ENGR 308 (Fall 2025) S. Alghunaim

2. Round-off and truncation errors

o significant figures

e numerical errors

e round-off errors

o Taylor series, truncation errors

e error propagation

21

Significant figures
significant figures indicate the reliability of a numerical value

e represent certain digits plus one estimated digit

e ensure confidence in computations
Example

®

W

B
o
)

‘mvh\n\\\\\\

<]
(5]

speedometer (48.5 km/h, 3 significant figures with 2 certain digits)
odometer (87,324.45 km, 7 significant figures)

significant figures

22

Rules for significant figures

non-zero digits are always significant

zeros between non-zero digits are significant
— e.g., 1002 has 4 significant figures

leading zeros are not significant
— e.g., 0.001845 has 4 significant figures

trailing zeros with a decimal point are significant
— e.g., 45.300 has 5 significant figures

trailing zeros can be significant or not

- e.g., 45,300 may have 3, 4, 5 significant figures

— use scientific notation for clarity

- eg., 4.5300 x 104 has 5 significant figures

computer retain only a finite number of significant figures
- eg., m=3.141592653589793238462643- -

— 1 cannot be represented exactly in a computer

— omission of the remaining significant figures is called round-off error

significant figures

23

Accuracy and precision

Accuracy: how close a value is to the true value

Precision: how close repeated values are to each other

Example

(a) inaccurate (biased), imprecise
(uncertain)

(b) accurate, imprecise
(c) inaccurate, precise

(d) accurate, precise

significant figures

Increasing precision

Increasing accuracy

2.4

Outline

e significant figures

e numerical errors

e round-off errors

e Taylor series, truncation errors

® error propagation

Error sources

Errors in the problem to be solved

e mathematical model errors (model approximation)

e error in input data (physical measur. and previous approximate computation)

Truncation and discretization errors
e due to using approximate formula
— replacing derivatives by finite differences
3

2
— evaluating function by truncating a Taylor series (e.g., e* = 1 +x + Zp + % +)

e convergence errors in iterative methods, which converge to the exact solution in
infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors

e arise from finite precision representation of real numbers on computers

e truncation or discretization errors usually dominate roundoff errors

numerical errors

Example

surface area of the Earth with radius r might be computed using the formula

A =4nr?

e carth is modeled as a sphere, which is an approximation of its true shape

r ~ 6370 km, is based on empirical measurements and previous computations

7 is given by an infinite limiting process, which must be truncated at some point

e numerical values for the input data, as well as the results of the arithmetic
operations performed on them, are rounded in a computer or calculator

numerical errors

26

Approximations and errors

given true (actual) value x and its approximation x
e true error: E; = x — X (absolute error: |x — x|)

e relative error:

|true error| |x — X|

= (assuming x # 0)
|true value| x|

— gives percentage of error compared to the actual value (&; = relative error X 100%)
— accounts of the order of magnitude of quantities

Example
X X absolute error relative error
1 0.99 0.01 0.01
1 1.01 0.01 0.01
100 99.99 0.01 0.0001
100 99 1 0.01

e when |x| = 1, little difference between absolute and relative error

e when |x| >> 1, relative error more meaningful

numerical errors 27

Example: calculation of errors

Problem

(a) measurement of a bridge 9999 cm with true value 10,000 cm

(b) measurement of a rivet 9 cm with true value 10 cm
Error
(a) bridge: E; = 10,000 -9999 = 1cmand g; = m x 100% = 0.01%
(b) rivet: E; =10 -9 =1cmand & = 75 X 100% = 10%
e same error (1 cm) but different relative impact

e conclusion: we did a good job of measuring the bridge, but not the rivet

numerical errors

2.8

Approximate error

e true value is typically unknown a priori

e use best available estimate

approximate error
Eq = pp— x 100%
approximation

R e 100%

Xi
where x; is current approximation and x;_1 is previous approximation
e typically we require |e,| < &, for some small tolerance g5 > 0

e we can be assured that the result is correct to at least n significant figures if

ey = (0.5 % 10°™%

numerical errors 29

Example: error estimates for iterative methods

Problem: estimate ¢*-® = 1.648721--- using Maclaurin series
2 3
X
ef=l+x+—+—=+
21 3!
Goal: achieve 3 significant figures (g5 = 0.5 X 10273% = 0.05%)
e add terms until |e,| < &

e example: for x = 0.5, first term (1), second term (1.5), etc.

terms eVd ~ & (%) &4 (%)
1 1 39.3
2 15 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

e stops at 6 terms: &, < 0.05%, accurate to 5 significant figures

numerical errors

210

Example: MATLAB iterative calculation

implement code to iteratively find e* =~ 7);_: for x = 1 until |e,| < 1076

>> format long

>> [val, ea, iter] = IterMeth(1l,1e-6,100)
val =

2.718281826198493

ea =

9.216155641522974e-007

function [fx,ea,iter] = IterMeth(x,es,maxit)
% Maclaurin series of exponential function
if nargin < 2||isempty(es),es = 0.0001;end
if nargin < 3||isempty(maxit),maxit = 50;end
% initialization

iter = 1; sol = 1; ea = 100;

% iterative calculation

while (1)

solold = sol;

sol = sol + x ~ iter / factorial(iter);

iter = iter + 1;

if sol™ =0

ea = abs((sol - solold)/sol)*100;

end

if ea< = es || iter> = maxit,break,end
end

fx = sol;

end

numerical errors 211

Trade-offs in numerical methods

Accuracy vs. efficiency
e more accurate methods increase computation time

e e.g., numerical integration with more intervals improves accs. but slows comp.

Stability
e some methods become unstable for certain problems

e e.g., stiff differential equations

Convergence: does the method approach the true solution as iterations increase?

numerical errors

212

Outline

e significant figures

e numerical errors

o round-off errors

e Taylor series, truncation errors

® error propagation

Round-off errors

e computers retain only a fixed number of significant figures

irrational no. (r, e, \/7) and many base-10 rationals cannot be represented exactly

base-2 (binary) storage leads to discrepancies when representing base-10 no.

round-off error: discrepancy introduced by omitting significant figures

Example: V2 = 1.4142135623731--- ~ 1.4142 using 5 significant figures
e (V2)® =5.6569 and (1.4142)° = 5.6566 (small difference)
o (V2)%9 = 33554432 and (1.4142)5° = 33538346.35 (big difference ~ 1600)

round-off errors 213

Number systems

Base-10 (decimal)

e uses digits 0-9 with place values 10%

e example: 86,409 = 8 x 10* + 6 x 103 + 4 x 10?2 + 0 x 10' + 9 x 10°

Base-2 (binary)
e uses digits 0, 1 with place values 2%

e example: (10101101), =1-27+0-26+ ... +1.20=173

round-off errors 214

Integer representation

Integer representation
e signed magnitude: first bit is sign (0: +ve, 1: -ve); remaining bits store magnitude

e example: —173 (16-bit signed magnitude):

[[lio]is]s]e]s[olafe] sl bl

Number
Sign

Example: determine the base-10 range on a 16-bit machine

o 1 bit for sign; 15 bits for magnitude: max unsigned magnitude
Ax2"M + (A x28) + -+ (1 x2Y) + (1x2% =215 —1=232,767

e zero is 0000000000000000, so it is redundant to use 1000000000000000

e store additional -ve number: so range —2'° to 215 — 1 = —32,768 to 32,767

e numbers outside this range cannot be represented (overflow/underflow)

round-off errors 215

Floating-point representation

fractional numbers are represented in computers using floating-point form
d1 d
bl v bn

b is the base (an integer larger than 1); n is precision (number of digits)

x = x(.dydz---dy) - be=+() b® =+m- b°

e ¢ is exponent (émin < € < €max)

didsds--- is mantissa or significand, d; integerwith0 < d; < b -1

e stored as:
Signed
exponent ‘
l l { Mantissa }
Sign
Examples

e base-10: 0.15678 x 10% = 156.78
o base-2: —(.1101) - 22 = —(§ + 3+ 3 + 75) - 22 = -3.25

round-off errors 216

Normalization of mantissa

to maximize significant figures, mantissa is normalized to remove leading zeros

e example:
1/34 =0.029411765. ..

S0
store as 0.0294 x 10° = normalize to 0.2941 x 10~*

e normalization bounds mantissa:

<m<l1

S| =

0.1 <m < 1forbase-10 and for 0.5 < m < 1 base-2

round-off errors

217

Example: binary 7-bit floating-point set

7-bit floating point number stored as
21 20 271 272 273
o]t [2]e]o]o]

Signof Sign of of mantissa
number exponent

Magnitude

of exponent

—_—
‘ Magnitude

e smallest positive normalized value (shown above):
m=1x2"1=05 e=-1x2'+1x2%=-3 = +0.5x273=0.0625
e next highest numbers are developed by increasing the mantissa, as in
0111101 = (1x 271 +0x 272 +1x27%) x 27 = (0.078125)19

0111110 = (1 x 271 +1x 272 +0x 27%) x 273 = (0.093750)1¢
0111111 = (1x 27 +1x 272+ 1x27%) x 273 = (0.109375) 19

in base-10 equivalents are spaced evenly with an interval of 0.015625

round-off errors 218

Example: binary 7-bit floating-point set

to continue increasing, we decrease the exponent to 10, which gives a value of

e=—-(1x2'+0x2% =-2

mantissa is decreased back to its smallest 100; so, next number is
0110100 = (1 x 271 +0x 272 +0x 27%) x 272 = (0.125000)1¢
this still represents a gap of 0.125000 — 0.109375 = 0.015625

e increasing the mantissa, the gap is lengthened to 0.03125:
0110101 = (1x 271 +0x 272 +1x273) x 272 = (0.156250)19

0110110 = (1x 27" +1x 272 +0x 273) x 272 = (0.187500)1¢
0110111 = (1 x 271 +1x272+1x27%) x 272 = (0.218750)1¢

this pattern is repeated until a maximum number is reached:

0011111 = (1x27' +1x272+1x27%) x 2% = (7)o

round-off errors 219

Floating-point consequences and errors

Chopping Rounding

/\ 5
@ t t v t { Overflow —

Underflow “hole”
atzero

e limited range (overflow and underflow)
e only a finite number of numbers can be represented within the range
e the interval between numbers, Ax, doubles as the numbers grow in magnitude

round-off errors

Chopping and rounding

Chopping (truncation)
e discard excess digits (bias toward lower endpoint)

e example (base-10, 7 sig figs): 7 = 3.1415926535---

chop: 3.141592

Rounding

e map to nearest representable number (reduced error, unbiased overall)

e example (base-10, 7 sig figs): 7 = 3.1415926535---

round: 3.141593

round-off errors

221

Relative error bounds and machine epsilon

for Ax = actual number — floating point representation, we have

e for chopping:

@ < E
|x]
e for rounding:
Ax] _ &
—_— S J—
x| — 2
& is machine epsilon
8 — bl*l’l

where b is base and 7 is mantissa digits (precision)

round-off errors

222

Example: machine epsilon for the 7-bit set

base b = 2, mantissa bits n = 3 and chopping, we have & = 2173 = 0.25

e l|argest error occurs just below the upper bound of the 1st normalized interval

| | | | d | |

Largest relative
error

for example, maximum error would be a value falling just below the upper bound of
the interval between (0.125000)1¢ and (0.156250)1¢

for this case, the error is less than

|Ax] 003125 _
x|~ 0.125000

round-off errors 223

IEEE standard for binary arithmetic

e two binary (b = 2) floating-point number systems
e used in almost all modern computers (e.g., MATLAB)
IEEE standard single precision (requires 32 bits)
n=24, emin=-125, emax =128

e 23 bits for mantissa (d; = 1 not stored)
e 1 sign bit and 8 bits for exponent
e about 7 significant base-10 digits precision with range 10738 to 103°
|IEEE standard double precision (requires 64 bits)

n =293, e€min=—-1021, epnax =1024
e 52 bits for mantissa (d; = 1 not stored)

e 1 sign bit and 11 bits for exponent

e about 16 significant base-10 digits precision with range 107308 to 10308

round-off errors 224

Arithmetic manipulations

arithmetic with floating-point numbers introduces additional round-off error

e for simplicity: use base-10 numbers, 4-digit mantissa, 1-digit exponent, chopping
e other number bases and rounding would behave in a similar fashion

e focus on: addition, subtraction, multiplication, division

e |ong sequences of operations can accumulate small round-off errors

round-off errors 225

Addition

mantissa of no. with smaller exponent is modified so that exponents are the same

Example

0.1557 - 10" + 0.4381-107!
o write

0.4381-10"' — 0.004381 - 10"
e then add

0.1557 - 10*

0.004381-10' = chop — 0.1600 - 10!
0.160081 - 10

Adding a large and a small number: add 4000 to 0.0010:
0.4000 - 10* + 0.0000001 - 10* = 0.4000001 - 10*

chop — 0.4000 - 10*

round-off errors

Example: MATLAB

sum 0.0001 to itself 10* times, which should gives 1
in MATLAB running

s = 0;

for i = 1:10000

s = s + 0.0001;

end

sout = s

gives
sout=0.99999999999991

while 0.0001 is a nice number in base-10, it cannot be expressed exactly in base-2

round-off errors

Subtraction

Subtraction
0.3641 - 102 — 0.2686 - 10> = 0.0955 - 102

0.0955 - 10> — 0.9550 - 10" = 9.550

zero added to the end is not significant but is appended to fill the empty space

Subtracting two nearly equal numbers
0.7642 - 10® — 0.7641-10* = 0.0001 - 10®

0.0001 - 10> — 0.1000 - 10° = 0.1000
three nonsignificant zeros are appended

round-off induced when subtracting two nearly equal floating-point numbers is called
subtractive cancellation

round-off errors 2.28

Multiplication and division

Multiplication: multiply mantissas, add exponents, then normalize and chop

(0.1363 - 10%) x (0.6423 - 1071) = 0.08754549 - 102

0.08754549 - 10> — 0.8754549 - 10! e, 0.8754 - 10!

Division: divide mantissas, subtract exponents, then normalize and chop

round-off errors 2.29

Outline

e significant figures

e numerical errors

e round-off errors

e Taylor series, truncation errors

® error propagation

Taylor series

if f and its first n+1 derivatives are continuous on an interval containing a and x, then

L0 gy L2

f&x)=f(a)+ f(a)(x—a) +

with remainder (integral form)

——(x—a)"+R,

/ G s ar

called Taylor’s theorem or Taylor series

called Taylor approximation if R,, is omitted

e provides a polynomial approximation of smooth functions

predict f at a new point using values and derivatives at a nearby point

by the integral mean-value theorem, there exists & between a and x such that

_ ")

"= o O™

this is the derivative or Lagrange form of the remainder

Taylor series, truncation errors 2.30

Taylor approximations

Zero-order (constant)

Sf(xiv1) = f(x:)
First-order (affine approximation)

f(xivn) = fx) + f1(x) (xip1 = x0)

Second-order (quadratic approximation)

S (i)
2

(Xie1 = x;)?

f i) = fx) + f/(x0) (xip1 — x0) +

e approximation improves if x;41 is near x;

e higher-order terms capture curvature and improve accuracy

Taylor series, truncation errors

231

Full series about x; and remainder

fxiv1) = fO) + /() (xip = xi) + fHQ(Xi) (Xip1 — x;)?
(3) (n)
0D gt L R,
where (n+1)
n = —f(n " 1(5) (xis1 —x;) "™

Step size form (7 = x;41 — X;)

(") (.
Floinn) = Fs)+ £ e L0 S SO

where (forx; < & < x;41)
_ f("+1)(§)
" (n+ 1)'

Taylor series, truncation errors 2.32

Example: polynomial approximation

f(x) ==0.1x* = 0.15x — 0.5x% — 0.25x + 1.2,
approximate f(1) = 0.2 from x; = Owith s =1 usingn=0,1,2,3,4

Zero-order: f(x;41) ~ f(0) =1.2withE; =0.2-1.2=-1
First-order: f’(x) = —0.4x% — 0.45x? - x = 0.25 = f’(0) = -0.25

flxin) *1.2-0.25h = f(1) =0.95
E;=0.2-095=-0.75

Second-order: f”/(x) = -1.2x2-0.9x -1 = f”(0) = -1
1
f(xis1) *1.2-0.25h — 5112 = f(1)=0.45
E,=0.2-0.45=-0.25

Taylor series, truncation errors

2.33

fwh
. Zero order © o) 2 15)
First order
10 P00 S F)+ 1G5k
05 - P10 = fesd+ s+ L) g
f(x,' + 1)
0 J >
x=0 X4q=1 x
h

Fourth-order
) =-24x-09, f@0)=-09, fPx)=-24, fH0)=-24

f(1) ~1.2-0.25(1) - %(1)2 - (%9(1)3 - %(1)4

=12-0.25-05-0.15-0.1=0.2
since f is a 4th-degree polynomial, the n = 4 Taylor polynomial is exact and Ry = 0

Taylor series, truncation errors 2.34

Truncation error order notation

with 1 = x;41 — x;,
GG

" T+ D) =0(h"™)

e if erroris O(h), halving & halves the error
e if O(h?), halving h quarters the error

e for sufficiently small &, only a few terms are required to get a good estimate

Taylor series, truncation errors 2.35

Example

e we use Taylor series to approximate f(x) = cosx at x;41 = 7/3

e base point x; = 7/4, step h = /12, true value f(xn/3) = 0.5

ordern | £ (x) f(n/3) ~ &t
0 cosx | 0.707106781 —414
1 —sinx | 0.521986659 —4.4
2 —cosx | 0.497754491 0.449
3 sinx | 0.499869147 | 2.62x 1072
4 cosx | 0.500007551 | —1.51 x 1073
5 —sinx | 0.500000304 | —6.08 x 107
6 —cosx | 0.499999988 | 2.44x 1076

Taylor series, truncation errors

Remainder and the mean-value insight

e zero-order truncation:

fi) =1

(xi) +Ro, Ro=f'(x))h+

S (xi) n2 4+ f(3) (x;) 3

2! 3!

e derivative mean-value theorem = there exists £ € (x;, X;+1) with

]

e

Zero-order prediction

"
e

@

Ro=f'(&)h

Ro

%

K41

Taylor series, truncation errors

]

Ry

+ cee

2.37

Numerical differentiation: forward difference approximation

derivative forward approximation

i ~ L) 2 S 0 (e — xi) = O(h)

Xi+l — Xi

o follows from Taylor series

: G

fxivn) =) + f/(x) (Xiw1 —xi) + R, Ry = T
e called finite divided difference, f(xi+1) — f(x;) is called first forward difference
S (xie) = f(xi)

Xi+1 = Xi

(Xi+1 - xi)2

° called first finite divided difference

)

Taylor series, truncation errors

2.38

Numerical differentiation: backward difference approximation

derivative backward approximation

Fx) ~ fx) _hf(xi—l)’ error O(h)

follows from Taylor series expanded backward

Fxi) = £~ f Gph+ 02

]

Taylor series, truncation errors 2.39

Numerical differentiation: centered difference approximation

derivative centered difference approximation

fxig1) = fxiz1)

Jo) = 2h . error O(h%)
follows by subtracting

Flxinn) = £)+ f G+ 0
from

i 1)—f(x)—f(x)h+f”(D2

f

Taylor series, truncation errors

2.40

Example

f(x) = =0.1x* = 0.15x% — 0.5x2 — 0.25x + 1.25
approximate f”(0.5) using & = 0.5 and h = 0.25 (true value f’(0.5) = —0.9125)

for h = 0.5, using
xi-1=0, f(xi-1) =12

x; =0.5, f(x;)=0.925
Xi+1 = 1.0, f(.xl'+1) = 0.2

we get
0.2-0.925
forward: 05 - -1.45 (|&| = 58.9%)
0.925-1.2
backward: —o5 - -0.55 (|&/| =39.7%)
0.2-1.2
centered: 0 - -1.0 (l&/] =9.6%)

Taylor series, truncation errors 2.41

for h = 0.25, using
xi—1 =0.25, f(x;—1)=1.10351563

x; =0.5, f(x;) =0.925
Xxiv1 = 0.75, f(xi+1) = 0.63632813

we get
0.6363 — 0.925
forward: ——————— = -1.155 (|&;| = 26.5%)
0.25
0.925 - 1.1035
backward: ——————— = —-0.714 (|&;| = 21.7%)
0.25
0.6363 — 1.1035
centered: — o5 - -0.934 (|l&| =2.4%)

Taylor series, truncation errors 2.42

Numerical differentiation: second-order derivative

Second forward finite divided difference

f(xiv2) = 2f (xip1) + f (x;)

I (xi) 2 , error O(h)
follows by subtracting
, 17 x:
P = 1) + 7/ oy + L5 a2
from 2 times)
/ Xi
fGi) = fx) + f/(xp)h+ Th2 -
Second backward finite divided difference
) —2 . .
fll(xi) ~ f('xl) f(‘x}izl) + f(xl 2) , error O(h)
Second centered finite divided difference
i+1) = 2f (x; i
f/l(xi) ~ f(-x +1) f(x) +f(x 1) error O(l’lz)

h? ’

Taylor series, truncation errors

2.43

Outline

e significant figures

e numerical errors

e round-off errors

e Taylor series, truncation errors

® error propagation

Function error propagation

let X = x + AX be an approximation of x; we seek absolute function error:

Af(x) = [f(x) = f(X)]

e assuming X is close to x and f is continuous and differentiable near x,

7 = re0+ feoacs T (a2
e dropping second and higher terms:
~ e W e
Af(X) = |f (x) (X —x)| wle | N L
\

= /" (0)]1A%]

error propagation

2.44

Example

given x = 2.5 with error AX = 0.01, estimate the error in f(x) = x3
e we have

Af(F) ~ |f'(x)|A% = |3x?|-0.01 = 3(2.5)%(0.01) = 0.1875
e since f(2.5) = 15.625, we predict

F(%) ~ 15.625 + 0.1875

error propagation

2.45

Stability and condition

Condition (of a problem)
e sensitivity of f(x) to small changes in the input x
e algorithm is unstable if it magnifies input/round-off uncertainties
e relative errors:
/() —fI _ [f(x)Ax] |Ax|
fOF el |x]

Condition number: ratio of relative errors

]
“@ =]

is the relative error in x

e « = 1: output relative error = input relative error
e || > 1: relative error is amplified (ill-conditioning as || grows)

e |k| < 1: relative error is attenuated

error propagation

2.46

Example

we compute condition number for f(x) = tanx

xf'(x) x sec? x X

k(x) =

f(x) tanx ~ cos? x tanx
n n

Case 1: =—+0.1(—)
T3 2

_1.7279 % 40.86

~ ~-11.2
«(x) ~6.314

T T
Case2: x = —+0.01(—)
ase X 2 2

_ 1.5865 x 4053

k() > =555 ~1ol

near /2, sec? x grows and tan x changes rapidly = severe ill-conditioning

error propagation

2.47

Total numerical error: truncation vs. round-off

e total error = truncation + round-off
e | h, | truncation, but T round-off due to more ops/subtractive cancellation

e goal: choose step size to balance truncation and round-off contributions

Point of
diminishing

log error

log step size

error propagation 2.48

Error analysis of numerical differentiation

centered difference with truncation term:

i) = fic) fPE) 12
2h 6

if the numerator values are exact, the error is due only to truncation

f(xi) =

with rounded values and round-off errors

fic) = fxicy) +eicr, f(xign) = f(xip) + e

so
v [= fic) emi—eir fONE)
fw) = 2 R T

assume |e;+1] < € and | F®) (x)] < M, then

F(xisn) = fxio1) < E, M

v]’l2
i (-xl) o n 6
minimizing the bound w.r.t. & yields the optimal step size hqp = (378)1/3

error propagation

2.49

Example

e consider f(x) = —0.1x* — 0.15x3 — 0.5x% — 0.25x + 1.2
e atx =05 f(0.5) = —0.9125.
e use centered difference (order O (h?2)) with step sizes h = 10°,1071,...,10710

function diffex(func, dfunc, x, n)
format long

dftrue = dfunc(x);

h=1; H1) = h;

D(1) = (func(x+h) - func(x-h)) / (2*h);
E(1) = abs(dftrue - D(1));

for i = 2:n

h=h/ 10; H(i) = h;

D(i) = (func(x+h) - func(x-h)) / (2%h);

E(i) = abs(dftrue - D(i));

end

L=[H D E]’;

fprintf(’ step size finite difference true error\n’);

fprintf(°%14.10f %16.14f %16.13f\n’, L);

loglog(H, E), xlabel(’Step Size’), ylabel(’Error’)
title(’Plot of Error Versus Step Size’)

format short

error propagation 2.50

Example

>> ff = @(x) -0.1*x.74 - 0.15%x.73 - 0.5%x.72 - 0.256%x + 1.2;
>> df = @(x) -0.4%x.73 - 0.45*x.72 - x - 0.25;
>> diffex(ff, df, 0.5, 11)

100 — Plot of error versus step size

1072

Error

10710

10-12 | | | | |
10710 108 1076 1074 1072 1070

Step size

e third derivative bound at x = 0.5: M = | f®)(0.5)| = | — 2.4(0.5) — 0.9] = 2.1
e with machine round-off bound & ~ 0.5 x 10716,

3e\1/3 (3x0.5x10716\1/3 ~
h°p*=(ﬁ) :(21) ~4.3x107

251

error propagation

References and further readings

e S.C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.3, Ch.4)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.4)

references

2.52

	significant figures
	numerical errors
	round-off errors
	Taylor series, truncation errors
	error propagation
	references

