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Knowledge and understanding vs tools

• effective use of computational tools depends on insight into engineering systems

• even advanced tools are ineffective without a deep understanding of the system

• computers enhance problem-solving but rely on knowledge of system behavior

Gaining understanding

• empirical: observations and experiments yield data and qualitative insights

• theoretical: repeated patterns lead to fundamental laws (e.g., conservation laws)

SA — ENGR308mathematical modeling 1.2



Empirical and theoretical problem solving

Empirical approach

• observe, measure, and experiment

• identify patterns and trends in data

Theoretical approach

• formulate principles and laws

• derive predictions and explanations

effective engineering integrates both approaches

Data-theory relationship

• new data improves or updates models

• theories guide how experiments are designed

• theories unify observations into key principles
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Mathematical models and problem solving

a mathematical model represents a physical system using equations

Types of models

• empirical: derived from observed data (e.g., curve fitting)

• theoretical: based on physical laws (e.g., Newton’s laws)

Problem solving process

• problem definition: specify the system, goals, and constraints

• data and theory : integrate observations with fundamental laws

• mathematical model : represent the system with equations

• problem-solving tools: apply numerical methods, computation, and statistics

• implementation: produce quantitative or graphical results

• societal interfaces: interpret, optimize, communicate, and apply outcomes
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Outline
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• simple mathematical model

• conservation laws



Mathematical model

in general, a mathematical model can be expressed as a functional relationship:

dependent variable = 𝑓 (independent variables, parameters, forcing functions)

• 𝑓 : a multi-variable function representing the model

• dependent variable: system response or state (e.g., velocity)

• independent variables: dimensions such as time or space (e.g., 𝑡)

• parameters: fixed system properties (e.g., mass)

• forcing functions: external inputs or influences (e.g., applied force)
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Example: Newton’s second law

Physical law: net force acting on an object equals its mass times acceleration:

𝐹 = 𝑚𝑎

where 𝐹 = net force (N), 𝑚 = mass (kg), 𝑎 = acceleration (m/s2)

Rewritten in model form

𝑎 =
𝐹

𝑚

• dependent variable: 𝑎 (acceleration)

• forcing function: 𝐹 (net force)

• parameter: 𝑚 (mass)

• no independent variable (time-independent for this simple case)
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Range of mathematical models

Simple vs. complex models

• simple models: algebraic equations (e.g., 𝐹 = 𝑚𝑎)

• complex models: sets of differential equations
– example: modeling fluid flow or heat transfer

Solution approaches

• analytical: exact solutions (possible for simple models)

• numerical: approximate solutions for complex models
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Role of numerical methods

• enable solutions for complex models where analytical methods fail

• provide systematic approximations with controllable error

• connect mathematical models to practical engineering outcomes

• example: solving differential equations for dynamic systems

numerical methods bridge theory and application
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Example: falling parachutist

Problem: model the velocity of a parachutist under gravity and air resistance

𝐹𝑈

𝐹𝐷

• apply Newton’s second law to a dynamic system

• account for forces: gravity (downward) and air resistance (upward)

• derive a differential equation for velocity

• solve analytically or numerically
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Example: falling parachutist

applying Newton’s law 𝑚𝑎 = 𝐹 (conservation of momentum) with

𝑎 =
𝑑𝑣

𝑑𝑡
, 𝐹 = 𝐹𝑈 + 𝐹𝐷 , 𝐹𝐷 = 𝑚𝑔, 𝐹𝑈 = −𝑐𝑣

gives the differential equation

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑐𝑣

• 𝑚 = mass kg, 𝑔 = 9.81m/s2 (gravitational acceleration)

• 𝑐 = drag coefficient (kg/s), 𝑣 = velocity

• can be solved exactly (next page)

• numerical approach: approximate using finite differences (covered shortly)
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Example: falling parachutist

Solution: for initial condition 𝑣(0) = 0

𝑣(𝑡) = 𝑔𝑚

𝑐
(1 − 𝑒−(𝑐/𝑚)𝑡 )

• maps to general model form: 𝑣(𝑡) = 𝑓 (𝑡, 𝑚, 𝑐, 𝑔)

• parameters: 𝑚, 𝑐

• forcing function: 𝑔

• independent variable: 𝑡

• dependent variable: 𝑣(𝑡)

• predicts terminal velocity as 𝑡 → ∞: 𝑣 → 𝑔𝑚

𝑐
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Example: falling parachutist

set parameters: 𝑚 = 68.1, kg, 𝑐 = 12.5 kg/s, 𝑔 = 9.81 m/s2

𝑣(𝑡) = 9.81·68.1
12.5 (1 − 𝑒−(12.5/68.1)𝑡 ) = 53.44(1 − 𝑒−0.18355𝑡 ) m/s

m = 68.1; c = 12.5; g = 9.81;
t = 0:0.1:12;
v = (g*m/c)*(1 - exp(-(c/m)*t));
plot(t, v); xlabel(’Time (s)’); ylabel(’Velocity (m/s)’);

𝑡 (s) 𝑣 (m/s)
0 0.00
2 16.42
4 27.80
6 35.68
8 41.14
10 44.92
12 47.54
∞ 53.44

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Time (s)

Ve
lo

ci
ty

(m
/s

)

𝑣(𝑡)
terminal velocity

SA — ENGR308simple mathematical model 1.12



Example: finite difference approximation

Objective: solve numerically by approximating the derivative in the parachutist model

𝑑𝑣

𝑑𝑡
≈ Δ𝑣

Δ𝑡
=
𝑣(𝑡𝑖+1) − 𝑣(𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖

𝑣(𝑡𝑖+1 )

𝑣(𝑡𝑖 )

Δ𝑣

True slope
𝑑𝑣/𝑑𝑡

Approximate slope

𝑡

Δ𝑣
Δ𝑡

=
𝑣(𝑡𝑖+1 )−𝑣𝑡𝑖
𝑡𝑖+1−𝑡𝑖

𝑡𝑖 𝑡𝑖+1
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Example: finite difference approximation

substitute into differential equation on page 1.10:

𝑣(𝑡𝑖+1) − 𝑣(𝑡𝑖)
𝑡𝑖+1 − 𝑡𝑖

= 𝑔 − 𝑐

𝑚
𝑣(𝑡𝑖)

rearrange for next velocity

𝑣(𝑡𝑖+1) = 𝑣(𝑡𝑖) +
[
𝑔 − 𝑐

𝑚
𝑣(𝑡𝑖)

]
(𝑡𝑖+1 − 𝑡𝑖)

• formula: new value = old value + slope × step size

• slope: right-hand side of differential equation

• known as Euler’s method
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Example: finite difference approximation

compute parachutist velocity using Euler’s method and Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 = 2 s

• parameters: 𝑔 = 9.81m/s2, 𝑚 = 68.1 kg, 𝑐 = 12.5 kg/s

• initial condition: 𝑣(0) = 0m/s

First step (𝑡 = 0 to 𝑡 = 2):

𝑣(2) = 0 +
[
9.81 − 12.5

68.1
(0)

]
· 2 = 19.62m/s

Second step (𝑡 = 2 to 𝑡 = 4):

𝑣(4) = 19.62 +
[
9.81 − 12.5

68.1
(19.62)

]
· 2 = 32.04m/s
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Example: finite difference approximation

Results (Δ𝑡 = 2 s)

𝑡 (s) 𝑣 (m/s)
0 0.00
2 19.62
4 32.04
6 39.90
8 44.87
10 48.02
12 50.01
∞ 53.44

𝑡 , s

𝑣
m

/s

Terminal velocity

Exact, analytical solution

Approximate, numerical solution
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Accuracy vs computational effort

• Euler’s method approximates the true solution

• finite step size (Δ𝑡) causes discrepancy (error)

• smaller Δ𝑡 (e.g., 1 s) reduces error but increase computation

– smaller steps improve accuracy

– double computations per halving of step size
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Conservation laws

conservation laws govern engineering systems

General form
change = increases − decreases

• simple yet powerful for modeling complex systems

• applied to predict changes or balance states

• examples: mass, momentum, energy conservation

• called time-variable or transient computation

No change: system in balance

change = 0 =⇒ increases = decreases

• called steady-state computation

• many applications in engineering
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Example: fluid flow

flow in = flow out

Example: pipe junction

• flow into junction equals flow out

• 100 + 80 = 120 + pipe 4 flow out ⇒ pipe 4 flow out = 60
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Engineering applications

Chemical engineering

Civil engineering
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Engineering applications

Mechanical engineering

Electrical engineering
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• S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021.
(Ch.1)

• S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
McGraw Hill, 2023. (Ch.1)
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