start with [𝑥𝑙 , 𝑥𝑢] such that 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑢) < 0

2. compute midpoint: 𝑥𝑟 = (𝑥𝑙 + 𝑥𝑢)/2 and 𝑓 (𝑥𝑟 )

3. test sign:

– if 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑟 ) < 0 ⇒ 𝑥𝑢 = 𝑥𝑟

– else if 𝑓 (𝑥𝑢) 𝑓 (𝑥𝑟 ) < 0 ⇒ 𝑥𝑙 = 𝑥𝑟

– else 𝑓 (𝑥𝑟 ) = 0 (root found)

4. repeat until error criterion is satisfied
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Example: bisection for the parachutist drag coefficient

use bisection method to solve

𝑓 (𝑥) = 668.06

𝑥

(
1 − 𝑒−0.146843𝑥

)
− 40 = 0

and initial bracket from the graph: 𝑥 ∈ [12, 16] (true root ≈ 14.8011 for reference)

• iteration 1:

𝑥𝑟 = 12+16
2 = 14, 𝑓 (12) 𝑓 (14) = 6.114 × 1.611 > 0 ⇒ new bracket [14, 16]

• iteration 2:

𝑥𝑟 = 14+16
2 = 15, 𝑓 (14) 𝑓 (15) = 1.611×(−0.384) < 0 ⇒ new bracket [14, 15]

• iteration 3: 𝑥𝑟 = 14+15
2 = 14.5⇒ new bracket decided similarly

• ... interval width halves each iteration; root remains bracketed
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Example: bisection for the parachutist drag coefficient
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Termination: approximate relative error

without knowing the true root, use the approximate percent relative error

𝜀𝑎 =

����𝑥new
𝑟 − 𝑥old

𝑟

𝑥new
𝑟

���� × 100%

stop when 𝜀𝑎 < 𝜀𝑠 (user-specified tolerance) or when iteration cap is reached

Example: continue previous example until 𝜀𝑎 < 0.5%

iter 𝑥𝑙 𝑥𝑢 𝑥𝑟 𝜀𝑎 (%) 𝜀𝑡 (%)
1 12 16 14 — 5.413
2 14 16 15 6.667 1.344
3 14 15 14.5 3.448 2.035
4 14.5 15 14.75 1.695 0.345
5 14.75 15 14.875 0.840 0.499
6 14.75 14.875 14.8125 0.422 0.077

stop at iteration 6 since 𝜀𝑎 < 0.5%
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True and approximate relative errors

• suggests that 𝜀𝑎 captures the general downward trend of 𝜀𝑡

• 𝜀𝑎 is greater than 𝜀𝑡

• when 𝜀𝑎 < 𝜀𝑠 , the computation could be terminated with confidence
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Bisection error bound

𝜀𝑎 is always greater than 𝜀𝑡

• approximate root is located using bisection as 𝑥𝑟 =
𝑥𝑙+𝑥𝑢

2

• we know that the true root lies somewhere within an interval

±𝑥𝑢 − 𝑥𝑙

2
= ±Δ𝑥

2

of our estimate
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Bisection error bound

• observe that

Δ𝑥

2
= 𝑥new

𝑟 − 𝑥old
𝑟

• hence, 𝜀𝑎 = | 𝑥
new
𝑟 −𝑥old

𝑟

𝑥new
𝑟

| × 100% provides an exact upper bound on the true error

Alternative approximate error expression: since

𝑥new
𝑟 − 𝑥old

𝑟 =
𝑥𝑢 − 𝑥𝑙

2
, 𝑥new

𝑟 =
𝑥𝑙 + 𝑥𝑢

2

we have

𝜀𝑎 =

����𝑥new
𝑟 − 𝑥old

𝑟

𝑥new
𝑟

���� × 100% =

����𝑥𝑢 − 𝑥𝑙

𝑥𝑢 + 𝑥𝑙

���� × 100%

allows error estimate from the very first iteration
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How many iterations do we need?

• initial absolute bracket width: Δ𝑥0 = 𝑥𝑢,0 − 𝑥𝑙,0

• the bracket is halved after each iteration

• after 𝑛 iterations, the absolute error satisfies

𝐸𝑛
𝑎 =

Δ𝑥0

2𝑛

• to guarantee 𝐸𝑛
𝑎 ≤ 𝐸𝑎,𝑑 , choose

𝑛 ≥ log2

(
Δ𝑥0

𝐸𝑎,𝑑

)
Example: in last example with Δ𝑥0 = 16 − 12 = 4

• after 6 iterations 𝐸𝑎 =
𝑥𝑢,6−𝑥𝑙,6

2 = 14.875−14.75
2 = 0.0625 (or 𝐸𝑎 = 4/26)

• using this as upper bound gives 𝑛 = log2 (4/0.0625) = 6
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Bisection: pros and cons

Pros

• guaranteed convergence if 𝑓 continuous and initial bracket valid

• simple, robust, and monotonic interval reduction

• clean error bounds; iteration count predictable

Cons

• linear (slow) convergence rate

• requires bracketing; does not exploit derivative or curvature information
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The bisection method

given: 𝑥𝑙 , 𝑥𝑢 with 𝑥𝑙 < 𝑥𝑢, 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑢) < 0, and tolerance 𝜀𝑠

repeat

1. 𝑥𝑟 = (𝑥𝑙 + 𝑥𝑢)/2
2. compute 𝑓 (𝑥𝑟 ); if 𝑓 (𝑥𝑟 ) = 0, return 𝑥𝑟

3. if 𝑓 (𝑥𝑟 ) 𝑓 (𝑥𝑙) < 0, 𝑥𝑢 = 𝑥𝑟 , else, 𝑥𝑙 = 𝑥𝑟

4. stop if 𝜀𝑎 =
�� 𝑥𝑢−𝑥𝑙
𝑥𝑢+𝑥𝑙

�� × 100% < 𝜀𝑠

• condition 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑢) < 0 ensures a root exists between 𝑥𝑙 , 𝑥𝑢

• 𝑥𝑙 , 𝑥𝑢 can be chosen from graphing the function
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MATLAB implementation of bisection

function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
if nargin<3,error(’at least 3 input arguments required’),end
test = func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error(’no sign change’),end
if nargin<4 || isempty(es), es=0.0001;end
if nargin<5 || isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
xrold = xr; xr = (xl + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});
if test < 0
xu = xr;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= es || iter >= maxit,break,end
end
root = xr; fx = func(xr, varargin{:});
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False-position method

• bisection is valid but inefficient: it always divides the interval into equal halves

• false position (regula falsi, linear interpolation method) provides a more efficient
alternative

• idea: use the relative magnitudes of 𝑓 (𝑥𝑙) and 𝑓 (𝑥𝑢) to improve the root estimate

• if 𝑓 (𝑥𝑙) is much closer to zero than 𝑓 (𝑥𝑢), then the root is likely closer to 𝑥𝑙
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Graphical insight of false position

• instead of bisecting the interval, connect a straight line to the points

(𝑥𝑙 , 𝑓 (𝑥𝑙)) and (𝑥𝑢, 𝑓 (𝑥𝑢))
• intersection of this line with the 𝑥-axis is taken as the new root estimate

• this point is called the false position because the curve is replaced by a line
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False-position formula

using similar triangle (equating slope):

𝑓 (𝑥𝑙)
𝑥𝑟 − 𝑥𝑙

=
𝑓 (𝑥𝑢)
𝑥𝑟 − 𝑥𝑢

solving for 𝑥𝑟 gives the false-position formula

𝑥𝑟 = 𝑥𝑢 −
𝑓 (𝑥𝑢) (𝑥𝑙 − 𝑥𝑢)
𝑓 (𝑥𝑙) − 𝑓 (𝑥𝑢)

• uses both function values and endpoints

• if 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑟 ) < 0, the root lies between 𝑥𝑙 and 𝑥𝑟

• if 𝑓 (𝑥𝑟 ) 𝑓 (𝑥𝑢) < 0, the root lies between 𝑥𝑟 and 𝑥𝑢

• the interval is updated accordingly, and the process repeats
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Example: false-position on the parachutist equation

use the false-position method to determine the root of

𝑓 (𝑥) = 668.06

𝑥

(
1 − 𝑒−0.146843 𝑥

)
− 40

with initial guesses: 𝑥𝑙 = 12, 𝑥𝑢 = 16

First iteration
𝑓 (12) = 6.1139, 𝑓 (16) = −2.2303

𝑥𝑟 = 𝑥𝑢 −
𝑓 (𝑥𝑢) (𝑥𝑙 − 𝑥𝑢)
𝑓 (𝑥𝑙) − 𝑓 (𝑥𝑢)

= 16 − (−2.2303) (12 − 16)
6.1139 − (−2.2303) = 14.309

true relative error ≈ 0.88% (for reference)

since 𝑓 (𝑥𝑙) 𝑓 (𝑥𝑟 ) < 0, the new bracket is [𝑥𝑙 , 𝑥𝑢] = [12, 14.309] (i.e., 𝑥𝑢 = 𝑥𝑟 )
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Example: false-position on the parachutist equation

Second iteration

𝑥𝑙 = 12, 𝑓 (𝑥𝑙) = 6.1139, 𝑥𝑢 = 14.9309, 𝑓 (𝑥𝑢) = −0.2515

𝑥𝑟 = 14.9309 − (−0.2515) (12 − 14.9309)
6.1139 − (−0.2515) = 14.8151

true and approximate relative errors: 𝜀𝑡 ≈ 0.09%, 𝜀𝑎 ≈ 0.78%

further iterations refine the estimate similarly
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False position versus bisection

• false position can decrease true error faster than bisection (more informative
placement of 𝑥𝑟 )

• unlike bisection, the interval need not shrink symmetrically; one endpoint can
remain fixed while the other approaches the root

• consequence: the interval width is not a reliable error bound for false position

• using 𝜀𝑎 =
�� 𝑥new

𝑟 −𝑥old
𝑟

𝑥new
𝑟

��100% is conservative when convergence is rapid:

numerator largely reflects the previous iteration’s discrepancy
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Example: pitfalls of false position

locate the root of 𝑓 (𝑥) = 𝑥10 − 1 on [0, 1.3] using bisection and false-position

true root 𝑥 = 1

Bisection

iter 𝑥𝑙 𝑥𝑢 𝑥𝑟 𝜀𝑎 (%) 𝜀𝑡 (%)
1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

after 5 iterations, 𝜀𝑡 < 2%
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Example: pitfalls of false position

False position

iter 𝑥𝑙 𝑥𝑢 𝑥𝑟 𝜀𝑎 (%) 𝜀𝑡 (%)
1 0 1.3 0.09430 — 90.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 17.1 59.2

• very slow progress; also note cases with 𝜀𝑎 < 𝜀𝑡 (misleading)

• interpretation: function shape violates: “closer 𝑓 -value ⇒ closer to root”

• one-sidedness: one endpoint often remains fixed while the other moves, causing
poor convergence with strong curvature
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Checking for all roots

• beyond verifying a single root, ensure all possible roots are located

• incremental search:
– evaluate 𝑓 (𝑥) at small increments across region

– sign change ⇒ root in that subinterval

– endpoints serve as initial guesses for bracketing methods

• always supplement with:
– function plots (plotting 𝑓 (𝑥) is a useful first step)

– insight from physical meaning of the problem
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Summary
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