
2. Round-off and truncation errors

• significant figures

• numerical errors

• round-off errors

• Taylor series, truncation errors

• error propagation

ENGR 308 (Fall 2025) S. Alghunaim

2.1

Significant figures

significant figures indicate the reliability of a numerical value

• represent certain digits plus one estimated digit

• ensure confidence in computations

Example

speedometer (48.5 km/h, 3 significant figures with 2 certain digits)

odometer (87,324.45 km, 7 significant figures)

SA — ENGR308significant figures 2.2

Rules for significant figures

• non-zero digits are always significant

• zeros between non-zero digits are significant
– e.g., 1002 has 4 significant figures

• leading zeros are not significant
– e.g., 0.001845 has 4 significant figures

• trailing zeros with a decimal point are significant
– e.g., 45.300 has 5 significant figures

• trailing zeros can be significant or not
– e.g., 45,300 may have 3, 4, 5 significant figures

– use scientific notation for clarity

– e.g., 4.5300 × 104 has 5 significant figures

• computer retain only a finite number of significant figures
– e.g., 𝜋 = 3.141592653589793238462643· ··
– 𝜋 cannot be represented exactly in a computer

– omission of the remaining significant figures is called round-off error

SA — ENGR308significant figures 2.3

Accuracy and precision

Accuracy: how close a value is to the true value

Precision: how close repeated values are to each other

Example

(a) inaccurate (biased), imprecise
(uncertain)

(b) accurate, imprecise

(c) inaccurate, precise

(d) accurate, precise

SA — ENGR308significant figures 2.4

Outline

• significant figures

• numerical errors

• round-off errors

• Taylor series, truncation errors

• error propagation

Error sources

Errors in the problem to be solved

• mathematical model errors (model approximation)

• error in input data (physical measur. and previous approximate computation)

Truncation and discretization errors

• due to using approximate formula
– replacing derivatives by finite differences

– evaluating function by truncating a Taylor series (e.g., 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + ···)

• convergence errors in iterative methods, which converge to the exact solution in
infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors

• arise from finite precision representation of real numbers on computers

• truncation or discretization errors usually dominate roundoff errors

SA — ENGR308numerical errors 2.5

Example

surface area of the Earth with radius 𝑟 might be computed using the formula

𝐴 = 4𝜋𝑟2

• earth is modeled as a sphere, which is an approximation of its true shape

• 𝑟 ≈ 6370 km, is based on empirical measurements and previous computations

• 𝜋 is given by an infinite limiting process, which must be truncated at some point

• numerical values for the input data, as well as the results of the arithmetic
operations performed on them, are rounded in a computer or calculator

SA — ENGR308numerical errors 2.6

Approximations and errors

given true (actual) value 𝑥 and its approximation 𝑥

• true error: 𝐸𝑡 = 𝑥 − 𝑥 (absolute error: |𝑥 − 𝑥 |)
• relative error:

|true error|
|true value| =

|𝑥 − 𝑥 |
|𝑥 | (assuming 𝑥 ≠ 0)

– gives percentage of error compared to the actual value (𝜀𝑡 = relative error × 100%)

– accounts of the order of magnitude of quantities

Example

𝑥 𝑥 absolute error relative error
1 0.99 0.01 0.01
1 1.01 0.01 0.01

100 99.99 0.01 0.0001
100 99 1 0.01

• when |𝑥 | ≈ 1, little difference between absolute and relative error

• when |𝑥 | >> 1, relative error more meaningful

SA — ENGR308numerical errors 2.7

Example: calculation of errors

Problem

(a) measurement of a bridge 9999 cm with true value 10,000 cm

(b) measurement of a rivet 9 cm with true value 10 cm

Error

(a) bridge: 𝐸𝑡 = 10, 000 − 9999 = 1 cm and 𝜀𝑡 =
1

10,000 × 100% = 0.01%

(b) rivet: 𝐸𝑡 = 10 − 9 = 1 cm and 𝜀𝑡 =
1
10 × 100% = 10%

• same error (1 cm) but different relative impact

• conclusion: we did a good job of measuring the bridge, but not the rivet

SA — ENGR308numerical errors 2.8

Approximate error

• true value is typically unknown a priori

• use best available estimate

𝜀𝑎 =
approximate error

approximation
× 100%

=
𝑥𝑖 − 𝑥𝑖−1

𝑥𝑖
× 100%

where 𝑥𝑖 is current approximation and 𝑥𝑖−1 is previous approximation

• typically we require |𝜀𝑎 | < 𝜀𝑠 for some small tolerance 𝜀𝑠 > 0

• we can be assured that the result is correct to at least 𝑛 significant figures if

𝜀𝑠 = (0.5 × 102−𝑛)%

SA — ENGR308numerical errors 2.9

Example: error estimates for iterative methods

Problem: estimate 𝑒0.5 = 1.648721· ·· using Maclaurin series

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ ···

Goal: achieve 3 significant figures (𝜀𝑠 = 0.5 × 102−3% = 0.05%)

• add terms until |𝜀𝑎 | < 𝜀𝑠

• example: for 𝑥 = 0.5, first term (1), second term (1.5), etc.

terms 𝑒0.5 ≈ 𝜀𝑡 (%) 𝜀𝑎 (%)
1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

• stops at 6 terms: 𝜀𝑎 < 0.05%, accurate to 5 significant figures

SA — ENGR308numerical errors 2.10

Example: MATLAB iterative calculation

implement code to iteratively find 𝑒𝑥 ≈ ∑𝑛
𝑖=0

𝑥𝑖

𝑖! for 𝑥 = 1 until |𝜀𝑎 | < 10−6

>> format long
>> [val, ea, iter] = IterMeth(1,1e-6,100)
val =
2.718281826198493
ea =
9.216155641522974e-007

function [fx,ea,iter] = IterMeth(x,es,maxit)
% Maclaurin series of exponential function
if nargin < 2||isempty(es),es = 0.0001;end
if nargin < 3||isempty(maxit),maxit = 50;end
% initialization
iter = 1; sol = 1; ea = 100;
% iterative calculation
while (1)
solold = sol;
sol = sol + x ^ iter / factorial(iter);
iter = iter + 1;
if sol~ = 0
ea = abs((sol - solold)/sol)*100;
end
if ea< = es || iter> = maxit,break,end
end
fx = sol;
end

SA — ENGR308numerical errors 2.11

Trade-offs in numerical methods

Accuracy vs. efficiency

• more accurate methods increase computation time

• e.g., numerical integration with more intervals improves accs. but slows comp.

Stability

• some methods become unstable for certain problems

• e.g., stiff differential equations

Convergence: does the method approach the true solution as iterations increase?

SA — ENGR308numerical errors 2.12

Outline

• significant figures

• numerical errors

• round-off errors

• Taylor series, truncation errors

• error propagation

Round-off errors

• computers retain only a fixed number of significant figures

• irrational no. (𝜋, 𝑒,
√
7) and many base-10 rationals cannot be represented exactly

• base-2 (binary) storage leads to discrepancies when representing base-10 no.

• round-off error : discrepancy introduced by omitting significant figures

Example:
√
2 = 1.4142135623731· ·· ≈ 1.4142 using 5 significant figures

• (
√
2)5 = 5.6569 and (1.4142)5 = 5.6566 (small difference)

• (
√
2)50 = 33554432 and (1.4142)50 = 33538346.35 (big difference ≈ 1600)

SA — ENGR308round-off errors 2.13

Number systems

Base-10 (decimal)

• uses digits 0–9 with place values 10𝑘

• example: 86, 409 = 8 × 104 + 6 × 103 + 4 × 102 + 0 × 101 + 9 × 100

Base-2 (binary)

• uses digits 0, 1 with place values 2𝑘

• example: (10101101)2 = 1 · 27 + 0 · 26 + ··· + 1 · 20 = 173

SA — ENGR308round-off errors 2.14

Integer representation

Integer representation

• signed magnitude: first bit is sign (0: +ve, 1: -ve); remaining bits store magnitude

• example: −173 (16-bit signed magnitude):

Example: determine the base-10 range on a 16-bit machine

• 1 bit for sign; 15 bits for magnitude: max unsigned magnitude

(1 × 214) + (1 × 213) + ··· + (1 × 21) + (1 × 20) = 215 − 1 = 32, 767

• zero is 0000000000000000, so it is redundant to use 1000000000000000

• store additional -ve number: so range −215 to 215 − 1 = −32,768 to 32,767

• numbers outside this range cannot be represented (overflow/underflow)

SA — ENGR308round-off errors 2.15

Floating-point representation

fractional numbers are represented in computers using floating-point form

𝑥 = ±(.𝑑1𝑑2 · ··𝑑𝑛) · 𝑏𝑒 = ±
(
𝑑1

𝑏1
+ ··· + 𝑑𝑛

𝑏𝑛

)
· 𝑏𝑒 = ±𝑚 · 𝑏𝑒

• 𝑏 is the base (an integer larger than 1); 𝑛 is precision (number of digits)

• 𝑒 is exponent (𝑒min ≤ 𝑒 ≤ 𝑒max)

• 𝑑1𝑑2𝑑3 · ·· is mantissa or significand, 𝑑𝑖 integer with 0 ≤ 𝑑𝑖 ≤ 𝑏 − 1

• stored as:

Examples
• base-10: 0.15678 × 103 = 156.78

• base-2: −(.1101) · 22 = −(12 + 1
4 + 0

8 + 1
16) · 2

2 = −3.25

SA — ENGR308round-off errors 2.16

Normalization of mantissa

to maximize significant figures, mantissa is normalized to remove leading zeros

• example:
1/34 = 0.029411765 . . .

so
store as 0.0294 × 100 ⇒ normalize to 0.2941 × 10−1

• normalization bounds mantissa:

1

𝑏
≤ 𝑚 < 1

0.1 ≤ 𝑚 ≤ 1 for base-10 and for 0.5 ≤ 𝑚 ≤ 1 base-2

SA — ENGR308round-off errors 2.17

Example: binary 7-bit floating-point set

7-bit floating point number stored as

• smallest positive normalized value (shown above):

𝑚 = 1 × 2−1 = 0.5, 𝑒 = −(1 × 21 + 1 × 20) = −3 ⇒ +0.5 × 2−3 = 0.0625

• next highest numbers are developed by increasing the mantissa, as in

0111101 =
(
1 × 2−1 + 0 × 2−2 + 1 × 2−3

)
× 2−3 = (0.078125)10

0111110 =
(
1 × 2−1 + 1 × 2−2 + 0 × 2−3

)
× 2−3 = (0.093750)10

0111111 =
(
1 × 2−1 + 1 × 2−2 + 1 × 2−3

)
× 2−3 = (0.109375)10

in base-10 equivalents are spaced evenly with an interval of 0.015625

SA — ENGR308round-off errors 2.18

Example: binary 7-bit floating-point set

• to continue increasing, we decrease the exponent to 10, which gives a value of

𝑒 = −(1 × 21 + 0 × 20) = −2

• mantissa is decreased back to its smallest 100; so, next number is

0110100 =
(
1 × 2−1 + 0 × 2−2 + 0 × 2−3

)
× 2−2 = (0.125000)10

this still represents a gap of 0.125000 − 0.109375 = 0.015625

• increasing the mantissa, the gap is lengthened to 0.03125:

0110101 =
(
1 × 2−1 + 0 × 2−2 + 1 × 2−3

)
× 2−2 = (0.156250)10

0110110 =
(
1 × 2−1 + 1 × 2−2 + 0 × 2−3

)
× 2−2 = (0.187500)10

0110111 =
(
1 × 2−1 + 1 × 2−2 + 1 × 2−3

)
× 2−2 = (0.218750)10

• this pattern is repeated until a maximum number is reached:

0011111 =
(
1 × 2−1 + 1 × 2−2 + 1 × 2−3

)
× 23 = (7)10

SA — ENGR308round-off errors 2.19

Floating-point consequences and errors

• limited range (overflow and underflow)

• only a finite number of numbers can be represented within the range

• the interval between numbers, Δ𝑥, doubles as the numbers grow in magnitude

SA — ENGR308round-off errors 2.20

Chopping and rounding

Chopping (truncation)

• discard excess digits (bias toward lower endpoint)

• example (base-10, 7 sig figs): 𝜋 = 3.1415926535· ··

chop: 3.141592

Rounding

• map to nearest representable number (reduced error, unbiased overall)

• example (base-10, 7 sig figs): 𝜋 = 3.1415926535· ··

round: 3.141593

SA — ENGR308round-off errors 2.21

Relative error bounds and machine epsilon

for Δ𝑥 = actual number − floating point representation, we have

• for chopping:
|Δ𝑥 |
|𝑥 | ≤ E

• for rounding:
|Δ𝑥 |
|𝑥 | ≤ E

2

E is machine epsilon
E = 𝑏1−𝑛

where 𝑏 is base and 𝑛 is mantissa digits (precision)

SA — ENGR308round-off errors 2.22

Example: machine epsilon for the 7-bit set

• base 𝑏 = 2, mantissa bits 𝑛 = 3 and chopping, we have E = 21−3 = 0.25

• largest error occurs just below the upper bound of the 1st normalized interval

• for example, maximum error would be a value falling just below the upper bound of
the interval between (0.125000)10 and (0.156250)10

• for this case, the error is less than

|Δ𝑥 |
|𝑥 | <

0.03125

0.125000
= 0.25

SA — ENGR308round-off errors 2.23

IEEE standard for binary arithmetic

• two binary (𝑏 = 2) floating-point number systems

• used in almost all modern computers (e.g., MATLAB)

IEEE standard single precision (requires 32 bits)

𝑛 = 24, 𝑒min = −125, 𝑒max = 128

• 23 bits for mantissa (𝑑1 = 1 not stored)

• 1 sign bit and 8 bits for exponent

• about 7 significant base-10 digits precision with range 10−38 to 1039

IEEE standard double precision (requires 64 bits)

𝑛 = 53, 𝑒min = −1021, 𝑒max = 1024

• 52 bits for mantissa (𝑑1 = 1 not stored)

• 1 sign bit and 11 bits for exponent

• about 16 significant base-10 digits precision with range 10−308 to 10308

SA — ENGR308round-off errors 2.24

Arithmetic manipulations

arithmetic with floating-point numbers introduces additional round-off error

• for simplicity: use base-10 numbers, 4-digit mantissa, 1-digit exponent, chopping

• other number bases and rounding would behave in a similar fashion

• focus on: addition, subtraction, multiplication, division

• long sequences of operations can accumulate small round-off errors

SA — ENGR308round-off errors 2.25

Addition

mantissa of no. with smaller exponent is modified so that exponents are the same

Example
0.1557 · 101 + 0.4381 · 10−1

• write
0.4381 · 10−1 → 0.004381 · 101

• then add
0.1557 · 101

0.004381 · 101
0.160081 · 101

⇒ chop → 0.1600 · 101

Adding a large and a small number: add 4000 to 0.0010:

0.4000 · 104 + 0.0000001 · 104 = 0.4000001 · 104

chop → 0.4000 · 104

SA — ENGR308round-off errors 2.26

Example: MATLAB

sum 0.0001 to itself 104 times, which should gives 1

in MATLAB running

s = 0;

for i = 1:10000

s = s + 0.0001;

end

sout = s

gives

sout=0.99999999999991

while 0.0001 is a nice number in base-10, it cannot be expressed exactly in base-2

SA — ENGR308round-off errors 2.27

Subtraction

Subtraction
0.3641 · 102 − 0.2686 · 102 = 0.0955 · 102

0.0955 · 102 → 0.9550 · 101 = 9.550

zero added to the end is not significant but is appended to fill the empty space

Subtracting two nearly equal numbers

0.7642 · 103 − 0.7641 · 103 = 0.0001 · 103

0.0001 · 103 → 0.1000 · 100 = 0.1000

three nonsignificant zeros are appended

round-off induced when subtracting two nearly equal floating-point numbers is called
subtractive cancellation

SA — ENGR308round-off errors 2.28

Multiplication and division

Multiplication: multiply mantissas, add exponents, then normalize and chop

(0.1363 · 103) × (0.6423 · 10−1) = 0.08754549 · 102

0.08754549 · 102 → 0.8754549 · 101 chop−−−→ 0.8754 · 101

Division: divide mantissas, subtract exponents, then normalize and chop

SA — ENGR308round-off errors 2.29

Outline

• significant figures

• numerical errors

• round-off errors

• Taylor series, truncation errors

• error propagation

Taylor series

if 𝑓 and its first 𝑛+1 derivatives are continuous on an interval containing 𝑎 and 𝑥, then

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′ (𝑎) (𝑥 − 𝑎) + 𝑓 ′′ (𝑎)
2!

(𝑥 − 𝑎)2 + ··· + 𝑓 (𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛 + 𝑅𝑛

with remainder (integral form)

𝑅𝑛 =

∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1) (𝑡) 𝑑𝑡

• called Taylor’s theorem or Taylor series

• called Taylor approximation if 𝑅𝑛 is omitted

• provides a polynomial approximation of smooth functions

• predict 𝑓 at a new point using values and derivatives at a nearby point

• by the integral mean-value theorem, there exists 𝜉 between 𝑎 and 𝑥 such that

𝑅𝑛 =
𝑓 (𝑛+1) (𝜉)
(𝑛 + 1)! (𝑥 − 𝑎) 𝑛+1

this is the derivative or Lagrange form of the remainder

SA — ENGR308Taylor series, truncation errors 2.30

Taylor approximations

Zero-order (constant)
𝑓 (𝑥𝑖+1) ≈ 𝑓 (𝑥𝑖)

First-order (affine approximation)

𝑓 (𝑥𝑖+1) ≈ 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖)

Second-order (quadratic approximation)

𝑓 (𝑥𝑖+1) ≈ 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖) +
𝑓 ′′ (𝑥𝑖)
2

(𝑥𝑖+1 − 𝑥𝑖)2

• approximation improves if 𝑥𝑖+1 is near 𝑥𝑖

• higher-order terms capture curvature and improve accuracy

SA — ENGR308Taylor series, truncation errors 2.31

Full series about 𝑥𝑖 and remainder

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖) +
𝑓 ′′ (𝑥𝑖)
2!

(𝑥𝑖+1 − 𝑥𝑖)2

+ 𝑓 (3) (𝑥𝑖)
3!

(𝑥𝑖+1 − 𝑥𝑖)3 + ··· + 𝑓 (𝑛) (𝑥𝑖)
𝑛!

(𝑥𝑖+1 − 𝑥𝑖)𝑛 + 𝑅𝑛

where

𝑅𝑛 =
𝑓 (𝑛+1) (𝜉)
(𝑛 + 1)! (𝑥𝑖+1 − 𝑥𝑖) 𝑛+1

Step size form (ℎ = 𝑥𝑖+1 − 𝑥𝑖)

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 + 𝑓 (3) (𝑥𝑖)
3!

ℎ3 + ··· + 𝑓 (𝑛) (𝑥𝑖)
𝑛!

ℎ𝑛 + 𝑅𝑛

where (for 𝑥𝑖 ≤ 𝜉 ≤ 𝑥𝑖+1)

𝑅𝑛 =
𝑓 (𝑛+1) (𝜉)
(𝑛 + 1)! ℎ𝑛+1

SA — ENGR308Taylor series, truncation errors 2.32

Example: polynomial approximation

𝑓 (𝑥) = −0.1𝑥4 − 0.15𝑥3 − 0.5𝑥2 − 0.25𝑥 + 1.2,

approximate 𝑓 (1) = 0.2 from 𝑥𝑖 = 0 with ℎ = 1 using 𝑛 = 0, 1, 2, 3, 4

Zero-order: 𝑓 (𝑥𝑖+1) ≈ 𝑓 (0) = 1.2 with 𝐸𝑡 = 0.2 − 1.2 = −1

First-order: 𝑓 ′ (𝑥) = −0.4𝑥3 − 0.45𝑥2 − 𝑥 − 0.25 =⇒ 𝑓 ′ (0) = −0.25

𝑓 (𝑥𝑖+1) ≈ 1.2 − 0.25 ℎ =⇒ 𝑓 (1) = 0.95

𝐸𝑡 = 0.2 − 0.95 = −0.75

Second-order: 𝑓 ′′ (𝑥) = −1.2𝑥2 − 0.9𝑥 − 1 =⇒ 𝑓 ′′ (0) = −1

𝑓 (𝑥𝑖+1) ≈ 1.2 − 0.25 ℎ − 1

2
ℎ2 =⇒ 𝑓 (1) = 0.45

𝐸𝑡 = 0.2 − 0.45 = −0.25

SA — ENGR308Taylor series, truncation errors 2.33

Fourth-order

𝑓 (3) (𝑥) = −2.4𝑥 − 0.9, 𝑓 (3) (0) = −0.9, 𝑓 (4) (𝑥) = −2.4, 𝑓 (4) (0) = −2.4

𝑓 (1) ≈ 1.2 − 0.25(1) − 1

2
(1)2 − 0.9

6
(1)3 − 2.4

24
(1)4

= 1.2 − 0.25 − 0.5 − 0.15 − 0.1 = 0.2

since 𝑓 is a 4th-degree polynomial, the 𝑛 = 4 Taylor polynomial is exact and 𝑅4 = 0

SA — ENGR308Taylor series, truncation errors 2.34

Truncation error order notation

with ℎ = 𝑥𝑖+1 − 𝑥𝑖 ,

𝑅𝑛 =
𝑓 (𝑛+1) (𝜉)
(𝑛 + 1)! ℎ𝑛+1 = O(ℎ 𝑛+1)

• if error is O(ℎ), halving ℎ halves the error

• if O(ℎ2), halving ℎ quarters the error

• for sufficiently small ℎ, only a few terms are required to get a good estimate

SA — ENGR308Taylor series, truncation errors 2.35

Example

• we use Taylor series to approximate 𝑓 (𝑥) = cos 𝑥 at 𝑥𝑖+1 = 𝜋/3

• base point 𝑥𝑖 = 𝜋/4, step ℎ = 𝜋/12, true value 𝑓 (𝜋/3) = 0.5

order 𝑛 𝑓 (𝑛) (𝑥) 𝑓 (𝜋/3) ≈ 𝜀𝑡
0 cos 𝑥 0.707106781 −41.4
1 − sin 𝑥 0.521986659 −4.4
2 − cos 𝑥 0.497754491 0.449
3 sin 𝑥 0.499869147 2.62 × 10−2

4 cos 𝑥 0.500007551 −1.51 × 10−3

5 − sin 𝑥 0.500000304 −6.08 × 10−5

6 − cos 𝑥 0.499999988 2.44 × 10−6

SA — ENGR308Taylor series, truncation errors 2.36

Remainder and the mean-value insight

• zero-order truncation:

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑅0, 𝑅0 = 𝑓 ′ (𝑥𝑖)ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 + 𝑓 (3) (𝑥𝑖)
3!

ℎ3 + ···

• derivative mean-value theorem ⇒ there exists 𝜉 ∈ (𝑥𝑖 , 𝑥𝑖+1) with

𝑅0 = 𝑓 ′ (𝜉) ℎ

SA — ENGR308Taylor series, truncation errors 2.37

Numerical differentiation: forward difference approximation

derivative forward approximation

𝑓 ′ (𝑥𝑖) ≈
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
, error O(𝑥𝑖+1 − 𝑥𝑖) = O(ℎ)

• follows from Taylor series

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑖) + 𝑅1, 𝑅1 =
𝑓
′′ (𝜉)
2!

(𝑥𝑖+1 − 𝑥𝑖)2

• called finite divided difference, 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖) is called first forward difference

• 𝑓 (𝑥𝑖+1)− 𝑓 (𝑥𝑖)
𝑥𝑖+1−𝑥𝑖 called first finite divided difference

SA — ENGR308Taylor series, truncation errors 2.38

Numerical differentiation: backward difference approximation

derivative backward approximation

𝑓 ′ (𝑥𝑖) ≈
𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)

ℎ
, error O(ℎ)

follows from Taylor series expanded backward

𝑓 (𝑥𝑖−1) = 𝑓 (𝑥𝑖) − 𝑓 ′ (𝑥𝑖)ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 − ···

SA — ENGR308Taylor series, truncation errors 2.39

Numerical differentiation: centered difference approximation

derivative centered difference approximation

𝑓 ′ (𝑥𝑖) =
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2ℎ
, error O(ℎ2)

follows by subtracting

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖)ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 − ···

from

𝑓 (𝑥𝑖−1) = 𝑓 (𝑥𝑖) − 𝑓 ′ (𝑥𝑖)ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 − ···

SA — ENGR308Taylor series, truncation errors 2.40

Example

𝑓 (𝑥) = −0.1𝑥4 − 0.15𝑥3 − 0.5𝑥2 − 0.25𝑥 + 1.25

approximate 𝑓 ′ (0.5) using ℎ = 0.5 and ℎ = 0.25 (true value 𝑓 ′ (0.5) = −0.9125)

for ℎ = 0.5, using
𝑥𝑖−1 = 0, 𝑓 (𝑥𝑖−1) = 1.2

𝑥𝑖 = 0.5, 𝑓 (𝑥𝑖) = 0.925

𝑥𝑖+1 = 1.0, 𝑓 (𝑥𝑖+1) = 0.2

we get

forward:
0.2 − 0.925

0.5
= −1.45 (|𝜀𝑡 | = 58.9%)

backward:
0.925 − 1.2

0.5
= −0.55 (|𝜀𝑡 | = 39.7%)

centered:
0.2 − 1.2

1.0
= −1.0 (|𝜀𝑡 | = 9.6%)

SA — ENGR308Taylor series, truncation errors 2.41

for ℎ = 0.25, using

𝑥𝑖−1 = 0.25, 𝑓 (𝑥𝑖−1) = 1.10351563

𝑥𝑖 = 0.5, 𝑓 (𝑥𝑖) = 0.925

𝑥𝑖+1 = 0.75, 𝑓 (𝑥𝑖+1) = 0.63632813

we get

forward:
0.6363 − 0.925

0.25
= −1.155 (|𝜀𝑡 | = 26.5%)

backward:
0.925 − 1.1035

0.25
= −0.714 (|𝜀𝑡 | = 21.7%)

centered:
0.6363 − 1.1035

0.5
= −0.934 (|𝜀𝑡 | = 2.4%)

SA — ENGR308Taylor series, truncation errors 2.42

Numerical differentiation: second-order derivative

Second forward finite divided difference

𝑓 ′′ (𝑥𝑖) ≈
𝑓 (𝑥𝑖+2) − 2 𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖)

ℎ2
, error O(ℎ)

follows by subtracting

𝑓 (𝑥𝑖+2) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖) (2ℎ) +
𝑓 ′′ (𝑥𝑖)
2!

(2ℎ)2 + ···

from 2 times

𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖) + 𝑓 ′ (𝑥𝑖)ℎ +
𝑓 ′′ (𝑥𝑖)
2!

ℎ2 − ···

Second backward finite divided difference

𝑓 ′′ (𝑥𝑖) ≈
𝑓 (𝑥𝑖) − 2 𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖−2)

ℎ2
, error O(ℎ)

Second centered finite divided difference

𝑓 ′′ (𝑥𝑖) ≈
𝑓 (𝑥𝑖+1) − 2 𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖−1)

ℎ2
, error O(ℎ2)

SA — ENGR308Taylor series, truncation errors 2.43

Outline

• significant figures

• numerical errors

• round-off errors

• Taylor series, truncation errors

• error propagation

Function error propagation

let 𝑥 = 𝑥 + Δ𝑥 be an approximation of 𝑥; we seek absolute function error:

Δ 𝑓 (𝑥) = | 𝑓 (𝑥) − 𝑓 (𝑥) |

• assuming 𝑥 is close to 𝑥 and 𝑓 is continuous and differentiable near 𝑥,

𝑓 (𝑥) = 𝑓 (𝑥) + 𝑓 ′ (𝑥)Δ𝑥 + 𝑓 ′′ (𝑥)
2

(Δ𝑥)2 + ···

• dropping second and higher terms:

Δ 𝑓 (𝑥) ≈ | 𝑓 ′ (𝑥) (𝑥 − 𝑥) |
= | 𝑓 ′ (𝑥) | |Δ𝑥 |

SA — ENGR308error propagation 2.44

Example

given 𝑥 = 2.5 with error Δ𝑥 = 0.01, estimate the error in 𝑓 (𝑥) = 𝑥3

• we have

Δ 𝑓 (𝑥) ≈ | 𝑓 ′ (𝑥) | Δ𝑥 = |3𝑥2 | · 0.01 = 3(2.5)2 (0.01) = 0.1875

• since 𝑓 (2.5) = 15.625, we predict

𝑓 (𝑥) ≈ 15.625 ± 0.1875

SA — ENGR308error propagation 2.45

Stability and condition

Condition (of a problem)

• sensitivity of 𝑓 (𝑥) to small changes in the input 𝑥

• algorithm is unstable if it magnifies input/round-off uncertainties

• relative errors:

| 𝑓 (𝑥) − 𝑓 (𝑥) |
| 𝑓 (𝑥) | ≈ | 𝑓 ′ (𝑥) Δ𝑥 |

| 𝑓 (𝑥) | ,
|Δ𝑥 |
|𝑥 | is the relative error in 𝑥

Condition number: ratio of relative errors

𝜅(𝑥) =
|𝑥 𝑓 ′ (𝑥) |
| 𝑓 (𝑥) |

• 𝜅 ≈ 1: output relative error ≈ input relative error

• |𝜅 | > 1: relative error is amplified (ill-conditioning as |𝜅 | grows)

• |𝜅 | < 1: relative error is attenuated

SA — ENGR308error propagation 2.46

Example

we compute condition number for 𝑓 (𝑥) = tan 𝑥

𝜅(𝑥) =
𝑥 𝑓 ′ (𝑥)
𝑓 (𝑥) =

𝑥 sec2 𝑥

tan 𝑥
=

𝑥

cos2 𝑥 tan 𝑥

Case 1: 𝑥 =
𝜋

2
+ 0.1

(𝜋
2

)
𝜅(𝑥) ≈ 1.7279 × 40.86

−6.314 ≈ −11.2

Case 2: 𝑥 =
𝜋

2
+ 0.01

(𝜋
2

)
𝜅(𝑥) ≈ 1.5865 × 4053

−63.66 ≈ −101

near 𝜋/2, sec2 𝑥 grows and tan 𝑥 changes rapidly ⇒ severe ill-conditioning

SA — ENGR308error propagation 2.47

Total numerical error: truncation vs. round-off

• total error = truncation + round-off

• ↓ ℎ, ↓ truncation, but ↑ round-off due to more ops/subtractive cancellation

• goal: choose step size to balance truncation and round-off contributions

SA — ENGR308error propagation 2.48

Error analysis of numerical differentiation

• centered difference with truncation term:

𝑓 ′ (𝑥𝑖) =
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2ℎ
− 𝑓 (3) (𝜉)

6
ℎ2

if the numerator values are exact, the error is due only to truncation

• with rounded values and round-off errors

𝑓 (𝑥𝑖−1) = 𝑓 (𝑥𝑖−1) + 𝑒𝑖−1, 𝑓 (𝑥𝑖+1) = 𝑓 (𝑥𝑖+1) + 𝑒𝑖+1

• so

𝑓 ′ (𝑥𝑖) =
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2ℎ
+ 𝑒𝑖+1 − 𝑒𝑖−1

2ℎ
− 𝑓 (3) (𝜉)

6
ℎ2

• assume |𝑒𝑖±1 | ≤ 𝜀 and | 𝑓 (3) (𝑥) | ≤ 𝑀 , then��� 𝑓 ′ (𝑥𝑖) − 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)
2ℎ

��� ≤ 𝜀

ℎ
+ 𝑀

6
ℎ2

minimizing the bound w.r.t. ℎ yields the optimal step size ℎopt = (3 𝜀
𝑀
)1/3

SA — ENGR308error propagation 2.49

Example

• consider 𝑓 (𝑥) = −0.1𝑥4 − 0.15𝑥3 − 0.5𝑥2 − 0.25𝑥 + 1.2

• at 𝑥 = 0.5: 𝑓 ′ (0.5) = −0.9125.
• use centered difference (order 𝑂 (ℎ2)) with step sizes ℎ = 100, 10−1, . . . , 10−10

function diffex(func, dfunc, x, n)
format long
dftrue = dfunc(x);
h = 1; H(1) = h;
D(1) = (func(x+h) - func(x-h)) / (2*h);
E(1) = abs(dftrue - D(1));
for i = 2:n
h = h / 10; H(i) = h;
D(i) = (func(x+h) - func(x-h)) / (2*h);
E(i) = abs(dftrue - D(i));
end
L = [H’ D’ E’]’;
fprintf(’ step size finite difference true error\n’);
fprintf(’%14.10f %16.14f %16.13f\n’, L);
loglog(H, E), xlabel(’Step Size’), ylabel(’Error’)
title(’Plot of Error Versus Step Size’)
format short

SA — ENGR308error propagation 2.50

Example

>> ff = @(x) -0.1*x.^4 - 0.15*x.^3 - 0.5*x.^2 - 0.25*x + 1.2;
>> df = @(x) -0.4*x.^3 - 0.45*x.^2 - x - 0.25;
>> diffex(ff, df, 0.5, 11)

• third derivative bound at 𝑥 = 0.5: 𝑀 = | 𝑓 (3) (0.5) | = | − 2.4(0.5) − 0.9| = 2.1
• with machine round-off bound 𝜀 ≈ 0.5 × 10−16,

ℎopt =

(3𝜀
𝑀

)1/3
=

(3 × 0.5 × 10−16

2.1

)1/3
≈ 4.3 × 10−6

SA — ENGR308error propagation 2.51

References and further readings

• S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.3, Ch.4)

• S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.4)

SA — ENGR308references 2.52

	significant figures
	numerical errors
	round-off errors
	Taylor series, truncation errors
	error propagation
	references

