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1. Mathematical modeling and engineering problem
solving

e mathematical modeling
e simple mathematical model

e conservation laws



Knowledge and understanding vs tools

o effective use of computational tools depends on insight into engineering systems
e even advanced tools are ineffective without a deep understanding of the system

e computers enhance problem-solving but rely on knowledge of system behavior

Gaining understanding

e empirical: observations and experiments yield data and qualitative insights

o theoretical: repeated patterns lead to fundamental laws (e.g., conservation laws)
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Empirical and theoretical problem solving

Empirical approach Theoretical approach
e observe, measure, and experiment e formulate principles and laws
e identify patterns and trends in data e derive predictions and explanations

effective engineering integrates both approaches

Data-theory relationship
e new data improves or updates models
e theories guide how experiments are designed

e theories unify observations into key principles
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Mathematical models and problem solving

a mathematical model represents a physical system using equations

Types of models

empirical: derived from observed data (e.g., curve fitting)

theoretical: based on physical laws (e.g., Newton’s laws)

Problem solving process

problem definition: specify the system, goals, and constraints

data and theory: integrate observations with fundamental laws
mathematical model: represent the system with equations

problem-solving tools: apply numerical methods, computation, and statistics
implementation: produce quantitative or graphical results

societal interfaces: interpret, optimize, communicate, and apply outcomes
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Outline

e mathematical modeling
o simple mathematical model

e conservation laws



Mathematical model

in general, a mathematical model can be expressed as a functional relationship:

dependent variable = f(independent variables, parameters, forcing functions)

f: a multi-variable function representing the model

e dependent variable: system response or state (e.g., velocity)

independent variables: dimensions such as time or space (e.g., )

parameters: fixed system properties (e.g., mass)

e forcing functions: external inputs or influences (e.g., applied force)
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Example: Newton’s second law

Physical law: net force acting on an object equals its mass times acceleration:

F =ma
where F = net force (N), m = mass (kg), a = acceleration (m/s?)

Rewritten in model form

F
a=—
m

dependent variable: a (acceleration)

forcing function: F' (net force)
e parameter: m (mass)

e no independent variable (time-independent for this simple case)
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Range of mathematical models

Simple vs. complex models
e simple models: algebraic equations (e.g., F = ma)

e complex models: sets of differential equations
— example: modeling fluid flow or heat transfer

Solution approaches
e analytical: exact solutions (possible for simple models)

e numerical: approximate solutions for complex models
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Role of numerical methods

enable solutions for complex models where analytical methods fail
e provide systematic approximations with controllable error
e connect mathematical models to practical engineering outcomes

e example: solving differential equations for dynamic systems

numerical methods bridge theory and application
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Example: falling parachutist

Problem: model the velocity of a parachutist under gravity and air resistance

e apply Newton’s second law to a dynamic system
e account for forces: gravity (downward) and air resistance (upward)
e derive a differential equation for velocity

e solve analytically or numerically
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Example: falling parachutist

applying Newton’s law ma = F (conservation of momentum) with

d
a:d—:, F=Fy+Fp, Fp=mg, Fy=-cv
gives the differential equation
dv
m— =mg —cv
ar "8

e m =mass kg, g = 9.81 m/s? (gravitational acceleration)
e ¢ =drag coefficient (kg/s), v = velocity
e can be solved exactly (next page)

e numerical approach: approximate using finite differences (covered shortly)
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Example: falling parachutist

Solution: for initial condition v(0) = 0

o(t) = 82 (1 — e~ (e/miry
&

e maps to general model form: v(¢) = f(¢t,m,c, g)
® parameters: m, ¢

e forcing function: g

e independent variable: ¢

e dependent variable: v(t)

e predicts terminal velocity as t — oo v — &2
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Example: falling parachutist

set parameters: m = 68.1, kg, ¢ = 12.5 kg/s, g = 9.81 m/s?

o(f) = & 81 68. 1(1 ¢~ (125/68.1)1y _ 53 44(1 _ (0183551 e
m = 68.1; ¢ = 12.5; g = 9.81;
t =0:0.1:12;
v = (gxm/c)*(1 - exp(-(c/m)*t));

plot(t, v); xlabel(’Time (s)’); ylabel(’Velocity (m/s)’);
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Example: finite difference approximation

Objective: solve numerically by approximating the derivative in the parachutist model

dr At tiv1 — t;

dv Av_ u(tivr) — (1)

L | i’

True slope

dv/drt \

Approximate slope

o(t;) F-—— Ao _ Uiv1) v
At T Tiy1-g;

1 Li+1 t
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Example: finite difference approximation

substitute into differential equation on page 1.10:

v(tiv1) — v(t;)

Cc
=g - —ul
PR 8- (t:)

rearrange for next velocity
c
v(tiv1) = v(t;) + [8 - n_/lv(ti)] (tiv1 — 1)
e formula: new value = old value + slope x step size

e slope: right-hand side of differential equation

e known as Euler's method
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Example: finite difference approximation

compute parachutist velocity using Euler's method and At = ;4,1 —t; = 2s
e parameters: g = 9.81 m/s2, m = 68.1kg, ¢ = 12.5kg/s

e initial condition: v(0) = 0 m/s
First step (t =0tor = 2):

12.5
2) = 81— — -2=19.62
v(2) 0+[98 68.1(0)] 9.62m/s
Second step (f = 2to ¢t = 4):

v(4) = 19.62 +

12.5
81— =22(19.62)| -2 = 32.04
9.81 — === ( 96)] 32.04m/s
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Example: finite difference approximation

Results (Ar = 2s)

,,,,,,,,,,,,,,,,,,,,,,, Terminal velocity
W [~ Approximate, numerical solution
0 000 " \
2 19.62 i
4 32.04 g L
6 39.90 2 Exact, analytical solution
8 44 .87 20
10 48.02
12 50.01 r
00 53.44
P — 0 | | | |
0 4 8 »

simple mathematical model 1.16



Accuracy vs computational effort

e Euler's method approximates the true solution
e finite step size (At) causes discrepancy (error)

e smaller At (e.g., 1 s) reduces error but increase computation
— smaller steps improve accuracy

— double computations per halving of step size
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Outline

e mathematical modeling
e simple mathematical model
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Conservation laws

conservation laws govern engineering systems

General form
change = increases — decreases

e simple yet powerful for modeling complex systems
e applied to predict changes or balance states

e examples: mass, momentum, energy conservation
o called time-variable or transient computation

No change: system in balance

change = 0 = increases = decreases

e called steady-state computation
e many applications in engineering
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Example: fluid flow

flow in = flow out
Example: pipe junction

Pipe 2
Flowin =80

Pipe 4

Pipe 1
Flowin =100 == = Flowout =?

1

Pipe 3
Flow out =120

o flow into junction equals flow out

e 100+ 80 = 120 + pipe 4 flow out = pipe 4 flow out = 60
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Engineering applications

Chemical engineering

Conservation of mass Mass balance:

Reactors

Over a unit of time period
| Amass =inputs - outputs

Civil engineering

l Conservation of Force balance:

+A
Structure momentum Iv

Ateach node
2 horizontal forces (F,) =0
2 vertical forces (F,,) =0

conservation laws

1.20



Engineering applications

Mechanical engineering

Machine Conservation of Force balance:

(@ momentum Upward force
sy

Downward force

m 4 =downward force - upward force
a2 " P

Electrical engineering

Conservation of charge  Current balance:
+Hy—@— i3

+ For each node T
2 current () =0
Z +
Circuit
Conservation of energy  Voltage balance: iRy
iZRZ ‘S
i3Rs

Around each loop
2 emf's - X voltage drops for resistors =0
SE-3iR=0
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References and further readings

e S.C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.1)

e S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.1)
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