ENGR 308 (Fall 2025) S. Alghunaim

2. Round-off and truncation errors

o significant figures

e numerical errors

e round-off errors

o Taylor series, truncation errors

e error propagation
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Significant figures
significant figures indicate the reliability of a numerical value

e represent certain digits plus one estimated digit

e ensure confidence in computations
Example

®

W

B
o
)

‘mvh\n\\\\\\

<]
(5]

speedometer (48.5 km/h, 3 significant figures with 2 certain digits)
odometer (87,324.45 km, 7 significant figures)

significant figures
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Rules for significant figures

non-zero digits are always significant

zeros between non-zero digits are significant
— e.g., 1002 has 4 significant figures

leading zeros are not significant
— e.g., 0.001845 has 4 significant figures

trailing zeros with a decimal point are significant
— e.g., 45.300 has 5 significant figures

trailing zeros can be significant or not

- e.g., 45,300 may have 3, 4, 5 significant figures

— use scientific notation for clarity

- eg., 4.5300 x 104 has 5 significant figures

computer retain only a finite number of significant figures
- eg., m=3.141592653589793238462643- -

— 1 cannot be represented exactly in a computer

— omission of the remaining significant figures is called round-off error

significant figures
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Accuracy and precision

Accuracy: how close a value is to the true value

Precision: how close repeated values are to each other

Example

(a) inaccurate (biased), imprecise
(uncertain)

(b) accurate, imprecise
(c) inaccurate, precise

(d) accurate, precise

significant figures

Increasing precision

Increasing accuracy
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Outline

e significant figures

e numerical errors

e round-off errors

e Taylor series, truncation errors

® error propagation



Error sources

Errors in the problem to be solved

e mathematical model errors (model approximation)

e error in input data (physical measur. and previous approximate computation)

Truncation and discretization errors
e due to using approximate formula
— replacing derivatives by finite differences
3

2
— evaluating function by truncating a Taylor series (e.g., e* = 1 +x + Zp + % + )

e convergence errors in iterative methods, which converge to the exact solution in
infinitely many iterations, but are cut off after a finite number of iterations

Roundoff errors

e arise from finite precision representation of real numbers on computers

e truncation or discretization errors usually dominate roundoff errors

numerical errors



Example

surface area of the Earth with radius r might be computed using the formula

A =4nr?

e carth is modeled as a sphere, which is an approximation of its true shape

r ~ 6370 km, is based on empirical measurements and previous computations

7 is given by an infinite limiting process, which must be truncated at some point

e numerical values for the input data, as well as the results of the arithmetic
operations performed on them, are rounded in a computer or calculator

numerical errors
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Approximations and errors

given true (actual) value x and its approximation x
e true error: E; = x — X (absolute error: |x — x|)

e relative error:

|true error|  |x — X|

= (assuming x # 0)
|true value| x|

— gives percentage of error compared to the actual value (&; = relative error X 100%)
— accounts of the order of magnitude of quantities

Example
X X absolute error  relative error
1 0.99 0.01 0.01
1 1.01 0.01 0.01
100 99.99 0.01 0.0001
100 99 1 0.01

e when |x| = 1, little difference between absolute and relative error

e when |x| >> 1, relative error more meaningful
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Example: calculation of errors

Problem

(a) measurement of a bridge 9999 cm with true value 10,000 cm

(b) measurement of a rivet 9 cm with true value 10 cm
Error
(a) bridge: E; = 10,000 -9999 = 1cmand g; = m x 100% = 0.01%
(b) rivet: E; =10 -9 =1cmand & = 75 X 100% = 10%
e same error (1 cm) but different relative impact

e conclusion: we did a good job of measuring the bridge, but not the rivet

numerical errors
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Approximate error

e true value is typically unknown a priori

e use best available estimate

approximate error
Eq = pp— x 100%
approximation

R e 100%

Xi
where x; is current approximation and x;_1 is previous approximation
e typically we require |e,| < &, for some small tolerance g5 > 0

e we can be assured that the result is correct to at least n significant figures if

ey = (0.5 % 10°™%
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Example: error estimates for iterative methods

Problem: estimate ¢*-® = 1.648721--- using Maclaurin series
2 3
X
ef=l+x+—+—=+
21 3!
Goal: achieve 3 significant figures (g5 = 0.5 X 10273% = 0.05%)
e add terms until |e,| < &

e example: for x = 0.5, first term (1), second term (1.5), etc.

terms eVd ~ & (%) &4 (%)
1 1 39.3
2 15 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333  0.175 1.27
5 1.648437500 0.0172  0.158
6 1.648697917 0.00142 0.0158

e stops at 6 terms: &, < 0.05%, accurate to 5 significant figures

numerical errors
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Example: MATLAB iterative calculation

implement code to iteratively find e* =~ 7 );_: for x = 1 until |e,| < 1076

>> format long

>> [val, ea, iter] = IterMeth(1l,1e-6,100)
val =

2.718281826198493

ea =

9.216155641522974e-007

function [fx,ea,iter] = IterMeth(x,es,maxit)
% Maclaurin series of exponential function
if nargin < 2||isempty(es),es = 0.0001;end
if nargin < 3||isempty(maxit),maxit = 50;end
% initialization

iter = 1; sol = 1; ea = 100;

% iterative calculation

while (1)

solold = sol;

sol = sol + x ~ iter / factorial(iter);

iter = iter + 1;

if sol™ =0

ea = abs((sol - solold)/sol)*100;

end

if ea< = es || iter> = maxit,break,end
end

fx = sol;

end
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Trade-offs in numerical methods

Accuracy vs. efficiency
e more accurate methods increase computation time

e e.g., numerical integration with more intervals improves accs. but slows comp.

Stability
e some methods become unstable for certain problems

e e.g., stiff differential equations

Convergence: does the method approach the true solution as iterations increase?

numerical errors
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Outline

e significant figures

e numerical errors

o round-off errors

e Taylor series, truncation errors

® error propagation



Round-off errors

e computers retain only a fixed number of significant figures

irrational no. (r, e, \/7) and many base-10 rationals cannot be represented exactly

base-2 (binary) storage leads to discrepancies when representing base-10 no.

round-off error: discrepancy introduced by omitting significant figures

Example: V2 = 1.4142135623731--- ~ 1.4142 using 5 significant figures
e (V2)® =5.6569 and (1.4142)° = 5.6566 (small difference)
o (V2)%9 = 33554432 and (1.4142)5° = 33538346.35 (big difference ~ 1600)
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Number systems

Base-10 (decimal)

e uses digits 0-9 with place values 10%

e example: 86,409 = 8 x 10* + 6 x 103 + 4 x 10?2 + 0 x 10' + 9 x 10°

Base-2 (binary)
e uses digits 0, 1 with place values 2%

e example: (10101101), =1-27+0-26+ ... +1.20=173
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Integer representation

Integer representation
e signed magnitude: first bit is sign (0: +ve, 1: -ve); remaining bits store magnitude

e example: —173 (16-bit signed magnitude):

[ [lio]is]s]e]s[olafe] sl bl

Number
Sign

Example: determine the base-10 range on a 16-bit machine

o 1 bit for sign; 15 bits for magnitude: max unsigned magnitude
Ax2"M + (A x28) + -+ (1 x2Y) + (1x2% =215 —1=232,767

e zero is 0000000000000000, so it is redundant to use 1000000000000000

e store additional -ve number: so range —2'° to 215 — 1 = —32,768 to 32,767

e numbers outside this range cannot be represented (overflow/underflow)
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Floating-point representation

fractional numbers are represented in computers using floating-point form
d1 d
bl v bn

b is the base (an integer larger than 1); n is precision (number of digits)

x = x(.dydz---dy) - be=+( ) b® =+m- b°

e ¢ is exponent (émin < € < €max)

didsds--- is mantissa or significand, d; integerwith0 < d; < b -1

e stored as:
Signed
exponent ‘
l l { Mantissa }
Sign
Examples

e base-10: 0.15678 x 10% = 156.78
o base-2: —(.1101) - 22 = —(§ + 3+ 3 + 75) - 22 = -3.25
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Normalization of mantissa

to maximize significant figures, mantissa is normalized to remove leading zeros

e example:
1/34 =0.029411765. ..

S0
store as 0.0294 x 10° = normalize to 0.2941 x 10~*

e normalization bounds mantissa:

<m<l1

S| =

0.1 <m < 1forbase-10 and for 0.5 < m < 1 base-2

round-off errors
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Example: binary 7-bit floating-point set

7-bit floating point number stored as
21 20 271 272 273
o]t [2]e]o]o]

Signof  Sign of of mantissa
number exponent

Magnitude

of exponent

—_—
‘ Magnitude

e smallest positive normalized value (shown above):
m=1x2"1=05 e=-1x2'+1x2%=-3 = +0.5x273=0.0625
e next highest numbers are developed by increasing the mantissa, as in
0111101 = (1x 271 +0x 272 +1x27%) x 27 = (0.078125)19

0111110 = (1 x 271 +1x 272 +0x 27%) x 273 = (0.093750)1¢
0111111 = (1x 27 +1x 272+ 1x27%) x 273 = (0.109375) 19

in base-10 equivalents are spaced evenly with an interval of 0.015625
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Example: binary 7-bit floating-point set

to continue increasing, we decrease the exponent to 10, which gives a value of

e=—-(1x2'+0x2% =-2

mantissa is decreased back to its smallest 100; so, next number is
0110100 = (1 x 271 +0x 272 +0x 27%) x 272 = (0.125000)1¢
this still represents a gap of 0.125000 — 0.109375 = 0.015625

e increasing the mantissa, the gap is lengthened to 0.03125:
0110101 = (1x 271 +0x 272 +1x273) x 272 = (0.156250)19

0110110 = (1x 27" +1x 272 +0x 273) x 272 = (0.187500)1¢
0110111 = (1 x 271 +1x272+1x27%) x 272 = (0.218750)1¢

this pattern is repeated until a maximum number is reached:

0011111 = (1x27' +1x272+1x27%) x 2% = (7)o

round-off errors 219



Floating-point consequences and errors

Chopping Rounding

/\ 5
@ t t v t { Overflow —

Underflow “hole”
atzero

e limited range (overflow and underflow)
e only a finite number of numbers can be represented within the range
e the interval between numbers, Ax, doubles as the numbers grow in magnitude

round-off errors



Chopping and rounding

Chopping (truncation)
e discard excess digits (bias toward lower endpoint)

e example (base-10, 7 sig figs): 7 = 3.1415926535---

chop: 3.141592

Rounding

e map to nearest representable number (reduced error, unbiased overall)

e example (base-10, 7 sig figs): 7 = 3.1415926535---

round: 3.141593

round-off errors
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Relative error bounds and machine epsilon

for Ax = actual number — floating point representation, we have

e for chopping:

@ < E
|x]
e for rounding:
Ax] _ &
—_— S J—
x| — 2
& is machine epsilon
8 — bl*l’l

where b is base and 7 is mantissa digits (precision)

round-off errors
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Example: machine epsilon for the 7-bit set

base b = 2, mantissa bits n = 3 and chopping, we have & = 2173 = 0.25

e l|argest error occurs just below the upper bound of the 1st normalized interval

| | | | d | |

Largest relative
error

for example, maximum error would be a value falling just below the upper bound of
the interval between (0.125000)1¢ and (0.156250)1¢

for this case, the error is less than

|Ax] 003125 _
x|~ 0.125000
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IEEE standard for binary arithmetic

e two binary (b = 2) floating-point number systems
e used in almost all modern computers (e.g., MATLAB)
IEEE standard single precision (requires 32 bits)
n=24, emin=-125, emax =128

e 23 bits for mantissa (d; = 1 not stored)
e 1 sign bit and 8 bits for exponent
e about 7 significant base-10 digits precision with range 10738 to 103°
|IEEE standard double precision (requires 64 bits)

n =293, e€min=—-1021, epnax =1024
e 52 bits for mantissa (d; = 1 not stored)

e 1 sign bit and 11 bits for exponent

e about 16 significant base-10 digits precision with range 107308 to 10308
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Arithmetic manipulations

arithmetic with floating-point numbers introduces additional round-off error

e for simplicity: use base-10 numbers, 4-digit mantissa, 1-digit exponent, chopping
e other number bases and rounding would behave in a similar fashion

e focus on: addition, subtraction, multiplication, division

e |ong sequences of operations can accumulate small round-off errors
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Addition

mantissa of no. with smaller exponent is modified so that exponents are the same

Example

0.1557 - 10" + 0.4381-107!
o write

0.4381-10"' — 0.004381 - 10"
e then add

0.1557 - 10*

0.004381-10' = chop — 0.1600 - 10!
0.160081 - 10

Adding a large and a small number: add 4000 to 0.0010:
0.4000 - 10* + 0.0000001 - 10* = 0.4000001 - 10*

chop — 0.4000 - 10*

round-off errors



Example: MATLAB

sum 0.0001 to itself 10* times, which should gives 1
in MATLAB running

s = 0;

for i = 1:10000

s = s + 0.0001;

end

sout = s

gives
sout=0.99999999999991

while 0.0001 is a nice number in base-10, it cannot be expressed exactly in base-2

round-off errors



Subtraction

Subtraction
0.3641 - 102 — 0.2686 - 10> = 0.0955 - 102

0.0955 - 10> — 0.9550 - 10" = 9.550

zero added to the end is not significant but is appended to fill the empty space

Subtracting two nearly equal numbers
0.7642 - 10® — 0.7641-10* = 0.0001 - 10®

0.0001 - 10> — 0.1000 - 10° = 0.1000
three nonsignificant zeros are appended

round-off induced when subtracting two nearly equal floating-point numbers is called
subtractive cancellation

round-off errors 2.28



Multiplication and division

Multiplication: multiply mantissas, add exponents, then normalize and chop

(0.1363 - 10%) x (0.6423 - 1071) = 0.08754549 - 102

0.08754549 - 10> — 0.8754549 - 10! e, 0.8754 - 10!

Division: divide mantissas, subtract exponents, then normalize and chop

round-off errors 2.29
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e round-off errors
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Taylor series

if f and its first n+1 derivatives are continuous on an interval containing a and x, then

L0 gy L2

f&x)=f(a)+ f(a)(x—a) +

with remainder (integral form)

——(x—a)"+R,

/ G s ar

called Taylor’s theorem or Taylor series

called Taylor approximation if R,, is omitted

e provides a polynomial approximation of smooth functions

predict f at a new point using values and derivatives at a nearby point

by the integral mean-value theorem, there exists & between a and x such that

_ ")

"= o O™

this is the derivative or Lagrange form of the remainder

Taylor series, truncation errors 2.30



Taylor approximations

Zero-order (constant)

Sf(xiv1) = f(x:)
First-order (affine approximation)

f(xivn) = fx) + f1(x) (xip1 = x0)

Second-order (quadratic approximation)

S (i)
2

(Xie1 = x;)?

f i) = fx) + f/(x0) (xip1 — x0) +

e approximation improves if x;41 is near x;

e higher-order terms capture curvature and improve accuracy

Taylor series, truncation errors
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Full series about x; and remainder

fxiv1) = fO) + /() (xip = xi) + fHQ(Xi) (Xip1 — x;)?
(3) (n)
0D gt L R,
where (n+1)
n = —f(n " 1(5) (xis1 —x;) "™

Step size form (7 = x;41 — X;)

(") (.
Floinn) = Fs)+ £ e L0 S SO

where (forx; < & < x;41)
_ f("+1)(§)
" (n+ 1)'

Taylor series, truncation errors 2.32



Example: polynomial approximation

f(x) ==0.1x* = 0.15x — 0.5x% — 0.25x + 1.2,
approximate f(1) = 0.2 from x; = Owith s =1 usingn=0,1,2,3,4

Zero-order: f(x;41) ~ f(0) =1.2withE; =0.2-1.2=-1
First-order: f’(x) = —0.4x% — 0.45x? - x = 0.25 = f’(0) = -0.25

flxin) *1.2-0.25h = f(1) =0.95
E;=0.2-095=-0.75

Second-order: f”/(x) = -1.2x2-0.9x -1 = f”(0) = -1
1
f(xis1) *1.2-0.25h — 5112 = f(1)=0.45
E,=0.2-0.45=-0.25

Taylor series, truncation errors
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fwh
. Zero order © o) 2 15)
First order
10 P00 S F)+ 1G5k
05 - P10 = fesd+ s+ L) g
f(x,' + 1)
0 J >
x=0 X4q=1 x
h

Fourth-order
) =-24x-09, f@0)=-09, fPx)=-24, fH0)=-24

f(1) ~1.2-0.25(1) - %(1)2 - (%9(1)3 - %(1)4

=12-0.25-05-0.15-0.1=0.2
since f is a 4th-degree polynomial, the n = 4 Taylor polynomial is exact and Ry = 0

Taylor series, truncation errors 2.34



Truncation error order notation

with 1 = x;41 — x;,
GG

" T+ D) =0(h"™)

e if erroris O(h), halving & halves the error
e if O(h?), halving h quarters the error

e for sufficiently small &, only a few terms are required to get a good estimate

Taylor series, truncation errors 2.35



Example

e we use Taylor series to approximate f(x) = cosx at x;41 = 7/3

e base point x; = 7/4, step h = /12, true value f(xn/3) = 0.5

ordern | £ (x) f(n/3) ~ &t
0 cosx | 0.707106781 —414
1 —sinx | 0.521986659 —4.4
2 —cosx | 0.497754491 0.449
3 sinx | 0.499869147 | 2.62x 1072
4 cosx | 0.500007551 | —1.51 x 1073
5 —sinx | 0.500000304 | —6.08 x 107
6 —cosx | 0.499999988 | 2.44x 1076

Taylor series, truncation errors




Remainder and the mean-value insight

e zero-order truncation:

fi) =1

(xi) +Ro,  Ro=f'(x))h+

S (xi) n2 4+ f(3) (x;) 3

2! 3!

e derivative mean-value theorem = there exists £ € (x;, X;+1) with

]

e

Zero-order prediction

"
e

@

Ro=f'(&)h

Ro

%

K41

Taylor series, truncation errors
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Numerical differentiation: forward difference approximation

derivative forward approximation

i ~ L) 2 S 0 (e — xi) = O(h)

Xi+l — Xi

o follows from Taylor series

: G

fxivn) = ) + f/(x) (Xiw1 —xi) + R, Ry = T
e called finite divided difference, f(xi+1) — f(x;) is called first forward difference
S (xie) = f(xi)

Xi+1 = Xi

(Xi+1 - xi)2

° called first finite divided difference

)

Taylor series, truncation errors

2.38



Numerical differentiation: backward difference approximation

derivative backward approximation

Fx) ~ fx) _hf(xi—l)’ error O(h)

follows from Taylor series expanded backward

Fxi) = £~ f Gph+ 02

]

Taylor series, truncation errors 2.39



Numerical differentiation: centered difference approximation

derivative centered difference approximation

fxig1) = fxiz1)

Jo) = 2h . error O(h%)
follows by subtracting

Flxinn) = £ )+ f G+ 0
from

i 1)—f(x)—f(x)h+f”( D2

f

Taylor series, truncation errors
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Example

f(x) = =0.1x* = 0.15x% — 0.5x2 — 0.25x + 1.25
approximate f”(0.5) using & = 0.5 and h = 0.25 (true value f’(0.5) = —0.9125)

for h = 0.5, using
xi-1=0, f(xi-1) =12

x; =0.5, f(x;)=0.925
Xi+1 = 1.0, f(.xl'+1) = 0.2

we get
0.2-0.925
forward: 05 - -1.45 (|&| = 58.9%)
0.925-1.2
backward: —o5 - -0.55 (|&/| =39.7%)
0.2-1.2
centered: 0 - -1.0 (l&/] =9.6%)

Taylor series, truncation errors 2.41



for h = 0.25, using
xi—1 =0.25, f(x;—1)=1.10351563

x; =0.5, f(x;) =0.925
Xxiv1 = 0.75,  f(xi+1) = 0.63632813

we get
0.6363 — 0.925
forward: ——————— = -1.155 (|&;| = 26.5%)
0.25
0.925 - 1.1035
backward: ——————— = —-0.714 (|&;| = 21.7%)
0.25
0.6363 — 1.1035
centered: — o5 - -0.934 (|l&| =2.4%)

Taylor series, truncation errors 2.42



Numerical differentiation: second-order derivative

Second forward finite divided difference

f(xiv2) = 2f (xip1) + f (x;)

I (xi) 2 , error O(h)
follows by subtracting
, 17 x:
P = 1) + 7/ oy + L5 a2
from 2 times )
/ Xi
fGi) = fx) + f/(xp)h+ Th2 -
Second backward finite divided difference
) —2 . .
fll(xi) ~ f('xl) f(‘x}izl) + f(xl 2) , error O(h)
Second centered finite divided difference
i+1) = 2f (x; i
f/l(xi) ~ f(-x +1) f(x ) +f(x 1) error O(l’lz)

h? ’

Taylor series, truncation errors
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Function error propagation

let X = x + AX be an approximation of x; we seek absolute function error:

Af(x) = [f(x) = f(X)]

e assuming X is close to x and f is continuous and differentiable near x,

7 = re0+ feoacs T (a2
e dropping second and higher terms:
~ e W e
Af(X) = |f (x) (X —x)| wle | N L
\

= /" (0)]1A%]

error propagation
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Example

given x = 2.5 with error AX = 0.01, estimate the error in f(x) = x3
e we have

Af(F) ~ |f'(x)|A% = |3x?|-0.01 = 3(2.5)%(0.01) = 0.1875
e since f(2.5) = 15.625, we predict

F(%) ~ 15.625 + 0.1875

error propagation
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Stability and condition

Condition (of a problem)
e sensitivity of f(x) to small changes in the input x
e algorithm is unstable if it magnifies input/round-off uncertainties
e relative errors:
/() —fI _ [f(x)Ax] |Ax|
fOF el |x]

Condition number: ratio of relative errors

]
“@ = ]

is the relative error in x

e « = 1: output relative error = input relative error
e || > 1: relative error is amplified (ill-conditioning as || grows)

e |k| < 1: relative error is attenuated

error propagation
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Example

we compute condition number for f(x) = tanx

xf'(x) x sec? x X

k(x) =

f(x)  tanx ~ cos? x tanx
n n

Case 1: =—+0.1(—)
T3 2

_1.7279 % 40.86

~ ~-11.2
«(x) ~6.314

T T
Case2: x = —+0.01(—)
ase X 2 2

_ 1.5865 x 4053

k() > =555 ~1ol

near /2, sec? x grows and tan x changes rapidly = severe ill-conditioning

error propagation
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Total numerical error: truncation vs. round-off

e total error = truncation + round-off
e | h, | truncation, but T round-off due to more ops/subtractive cancellation

e goal: choose step size to balance truncation and round-off contributions

Point of
diminishing

log error

log step size

error propagation 2.48



Error analysis of numerical differentiation

centered difference with truncation term:

i) = fic)  fPE) 12
2h 6

if the numerator values are exact, the error is due only to truncation

f(xi) =

with rounded values and round-off errors

fic) = fxicy) +eicr,  f(xign) = f(xip) + e

so
v [ = fic)  emi—eir fONE)
fw) = 2 R T

assume |e;+1] < € and | F®) (x)] < M, then

F(xisn) = fxio1) < E, M

v ]’l2
i (-xl) o n 6
minimizing the bound w.r.t. & yields the optimal step size hqp = (378)1/3

error propagation
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Example

e consider f(x) = —0.1x* — 0.15x3 — 0.5x% — 0.25x + 1.2
e atx =05 f(0.5) = —0.9125.
e use centered difference (order O (h?2)) with step sizes h = 10°,1071,...,10710

function diffex(func, dfunc, x, n)
format long

dftrue = dfunc(x);

h=1; H1) = h;

D(1) = (func(x+h) - func(x-h)) / (2*h);
E(1) = abs(dftrue - D(1));

for i = 2:n

h=h/ 10; H(i) = h;

D(i) = (func(x+h) - func(x-h)) / (2%h);

E(i) = abs(dftrue - D(i));

end

L=[H D E]’;

fprintf(’ step size finite difference true error\n’);

fprintf(°%14.10f %16.14f %16.13f\n’, L);

loglog(H, E), xlabel(’Step Size’), ylabel(’Error’)
title(’Plot of Error Versus Step Size’)

format short
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Example

>> ff = @(x) -0.1*x.74 - 0.15%x.73 - 0.5%x.72 - 0.256%x + 1.2;
>> df = @(x) -0.4%x.73 - 0.45*x.72 - x - 0.25;
>> diffex(ff, df, 0.5, 11)

100 — Plot of error versus step size

1072

Error

10710

10-12 | | | | |
10710 108 1076 1074 1072 1070

Step size

e third derivative bound at x = 0.5: M = | f®)(0.5)| = | — 2.4(0.5) — 0.9] = 2.1
e with machine round-off bound & ~ 0.5 x 10716,

3e\1/3  (3x0.5x10716\1/3 ~
h°p*=(ﬁ) :( 21 ) ~4.3x107
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References and further readings

e S.C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.3, Ch.4)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.4)
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