ENGR 308 (Fall 2025) S. Alghunaim

3. Roots of equations: bracketing methods

e nonlinear equation in one variable
e graphical methods
® bisection method

e false position method

3.1

Nonlinear equation in one variable

f(x)=0
e the root or zero is any solution of the above equation
e we assume f is a univariate continuous function on an interval [x;, x,,]

e there may be one solution, multiple solutions, or no solution

Example: nonlinear resistive circuit
R
AVAYAY E
L fe /

g(x)

E X|:| (E-x)/R

E—x

g(x) - =0

a nonlinear equation in the variable x, with three solutions

nonlinear equation in one variable

3.2

Examples

f(x) = sin(x)

3 200¢ .
S e TE— e —
B4 6 8 10 12 14 16 18 20
X

f(x) = 10 cosh(x/4) — x where cosh(t) = (e +e71)/2

340— 1

~20-]

0 . - - . .

nonlinear equation in one variable

3.3

Iterative methods

nonlinear equations are generally difficult to solve
obtaining a solution by finite-step algorithm is not feasible
iterative algorithms start with initial or starting point, xo and compute estimates
X0sX1s e vy Xisen-
where x; is the ith iterate
moving from x; to x;41 is called an iteration of the algorithm
ideally converge to a root of the target function
Xi—x* as i — oo

where f(x*) =0

nonlinear equation in one variable

3.4

Bracketing methods

e many numerical methods for roots exploit a sign change near the root

such approaches are called bracketing methods

two initial guesses are required that lie on either side of the root

methods reduce the bracket width systematically to converge to the solution

nonlinear equation in one variable

3.5

Outline

e nonlinear equation in one variable
e graphical methods
e bisection method

e false position method

Graphical methods

e plot f(x) to identify approximate root locations

e root =~ where f(x) crosses the x-axis

e provides rough estimates of roots

e estimates can be employed as starting guesses for other numerical methods

e useful to visualize:
— function properties (multiple roots, discontinuities, ill-conditioned intervals)

— behavior of numerical methods

graphical methods 3.6

Example

recall our falling parachutist equation

o(t) = ﬂ(l — e (e/miry

C

find drag coefficient ¢ so that v = 40 m/s after t = 10 s with m = 68.1 kg

e our equation is

fle) = 9.81>c<68.1 (1 _ e—(c/68.1)10) _40 = 6680.06 (1- e—().146843c') — 40

e we evaluate f(c) at trial values and plot or in MATLAB
% Define c range (avoid c=0 to prevent division by zero)
¢ = linspace(1,20,500); % c from 1 to 200 with 500 points
% Define function
f = (9.81%68.1 ./ c) .*x (1 - exp(-(c/68.1)%10))-40;
% Plot
plot(c,f,’LineWidth’,2);
grid on;

graphical methods

3.7

¢ [fleo)

4 34190
8 17.712
12 6114
16 -2.230

20 -8.368

Example

5@

20

e plot shows crossing between ¢ = 12 and ¢ = 16, ¢* ~ 14.75

e substitution check: f(14.75) ~ 0.100

graphical methods

3.8

Roots in brackets

e if f(x;) and f(x,) have same sign = either 0 or even number of roots

e if f(x;) and f(x,) have opposite signs = odd number of roots in (x;, x,,)

graphical methods

@1

@)

@)

@)

@)

3.9

Roots in brackets: exceptions

e multiple roots: function tangential to x-axis

e discontinuous functions: roots may not follow sign-change logic

F et}

\
; ‘ |ox
X X,

)

graphical methods 3.10

Example

f(x) =sin(10x) + cos(3x), 0<x<5

e initial plot suggests several roots and a possible double root near x ~ 4.2

e zooming (3-5) clarifies root structure

o further zoom (4.2—4.3) shows two distinct roots near x = 4.23 and x = 4.26

graphical methods

2

E\A /\/\/\ e /\/\

\\\H\/V [N

o s 4 5

(4) ®

I T T T R B
425 43

©

3.1

MATLAB code

% Define domain

x = linspace(0,5,1000); % 1000 points between O and 5
% Define function

f = sin(10*x) + cos(3%*x);

% Plot

plot(x, f, ’LineWidth’, 2);

graphical methods

3.12

Outline

e nonlinear equation in one variable
e graphical methods
o bisection method

e false position method

Bisection method idea

if f is real and continuous on [x;, x, | and

J) f) <0
then there exists at least one real root in (xz, x;,)

bisection (binary chopping, interval halving, Bolzano’s methoq):
repeatedly bisect [x;, x,] at
X+ Xy
=T
select the subinterval where the sign change occurs, and iterate

guarantees bracketing at each step

interval width halves every iteration

bisection method

3.13

Bisection method

1. start with [x;, x,,| such that f(x;) f(x,) <0
2. compute midpoint: x, = (x; +x,)/2 and f(x;,)

3. test sign:
- if fx)f(xr) <0 = xy =xp

— elseif f(xy)f(xr) <0= x; =x,

— else f(x;) = 0 (root found)

4. repeat until error criterion is satisfied

bisection method 3.14

Example: bisection for the parachutist drag coefficient

use bisection method to solve

668.06
e—0,146843x)

(1

and initial bracket from the graph: x € [12, 16] (true root ~ 14.8011 for reference)

-40=0

fx) =

e iteration 1:
x, =258 =14, £(12) £(14) = 6.114 X 1.611 > 0 = new bracket [14, 16]
e iteration 2:

x, = 28 =15, £(14) £(15) = 1.611x(—0.384) < 0 = new bracket [14, 15]

e iteration 3: x, = 14213 = 14.5 = new bracket decided similarly

e .. interval width halves each iteration; root remains bracketed

bisection method 3.15

Example: bisection for the parachutist drag coefficient

bisection method

3.16

Termination: approximate relative error

without knowing the true root, use the approximate percent relative error

new old
X, — X,
xgew

x 100%

Eaq =

stop when g, < &; (user-specified tolerance) or when iteration cap is reached

Example: continue previous example until &, < 0.5%

iter X] Xy Xy Eq () &1 (%)
1 12 16 14 — 5.413
2 14 16 15 6.667 1.344
3 14 15 14.5 3.448 2.035
4 14.5 15 14.75 1.695 0.345
5 14.75 15 14.875 0.840 0.499
6 1475 14.875 14.8125 0.422 0.077

stop at iteration 6 since £, < 0.5%

bisection method

True and approximate relative errors

Approximate

Percent relative error

True

01 -

Iterations

e suggests that g, captures the general downward trend of &;
® g, is greater than &;

e when g, < &g, the computation could be terminated with confidence

bisection method

3.18

Bisection error bound

&, is always greater than &;

X1+Xy

e approximate root is located using bisection as x, = =5

o we know that the true root lies somewhere within an interval

Xy — X] :+g
2 T2

of our estimate

(@ P

®» e

© e

True root

bisection method

3.19

Bisection error bound

e observe that

oW _ y0ld
———
i i
I I
1 ® i |
Ax ;d i
new old i
— =X, X | i
2 ; oo
Present iteration e
I
3 I
[
Ax/2

e hence, g, = | | x 100% provides an exact upper bound on the true error

Alternative approximate error expression: since

xnew _ yold Tu— X new _ m
r r 2 ’ r 2
we have
xhew _ old
Ea = || X 100% = x 100%
Xy Xu + X1

allows error estimate from the very first iteration

bisection method 3.20

How many iterations do we need?

initial absolute bracket width: Axg = x,,0 — X1,0

the bracket is halved after each iteration

after n iterations, the absolute error satisfies

Ax
E! = 2n°

to guarantee E7 < E, 4, choose

Ax
n 2 1og2(E Z)
a,

Example: in last example with Axg = 16 — 12 =4

e after 6 iterations E, = =10 = 1821478 — (),0625 (or E, = 4/2°)

e using this as upper bound gives n = log,(4/0.0625) = 6

bisection method

3.21

Bisection: pros and cons

Pros
e guaranteed convergence if f continuous and initial bracket valid

e simple, robust, and monotonic interval reduction

e clean error bounds; iteration count predictable

Cons

e linear (slow) convergence rate

e requires bracketing; does not exploit derivative or curvature information

bisection method 3.22

The bisection method

given: x;, x,, with x; < x,,, f(x7) f(x,) < 0, and tolerance &g
repeat

xr = (X7 +2x,)/2

. compute f(x,);if f(x,) =0, return x,

Cif f(x) f(x)) <0, x, = x,, else, x; = x,

. stopife, = |x" x’| x 100% < &g

Xy +X1

—_

A WO DN

condition f(x;) f(x,) < 0 ensures a root exists between x;, x,,

® Xx;,Xx, can be chosen from graphing the function

bisection method

3.23

MATLAB implementation of bisection

function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
if nargin<3,error(’at least 3 input arguments required’),end
test = func(xl,varargin{:})*func(xu,varargin{:});

if test>0,error(’no sign change’),end

if nargin<4 || isempty(es), es=0.0001;end

if nargin<5 || isempty(maxit), maxit=50;end
iter = 0; xr = x1; ea = 100;
while (1)

xrold = xr; xr = (x1 + xu)/2;

iter = iter + 1;

if xr "= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});

if test < 0O

Xu = Xr;

elseif test > 0

x1l = xr;

else

ea = 0;

end

if ea <= es || iter >= maxit,break,end
end

root = xr; fx = func(xr, varargin{:});

bisection method 3.24

Outline

e nonlinear equation in one variable
e graphical methods
e bisection method

o false position method

False-position method

e bisection is valid but inefficient: it always divides the interval into equal halves

e false position (regula falsi, linear interpolation method) provides a more efficient
alternative

e idea: use the relative magnitudes of f(x;) and f(x,) to improve the root estimate

e if f(x;) is much closer to zero than f(x,,), then the root is likely closer to x;

false position method 3.25

Graphical insight of false position

e instead of bisecting the interval, connect a straight line to the points

(xr, f(x1)) and - (xus, f ()

e intersection of this line with the x-axis is taken as the new root estimate
e this point is called the false position because the curve is replaced by a line

f@ b

false position method 3.26

False-position formula

using similar triangle (equating slope):

S f)

Xr — X1 Xy — Xy

solving for x,- gives the false-position formula

f(xu)(xl _xu)
) = f(xu)

Xr =Xy —

uses both function values and endpoints

it £(x7)f(x;) < 0, the root lies between x; and x,

it £(x,)f(x,) <0, the root lies between x,- and x,,

the interval is updated accordingly, and the process repeats

false position method

Example: false-position on the parachutist equation

use the false-position method to determine the root of

668.06

) =

with initial guesses: x; = 12, x,, = 16

First iteration
f(12) =6.1139, f(16) =

f(xu) ()Cl - xu)

(-2.2303)(12 - 16)

(1 _ o0.146843 *) 40

-2.2303

= 16

s T e) — f(x) 61139

true relative error ~ 0.88% (for reference)

since f(x;) f (x,) < 0, the new bracket is [x;,x,] =

false position method

= 14.309
(=2.2303)

[12, 14.309] (i.e., Xy = Xy)

3.28

Example: false-position on the parachutist equation

Second iteration
x; =12, f(x;) =6.1139, X, =14.9309, f(x,) =-0.2515
(—=0.2515)(12 — 14.9309)
» = 14.9309 — = 14.8151
* 6.1139 — (—0.2515)

true and approximate relative errors: &; ~ 0.09%, &, =~ 0.78%

further iterations refine the estimate similarly

10—

Bisection
1=

10 -

False posttion

True percent relative error

false position method 3.29

False position versus bisection

false position can decrease true error faster than bisection (more informative
placement of x,.)

unlike bisection, the interval need not shrink symmetrically; one endpoint can
remain fixed while the other approaches the root

consequence: the interval width is not a reliable error bound for false position

new old
xp —x)

new
Xr

using g4 = 0l vative wi Vi i id:
sin 100% is conservative when convergence is rapid

numerator largely reflects the previous iteration’s discrepancy

false position method

3.30

Example: pitfalls of false position

locate the root of f(x) = x' — 1 on [0, 1.3] using bisection and false-position

true rootx = 1

Bisection
iter | x; Xu Xy ea(%) | &:(%)
1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 10.975 1.3 1.1375 14.3 13.8
4 10975 | 1.1375 | 1.05625 7.7 5.6
5 | 0.975 | 1.05625 | 1.015625 4.0 1.6

after 5 iterations, &; < 2%

false position method

3.31

Example: pitfalls of false position

False position

ter | xg | xu | x| &%) | &%)

1 0 1.3 | 0.09430 — 90.6
2 1 0.09430 | 1.3 | 0.18176 48.1 81.8
3 | 0.18176 | 1.3 | 0.26287 30.9 73.7
4 | 0.26287 | 1.3 | 0.33811 22.3 66.2
5 | 0.33811 | 1.3 | 0.40788 17.1 59.2

e very slow progress; also note cases with £, < &; (misleading)
e interpretation: function shape violates: “closer f-value = closer to root”

e one-sidedness: one endpoint often remains fixed while the other moves, causing
poor convergence with strong curvature

false position method 3.32

Checking for all roots

e beyond verifying a single root, ensure all possible roots are located
e incremental search:

— evaluate f(x) at small increments across region

— sign change = root in that subinterval

— endpoints serve as initial guesses for bracketing methods
e always supplement with:

— function plots (plotting f (x) is a useful first step)

— insight from physical meaning of the problem

false position method

3.33

Summary

Graphical Errors and
Method Formulation Interpretation Stopping Criteria
Bracketing methods:
Blsection X =)% o Root Stopping criterion:
7—‘—.—‘—> XMW _ yold
If fix)fix) < O, X, = X, X L X x XT' 100% < ¢
foafix) > 0, X=X '

.)
fox) =)

If o)) < O, x, = X,
i) > 0, %=

False position

false position method

Stopping criterion:
XMW _ yold
T 1400% < €

X

3.34

References and further readings

e S.C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.5)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.5)

references

3.35

	nonlinear equation in one variable
	graphical methods
	bisection method
	false position method
	references

